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ABSTRACT Light detection and ranging (LiDAR) sensors can create high-quality scans of an environment.
However, LiDAR point clouds are affected by harsh weather conditions since airborne particles are easily
detected. In literature, conventional filtering and artificial intelligence (AI) filtering methods have been used
to detect, and remove, airborne particles. In this paper, a convolutional neural network (CNN) model was
used to classify airborne dust particles through a voxel-based approach. The CNN model was compared to
several conventional filtering methods, where the results show that the CNN filter can achieve up to 5.39%
F1 score improvement when compared to the best conventional filter. All the filtering methods were tested
in dynamic environments where the sensor was attached to a mobile platform, the environment had several
moving obstacles, and there were multiple dust cloud sources.

INDEX TERMS Artificial intelligence (AI), autonomous navigation, convolutional neural network (CNN),
dust de-filtering, light detection and ranging (LiDAR).

I. INTRODUCTION
Light Detection and Ranging (LiDAR) is commonly used in
autonomous navigation applications to create high-resolution
maps of the surrounding area [1]. In autonomous vehicles,
LiDAR plays a key role in obstacle detection and avoidance
since collisions can be extremely dangerous and expensive.
Although LiDAR can produce high-resolution point clouds,
harsh environmental factors can degrade the quality of the
scanned environment. Factors such as dust, snow, rain, and
other small airborne particles can be detected because of the
short wavelength (900 nm) of the signal [2], thus causing a lot
of noise in a point cloud. Because of this, it becomes difficult
to distinguish between obstacles and airborne particles.

In literature, there exists several methods to distinguish
between airborne particles and solid objects. One approach
is to fuse multiple sensors together [3], [4], such as a depth
camera and LiDAR [5]. By combining multiple sensors,
discrepancies between the sensors can be easily detected.
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However, hardware and physical limitations (not enough
room for more sensors) may not make this approach ideal.
Modern technological advances have allowed for smaller sen-
sors and all-in-one packages which can overcome this issue,
but this requires additional costs which may not be ideal.
So, another approach is to use conventional particle filtering
methods on the LiDAR point cloud. In literature, there are
several conventional algorithms that can be used, such as
the Radius Outlier Removal (ROR) filter [6], [7], Dynamic
Radius Outlier Removal (DROR) filter [8], Statistical Outlier
Removal (SOR) filter [9], and Low-IntensityOutlier Removal
(LIOR) filter [10]. These methods make use of the point
cloud’s geometry and light intensity to filter outlier points
that have properties of airborne particles. However, the
conventional methods sometimes remove points that are not
airborne particles, which results in the removal of important
environmental features such as obstacles.

Another method of airborne particle removal can be with
Artificial-Intelligence (AI) techniques. Some well studied AI
techniques that have been applied to detect airborne particles
are the Random Forest (RF) classifier [11], Support Vector
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Machine (SVM) classifier [11], [12], K-Nearest Neighbors
(KNN) classifier [12], Neural Network (NN) classifier [11],
and Deep Neural Network (DNN) classifier [13]. These
approaches require a large amount of data to train a
model such that it can accurately make predictions in real-
time. Thus, the data and features used to train the model
has a large influence on the quality of the predictions.
Existing literature states that a combination of geometry
features and light-intensity features through a voxel-based
approach is ideal for training AI methods for airborne particle
detection [1], [11], [13]. Compared to the conventional
methods, some AI approaches can remove airborne particles
with greater accuracy while still maintaining important
environmental information [1], [13].
In the mentioned literature, both conventional and AI

filtering methods have been discussed. As explained in the
mentioned works, conventional filtering methods perform
well under ideal conditions when dust and non-dust particles
are easily distinguishable. However, it is speculated that
a CNN based approach can outperform the conventional
filtering methods, especially in unideal conditions. This
assumption is supported by the fact that AI based approaches
have been used for airborne particle classification in the
mentioned works, and have a good performance. Several
research papers have used CNNs for airborne particle
filtering with slightly different approaches. For example,
Heinzler et al. proposed a CNN model named WeatherNet
which is based on LiLaNet to filter fog and rain in point
clouds [14]. They also propose a method of automatically
labelling experimental data by crossreferencing a sample
environment scan under ideal conditions (no rain or fog).
They transform the 3D LiDAR data into two 2D images,
one for depth and one for intensity. This is done by
‘‘unralvelling’’ the 360◦ scan into a 2D matrix with pixel
intensities corresponding to the depth and intensity of the
captured points. In the 2D matrix, each row corresponds
to one of the 32 vertically stacked send/recieve modules,
and each column corresponds to one of the 1800 segments
over the whole scanning range. Another study expands on
the work of Heinzler et al. by adding a local radius outlier
removal (LROR) filter after using a CNN to filter rain and
fog [15]. Their CNN model is named SunnyNet and is based
upon the WeatherNet model with some minor modifications.
Similarily, they also use the 2D depth and one for intensity
images for their network. Sebastian et al. conduct an in depth
study of snowy, foggy, and rainy conditions in 3D LiDAR
applications [16]. What they found was that the eignevectors
and eigen values can effectively capture different weather
conditions. This concept was extended to not only detecting
the atmospheric conditions, but the road conditions as well.
Specifically, their model can detect snow, light fog, dense fog,
and rain in the atmophere, and full snow coverage, slushy,
and wet road conditions. Similarily, they also used the 2D
depth image representation of the 3D LiDAR data for their
CNN structure named RangeWeatherNet, which is a redesign
of the DarkNet archetechture. In [17], the authors propose

a different method to represent the LiDAR data: the bird’s-
eye view. The bird’s-eye view is a depth image projected
on a different axis compared to other literature. They used
this for their CNN model named MobileWeatherNet, which
is a modified structure based on the work of Simonyan and
Zisserman [18], to detect rain and fog. Their work shows that
the bird’s-eye view is better for classifying different weather
conditions.

The mentioned works highlight the novelty of each
respective filter, however, a comparitive study between a
selection of conventional filtering methods and CNN based
approach have not been explored. Additionally, many of
the existing CNN based approaches for LiDAR filtering
and weather applicaions do not consider dust as one of
the conditions. In this paper, a novel CNN based approach
is proposed to classify and filter airborne dust particles in
LiDAR point clouds for autonomous excavation applications.
In existing studies, CNN based approaches have been used
for airborne particle filtering. However, in these studies
the voxel-feature tabular data is converted to an image-like
structure before being fed into the model. In this study, the
tabular data is used as the input to the CNN model, and
reshaping functions are used to convert the tabular data into
an image-like structure directly within the model. Therefore,
the training process can optimize the conversion between
the tabular data and image structure. Additionally, this work
is applied to dust de-filtering applications only, however,
the same methodology can be applied in other airborne
particle filtering applications under various adverse weaather
conditions such as snow, fog, and rain. The proposed model
will be compared to conventional filtering methods with
ground-truth data to evaluate the effectiveness of the model.
The main contributions of our work can be summarized as
follows.

• A large-scale voxel-based dataset was collected and
labelled for the CNN training.

• A novel CNN structure was proposed that converts the
voxelized features into a image-like structure for feature
extraction.

• This study considers several conventional filtering
methods, such as the ROR, DROR, SOR, and LIOR,
provides a comprehensive analysis on each filter’s de-
dusting performance compared to the developed CNN
model.

• The voxelized classification results from the CNN were
converted to a point-based classification as to properly
compare to the results generated from the conventional
methods.

The remainder of this paper is divided into the following
sections. Section II describes the theoretical background and
working principles of the conventional filtering methods and
the CNN architecture. Section III describes the collection
and preparation of the training data, as well as the metrics
used to quantify the improvements of the CNN approach.
Section IV covers a complete analysis of the classification
results of the conventional methods and CNN method, the
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improvements made are highlighted in this section. Finally,
Section V discusses the concluding remarks, limitations, and
future work for the proposed area of research.

II. CONVENTIONAL AND PROPOSED FILTERING
METHODOLOGY
This section will present the operating principle and theoret-
ical background regarding the selected conventional filtering
algorithms and the proposed CNN-based filtering method.

A. RADIUS OUTLIER REMOVAL FILTER (ROR)
The ROR filter eliminates outlier points in 3D space through
a geometrical approach [7]. By iterating though each point in
the point cloud, a sphere can be created with a predefined
search radius (SR), and the neighboring points can be
counted. If the number of neighbors is less than a defined
threshold, the point will be classified as an outlier (dust)
and removed from the point cloud. The input parameters for
this algorithm are the SR and minimum acceptable number
of neighboring points. An example of the ROR filter being
applied to 2D point data can be seen in Fig. 1. In 3D,
the circles created by the SR would simply be modelled as
spheres.

The ROR has some drawbacks with LiDAR applications.
Specifically, due to the sensor resolution, the density of the
point cloud changes with respect to the radial distance. As a
result, non-dust points may be classified as dust, resulting in
a filtered point cloud that removed important environmental
information.

B. DYNAMIC RADIUS OUTLIER REMOVAL FILTER (DROR)
The DROR filter was developed to resolve the problem seen
in the ROR regarding the changing point cloud density for
further objects [7]. It operates like the ROR, except that the
SR is a function of the point’s coordinates and the sensor
resolution. The SR can be calculated in (1), where x and y are
the coordinates of the point, β is a multiplier constant greater

FIGURE 1. ROR example for 2D data. In this example, the non-dust
threshold was set to 2.

than 1, and α is the angular resolution of the LiDAR.

SR = β ∗

√
x2 + y2 ∗ α (1)

There should also be minimum SR (SRmin) defined for
points that are near the sensor, otherwise no neighboring
points will be detected for a SR defined in (1). So, the
SR is calculated for all points, but when it is below SRmin,
the SR is simply set to SRmin. The input parameters for
the DROR filter are the multiplier constant (β), angular
resolution (α), minimum SR (SRmin), and the minimum
acceptable neighboring points. An example of the DROR
filter being applied to 2D point data can be seen in Fig. 2.
In 3D, the circles created by the SRwould simply bemodelled
as spheres.

C. STATISTICAL OUTLIER REMOVAL FILTER (SOR)
The SOR filter detects outliers in the point cloud using a
statistical approach [19]. First, the point cloud statistics need
to be calculated. By iterating through all points in the point
cloud, the average distance (dk ) of k nearest neighbors can
be calculated. Based on the average distances calculated,
the mean average distance (µ) and deviation (σ ) can be
calculated. With these parameters, the statistical outliers can
be identified using (2), where β is a specified multiplier.

µ − β ∗ α ≤ dk ≤ µ + β ∗ α (2)

Based on (2), each points average distance for k nearest
neighbors can be calculated, and if it is outside of the
statistical range, it is classified as dust. The drawback with
this approach is that it is computationally expensive. Since the
mean average distance and deviations need to be calculated
to classify them, the point cloud needs to be iterated over

FIGURE 2. DROR example for 2D data. In this example, the non-dust
threshold was set to 2.
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twice. The input parameters for this approach are the number
of neighboring points and the constant multiplier.

D. LOW-INTENSITY OUTLIER REMOVAL FILTER (LIOR)
The ROR, DROR, and SOR all rely strictly on the geometry
of the points within the point cloud. However, LiDAR can
measure the intensity of the signal obtained reflecting off an
object. The LIOR approach uses this valuable information
in addition to the geometry of the points [10]. As discussed
in [1], the LIOR filter consists of two stages.

In the first stage, the points within the point cloud are
filtered with respect to a predefined intensity value. The
second stage uses the geometry information of the points
removed in the first stage. The second stage can use either
the ROR or the DROR filter previously discussed, thus
creating the LIOR-ROR or LIOR-DROR filters. If the point
is classified as an outlier in the first and second stage, then it
is classified as dust. If the point is calculated as an outlier in
the first stage but not the second stage, then it is not classified
as dust and is kept in the original point cloud.

Since LIOR is paired with either ROR or DROR, the input
parameters are the same except for the intensity threshold
used in the first stage. To properly select the intensity
threshold, a study should be conducted with ground-truth
labelled data. The LIOR filter adds an additional measure
to the ROR and DROR filters by identifying possible dust
points, then the second stage can preserve non-dust points that
may have a relatively smaller intensity value.

E. PROPOSED FILTERING METHODOLOGY:
CONVOLUTIONAL NEURAL NETWORK FILTER (CNN)
In literature, the CNN [20] is commonly used in object detec-
tion and recognition in images. The CNN can be applied in
many applications ranging from medical image classification
for disease diagnosis [21] to facial recognition [22]. As seen
in a majority of applications, the CNN model consists of
an input layer, several hidden layers, and an output layer
used for classification [23]. The operation types within the
hidden layers consist of the convolutional layer (feature
extraction), pooling layer, and fully connected layer [23]. The
structure of the CNN, the order in which the layers occur,
and the parameters selected have a large influence on the
performance of the model. Thus, these metrics need to be
carefully selected to yield a high-quality model.

Sometimes, a CNN may be applied to tabular data rather
than images, as seen in [24] and [25]. In these cases, the
tabular data is converted into an image-like structure that can
be used by the CNN. As explained by Zhu et al. [25], the
tabular data is converted to an image where each entry in the
tabular data is converted to a pixel. They state that the location
of the pixels should be optimized such that similar features
are close together in the image.

As seen in literature, LiDAR data can be voxelized [26],
and features can be calculated using a principle component
analysis (PCA), which will be discussed in detail in the next

section. This results in a collection of tabular data where each
voxel consists of several metrics calculated using the PCA.
So, the input of the CNN model is tabular data representing
a voxel containing several LiDAR points. As described
in literature, the tabular data should be converted into an
image-like structure for the CNN to function as intended.

The proposed CNN model takes tabular data as the input
and is immediately passed through a dense layer. Rather than
converting the tabular data to an image before being trained,
the proposed CNN model converts the tabular data to an
image after the first dense layer. This process increases the
dimensionality of the input vector, then the data can simply be
rearranged into a 2D image. In doing so, the model can train
the dense layer weights such that the optimal tabular data-to-
image conversion is obtained.

After the first dense layer, the resulting vectors can be
flattened and reshaped into an image. Then, the first 2D
convolution layer is applied. For this process, a ReLU
activation function was selected, which can be formulated
in (3). The ReLU function outputs the input (x) if it
is positive, and 0 otherwise [27]. The ReLU function
was selected because of its simple implementation, yet
effective performance. The ReLU function was used for each
convolutional layer.

f (x) = max(0, x) (3)

After the first convolutional layer, a 2D max pooling
function is used on the tensors produced. 2D max pooling
works by creating a pool (typically a 2D matrix of a specified
size) and sliding it over a tensor in the X andY directions. The
maximum value found within a pool will be added to output
tensor [28]. This process down samples the input tensor and
extracts important features. A visual representation of the 2D
max pooling operation can be seen in Fig. 3. The 2D max
pooling operation is done after every convolutional layer.

In total, there are 3 2D convolutional layers paired with 2D
max pooling in series. After the final 2D max pooling layer,
the tensor is flattened and used as the input to the final dense
layer with a sigmoid activation function, which is ideal for
binary classification. The sigmoid activation function can be
formulated in (4), where it takes any real number as an input,

FIGURE 3. Example of a 2D max pooling operation.
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FIGURE 4. The proposed structure for dust de-filtering.

and the output is in the range of 0 to 1 [29]. This models the
probability of the voxel being either dust or non-dust.

f (x) =
1

1 + e−x
(4)

A graphical representation of the proposed CNN structure
can be seen in Fig. 4, where the dimension of the tensors
is highlighted at each layer. The first convolutional layer
has 32 3 × 3 filters, the second convolutional layer
has 128 3× 3 filters, and the third convolutional layer has 256
3 × 3 filters. Each 2D max pooling layer has a pool size
of 2 × 2. The proposed CNN model was assembled using
the Python TensorFlow library [30].

III. EXPERIMENT
To train any AI model, a large labelled dataset is a necessity.
So, the team conducted several experiments and test runs to
gather enough data to train a robust model.

The training data used was gathered from 2 experiments.
In both experiments, a VLP-16 LiDAR sensor was used [31].
The first experiment consisted of a stationary sensor with a
non-dust target and dust cloud that varied in distance from
the sensor. The distances of the dust cloud and non-dust target
for the first experiment can be seen in Table 1. For the first
experiment, only 1 leaf blower was active for all test runs.
The second experiment was a more realistic scenario with
dynamic environmental factors. Specifically, the VLP-16
was mounted on a mobile platform and there were dynamic
objects in the environment (people walking), as well as a dust
cloud generated from up to two leaf blowers. This results
in a dust cloud that varied in density depending on how

TABLE 1. First and second experiment dust and non-dust target
distances.

many leaf blowers (i.e., 1 or 2 blowers) were active. The
initial distances of the dust cloud and non-dust target for the
second experiment can also be seen in Table 1. For the second
experiment, the number of active leaf blowers was changed
for each test run. Meaning that each test run had 1 leaf
blower active, then an additional leaf blower was activated
to create the dense dust cloud. Also, the distance of the
dynamic non-dust obstacle was varied as it moved through the
environment. An example of the data collection environment
can be seen in Fig. 5. To label the LiDAR data collected, the
LiDAR labeller app in MATLAB was used [32].
As seen in Fig. 5, only the data directly in front of the

sensor was considered. There are two reasons for this. The
first reason is that the dust clouds were generated only in front
of the sensor. If the full field of view of the LiDAR sensor
was considered, a significant amount of non-dust particles
would be captured from behind the sensor. If this dataset
was used for training, it would result in a biased model
due to the imbalanced classes. The second reason is that
the proposed dust de-filtering technology was developed for
vehicles that only travel in the forwards direction. Meaning
that only the environment directly in front of the vehicle needs
to be considered. Additionally, having less points to process
can reduce the processing time, which is ideal for real-time
applications.

To extract features in the point cloud to use for training,
the point clouds were voxelized. Specifically, an octree
structure [33] was used for the voxelization. The octree
decomposition begins with a region of interest (ROI), and
the ROI is continuously segmented into children voxels given
that some condition is met. Some conditions may include the
maximum number of children partitions, the minimum voxel
dimension, or the voxel capacity. In some cases, the voxels
may be different sizes.

For this application, each voxel must contain at least
4 points to do the PCA. The PCA of a point distribution
in a voxel is derived from the least squares estimation [26].
Single value decomposition can be used to derive the normal
vector of the best-fit plane by solving an eigensystem [34].
The eigenvalues found using the PCA can be used to compute
several important geometrical traits of the voxelized data.
The calculated eigenvalues can be ordered as follows, λ0 ≥

λ1 ≥ λ2 [35]. The geometric features calculated using the
eigenvalues are based on the roughness [11], planarity [36],
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FIGURE 5. The environment in which the training and testing LiDAR data was collected. The MATLAB LiDAR labeler
app was used to label the dust points seen in red.

and curvature [36]. The selected geometric features can be
formulated in (5) to (7).

f1 =
λ2

λ0
(5)

f2 =
λ1

λ0
(6)

f3 =
λ0

λ0 + λ1 + λ2
(7)

In addition to the geometric features in (5) to (7), intensity
features were also used. The mean and deviation intensities
of the points in each voxel were calculated as the final two
features used for training. Themean and deviation of intensity
calculations can be seen in (8) and (9), where inti is the
intensity of point i in the voxel, n is the number of points in a
voxel, and int is the mean intensity seen within the voxel.

f4 =
1
n

n∑
i=1

inti (8)

f5 =

√√√√ 1
n− 1

n∑
i=1

(inti − int)2 (9)

A summary of the training dataset can be seen in Table 2.
When training the CNN, the dataset is stratified and split 70%
for training, and 30% validation.

A. METRICS FOR IMPROVEMENT
To quantify the performance of the proposed CNN model,
it will be compared to the conventional filtering methods.
Since the conventional filtering methods are applied to the
points, and the CNN filtering method is applied to the
voxelized point cloud, some conversions are needed as to
properly compare the results side-by-side. To do so, the
resulting voxel classifications are applied to all points within

TABLE 2. Voxelized training data for the CNN model.

the voxel. For example, if a voxel is classified as dust by the
CNN, then all points within the voxel are dust.

To quantify performance of the discussed filters, the
F1 score will be computed. The F1 score is defined as the
harmonic mean of precision and recall [37]. The F1 score
was selected since it considers true positives, false positives,
and false negatives in its calculation. The mathematical
formulation of precision, recall, and the F1 score can be
seen in (10) to (12). In (10) and (11), TP represents the true
positives, which are the ground-truth dust particles that have
been successfully classified as dust, FP represents the false
positives, which are the non-dust particles that are classified
as dust, and FN represents the false negatives, which are the
dust particles that are classified as non-dust. The F1 score
formulated in (12) considers both the precision (p) and
recall (r).

p =
TP

TP+ FP
(10)

r =
TP

TP+ FN
(11)

F1 =
2

r−1 + p−1 (12)

IV. RESULTS AND DISCUSSION
In this section, a complete analysis of the conventional
methods and CNN model will be conducted for airborne
dust particle filtering. To compare the performance of each
filtering method, 4 frames worth of LiDAR data will be
tested. The previous research only tested the conventional
methods with the static environment [1], so the 4 frames will
be selected from the dynamic experiment since it is closer to
the real-world application of the proposed research.

A. CONVENTIONAL METHODS
As previously discussed, the ROR, DROR, SOR, and LIOR
filtering methods will be selected to compare against the
proposed CNN model. The parameters selected for the
conventional filtering methods can be summarized in Table 3.
In Table 3, all values were selected based on trial and error

to achieve the best performance for the respective filtering

VOLUME 12, 2024 22037



T. Parsons et al.: Dust De-Filtering in LiDAR Applications With Conventional and CNN Filtering Methods

FIGURE 6. Intensity distribution plots for the non-dust (a) and dust (b) particles.

TABLE 3. Parameters for the ROR, DROR, SOR, and LIOR conventional
filters.

algorithm, except for the intensity threshold in the LIOR
filters. For this, a study was conducted using the ground-truth
labelled data. The intensity distribution was examined for
the 4 test frames, and the threshold was selected based on
these results. The intensity distribution plots can be seen
in Fig. 6. From the plots seen in Fig. 6, the recommended
threshold intensity for identifying dust particles is about 3.
Some non-dust particles do go less than 3. However, since the
LIOR filters are paired with ROR and DROR, this portion of
the algorithm aims to preserve these outliers.

The performance of the conventional filters can be
summarized in Table 4. Examining the results presented
in Table 4, the best conventional airborne dust filtering
algorithm is the LIOR-DROR, whereas the best conventional
filter that does not use the point intensity is the DROR filter.
The worst conventional filter is the ROR filter, with an F1
score ranging from 13.99% to 26.65%. The results show
that when a conventional filter is paired with a two stage
LIOR approach, the F1 score can improve. This is seen when

TABLE 4. F1 score for the conventional and CNN filters on 4 different
LiDAR frames from the dynamic environment.

comparing the ROR filter to the LIOR-ROR, and the DROR
filter to the LIOR-DROR.

Since the LIOR-DROR filter was the best amongst the
conventional filters, the LIOR-DROR F1 scores will be used
to compare to the CNN filter.

B. CONVOLUTIONAL NEURAL NETWORK
The CNN model was trained using the voxelized dataset
discussed in Section III in about 4 hrs. Examining Table 2, the
dataset consists of approximately 4% dust voxels. Meaning
that the training dataset is extremely biased towards non-
dust voxels. Unfortunately, there are no publically available
dust LiDAR datasets, so the training data was limited to the
data collected in the discussed experiments. Additionally,
manually labelling all the point clouds in the MATLAB
LiDAR labeller app was a time-consuming process.

So, a few different data processing techniques were applied
to observe which method yielded the best F1 score in
the validation stage of training. First, the minority class
(dust voxels) was oversampled using the synthetic minority
oversampling technique (SMOTE) [38]. The SMOTE works
by operating in the feature space of the minority class to
generate synthetic data. The synthetic data is created by
selecting features along line segments that join any/all of the
minority class’s nearest neighbors [38].

The other approach was to stratify the dataset. By allowing
the same fraction of the minority class to be in the training
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FIGURE 7. Testing frame 1 before (a) and after (b) CNN airborne dust filtering. The red points are ground truth
labelled dust points.

FIGURE 8. Testing frame 2 before (a) and after (b) CNN airborne dust filtering. The red points are ground truth
labelled dust points.

FIGURE 9. Testing frame 3 before (a) and after (b) CNN airborne dust filtering. The red points are ground truth
labelled dust points.

and validation partitions, the imbalance can be minimized.
Through experimentation, it was found that the SMOTE
technique could not accurately produce synthetic dust voxel
data, resulting in a CNN model that had a low F1 score when
tested with the mentioned 4 frames. So, the CNN model
was trained using the stratified dataset. The testing results
for the CNN model can be seen in Table 4, along with the
conventional filtering results.

Examining the F1 scores in Table 4, the CNN model
outperformed the best conventional filter (LIOR-DROR) for
3 out of 4 of the testing point clouds. The performance of the
CNN was comparable to that of the LIOR-DROR filter for
the first testing dataset with a difference of 0.6%. However,
the other 3 frames saw an improvement of up to 5.39%,
thus validating the CNN filtering method as an effective
means of classifying airborne dust particles. A side-by-side
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FIGURE 10. Testing frame 4 before (a) and after (b) CNN airborne dust filtering. The red points are ground truth
labelled dust points.

comparison of each testing frame before and after applying
the CNN filter can be seen in Fig. 7 to Fig. 10. Examining
Fig. 7 to Fig. 10, most of the dust (red LiDAR points)
were effectively eliminated while still preserving important
environmental information, such as the ground and solid
obstacles. This performance is also reflected in the F1 scores
found in Table 4.

V. CONCLUSION
In this paper, a CNNmodel was proposed to classify airborne
dust particles in autonomous excavation applications. Since
CNNs are commonly applied to image-based classification,
the tabular data (voxel features) was converted to an
image-like structure by using the CNNs dense layer and
reshaping function. In doing so, the proposed model can opti-
mize the weights of the dense layer such that the best image
structure is obtained. This differs from existing research
where the tabular data is converted to an image-like structure
before being fed to the CNN model. In existing studies,
extensive research was conducted to find the optimal tabular
data-to-image conversion method. In this study, this process
is encorporated into the model itslef, so the training process
can find the appropriate conversion. Additionally, this study
conducted a comprehensive analysis of the proposed CNN
model and several conventional de-dust filtering methods.
This comparison provides insight regarding the performance
of each filtering method in de-dusting applications.

The proposed CNN model was compared to several con-
ventional filtering methods, namely the ROR, DROR, SOR,
LIOR-ROR, and LIOR-DROR for 4 frames selected from the
dynamic environment experiment. The results show that the
CNN model can outperform the best conventional filtering
method in 3 of the test frames, whereas the performance was
comparable in the one without improvement.

Some drawbacks of this research include the limited
training data for dust classification. Since there are no
publicly available dust LiDAR datasets, the training data
needs to be collected and labelled manually through the
discussed experiments. This can be done in the MATLAB
LiDAR labeller app; however, it is time consuming to gather

enough data for training a CNN model. Additionally, the
amount of dust samples in the training data was very limited
(approximately 4% dust samples). If more dust samples were
collected, the F1 score of the CNNmodel may increase in the
proposed testing cases.

Future work for this research includes applying the
CNN model in real-time. This paper mainly focuses on
the validation of the proposed CNN model, which was
conducted offline after the data was collected. Additionally,
the performance may be improved by fusing multiple sensors
together. For example, LiDAR data can be fused with depth
camera data, which is what will be achieved in the future
work as well. Finally, the background environment can be
added after the removal of the dust particles. In the proposed
research, the airborne dust particles are removed from the
point cloud. However, since non-dust objects may exist
behind a dust cloud, the dust cloud can be blocking the
non-dust objects. When this happens, the dust cloud can be
removed through filtering, but the non-dust objects behind
the dust cloud are not detected. This presents a safety concern
since information is missing regarding the obstacles that exist
behind dust clouds. So, future work aims to fuse a static
environment scan with the filtered point cloud such that the
environment behind the dust cloud is maintained. This can
be done by filtering the point cloud captured in real-time,
and adding non-dust objects from the static environment
scan that were blocked by the dust cloud. However, this
poses an additional concern regarding the dynamic non-dust
objects. So, additional methods may be used to track dynamic
non-dust objects in real time and add them to the filtered
environment (in their predicted location) if they are blocked
by a dust cloud.
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