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ABSTRACT In this paper, a leader-follower-based cooperative and formation flight control is designed for a
group of quadrotors using new forms of fractional sliding mode control (FSMC) strategy accompanied by the
potential field algorithm. The FSMC strategy is employed as an inner controller to stabilize each individual
UAV quadrotor while the potential field function is used as a formation algorithm (output controller) in
order to keep a desired shape formation during the navigation of the fleet. Firstly, the stability of a single
quadrotor subjected to external disturbances is addressed by designing an FSMC in addition to a classical
PID controller. The FSMC is responsible for stabilizing the altitude and attitude of the vehicle while the
responsibility of the PID is to control the two-dimensional (x-y) position of the UAV. Lyapunov-based sliding
condition is used in the design of the fractional control strategy to guarantee system stability. The controller’s
parameters are tuned using the genetic algorithm (GA) to obtain better performance and more robustness
against external disturbances. The potential field algorithm is used to generate the paths that are required
for the fleet of vehicles to navigate while keeping a prescribed formation shape. This is done by using the
attractive potential field to attract the followers toward the leader and the repulsive potential field to repulse
every two neighboring followers in order to keep a required distance between them. Simulation results have
proved the efficiency of the proposed control system for both the single and multi-agent cases.

INDEX TERMS Sliding mode control, fractional sliding mode control, unmanned aerial vehicle, formation
control.

I. INTRODUCTION
In recent years, the study of unmanned aerial vehicles (UAVs)
has attracted extensive attention because of their various
applications in several fields. UAVs are very useful for both
the military and civilian fields. In the field of military, they
can be used in several tasks such as carrying radars, cameras,
weapons, and other payloads in addition to observing and
exploring hostile environments. In the field of civilians, UAVs
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are used for conducting scientific research, search and res-
cue tasks, watching natural resources, and different security
tasks [1]. Deferent control algorithms have been used to con-
trol these vehicles including classical PID [2], implicit PID
controller [3], LQR [4], feedback linearization [5], Adaptive
feedback linearization [6], back-stepping control [7], sliding
mode control [8], adaptive fuzzy control [9], neural network
based MPC [10] and several other control algorithms, see the
survey in [11].
Multi-UAV formation flight combines both the study of

unmanned aerial vehicles with coordination, so it gained
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the interest of both unmanned systems and control fields.
In the cooperative formation flight, a group of UAV vehicles
tracks a prescribed path while achieving useful tasks and
keeping a required formation shape [12]. Formation flight of
UAVs can be achieved using different methodologies such as
the leader-follower, virtual structure, and behavioral method-
ologies. The idea of formation control based on artificial
potential field technique was clarified in [13]. The vehicles
in this approach travel while they are affected by a field of
forces similar to the electric field of the positive and neg-
ative charges. The attractive charge represents the required
target while the repulsive charges represent obstacles [14].
The authors in [41], [42], [43], [44] discussed fault-tolerant of
a set of fixed wing UAV, where synchronization/coordination
tracking control scheme with fractional-order calculus are
used against actuator and sensor faults. The authors assumed
that each UAV will track a given attitude reference attitude.
No formation technique is use. The authors in [45] proposed
a nonlinear observer-based approach to address the robust
cooperative tracking problem and application for heteroge-
neous spacecraft systems.

Fractional order calculus is the mathematics field that uses
an arbitrary order operation when dealing with differentiation
and integration. This means that the order can be integer,
real, or even complex number [15]. Because of the lack of
the methods that solve fractional differential equations, the
use of fractional calculus was almost absent. Nowadays, a lot
of methods can solve the fractional differential equations
and fractional calculus can be applied in different fields of
applications. As an effective method to develop the perfor-
mance of control systems, fractional calculus has been used
in different traditional control structures including fractional
order Proportional integral derivative (PID) control [16], frac-
tional order optimal control [17], fractional order adaptive
control [18] and fractional order sliding mode control [19].
It has been confirmed with evidences that fractional order
control systems can outperform integer order control sys-
tems [20]. The control of UAV quadrotors using the FSMC
has been addressed with using different fractional structures
to design the control action. In [21], a FSMC is designed
by using an integer order sliding manifold with a fractional
order control action. In [22], a fractional manifold with a
proportional–fractional order derivative structure was used
to design the fractional controller. In [23], without any pro-
portional term, the authors used a combination of an integer
order derivative, fractional order derivative and fractional
order integral of the state’s error to design the sliding surface.
In [24], the sliding surface is designed using a combina-
tion of integer and fractional order derivatives of the error.
In [25] and [26] the fractional order sliding mode controller
is designed with using a fractional order manifold that con-
tains fractional order derivative and integral of the error.
In [27] an integer order sliding surface with fractional order
switching law were used to design the fractional order sliding
mode controller. In [28], the authors investigated the rein-
forcement learning-based control strategy for second-order

continuous-time multi-agent systems (MASs) subjected to
actuator cyberattacks during affine formation maneuvers.

Fractional order control, also applied to control differ-
ent physical systems. For example [29], proposed a vari-
able structure control with neural network and optimized
fractional-order selection policy for the sensorless teler-
obotic.

As a powerful technique, the genetic algorithm is used for
the tuning of the parameters of several controllers and has
been used significantly to tune the parameters of fractional
order controllers specially the PID [30], [31] and sliding
mode [32], [33] controllers.

The cooperative and formation control for a group of
quadrotors UAVs using the fractional control strategies is
still limited and not totally studied in the literature of
multi-agent systems and cooperative control. This problem
will be addressed in this study by proposing a novel fractional
slidingmode control (FSMC) strategy to stabilize and achieve
the tracking tasks of the attitude and altitude dynamics of
UAV quadrotor. This is conducted by selecting a fractional
sliding surface, consisting of proportional, integer derivative
and fractional derivative of the errors, which results in frac-
tional control input signals. These signals control the altitude
and attitude dynamics while a classical PD controller is used
to calculate the desired roll (φ) and pitch (θ) angles that are
required to stabilize the position dynamics in the x and y
directions. The famous powerful genetic algorithm (GA) is
used to tune the fractional order along with the other parame-
ters of the controller to obtain better system performance. The
formation flight control is then studied with using the pro-
posed FSMC as an inner controller to stabilize the individual
UAV quadrotors while using the potential field as a formation
algorithm (output controller) in order to keep a desired shape
formation during the fleet navigation. The Matlab/Simulink
environment is used to simulate all the results in this study
and the fractional-order modeling and control (FOMCON)
toolbox developed by Tepljakov [34] is used for the numerical
calculations of the fractional terms.

The paper is organized as follows. Section II gives some
preliminary results on the fractional calculus, the dynamic
model of the Quadrotor and the Genetic algorithm used for
optimization. Section III presents the derivation of the frac-
tional order sliding mode control applied to the model of
the Quadrotor. The results of the derive control strategy is
tested with simulation and reported in Subsection III-B. The
Cooperative and formation control of a set of Quadrotors
is given in Section IV and its subsections. Subsection IV-C
presents extensive simulation to prove the validity of the
control results reported in this section where the Genetic
algorithm is used to find optimal values for the controller
parameters. Section V conclude this work.

II. PRELIMINARIES
Fractional calculus deals with differentiation and integration
of non-integer order differential equation denoted by the fun-
damental operator aD

α
t , where a and t represent the bounds
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of the operation while α is the fractional order which can be
a complex number. It is defined as [26];

aD
α
t =


dα

dtα
: R(α) > 0,

1 : R(α) = 0,∫ t

a
(dτ )α : R(α) < 0

(1)

There are three most frequently used definitions for the frac-
tional differentiation-integrals [35]:
i. Grunwald-Letnikov (GL), given by

aD
α
t f (t) = lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j
(
α

j

)
f (t − jh) (2)

where the upper limit [.] represents the integer part.
ii. Riemann-Liouville (RL) given by

aD
α
t f (t) =

1
0(n− α)

dn

dtn

∫ t

a

f (τ )

(t − τ )α−n+1 dτ ,

for (n− 1 < α < n) (3)

where 0 (.) denotes the Euler’s gamma function.
iii. Caputo’s given by

aD
α
t f (t) =

1
0(n− α)

∫ t

a

f n(τ )

(t − τ )α−n+1 dτ ,

for (n− 1 < α < n) (4)

Laplace transform technique is useful in solving fractional
order differential equations. The Laplace transform of the
operator for the above listed function under zero initial con-
ditions is given by;

L
{
0D

α
t f (t) ; s

}
= sαF (s) . (5)

However, numerical methods do exist for calculating
fractional-order derivatives which are the GL method, con-
tinuous and discrete-time approximation techniques and
Podlubny’s matrix approach. Fortunately, some MATLAB
tools come in handy when dealing with such methods [35].

A. DYNAMIC MODEL OF THE QUADROTOR
To identify theUAVquadrotor dynamicmodel, an inertial and
a body fixed reference frames are needed to be considered.
The inertial reference frame I, is described by axes X, Y and
Z while the body frame B, attached to the vehicle center of
mass, is described by axes xB, yB, and zB as shown in Figure 1.
Considering the quadrotor as a rigid body, and based on the

Newton-Euler approach, the dynamic model which describes
the motion of the vehicle can be obtained as [37]:

ẍ =
cos (φ) sin (θ) cos (ϕ)+ sin (φ) sin(ϕ)

m
u1 + νx (6)

ÿ =
cos (φ) sin (θ) sin (ϕ)− sin (φ) cos(ϕ)

m
u1 + νy (7)

z̈ = −g +
cos (φ) cos (θ)

m
u1 + νz (8)

FIGURE 1. The quadrotor with its coordinate systems [36].

φ̈ =
θ̇ ϕ̇(Iyy − Izz)

Ixx
+

u2
Ixx

+ νφ (9)

θ̈ =
φ̇ϕ̇(Izz − Ixx)

Iyy
+

u3
Iyy

+ νθ (10)

ϕ̈ =
φ̇θ̇ (Ixx − Iyy)

Izz
+

u4
Izz

+ νϕ (11)

where the terms νx , νy, νz, νφ, νθ and νϕ are unknown
bounded perturbation terms.

The quadrotor has four rotors and each rotor is
equipped with a motor rotates with an angular velocity
ωi, i = 1, 2 . . . 4. Each motor generates a vertical force Fi and
moment Mi which are related to the angular velocities as [38]

Fi = kFω2
i

Mi = kMω2
i

where kF and kM are the thrust and drag coefficients. The
angular velocities are related to the control signals as [38]

u1
u2
u3
u4

 =


kF kF kF kF
0 ℓkF 0 −ℓkF

−ℓkF 0 ℓkF 0
kM −kM kM −kM



ω2
1

ω2
2

ω2
3

ω2
4


where ℓ is the length of the quadrotor arm.

B. GENETIC ALGORITHM (GA)
Genetic algorithm (GA) is one of the most useful and pow-
erful Heuristic techniques that are used to minimize a cost
(fitness) function based on adjusting some or all the parame-
ters of that cost function. The power of GA comes from the
fact that it needs only fitness function evolutions instead of
derivatives or other auxiliary knowledge to perform its search.
It uses probabilistic evolution rules rather than deterministic
rules and deal with a population of candidate solutions to the
concrete problem. These solutions are called individuals or
chromosomes and evolve iteratively. In a process called selec-
tion, the population chromosomes are evaluated using the
fitness function in order to select the chromosomes that will
be used to generate the new ones for the next generation. Then
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the genetic operators, such as crossover and mutation, are
used to generate the new individuals. The genetic algorithm
can be conducted by using the following steps [39]:

• Step 1. Set the GA parameters such as number of gen-
erations, crossover rate, and mutation rate then initialize
with a population of random solutions.

• Step 2. Evaluate the fitness function.
• Step 3. Apply crossover andmutation operation to obtain
the new generation.

• Step 4. Repeat Steps 2 and 3 until the best value is
achieved.

The crossover operator is a technique for sharing features
between chromosomes. It combines the characteristics of
two parent chromosomes to generate two children, with the
possibility that good chromosomes may produce better ones.
The mutation operator randomly alters one or more genes
of a nominated chromosome such that the organizational
variability of the generation increases. In this work the GA
is employed to adjust the fractional orders in addition to the
control parameters to minimize the tracking errors of the
quadrotor system. Therefore, each chromosome of the GA
is represented by a vector containing candidate values of the
control parameters and the fractional orders (the genes) while
the tracking error is used as a cost function that is needed to
be minimized.

The total Integral Absolute Error (IAE) is set to be the cost
function that is required to be minimized.

IAE =

∫
∞

0
(|ex (t)| +

∣∣ey (t)∣∣ + |ez (t)|) (12)

where ex , ey and ez are the tracking errors in x, y and z
directions respectively. The Matlab function (ga) is used for
implementing the genetic algorithm during the control sim-
ulations with real coded chromosomes. The population size
is set to be 50 for number of genes less than or equal 5 and
200 otherwise. The crossover and mutation probability rates
are set to be 0.8 and 0.01 respectively. In every iteration, the
GA is set to run the Simulink file of the corresponding system
then calculate the total IAE in the step of evaluating the fitness
function.

The GA is used to adjust the fractional orders and control
parameters of the FSMC control system.

III. FRACTIONAL SLIDING MODE CONTROL (FSMC)
In this section, the quadrotor dynamics is assumed to be
affected by external perturbations and a fractional sliding
mode control (FSMC) structure is proposed to stabilize its
attitude, represented by the Euler angels, in addition to the
dynamics in z direction. As shown in Figure 3, FSMC and PD
control strategies are designed to stabilize the quadrotor. The
FSMC controller is responsible for stabilizing the quadro-
tor attitude and the dynamics of z position, while the PD
controller is working as an outer loop controller to calculate
the required roll (φ) and pitch (θ ) angles which stabilize the
position dynamics in the x and y directions.

FIGURE 2. GA flow diagram [39].

FIGURE 3. Block diagram of the control system.

Assumption: the disturbance signals are unknown but
bounded and satisfy:∥∥νj∥∥ ≤ κj j = x, y, z, φ, θ, ϕ (13)

Based on this assumption, the terms νx , νy, νz, νφ, νθ and
ν in the dynamics equations (6)-(11) are considered as
unknown bounded perturbation terms with real positive
bounds κx, κy, κz, κφ, κθ and κϕ .

A. CONTROL STRATEGY
Equation (8) describes the dynamics of the quadrotor in the z
direction. Thus, to control the position in the z direction the
tracking error is defined as

ez= z−zd (14)

where zd is the desired reference signal.
Lemma 1: Let λz and ρz be real positive parameters. Let

ėz = ż − żd
ëz = z̈ − z̈d (15)

Let the fractional order sliding surface be defined as:

sz = ėz + λzDαez + ρzez (16)

Then the control law given by

u =
m

cos (φ) cos(θ )
(g+z̈d − λzDα ėz − ρzėz)
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stabilizes the reduced system obtained when

ṡz = ëz + λzDα ėz + ρzėz = 0

Proof:
The first derivative of sz is:

ṡz = ëz + λzDα ėz + ρzėz = 0 0 < α < 1 (17)

The parameters λz and ρz should be selected to make ez
in (16) converge exponentially to zero, where,

ėz = ż − żd
ëz = z̈ − z̈d (18)

Firstly, by considering the disturbance νz= 0 in (8), we find
the control signal u11 which keeps the system on the sliding
surface as follows:

From (8) and (18)

ëz= −g+
cos(φ)cos(θ)

m
u11 − z̈d (19)

where u11 is the part of control that is used to keep the system
on the sliding surface.

Therefore, ṡz can be expressed as:

ṡz= −g+
cos(φ)cos(θ)

m
u11 − z̈d + λzDα ėz + ρzėz (20)

Now u11 can be computed such that it makes ṡz= 0, thus:

u11 =
m

cos (φ) cos(θ )
(g+z̈d − λzDα ėz − ρzėz) (21)

The FSMC control strategy proposed in this work includes
two control parts u11 and u12 i.e. u1 = u11+u12. The first
part u11 is responsible for keeping the system on the sliding
surface while the other, u12, makes the system reach the
sliding surface. To make the system reach the sliding surface,
the additional control signal u12 is needed and to be calculated
as followes:

The Lyapunov based reachability condition requires [40]

szṡz ≤ −ηz |sz| (22)

where ηz is a positive constant.
Condition (22) is also used to prove stability of the control

system. Therefore, it will be used to design the controller that
will guarantee the overall system stability. □

Now, considering the disturbance νz ̸= 0, ṡz becomes

ṡz = −g+
cos(φ)cos(θ)

m
(u11 + u12)

+ νz − z̈d + λzDα ėz + ρzėz (23)

Substituting u11 in (23) and multiplying by sz

szṡz = sz
cos(φ)cos(θ)

m
u12 + szνz (24)

which will be satisfied with putting:

u12 =
m

cos(φ)cos(θ)
(−kzsgn (sz)) (25)

where kz = ηz + κz and κz, as in (13), represents the bound
of the perturbation.

TABLE 1. Control parameters.

Substitute in (24)

szṡz= −(ηz + κz)szsgn (sz)+ szνz (26)

Since sz = |sz| sgn(sz)

szṡz = −ηz |sz| − κz |sz| + szνz (27)

Now, putting sz = |sz| sgn (sz) and νz = |νz| sgn (νz) in the
last term leads to

szṡz = −ηz |sz| − |sz| (κz + sgn(sz)sgn(νz) |νz|) (28)

Now, if sz and νz have the same sign, we have

szṡz = −ηz |sz| − |sz| (κz + |νz|) ≤ −η |sz| (29)

However, if sz and νz have different signs, we obtain

szṡz = −ηz |sz| − |sz| (κz − |νz|) (30)

From (13), κz represents the bound of the perturbation,
therefore:

|νz| ≤ κz

This leads to

szṡz = −ηz |sz| − |sz| (κz − |νz|) ≤ −η |sz| (31)

From (29) and (31), the condition (22) is always satisfied.
Now, u1 is the summation of the two control signals u11

and u12 which is given as

u1 =
m

cos (φ) cos (θ)
(Pz+g) (32)

where

Pz = z̈d − λzDα ėz − ρzėz − kzsgn(sz) (33)

For designing the control signals u2 and u3, the desired ref-
erence signals φd and θd are defined for the angles φ and θ
respectively. Then, the commonly used small angle approxi-
mation is adopted here. Based on this, the dynamics (6), (7),
and (9)-(11) take the form:

ẍ ≈ tan (θ) (Pz+g)+ νx, (34)
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FIGURE 4. The reference signals that are required to be tracked by the
system in the x, y and z directions.

TABLE 2. GA tuned control parameters (λ , ρ, α,Kp, Kd).

ÿ ≈ − tan (φ) (Pz+g)+ νy, (35)

φ̈ =
u2
Ixx

+ νφ, θ̈ =
u3
Iyy

+ νθ , ϕ̈ =
u4
Izz

+ νϕ (36)

Now, tan(φ) and tan(θ ) can be considered as ‘‘virtual’’ input
signals in (34) and (35) respectively. Defining the tracking
errors ex and ey as

ex = x − xd, ey = y − yd, (37)

First, assuming νx and νy are zeros, to find φd and θd that
make ex and ey converge to zero, a simple PD controller is
designed as:

θd = tan−1
(

1
Pz+g

(ẍd − Kdxėx − Kpxex)
)

(38)

φd = −tan−1
(

1
Pz+g

(
ÿd − Kdyėy − Kpyey

))
, (39)

For the designed PD control technique to allow the system
tracking errors ex and ey to approach zero exponentially, the
control actions u2 and u3 are needed tomake θ andφ converge

to θd and φd as soon as possible. The fractional sliding mode
control technique is used again to design the control signals
u2, u3 and also u4 with defining the fractional sliding surfaces
as:

sj = ėj + λjDαej + ρjej= 0 j = φ, θ, ϕ (40)

ej = j − jd (41)

By following the procedure of calculating u1, the control
signals u2 and u3 can be obtained as

u2 = Ixx(φ̈d − λφDα ėφ − ρφ ėφ − kφsgn(sφ)) (42)

u3 = Iyy(θ̈d − λθDα ėθ − ρθ ėθ − kθ sgn(sθ )) (43)

and

u4 = Izz(ϕ̈d − λϕDα ėϕ − ρϕ ėϕ − kϕsgn(sϕ)) (44)

B. SIMULATION RESULTS
In this section, the MATLAB Simulink environment is used
to examine the proposed control strategy. For this purpose,
we simulate the results of applying the fractional control
strategy on the quadrotor system. The quadrotor system has
the following parameters: mass (m) of 1.4 kg and moments
of inertia Ixx , Iyy and Izz of 0.02, 0.02, and 0.04 kg.m2

respectively. For the controllers we use initially, by trial-and-
error, the parameters are shown in Table 1 below, while the
fractional order α is shown on the simulation figures since the
simulation is run for different values of α.
To examine the performance of the control system, refer-

ence signals, and perturbation terms have been given to the
system at different times. At time t = 1s, a unit step reference
is given to be tracked by the quadrotor in the z-direction.
Then, at time t = 10s, two sine wave signals are given as
references in the x and y directions as

xref = yref = A sin(wt) (45)

where A=1[m], and w= 0.086π [s−1]. The yaw angle is set
to equal zero

ϕref = 0

These reference signals are filtered using low pass filters in
order to avoid obtaining too high derivative values. Figure 4
shows the used reference signals.

At time t = 23s, perturbation terms are introduced as

ν = ka + kbsin(
2π t
T1

) (46)

The perturbations parameters ka, kb and T1 are taken as fol-
lows:
ka = 0.1[rad/s2], kb = 0.01[rad/s2] and T1 = 1.8[s].
The perturbation signals are set as:

νx = dy = dz = 0;

νφ = dθ = dϕ = d

During the simulation, saturation terms are used to main-
tain the input signals within some limits to avoid the high
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FIGURE 5. The tracking performance and errors of the system with different values of α.

input signals values. These limits are assumed to be [0
30], [−10 10] and [−10 10] for u1, u2 and u3 respec-
tively. The ode45 variable-step solver (the default) is used to
solve the required numerical solutions during the simulation
of the model associated with the proposed control system

and the fractional-order modeling and control (FOMCON)
toolbox is used for the numerical calculations of the fractional
terms. Moreover, the signum function is implemented as:

sgn(s) =
s

|s| + ε
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FIGURE 6. The tracking errors of the system with different values of α.

where ε is a small real positive constant and taken here as
ε = 0.005.

Figure 5-Figure 7 shows the results of applying the pro-
posed fractional sliding mode control on the system with

changing the value of the fractional order α, the values of
α are written above each plot. Figure 5 shows the track-
ing performance while figures 6 and 7 show the tracking
errors and control efforts of the system respectively. The
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FIGURE 7. The control efforts of the system with different values of α.

figures show deferent behaviors for deferent fractional order
α with better performance for the smaller values of α.
It is noted that, with increasing the value of the fractional
order α, both the raise and settling times increase which

leads to slower transient dynamics. Furthermore, the figures
show that increasing α leads to lower robustness against
the external perturbations and higher input efforts at the
time of applying the sin waves references in the x and y
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FIGURE 8. The leader with its sensing range D and two followers (Fi and
Fj) [41].

FIGURE 9. The scheme of a follower quadrotor controlled with potential
field and FSMC formation control.

FIGURE 10. Different views of the team performance when the leader
moves to the position (1,1,3).

directions. However, it is clear that, the proposed fractional
control scheme is able to achieve the required tracking tasks
efficiently.

FIGURE 11. Different views of the team performance when the leader
moves to the position (2,2,3).

From the Figures it is clear that, the system achieved the
best response with α = 0.1. However, changing the fractional
orderα results in different responses of the system. Therefore,
in order to achieve better response, the genetic algorithm
(GA) will be used in the next section to adjust the system
orders α’s and parameters.

IV. COOPERATIVE AND FORMATION CONTROL
In this section, cooperative with formation control based on
the potential field scheme is studied on a team of quadro-
tors which designed to navigate with a prescribed flight
formation. The vehicles are considered to navigate in a
leader-follower formation flight scheme where one of the
vehicles is considered as a leader while the others are con-
sidered to be followers (agents). The leader navigates with
tracking a given reference path while the followers track the
leader with keeping a desired formation shape. The potential
field technique is used to design the outer controller which
generate the paths that guarantee navigation in the required
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FIGURE 12. Different views of the team performance when the leader
moves to the position (3,3,3).

formation polygon. The fractional sliding mode controller
(FSMC) is considered as the inner loop controller which is
responsible for driving the follower quadrotors to track that
produced paths.

A. SHAPE FORMATION
Let each vehicle has a sensing range of D as illustrated
in Figure 8. Therefore, each vehicle is able to determine
the locations of all its neighbor agents that are positioned
inside this sensing range. During their motion, the quadrotors
have a task of forming a given polygon with circumcircle
of radius R. The leader is required to be positioned at the
center while the followers are placed around it. Each two
neighboring agents i, j are required to make a distant d ≤ D
from each other. Based on the basics of geometry, R can be
defined as:

R =
d

2sin(π/n)
(47)

where n denotes the number of agents [41].

FIGURE 13. Different views of the team performance when the leader
moves to the position (4,4,3).

B. ATTRACTIVE AND REPULSIVE POTENTIAL
FIELDS-BASED CONTROL DESIGN
The potential field scheme in [1] and [41] is used to achieve
cooperative control for the group of quadrotors. This scheme
allows each agent to access the positions of the neighboring
agents in addition to the position of the leader. The agents’
paths are generated based on the present positions of the
leader and the neighboring agents. The application of the
attractive and repulsive potential field for formation control
will be investigated in this study. The required formation
is achieved by using the potential field function to produce
the paths that are needed to be followed by the agents.
To accomplish this, two potential field functions are needed
to be defined, the first one, (Ua), attracts the agents towards
the leader, while the second one, (Ur ), keeps the distance
between each two adjacent agents to be equal or greater than
d. The potential field functions Uatt and Urep are defined as
follows:

Ua =
1
2
ka(roi−R)2 (48)

VOLUME 12, 2024 24535



N. Alabsari et al.: Cooperative Flight Control of a Fleet of Quadrotors

FIGURE 14. Different views of the team performance when the leader
moves to the position (5,5,3).

Ur =


1
2
kr(ri,j−d)2 ri,j< d

0 otherwise
(49)

where:
roi: The current distance between the ith follower and the

leader.
R: The required distance from the leader to the ith agent

(the circumcircle radius of the required polygon)
ri,j : The current distance between the ith and jth agents.
d: The required distance between the ith and jth agents.
ka and kr : are positive design constants
The associated force vector, which represents the negative

gradients of the potential fields, is used to control the forma-
tion flight of the vehicles group as follows:

F = Fo + Fij+Da (50)

Fo = −∇Ua (51)

Fi,j = −∇Ur (52)

where
Fo : represents the attractive potential (or center potential)
Fi,j : denotes the repulsive potential

FIGURE 15. Different views of the team performance when the leader
moves to the position (6,6,3).

Da: is a damping action
The structure of the cooperative and formation flight con-

trol based on the fractional slidingmode control (FSMC)with
potential field scheme is shown in Figure 9. The potential
field algorithm employs the center potential for attracting the
followers towards the leader, which is located at the center of
the polygon, and the repulsive potential for repulsing each
two adjacent followers to prevent collision. The formation
and cooperative flight control algorithm is applied on each
follower as a cascaded control structure containing inner and
outer loop controllers. The fractional sliding mode controller
(FSMC) works as the inner loop control action while the
potential field control algorithm represents the outer loop
controller.

1) CENTRAL POTENTIAL
From (48) and (51), the attractive potential field of the ith

follower is:

Uai =
1
2
ka(roi−R)2 (53)
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FIGURE 16. The performance of the team along the complete navigation path (different veiws).

Fo = −∇PiUai (Pi) (54)

where Pi= [xi, yi, zi, ψi]T is the current location and heading
of the ith agent and roi can be obtained as:

roi =

√
(xi − xo)2 + (yi − yo)2 + (zi − zo)2 + (ψ i − ψo)2

(55)

The Uai in equation (53) can be differentiated with respect to
Pi to obtain the center potential between the ith follower and
the leader as:

Fo = −

(
∂Uai

∂roi

) (
∂roi
∂Pi

)
(56)

and
∂Uai

∂roi
= ka (roi−R) (57)

From (55), let

M = (xi − xo)2 + (yi − yo)2 + (zi − zo)2 + (ψ i − ψo)2

(58)

hence:

roi = M
1
2 (59)

The chain rule can be used to differentiate roi with respect to
Pi as:

∂roi
∂Pi

=
∂roi
∂M

∂M
∂Pi

(60)

∂roi
∂M can be obtained from(59) as:

∂roi
∂M

=
1
2
M−

1
2 (61)

and ∂M
∂Pi

from (58) as:

∂M
∂Pi

=

[
∂M
∂xi

∂M
∂yi

∂M
∂zi

∂M
∂ψi

]T
=

[
2(xi − xo) 2(yi − yo)2(zi − zo)2(ψ i − ψo)]T

= 2(Pi − Po) (62)

where Po= [xo, yo, zo, ψo]T is the current location and head-
ing of the leader. substituting (61) and (62) in (60) to obtain

∂roi
∂Pi

= M−
1
2 (Pi − Po)

=
1
roi

(Pi − Po) (63)
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FIGURE 17. The dynamics of the three agents when achieving the
distance R from the leader.

Now, by substituting (57) and (63) in (56), the attractive
potential can be obtained as:

Fo = −ka
1
roi
(roi−R) (Pi − Po) (64)

2) REPULSIVE POTENTIAL
From (49) and (52), the repulsive potential field of the ith

follower is:

Uri =


1
2
kr(ri,j−d)2 ri,j< d

0 otherwise

Fi,j = −∇PiUr(Pi,Pj) (65)

FIGURE 18. The dynamics of each two neighboring agents when keeping
the distance d from each other.

where ri,j can be obtained as:

ri,j =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + (ψ i − ψj)2

(66)

By following the procedure of calculating Fo, we can obtain
the repulsive potential between each two neighboring agents
i and j as:

Fi,j = −kr
1
ri,j

(
ri,j−d

) [(
Pi − Pj

)
−(Pj − Pi)

]
(67)
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FIGURE 19. The performance of the team along the complete navigation path (diffent veiws).

where, Pj= [xj, yj, zj, ψj]T is the current location and heading
of the jth agent.

C. SIMULATION RESULTS
This section shows the results of applying the cooperative
and formation control based on the potential field technique
with fractional sliding mode (FSMC) control on a team of
four quadrotors navigating in space as a leader-followers
structure. Each vehicle is controlled by two stages of control,
an outer and inner control stages. The cooperative and for-
mation control algorithm is responsible for the outer control
stage and this algorithm generates the reference path which
is required to be tracked by the follower vehicle. This path
is produced based on the present position of the leader and
the neighboring followers. The FSMC represents the inner
control stage which is responsible for the stability of the
quadrotor and tracking tasks. The three followers are set to
fly while forming a circle with a radius R around the leader
so that the location of the leader represents the circle center.
Each follower has to make a distance R from the leader and
each two neighboring followers have to make a distance d
from each other.

The FSMC is designed with using the genetic algorithm
GA to tune the control parameters ρz, ρφ, ρθ , ρϕ, λz, λφ, λθ ,
λϕ and α in addition to the PD control parameters
Kpx,Kdx,Kpy, and Kdy which implies that each chromosome
consists of these genes. The remaining parameters are set as
kz = 2, kφ = 5, kθ = 5, and kϕ = 10. The cost function (12)
is employed for the evaluation process. The search bounds
of the control parameters are set to be as following: [1 100]
for the PD control parameters, [0.01 0.9] for the fractional
order α and [1 10] for the remaining FSMC tuned parameters.
The resulting tuned parameters are shown in Table 2. These
parameters are used in the simulation process in order to
stabilize each follower.

Suppose R = 1.5m and n = 3, therefore d = 2Rsin
(
π
n

)
=

2.598m. The leader has to follow its reference path while
the followers use the formation control algorithm for gener-
ating their paths which achieve the formation requirements.
To prove the efficiency of the proposed control system, the
control technique is applied on the quadrotor model and
the following simulation results have been achieved. Figures
below show the performance of the group, which is controlled
by FSMC with potential field formation control, when the
leader navigates through different positions along the x-y
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FIGURE 20. The dynamics of the three agents when achieving the
distance R from the leader.

direction. The leader is given a reference input in the form
of successive steps. While the leader follows its reference,
the followers use the potential field algorithm to track it
with keeping the required formation. In Figure 10, the leader
navigates from the initial position (−1, 0, 0) to the next
position which is (1, 1, 3). The first agent navigates from
its initial position (0, 0, 0), the second agent from (1, 0,
0), and the third agent from (0, 2, 0) to shape the desired

FIGURE 21. The dynamics of each two neighboring agents when keeping
the distance d from each other.

polygon around the leader. In Figure 11-Figure 15, the leader
is moving among a sequence of different positions whereas
the agents follow the generated paths which form the required
formation around it. Figure 16 shows the group of leader
and followers quadrotors moving throughout the complete
navigation path with keeping the desired formation.

Figure 17 shows the performance of the agents in terms
of achieving the required distance of each follower from the
leader. This distance is required to be 1.5m and it is clear from
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the figures that the formation and FSM controller achieves
that efficiently. The agents start the motion from their initial
positions then they move to be located at the desired distance.
At the beginning of the flight simulation, they take time of
around 23s to accomplish this and then, with each movement
of the leader, they take around 13s to relocate themselves such
that they keep this distance from the leader.

Figure 18 shows the performance of the agents in terms of
achieving the required interspatial distance d between each
two neighboring followers. This distance d is required to be
2.598m and it is clear from the figures that the formation and
FSM controller achieves that efficiently. The agents start the
motion from their initial positions then they move to position
themselves at the desired interspatial distance. They take time
of around 25s to accomplish this and then they navigate
through their complete path with keeping this distance from
each other.

From these figures, it is clear that the followers are able
to track their leader with achieving the desired formation in
the 3D plane. All these figures show the efficiency of the
proposed FSMC with potential field cooperative and forma-
tion control to navigate each vehicle with keeping the desired
formation flight.

1) EFFECT OF PERTURBATION
Here, the formation flight based on the fractional sliding
mode control (FSMC) with potential field technique is exam-
ined when each agent is modeled with considering the effect
of bounded perturbation. The perturbation signals are given to
the follower’s dynamic systems at time t=23s and introduced
as:

νx = νy = νz= 1 + 0.1 sin(
2π t
1.2

)[m/s2] (68)

νϕ = νθ = νφ= 1 + 0.3 sin(
2π t
1.8

)[rad/s2] (69)

The following figures show the flight formation performance
of the group controlled by the FSMC with potential field
formation control with the existence of bounded perturbation.
Figure 19 shows the group of leader and followers quadrotors
moving throughout the complete navigation path with keep-
ing the desired formation.

Figure 20 shows the performance of the group when
achieving the required distances between the vehicles. The
figures show the efficiency of the proposed FSMC with
potential field formation control when navigating each agent
with keeping the desired formation flight with the existence
of external perturbations. The effect of perturbation is almost
eliminated by the FSM controller. However, a very small
deviation with fluctuations close to the final goals can be seen
in Figure 20.

It is noted from the above figures that, because it is very
small, the effect of the perturbation can’t be seen in the figures
of the team navigation. However, as mentioned before, a very
small deviation from the required distance Rwith fluctuations
close to the final goals can be seen in Figure 20.

V. CONCLUSION
In this paper, a cooperative formation flight control is pro-
posed for a team of UAV quadrotors. The control of a single
quadrotor with the presence of external perturbations is firstly
designed then the control of cooperative flight for multi
quadrotors is addressed. The fractional sliding mode control
technique is proposed to stabilize the attitude and altitude
dynamics of the UAV quadrotor while a classical PD con-
troller is employed as an outer loop controller to calculate
the desired roll and pitch angles which stabilize the position
dynamics in the x and y directions. The powerful genetic
algorithm (GA) is used to adjust the control parameters
including the fractional orders to improve the performance
of the system based on a desired cost function. Then the
cooperative control is addressed based on the FSMC and the
potential field approaches. The FSMC is used to stabilize the
individual vehicles while the potential field function is used
to generate the paths that are required to keep the formation
of the fleet. The proposed control system is simulated to
examine the validity of the results.
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