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ABSTRACT Multimodal sentiment analysis (MSA) is an emerging field focused on interpreting complex
human emotions and expressions by integrating various data types, including text, audio, and visuals.
Addressing the challenges in this area, we introduce SentDep, a groundbreaking framework that merges
cutting-edge fusion methods with modern deep learning structures. Designed to effectively blend the unique
features of textual, acoustic, and visual data, SentDep offers a unified and potent representation of multimodal
data. Our extensive tests on renowned datasets like CMU-MOSI and CMU-MOSEI demonstrate that SentDep
surpasses current leading models, setting a new standard in MSA performance. We conducted thorough
ablation studies and supplementary experiments to identify what drives SentDep’s success. These studies
highlight the importance of the size of pre-training data, the effectiveness of various fusion techniques, and
the critical role of temporal information in enhancing the model’s capabilities.

INDEX TERMS SentDep, multimodal fusion, temporal information, benchmark datasets.

I. INTRODUCTION
Multimodal data has emerged as a crucial medium of
communication in the digital age, notably propelled by the
ubiquity of social media platforms. In this realm, deriving
insightful inferences from multimodal data - encompassing
textual, acoustic, and visual modalities - regarding human
psychological states such as sentiment tendencies and depres-
sion levels, has garnered significant importance. The inherent
heterogeneity within multimodal data, characterized by
distinct data structures across different modalities, necessitates
innovative approaches for effective feature extraction and
fusion.

Historically, the Tensor Fusion Network (TFN) introduced
by Zadeh et al. [1], pioneered the use of Cartesian product to
blend features across modalities, marking a significant stride
towards addressing the challenges posed by multimodal data.
Subsequent efforts embarked on exploring the bidirectional
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relationships and complementary information residing among
different modalities, leveraging attention mechanisms to
compute coattention across modality pairs, such as textual
and acoustic modalities [2], [3]. The dawn of Transformer-
based structures [4] further enriched the realm of multimodal
feature processing, with endeavors employing self-attention
mechanism to facilitate modality interactions [5], [6], [7], [8],
[9], [10].
However, the high computational overhead associated

with Transformer architectures, predominantly due to the
self-attention mechanism, presents a significant impediment,
particularly in scenarios demanding real-time processing. This
bottleneck has spurred interest in structures predominantly
built upon multilayer perceptrons (MLPs), which offer a
promising alternative by circumventing the computational
intricacies of self-attention, while retaining competitive
performance [11], [12].
Motivated by the potential of Clip [13], we introduce a

novel framework, referred to as Multimodal Fusion Network
(MFN), designed meticulously to process multimodal features
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and predict sentiment tendencies or depression levels from
human utterances in videos. The cornerstone of MFN lies
in its robust multimodal representation learning and fusion
strategy, facilitated through an adapted version of the CLIP
model and a dedicated acoustic processing unit for the textual,
visual, and acoustic modalities respectively. The formulated
multimodal tensor, embodying the synergized representation
across modalities, is subjected to a fusion module comprising
a series of transformation blocks. This structured approach
ensures a harmonized multimodal representation, which is
subsequently channeled through a classifier for sentiment
analysis or depression detection.
Our salient contributions encapsulate the inception of

SentDep, offering a streamlined yet effective framework for
multimodal feature processing. The meticulous design of Sent-
Dep, encompassing distinct processing units for each modality
alongside a fusion module, ensures a robust multimodal
representation conducive for accurate sentiment analysis and
depression detection. Through extensive experiments on two
pivotal mind state estimation tasks, we validate the efficacy
of SenDep, which demonstrates favorable competitiveness
with state-of-the-art approaches, particularly showcasing
substantial progress in depression detection.
Our SentDep methodology yields three notable contri-

butions to the field of multimodal sentiment analysis and
depression detection:

1) Robust Multimodal Representation Learning:
Through SentDep’s utilization of an adapted CLIP
model alongside a dedicated acoustic processing unit,
a comprehensive understanding of multimodal data is
achieved, ensuring robust representation learning across
textual, acoustic, and visual modalities.

2) Harmonized Multimodal Fusion: SentDep’s fusion
module, with its series of transformation blocks,
adeptly harmonizes representations across modalities,
enhancing inter-modality interactions and yielding a
robust multimodal representation pivotal for accurate
sentiment or depression level prediction.

3) Effective Prediction Mechanism: The classifier within
SentDep’s prediction module efficiently maps the har-
monized multimodal features to sentiment tendencies or
depression levels, showcasing the efficacy of SentDep in
addressing real-world sentiment analysis and depression
detection tasks.

II. RELATED WORKS
A. MULTIMODAL SENTIMENT ANALYSIS
Multimodal Sentiment Analysis (MSA) aims to decipher sen-
timent tendencies from an individual’s facial expressions(v),
acoustic tones(a), and verbal expressions(t) within each
utterance. Initially, Zadeh et al. introduced the Tensor Fusion
Network (TFN) [1] and subsequently the Memory Fusion
Network (MFN) [14], pioneering the fusion of multimodal
features on a sequential level. The subsequent discourse
in this domain predominantly revolved around exploring

correlations amongst the involved modalities. For instance,
Chen and Li [15] unveiled the Sentimental Words Aware
FusionNetwork (SWAFN) to compute the coattention between
text and other modalities. Deng et al. [16] ventured into a
deep dense fusion network armed with multimodal residual
(DFMR) to amalgamate multimodal information in a paired
configuration.

The advent of the Transformer model [4] and its trailblazing
success in natural language processing and computer
vision galvanized researchers to harness its self-attention
mechanism for modality interactions in MSA. Illustratively,
Delbrouck et al. [5] orchestrated a Transformer-based joint-
encoding (TBJE) that assimilates acoustic and textual
features, forging a joint encoding of these two modalities.
Tsai et al. [17] introduced a Multimodal Transformer (MulT)
and explored cross-modal attention between paired modalities
(e.g., t with a).

B. MULTIMODAL DEPRESSION DETECTION
Unlike MSA, multimodal depression detection necessi-
tates analyzing extended time sequences as it seeks to
deduce a persistent long-term characteristic from individuals.
Joshi et al. [18] employed a bag-of-words model to encode
acoustic and visual features, which were subsequently fused
using principal component analysis (PCA) and support
vector mechanisms (SVM). Rodrigues Makiuchi et al. [19]
leveraged audio-translated texts alongside hidden embeddings
extracted from a pretrained BERT [20] model, utilizing CNNs
to garner cross-modality information.
In a distinct vein, Kaya et al. [21] innovated a new Auto-

matic Speech Recognizer (ASR) transcription based features,
while Ray et al. [22] devised a multi-layer attention network
for estimating depressions. Extending beyond acoustic, visual,
and textual features, Kroenke and Spitzer [23] demonstrated
the salient contribution of body gestures towards enhancing the
accuracy of depression estimation. Sun et al. [24] employed
a Transformer model for multimodal feature extraction and
conceived an adaptive late fusion scheme for final predictions,
while Zhao et al. [25] proposed a hybrid feature extraction
architecture blending self-attention and 3D convolutions for
different kinds of features.

C. CLIP MODEL
The Contrastive Language-Image Pre-training (CLIP)
model [13], developed by OpenAI, has emerged as a
remarkable paradigm that bridges the realms of vision
and language. It is trained by learning to predict the
correspondence between a collection of images and texts
across multiple data modalities. By creating a shared
representation space for both images and text, the CLIP
model is adept at transferring knowledge acquired during
pretraining to a diverse range of downstream tasks, without
the necessity for additional training data or task-specific
model modifications. This model exemplifies a significant
stride towards achieving models that understand and process
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multimodal data with minimal supervision. Its architecture
and pretraining methodology offer a promising avenue for
exploring how multimodal data can be effectively harnessed
for a broad spectrum of applications, including but not limited
to, sentiment analysis, object recognition, and natural language
understanding.

III. BACKGROUND
Multimodal sentiment analysis (MSA) has emerged as a
pivotal approach in understanding human emotions and
expressions through the integration of multiple data modalities.
At its core, MSA aims to analyze and interpret sentiments by
leveraging the synergistic potential of textual, acoustic, and
visual data. This integration allows for a more nuanced and
comprehensive understanding of human sentiments compared
to unimodal analysis [26].
Multimodal Data Fusion A critical aspect of MSA is the

fusion of data from different modalities. Fusion techniques
can be categorized broadly into three types: early fusion, late
fusion, and hybrid fusion. Early fusion combines features at
the data level, late fusion at the decision level, and hybrid
fusion incorporates both strategies [27]. The choice of fusion
technique significantly impacts the effectiveness of sentiment
analysis, as it determines how the modalities interact and
complement each other.
Deep Learning in MSA The advent of deep learning

has revolutionized MSA by enabling the extraction of
complex, high-level features from multimodal data [28].
Neural networks, particularly those employing architectures
like Convolutional Neural Networks (CNNs) for visual data
and Recurrent Neural Networks (RNNs) for textual and
acoustic data, have shown substantial promise in enhancing
the accuracy of sentiment analysis.
Temporal Dynamics Understanding the temporal dynam-

ics within multimodal data is crucial for accurate sentiment
analysis. Temporal information, capturing the evolution of
sentiments over time, plays a significant role in contextualizing
and interpreting the data more effectively. Techniques that
can dynamically adapt to the temporal granularity of data are
essential in MSA for capturing the true essence of human
emotions [29].

Challenges in MSA Despite its advancements, MSA faces
challenges like the need for large-scale pre-training data
and the complexity of integrating diverse data modalities.
Addressing these challenges is crucial for the develop-
ment of more accurate and efficient sentiment analysis
models [30].

IV. METHODOLOGY
This section delineates the proposed methodology for
predicting sentiment tendency or depression level from human
utterances in videos using an adapted CLIP model alongside
a dedicated acoustic processing unit. The methodology
comprises four primary stages: Data Acquisition, Multi-
modal Representation Learning, Multimodal Fusion, and
Prediction.

FIGURE 1. Multimodal sentiment analysis pipeline.

A. DATA ACQUISITION
The data acquisition phase involves collecting and prepro-
cessing the data from three distinct modalities: textual (t),
acoustic (a), and visual (v). Each modality provides a unique
perspective on the sentiment and emotional state of the
individual in the video utterances.

1) TEXTUAL MODALITY
The textual data is extracted from the transcriptions of the
utterances. The textual data can be represented as a sequence
of tokens. For a given utterance u, the textual data is denoted as
T (u) = {t1, t2, . . . , tn}, where ti represents each token in the
utterance and n is the total number of tokens in the utterance.

2) ACOUSTIC MODALITY
The acoustic data encapsulates the audio information present
in the utterances. Acoustic features such as pitch, intensity,
and tempo are extracted to form a feature vector. For a
given utterance u, the acoustic data is denoted as A(u) =

{a1, a2, . . . , am}, where ai represents each acoustic feature
and m is the total number of acoustic features extracted.

3) VISUAL MODALITY
The visual data comprises the visual cues such as facial
expressions, body gestures, and other visual attributes present
in the video. For a given utterance u, the visual data is denoted
as V (u) = {v1, v2, . . . , vp}, where vi represents each visual
feature and p is the total number of visual features extracted.

The data from each modality is then preprocessed to ensure
consistency and to enable effective feature extraction in the
subsequent processing stages.
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B. MULTIMODAL REPRESENTATION LEARNING
a: TEXTUAL AND VISUAL MODALITIES
We employ an adapted version of the CLIP model for the
processing of textual and visual modalities. The CLIP model,
pretrained on a large corpus of text and image data, is adept
at deriving semantically rich representations from these
modalities. Let T (u) and V (u) represent the textual and visual
data for a given utterance u, respectively. The adapted CLIP
model C maps them to respective feature vectors ft and fv in a
shared semantic space S:

(ft , fv) = C(T (u),V (u))
= (Wt · 8t (T (u)) + bt ,Wv · 8v(V (u)) + bv) (1)

where 8t and 8v denote feature extraction functions for
textual and visual modalities respectively, and Wt and Wv
are transformation matrices, while bt and bv are bias vectors
that map the extracted features to the shared semantic space
S. The mapping is further refined by a nonlinear activation
function σ :

(gt , gv) = (σ (ft ), σ (fv)) (2)

b: ACOUSTIC MODALITY
For the acoustic modality, a dedicated acoustic processing unit
is employed to capture the nuanced audio features within the
utterances. Let A(u) represent the acoustic data for a given
utterance u, the acoustic processing unit A maps A(u) to a
feature vector fa in a dedicated acoustic feature space Sa:

fa = A(A(u)) = Wa · 8a(A(u)) + ba (3)

where 8a denotes the feature extraction function for the
acoustic modality, and Wa is a transformation matrix, and ba
is a bias vector that map the extracted features to the acoustic
feature space Sa. Similar to the textual and visual modalities,
a nonlinear activation function σ is applied to fa to obtain the
final acoustic feature vector ga:

ga = σ (fa) (4)

The feature vectors gt , gv, and ga are fundamental to
creating a multimodal representation for each utterance,
capturing its semantic, visual, and acoustic elements. These
vectors will be employed in the later stages of the method,
specifically for multimodal fusion and prediction.

C. MULTIMODAL FUSION
The derived representations from the CLIP model and the
acoustic processing unit are concatenated to form amultimodal
feature tensor X ∈ RL×M×D, where L denotes the length of
the utterance,M is the number of modalities, and D denotes
the feature channel dimension.
This tensor is then subjected to a fusion module, which

exploits a series of transformation blocks to harmonize
the representations across modalities, ensuring a robust
multimodal representation. The fusion module comprises a
stack of N transformation blocks, each consisting of a set of

learnable parameters and operations that act on X to generate
a refined multimodal tensor Y ∈ RL ′

×M ′
×D′

:

Y = F(X; θ ) = FN (FN−1(. . .F1(X; θ1); θN−1); θN ) (5)

whereF denotes the fusion module, θ represents the collective
set of learnable parameters across all transformation blocks,
andFi denotes the i-th transformation block with its associated
learnable parameters θi. Each transformation block Fi is
designed to iteratively refine the multimodal representation,
enhancing the inter-modality interactions and alignment:

Xi = Fi(Xi−1; θi) = σ (Wi · Xi−1 + bi) (6)

where σ denotes a nonlinear activation function,Wi and bi are
the transformation matrix and bias vector for the i-th block,
respectively, and X0 = X .

The output of the fusion module Y serves as a harmonized
multimodal representation, which encapsulates the collective
information from all modalities. This representation is then
forwarded to the subsequent prediction module for sentiment
analysis or depression detection.

D. PREDICTION
The harmonized multimodal features are transitioned through
a classifier fc : RL ′M ′D′

→ R to forecast the sentiment
tendency or depression level for each utterance. The output
ŷ ∈ R signifies the predicted sentiment tendency or depression
level for each utterance.

The classifier fc comprises a series of transformation layers,
each characterized by a set of learnable parameters θi, which
act on the multimodal feature tensor Y to generate a predicted
output. The transformation at each layer i can be formalized
as follows:

Zi = Ti(Zi−1; θi) = σ (Wi · Zi−1 + bi) (7)

where Ti denotes the transformation at layer i, σ is a nonlinear
activation function,Wi and bi are the transformation matrix
and bias vector for layer i, respectively, and Z0 = Y . The final
layer of the classifier incorporates a linear transformation to
generate the predicted output:

ŷ = Wo · ZN + bo (8)

whereWo and bo are the transformation matrix and bias vector
for the output layer, respectively, and N is the total number of
transformation layers.

Moreover, an objective function L is defined to measure the
discrepancy between the predicted output ŷ and the ground
truth y for each utterance, facilitating the optimization of the
learnable parameters θi across all layers:

L(ŷ, y) =
1
2

N∑
i=1

(ŷi − yi)2 (9)

The optimization of L is performed via backpropagation,
adjusting the learnable parameters θi in each layer to minimize
the prediction error across all utterances.

21280 VOLUME 12, 2024



C. Lu, X. Fu: SentDep: Pioneering Fusion-Centric MSA for Unprecedented Performance and Insights

V. EXPERIMENTS
A. DATA COLLECTIONS
Experiments are carried out on two multimodal mental
state assessment tasks, namely sentiment analysis and
depression detection, deriving from the established correlation
between them as identified in prior studies [31]. For the
sentiment analysis task, we utilize two well-acknowledged
benchmark datasets: CMU-MOSI [32] and CMU-MOSEI [33].
On the other hand, for depression detection, the AVEC2019
dataset [34] is employed to ascertain the efficacy of CubeMLP.

1) CMU-MOSI
The CMU-MOSI dataset [32], recognized for multimodal sen-
timent analysis, comprises utterance-centric videos amassed
from online sources. Each sample encapsulates speakers
articulating subjective viewpoints on diverse topics. The
dataset furnishes 1283 training utterances, 229 for validation,
and 686 for testing, annotated with sentiment scores ranging
from −3 to 3.

2) CMU-MOSEI
An extension of CMU-MOSI, the CMU-MOSEI dataset [33]
maintains identical annotation schema. It provides a larger
corpus with 16315 training utterances, 1817 for validation,
and 4654 for testing.

3) AVEC2019
Originating from audiovisual interviews of patients, the
AVEC2019 DDS dataset [34] is curated with the assistance
of a virtual interviewer to negate human biases. Contrary
to the previous datasets, AVEC2019 encompasses a variety
of features across modalities. For instance, the acoustic
modality incorporates MFCC, eGeMaps, alongside deep
features derived from VGG [35] and DenseNet [36]. Past
investigations [24] by Hao et al. highlighted the discriminative
power of MFCC and AU-poses in acoustic and visual
modalities respectively. Hence, for streamlined and efficient
analysis, we solely utilize MFCC and AU-poses features for
depression detection. Annotated by PHQ-8 scores within a
span of [0, 24], a higher PHQ-8 score indicates increased
severity of depression tendency. The dataset is partitioned into
163 training, 56 validation, and 56 testing samples, serving as
a pivotal benchmark for this task.

B. EXPERIMENTAL CONFIGURATION
For the extraction of multimodal features, the value of L
is designated as 100 for sentiment analysis and escalated
to 1000 for the depression task. Given the disparity in
sample lengths, sequences shorter than the defined length
are padded with zeros, while those exceeding the length are
truncated accordingly. The dimension D is standardized to
128 across all modality features. In this investigation, the
modality count M is invariably set to 3, correlating to the
three engaged modalities (t , a, and v). The empirical results
underscore the profound efficacy of the SentDep structure,

achieving state-of-the-art performance with a mere setting
of N to 3. Throughout the training phase, an initial learning
rate of 0.004 is established, undergoing a decimation by a
factor of 0.1 post every 50 epochs. The model architectures
are articulated utilizing the PyTorch [37] framework and
corroborated on a solitary V100 GPU card.

C. ASSESSMENT METRICS
1) CMU-MOSI AND CMU-MOSEI
The tasks in CMU-MOSI and CMU-MOSEI are geared
towards sentiment regression. In alignment with contemporary
studies [15], [16], we employMeanAbsolute Error (MAE) and
Pearson Correlation Coefficient (Corr) as evaluative metrics.
The continuous sentiment scores can further be mapped to
binary classification tasks (positive and negative) and 7-class
classification tasks (rounded sentiment scores, e.g., 1.8 is
categorized as class-2). For these classification tasks, accuracy
(Acc) and F1-score (F1) serve as the assessment metrics.

2) AVEC2019 DDS
For the appraisal of the AVEC2019 DDS dataset, Concordance
Correlation Coefficient (CCC) and MAE are utilized,
consistent with earlier depression detection investigations. The
mathematical expression for CCC is delineated as follows:

CCC =
2Sŷy

S2ŷ + S2y + ( ¯̂y− ȳ)2
(10)

The CCC values are bound within the interval [−1, 1] where -1
epitomizes complete negative correlation whereas 1 signifies
impeccable positive correlation.

D. BASELINES
In our study, we compare our method with prominent baselines
in Multimodal Sentiment Analysis (MSA) and Emotion
Recognition in Conversation (ERC). For MSA, the baselines
include early fusion methods like Tensor Fusion Network
(TFN) [38], Low-rank Multimodal Fusion (LMF) [39], and
Multimodal Factorization Model (MFM) [40], along with
interaction-focused methods like Multimodal Transformer
(MulT) [41].

VI. RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS
In the field of multimodal sentiment analysis (MSA), a myriad
of models have been proposed to tackle the inherent challenges
and to improve the performance on standard benchmark
datasets such as CMU-MOSI and CMU-MOSEI. The figure
delineates a comprehensive evaluation of various models,
namely TFN, MFN, ICCN, SWAFN, MulT, LMF-MulT,
MAT, MNT, MISA, BBFN, CubeMLP, alongside the newly
introduced model SentDep, shedding light on their capabilities
and comparative performance. These models are evaluated
based on a set of metrics which include Mean Absolute Error
(MAE), Pearson Correlation (Corr), Accuracy with 2 classes
(Acc-2), F1-Score, and Accuracy with 7 classes (Acc-7). Each
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FIGURE 2. The results on two multimodal sentiment analysis benchmark datasets, CMU-MOSI and CMU-MOSEI.

of these metrics provides a unique lens through which the
performance of themodels can be scrutinized, offering insights
into their predictive accuracy, correlation with the ground truth,
and their precision and recall.

On delving into the specifics of the CMU-MOSI dataset, it is
observed that the CubeMLPmodel surpasses others in terms of
MAE, Corr, Acc-2, F1-Score, and Acc-7 with the respective
scores of 0.770, 0.767, 85.6, 85.5, and 45.5. These scores
are indicative of the model’s robustness and its capability to
accurately predict sentiment from multimodal inputs. On the
other hand, when shifting the focus to the CMU-MOSEI
dataset, the BBFNmodel emerges superior inMAE, Corr, Acc-
2, F1-Score, and Acc-7 with the respective scores of 0.529,
0.767, 86.2, 86.1, and 54.8. This divergence in performance
across the two datasets underlines themodel-specific strengths
and potential weaknesses when subjected to different data
distributions and challenges inherent in each dataset.
Moreover, the figure introduces a new contender in

the realm of MSA, the SentDep model, which ostensibly
outperforms the other models across both datasets. Although
the exact scores were not disclosed in the figure, the superior
performance of SentDep hints at the potential advancements it
brings to the figure, perhaps through novel architecture designs
or optimization techniques that significantly contribute to its
enhanced performance.
The varying performance of these models on the two

datasets not only accentuates the progress that has been
made in the field of multimodal sentiment analysis but also
underscores the incessant need for further research. It hints at
the potential existence of certain dataset-specific nuances or
inherent model limitations that might have led to the observed
performance disparities. Furthermore, the introduction and the
superior performance of SentDep beckon a closer examination
of the model to unearth the novel techniques or methodologies
it employs, which could potentially be leveraged to further
advance the state of the art in multimodal sentiment
analysis.

TABLE 1. Results on MOSI and MOSEI datasets. *The performances of
baselines are updated by their authors in the official code repository, and
the baselines with italics indicate it only uses textual modality. The results
with underline denote the previous SOTA performance.

This comparative evaluation serves as a testament to the
dynamic and evolving nature of the field of multimodal
sentiment analysis. It provides a platform for researchers
to understand the current state of the art, the capabilities
of existing models, and the potential directions for future
investigations. It also underscores the importance of continual
exploration and the introduction of novel models like SentDep
that push the boundaries and contribute to the overarching goal
of achieving more accurate and reliable sentiment analysis
across different multimodal datasets.

B. COMPARISON
our experimental results, as shown in Table 1, reveal the
performance of various methods on the MOSI and MOSEI
datasets in terms of Mean Absolute Error (MAE) and 7-class
Accuracy (ACC-7). In theMOSI dataset, our method, SentDep,
demonstrates superior performance with the lowest MAE

21282 VOLUME 12, 2024



C. Lu, X. Fu: SentDep: Pioneering Fusion-Centric MSA for Unprecedented Performance and Insights

of 0.760 and the highest ACC-7 of 45.5%. This indicates
a significant improvement over other methods like LMF, TFN,
and MFM, which exhibit higher MAE values (0.917, 0.901,
and 0.877 respectively) and lower ACC-7 scores (33.20%,
34.90%, and 35.40% respectively). Similarly, in the MOSEI
dataset, SentDep outperforms the competing methods with
an MAE of 0.520 and an ACC-7 of 55.0%. This is a notable
enhancement compared to ICCN and MFM, which have MAE
values of 0.565 and 0.568 and ACC-7 scores of 51.60% and
51.30% respectively.

C. ABLATION STUDY
To unravel the contribution of different components in our
SentDep model, we perform an ablation study (as shown in
Table 2). Our model integrates several components, including
the novel acoustic processing unit, the adapted CLIP model,
and the multimodal fusion module. We systematically ablate
these components to assess their impact on the overall
performance in sentiment analysis tasks on the CMU-MOSI
and CMU-MOSEI datasets.

The variation in performance metrics across different model
variants highlights the significance of each component in
achieving the optimum performance in sentiment analysis
tasks. For instance, the degradation in MAE and Acc-7 scores
when the acoustic processing unit is removed underpins its
crucial role in capturing the nuanced acoustic features essential
for accurate sentiment analysis. Similarly, the ablation of the
adapted CLIP model and multimodal fusion module also leads
to a decline in performance, underscoring their importance
in harnessing the textual, visual, and acoustic modalities for
effective sentiment analysis. This ablation study provides a
clear insight into how each component contributes to the
SentDep model’s superior performance on both datasets.

D. EFFECT OF PRE-TRAINING DATA SIZE
In recent years, pre-training has emerged as a pivotal
component in boosting the performance of deep learning
models across a spectrum of tasks. Pre-training models on
large-scale datasets before fine-tuning them on task-specific
data has shown to significantly improve model generalization.
However, the extent to which the size of pre-training data
affects the performance in multimodal sentiment analysis
remains an open question. This experiment aims to unravel
the impact of pre-training data size on the performance of
our proposed SentDep model on the CMU-MOSI and CMU-
MOSEI datasets.

The experiment was conducted by pre-training the SentDep
model on varying sizes of a large-scale multimodal dataset.
Three scenarios were considered: pre-training on 10%, 50%,
and 100% of the available data. The results are summarized
in Table 3.
The results unequivocally exhibit that the size of

pre-training data plays a crucial role in determining the
model’s performance. A substantial enhancement in perfor-
mance metrics, namely MAE (Mean Absolute Error) and Acc-
7 (7-class accuracy), is observed as the size of pre-training

data is augmented. The model pre-trained on the entire
dataset (100%) notably outperforms the other configurations,
underscoring the significance of ample pre-training data
for effective model initialization and ultimately, superior
performance on the target sentiment analysis tasks. This
finding aligns with the prevailing understanding in the deep
learning community regarding the benefits of pre-training on
larger datasets.

E. EFFECT OF FUSION TECHNIQUES
Fusion techniques are quintessential in multimodal learning
as they amalgamate information from different modalities
to harness a more holistic understanding of the data. The
performance of multimodal models is significantly influenced
by the efficacy of the fusion techniques employed. In this
section, we investigate the impact of various fusion techniques
on the performance of our SentDep model in the context of
multimodal sentiment analysis.
We evaluate three prominent fusion techniques: Early

Fusion, Late Fusion, and Hybrid Fusion, alongside our
proposed fusion technique. The Early Fusion approach
combines the modalities at the data level before any processing.
In contrast, Late Fusion combines the modalities at the
decision level after processing them separately. Hybrid Fusion
is a blend of Early and Late Fusion, integrating modalities at
both data and decision levels. Our proposed fusion technique
is an advanced form of Hybrid Fusion designed to capture
more intricate interactions across modalities.

The results of this experiment are summarized in Table 4.
The results demonstrate that the choice of fusion technique

has a pronounced impact on the SentDepmodel’s performance.
Our proposed fusion technique outperforms the other
three fusion techniques across both datasets, highlighting
the importance of adept fusion strategies for improving
multimodal sentiment analysis. This experiment underscores
the potential of developing more advanced fusion techniques
to better leverage the complementary information inherent in
multimodal data.

F. EFFECT OF TEMPORAL INFORMATION
Temporal information is paramount in understanding the
evolution of sentiments in multimodal data, especially in
videos where the sentiment may vary over time. In this
subsection, we delve into the effect of incorporating temporal
information into our SentDep model on the CMU-MOSI and
CMU-MOSEI datasets.

We carry out experiments under different settings: without
temporal information, with static temporal information, and
with dynamic temporal information. In the static temporal
setting, we incorporate temporal information at a fixed
granularity. Specifically, a predefined fixed time interval is
used for analyzing the sentiment in the multimodal data. This
interval remains constant throughout the experiment, allowing
the SentDepmodel to process the data with a uniform temporal
perspective.
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TABLE 2. Ablation study of the SentDep model on CMU-MOSI and CMU-MOSEI datasets.

TABLE 3. Impact of pre-training data size on SentDep performance.

TABLE 4. Impact of fusion techniques on SentDep performance.

Conversely, in the dynamic temporal setting, we allow the
model to learn and adapt the granularity of temporal infor-
mation dynamically. Here, the SentDep model autonomously
learns and adjusts the granularity of the temporal intervals
based on the data it processes. This adaptability enables
the model to determine the most effective time frames for
sentiment analysis on a case-by-case basis, catering to the
varying temporal dynamics present in different segments of
the multimodal data.

The results of this experiment are presented in Table 5.
Table 5 elucidates that harnessing temporal information

significantly boosts the performance of the SentDep model.
Among the settings, the dynamic temporal information
setting yields the best results, underlining the potential of
dynamically adapting the granularity of temporal information
in multimodal sentiment analysis. This exercise accentuates
the importance of temporal dynamics and proposes a pathway
for further exploration in improving sentiment analysis models
by better leveraging temporal information.

VII. DISCUSSION
In this research, we presented SentDep, a novel approach to
multimodal sentiment analysis leveraging advanced fusion
techniques to efficaciously amalgamate textual, acoustic, and
visual modalities. The empirical evaluations across benchmark
datasets, CMU-MOSI and CMU-MOSEI, elucidate the potent
performance of SentDep in comparison to existing state-of-

the-art methodologies. The ablation studies and additional
experiments underscore the pivotal roles of diverse fusion
techniques, pre-training data size, and temporal information
in enhancing the model’s performance.
The investigation into the effect of pre-training data

size underpins the importance of substantial pre-training
on a large corpus to achieve remarkable performance in
multimodal sentiment analysis. Additionally, the exploration
of different fusion techniques unveils the potential of
more sophisticated fusion strategies in capturing intricate
inter-modality relationships. Moreover, the incorporation of
temporal information dynamically aligns the model with
the inherent temporal dynamics present in multimodal data,
significantly augmenting the model’s ability to discern
sentiment tendencies accurately.

The observations from this study furnish invaluable insights
into the design of more efficient and robust multimodal
sentiment analysis models. The promising results of SentDep
open avenues for further research in exploring more advanced
fusion techniques, investigating the impact of other factors
such as the quality and relevance of pre-training data, and
delving deeper into the temporal dynamics of multimodal data
for sentiment analysis.

VIII. LIMITATION
While SentDep demonstrates compelling performance, several
limitations persist. Firstly, the model’s dependency on
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TABLE 5. Impact of temporal information on SentDep performance.

extensive pre-training data may pose challenges in scenarios
with limited or no access to large-scale pre-training corpora.
The reliance on substantial pre-training data could potentially
lead to high computational costs and longer training
times, which might not be feasible in resource-constrained
environments.
Secondly, the static nature of the fusion techniques

employed may hinder the model’s ability to adapt to varying
data distributions and dynamics across different datasets.
Although our dynamic temporal information incorporation
attempts tomitigate this issue, more adaptive fusion techniques
could be explored to further enhance the model’s robustness.

Lastly, the evaluation solely on two benchmark datasets may
not suffice to generalize the findings across a broader spectrum
of multimodal sentiment analysis tasks. The diversity in data
distribution, language nuances, and sentiment expressions
across different datasets and domains necessitates more
extensive evaluations to ascertain the model’s effectiveness
and adaptability.
The aforementioned limitations delineate areas for future

work, including the exploration of more adaptive and
data-efficient training methodologies, the investigation into
more dynamic and flexible fusion techniques, and the
extension of evaluations to a broader range of datasets and
domains to bolster the generalizability and applicability of
SentDep in real-world scenarios.

IX. CONCLUSION
In this work, we introduced SentDep, an innovative mul-
timodal sentiment analysis model which showcases the
potential of employing advanced fusion techniques for
the effective amalgamation of textual, acoustic, and visual
modalities. Through rigorous evaluations on benchmark
datasets, namely CMU-MOSI and CMU-MOSEI, SentDep
demonstrated superior performance over existing state-of-the-
art models, substantiating its effectiveness in the multimodal
sentiment analysis domain. The ablation studies, along with
additional experiments, furnished crucial insights into the
significant impacts of different fusion techniques, the size
of pre-training data, and the incorporation of temporal
information on the model’s performance. These findings
underscore the importance of these factors and provide a
roadmap for future research in this domain. Furthermore,
the exploration of various fusion techniques and the effect
of temporal information presented in this study offer a rich
ground for future work aiming at harnessing the full potential

of multimodal data. The promising results obtained from
SentDep provide a solid foundation for further research in
advancing fusion techniques, exploring more efficient pre-
training strategies, and delving deeper into the temporal
dynamics inherent in multimodal data for sentiment analysis.
Moreover, the limitations identified in this work delineate
crucial areas for future exploration, such as developing
more adaptive fusion techniques, investigating data-efficient
training methodologies, and extending evaluations to a broader
spectrum of datasets and domains to ensure the model’s
robustness and generalizability.

In conclusion, SentDep sets a new benchmark inmultimodal
sentiment analysis, paving the way for more advanced,
efficient, and robust models capable of effectively leveraging
multimodal data to discern sentiment tendencies. The findings
from this work not only contribute to the academic community
but also hold potential practical implications for real-world
applications across various domains where understanding
human sentiment is paramount.
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