
Received 20 December 2023, accepted 28 January 2024, date of publication 6 February 2024, date of current version 15 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3362896

DP-CCL: A Supervised Contrastive Learning
Approach Using CodeBERT Model in
Software Defect Prediction
SADIA SAHAR1,3, MUHAMMAD YOUNAS 2, MUHAMMAD MURAD KHAN1,
AND MUHAMMAD UMER SARWAR 1
1Department of Computer Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
2Department of Information Technology, Government College University Faisalabad, Faisalabad 38000, Pakistan
3Department of Computer Science, Government College Women University Faisalabad, Faisalabad 38000, Pakistan

Corresponding author: Muhammad Younas (younas.76@gmail.com)

ABSTRACT Software Defect Prediction (SDP) reduces the overall cost of software development by
identifying the code at a higher risk of defects at the initial phase of software development. SDP helps the test
engineers to optimize the allocation of testing resources more effectively. Traditional SDP models are built
using handcrafted software metrics that ignore the structural, semantic, and contextual information of the
code. Consequently, many researchers have employed deep learning models to capture contextual, semantic,
and structural information from the code. In this article, we propose the DP-CCL (Defect Prediction using
CodeBERT with Contrastive Learning) model to predict the defective code. The proposed model employs
supervised contrastive learning using this CodeBERT Language model to capture semantic features from the
source code. Contrastive learning extracts valuable information from the data by maximizing the similarity
between similar data pairs (positive pair) and meanwhile minimizing the similarity between dissimilar data
pairs (negative pair). Moreover, The model combines the semantic features with software metrics to obtain
the benefits of both semantic and handcrafted features. The combined features are input to the logistic
regression model for code classification as either buggy or clean. In this study, ten PROMISE projects were
utilized to conduct the experiments. Results show that the DP-CCLmodel achieved significant improvement
i.e., 4.9% to 14.9% increase in F-Score as compared to existing approaches.

INDEX TERMS Software bug prediction, software fault prediction, software defect prediction, BERT,
CodeBERT, language model, pre-trained model, deep learning, contrastive learning, contrastive loss.

I. INTRODUCTION
Complex and large-scale software are significant challenges
for developers in terms of debugging and sustaining the
software quality [1]. Software defects that need to be
effectively addressed in the initial development phase can
escalate into more intricate issues with the progression of
software development. The propagated defects are difficult
to rectify because they are more hidden, challenging, and
resource-intensive at the last stages. This drawback leads
to potential disruptions in functionality, delayed timelines,

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

necessitating extensive rework, increased cost, and ultimately
the system failure [2], [3].

To address the issues mentioned above, various researchers
have introduced software defect prediction (SDP) [1], [4],
[8], [12], [13], [14], which empowers developers to identify
the code in advance that are at higher risk of defects [3],
[23]. SDP helps the test engineers to optimize the testing
resource allocation more effectively [2]. Hence, it reduces
the cost of software development [5], [6]. Traditional SDP
models are trained on software metrics (features) extracted
from historical defective data. The most popular software
metrics used in the research are Line of Code (LOC) [15],
Halstead code metrics [16], McCabe Cyclomatic Complexity

22582

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4161-7843
https://orcid.org/0000-0001-6790-1979
https://orcid.org/0000-0003-3264-185X

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

feature [17] object-oriented features like Chidamber and
Kemerer(CK) metrics [20], MOOD [19], QMOOD) [18],
code churn metrics [21], Developers micro-interaction met-
rics [8], [22], and change software metrics [9], [10], [11].

The traditional software metrics ignore the structural,
semantic, and contextual information of the code [7], [13],
[25], [26]. Most of the traditional metrics cannot distinguish
code module that has different semantics because the metrics
may hold the same information for both code snippets [13],
[14], [24], [27], [28].

Recent research work [12], [13], [14], [29], [30] have used
different deep learning algorithms like deep belief network
(DBN) [13], [32], convolutional neural network (CNN) [29],
recurrent neural network (RNN) [31], Long Short-Term
Memory (LSTM) [30] to extract semantics and contextual
information from the raw code. DBN model generates
features by processing tokens one by one, so there is no
semantic dependency between the preceding and subsequent
tokens. CNN models generate features that have local
dependency and do not guarantee global dependency [3].
Recurrent Neural Networks [31] have been employed to
capture global dependencies between the tokens of sequence
vectors. However, RNN loses essential information while
processing longer token sequences due to the vanishing
gradient problem [3]. Therefore, the feature representation of
these methods is not optimal.

In this study, we introduced a Defect Prediction
CodeBERTmodel with Contrastive Learning (DP-CCL). The
model utilizes a pre-trained CodeBERT [33] model to extract
code features and apply contrastive learning (CL) to enhance
overall performance. Contrastive learning learns the useful
information of data [36], [37] by maximizing the similarity
between similar data pairs (positive pair) and minimizing
the similarity between dissimilar data pairs (negative pair)
[34], [35]. The CodeBERT has been used in various software
engineering domains [38], [39], [40] to enhance feature
representations. In most of the studies, the combination of
CL with the pre-trained language model has been proven
effective and achieved satisfying results [34], [35], [36], [37],
[41]. DP-CCL model was evaluated on the Promise datasets
using F1 and MCC metrics to measure the effectiveness
of the model. Results show that the DP-CCL approach
outperformed the existing approaches.

A. CONTRIBUTION
This work has the following main contributions:

• Utilization of a pretrained CodeBERT language model
to get feature representation of source code. As it han-
dles programming-related contexts effectively, it gen-
erates semantic information of source code more
effectively than previous approaches.

• Designed a contrastive learning approach to capture the
similarity among code instances with the same labels
and dissimilarity among those with different labels.

• Fusion of semantic and handcrafted features to get a
better final feature representation.

• Evaluated ten projects of the PROMISE dataset
and improved the performance as compared to the
state-of-the-art studies.

B. PAPER ORGANIZATION
The structure of the remaining article is as follows: Section II
deals with background information and reviews existing
literature on defect prediction; Section III introduces the
proposed DP-CCL model; Section IV shows the result
of DP-CCL approach; Section V highlights some validity
threats; and Section VI concludes the work and discusses
the future work.

II. RELATED LITERATURE
A. SOFTWARE DEFECT PREDICTION
The study [13] employed Deep Belief Network, a deep
learning algorithm, to capture semantic and structural infor-
mation of the code. The author converted the code into an
Abstract Syntax Tree (AST). The AST is then parsed to
obtain the token sequence. Each node has some information.
The information of the node is considered as the token.
A number uniquely identifies each token in the token vector.
This token sequence is then fed to theDBN to get the semantic
feature of the given source code. These features are then used
to train LR or Random Forest model to classify the given
code examples as defective or clean. Results of the proposed
study showed that the semantic features enhanced themodel’s
performance compared to the traditional model trained on
traditional handcrafted features.

The author of [29] developed the DP-CNN model to
capture the semantic and structural features by parsing
AST nodes of the source code. Subsequently, the model
combined the captured semantic features with traditional
handcrafted features. The combined features are then input
into a convolutional neural network to make the final
defect predictions. Comments of code with semantic features
generated by CNNmerged in a study [25] to predict the defect
proneness of code.

Some other work captured semantic features using RNN
[60], [61], and semantic and syntactic features from the code
using LSTM [14], [30], [62]. The studies [3], [12], [65]
also used the LSTMmodel to capture semantic features from
code as well as from handcrafted features and then combined
both features using a gated mechanism. The author of [63]
and [64] trained the TreeLSTM model to capture a better
representation of code.

The proposed approach incorporates contrastive learning,
which has been acknowledged as a potent tool for capturing
enhanced feature representations in various domains of
software engineering.

B. SOFTWARE DEFECT PREDICTION AND PRE-TRAINED
LANGUAGE MODEL
Pre-trained language models are machine learning models
that have been trained on large text data and can subsequently
be fine-tuned for downstream NLP (Natural Language

VOLUME 12, 2024 22583

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

FIGURE 1. Workflow of DP-CCL model.

Processing) tasks. These pretrained models have shown
remarkable achievement in different NLP tasks [42], [44] as
well as software engineering research like code clone [45],
code search [46], [47], code summarization [48], and code
vulnerability [49], [50] etc.

Researchers [51], [52], and [53] have investigated the
effectiveness of pretrained language models in the field of
defect prediction. The author of [52] proposed a defect
prediction model that mines the semantic feature using
BiLSTM and BERT algorithms. In the study [51], a feature
representation of the source program was generated by
utilizing the UniXcoder (a pretrained Language model)
in combination with a multi-channel convolutional neural
network. This approach extracted semantic information by
incorporating both the program text and the associated code
comments.

The proposed method is different from the existing
approaches because the suggested model incorporates the
CodeBERT model with Contrastive Loss to get a better
representation of the code at the file level.

C. CONTRASTIVE LEARNING
Contrastive learning has been quite successfully used in
various applications, including computer vision [34], [55],
[56], natural language processing [35], [37], [41], [54]
and software engineering tasks [38], [39], [40], [41], [57].
Contrastive learning allows models to learn meaningful rep-
resentations of the instance from large datasets. Nowadays,
the integration of contrastive learning with pretrained models
like BERT is pervasive to fine-tune the model to enhance the
learning ability of the language model [35], [58], [59].
The proposed model applied contrastive learning using

pretrained language models in order to explore the
effectiveness of the combination in defect prediction tasks.

III. PROPOSED APPROACH
Figure 1 provides a comprehensive overview of the proposed
model’s (DP-CCL) workflow. Initially, The model parses the
source files usingAbstract Syntax Tree to gather the sequence
of tokens extracted from the AST. This sequence retains
the semantic information of the code [12]. Subsequently,
the model provides this sequence to the BCLF (CodeBERT
Contrastive Learning Feature) unit to obtain vector represen-
tations for each sequence. These word embedding vectors are
then combined with Handcrafted Features (HCF) to exploit

the benefits of both semantic and HC features. The combined
features are input into the logistic regression model for code
classification as either buggy or clean.

A. DATA CONSTRUCTION
The data construction phase starts with the conversion of
source code into an Abstract Syntax Tree. AST can generate
better syntactic representation as compared to the traditional
approaches [13], [70]. AST is a tree-based structure that
contains rich semantic and structural information of the
program [14], [27]. Each node on the tree represents a
structure in the source code. In the proposed method, three
types of AST nodes are considered: (1) The nodes retain
information about method invocations or the creation of class
instances; (2) Declaration nodes hold information regarding
different objects like method declarations, enum declarations,
or type declarations; (3) Nodes belong to the Control flow
structure like loop structure (statements belong to for, while,
etc.), conditional structure such as ’if statement’, ’catch
statement’ or ’throw statement’, etc.
All three types are recorded using the type and name of the

node, separated with ‘‘_’’. For example, if the node in AST
is represented as ‘‘MethodDeclaration_setWebxml’’, then
MethodDeclaration will be the type of node and setWebxml
will be the name of the node.

Table 1 enlists different types of nodes that are used in
the study. Except for the enlisted nodes, all other nodes are
excluded. The exclusion of unnecessary nodes is because they
are often specific to particular methods or classes and may
not be relevant to the entire project. Including them could
dilute the significance of other nodes [13]. Some other nodes,
like curly braces or keywords like ‘‘args’’ or ‘‘main’’, are also
excluded.

The model splits each token into sub-tokens. For example,
The model splits the ‘‘MethodDeclaration_setWebxml’’ as
[‘‘MethodDeclaration’’, ’’setWebxml’’]. The reason to split
the tokens is to standardize the naming styles [12] and
enhance the expressive ability of the token across the
project [66], [67], [68], [69]. These identical subtokens often
share a common logical meaning across different software
projects. Splitting of token reduces the chance of occurrence
of unknown tokens during embedding [66]. Special tokens
[CLS] and [SEP] are added at the beginning and the end of
each sequence.

The final look of the token sequence is like this:

TokenSeq = {[CLS], tok1, tok2, , tokn, [SEP]} (1)

The sequence is input to the CodeBERT model to generate
an embedding vector for each token in the token vector. The
CodeBERT language model generates similar embedding
vectors for nodes of the same type when they have similar
contexts. One token sequence is created for one code file.

B. CLASS IMBALANCE
Oversampling and undersampling are two common class
imbalance handling techniques used in previous studies. Both

22584 VOLUME 12, 2024

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

TABLE 1. Selected AST nodes.

techniques have their limitations. Oversampling replicates
the samples, which leads to overfitting in a model, while
undersampling may lose important information associated
with majority class samples. Here, we applied the ‘‘weighted
Random Sampling’’ technique to balance the samples
belonging to different classes. weighted Random Sampling
technique applies different weights to different samples
according to the class they belong to.

C. CONSTRUCTION OF BCLF UNIT
CodeBERT Contrastive Learning Feature (BCLF) Unit
comprises two parts, i.e., (1) Extraction of features from
the CodeBERT model and (2) Application of Contrastive
Learning.

1) EXTRACTION OF CODEBERT FEATURES
The proposed technique employs the CodeBERT language
model to extract the semantic and contextual information of
the code. CodeBERT [33] is a pretrained model, the archi-
tecture of which is optimized to handle programming-related
contexts effectively. It is trained on a large corpus of
programming languages. The CodeBERT is designed to
understand the semantics of source code and has been proven
to be an efficient model in various software engineering
applications like code clone [45], code summarization [72],
vulnerability detection [71], and defect prediction [53] etc.
Figure 2 shows the extraction of features from the CodeBERT
Model.

To get the embedding vector of the token sequence,
the model converts the token sequence into three encoding
vectors i.e., (1) Token Embeddings E[tk] (2) Segment
Embeddings [EA] and (3) Position embedding [EP]. Position
embedding helps the encoder to embed the token according to
its position. If a token has two different positions, the encoder
generates the embedding vector for that token corresponding
to its position. CodeBERT has 12 layers of a transformer
having 768 hidden units for each layer. The multi-head
and feed-forward mechanism of the encoder extracts the
semantic information of the source code. The encoder uses
three encoding vectors to map a token into an m-dimensional
integer vector of a fixed length. CodeBERT maps each
token into 768 dimensions. Each source code has a ‘‘dn x
dt ’’ dimensional vector, where dn is the total number of

FIGURE 2. Feature extraction via CodeBERT model.

tokens in the token sequence of a code file and dt is the
dimension of each vector. Here, we selected 512 tokens. The
CodeBert-generated features are as follows:

E(TS) = {E[CLS],E[T1],E[T2],,E[Tn],E[SEP]}

(2)

Here, E[CLS] is the vector that stores the information to
classify the particular source code. Finally, the model merges
all the vectors using the average pooling layer to get the final
feature representationH.

2) APPLICATION OF CONTRASTIVE LEARNING
The model applies Supervised Contrastive learning [73] on
the CodeBERT-generated Features H to obtain a similar
representation of source code to the positive and dissimilar
to the negative instance. Figure 3 shows the application of
supervised contrastive learning.

The dataset used in the study contains N training examples.
Each training example xi can be categorized into two classes,
i.e., y = [0, 1]. In the defect prediction problem, ‘‘0’’ is for the
clean class, and ‘‘1’’ is for the defect class. xi is the input code

VOLUME 12, 2024 22585

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

FIGURE 3. Application of contrastive learning.

file with L tokens considered as an anchor having the label
yi. Here, at least one example behaves as a positive sample xp
with the same label yi, and the remaining examples are from
the negative class xn. The positive class has the same label as
yi, and the label of the negative class is different from yi. The
Supervised contrastive loss applied in the study is:

Lsup =
1
N

∑
iϵI

1
|Pi|

∑
pϵPi

−log
exp(zi • zp/τ)∑
aϵAi

exp(zi • za/τ)
(3)

where zi and zp are the normalized representations of anchor
xi and positive example xp, I is the set of training examples,
Ai is the set of the contrastive samples of xi, Pi is the set
of positive samples having the same label as xi, |Pi| is the
cardinality ofPi, the ‘‘•’’ symbol denotes the dot product and
τϵR+ is the temperature factor.
This contrastive loss learns generic representations Hi for

the input examples.

D. FUSION OF BCLF WITH HCF (HANDCRAFTED FEATURES
Previous approaches have proven the effectiveness of fusing
semantic features with handcrafted features. To obtain
the benefit of both features, the CodeBERT features are
combined with handcrafted features that are listed in Table 2.
These eighteen features are used in this work because these
features have been widely selected by earlier literature [3],
[12], [29] to measure the effectiveness of handcrafted
with deep features. Second, they are publicly available.
The standard-scaling approach is used to normalize the
handcrafted features.

E. PREDICTION OF BUGGY CODE
The feature Z generated by the DP-CCL model is input to
the Dropout layer to avoid overfitting. The output of the
Dropout layer is then given to the dense layer to get the final
representation H. The final feature vector is given to the

22586 VOLUME 12, 2024

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

TABLE 2. Handcrafted features used in the study.

classifier to learn the respective class of input code example.
The prediction of the classifier is as follows:

ŷ = Sigmoid(H) (4)

F. OBJECTIVE FUNCTION
The Cross-Entropy (CE) loss has been calculated to measure
the accuracy of classification as follows:

LCE =

∑
iϵI

∑
iϵY

ŷjilogy
j
i + λ||θ ||

2 (5)

where I is the set of all training examples, Y is the set
of class labels (buggy or clean), yi is the correct label, ŷ
is the predicted label of instance i, and λ||θ ||

2 is the l2
regularization.

The total loss has been calculated by merging the CE and
CL as follows:

Totalloss = Lsup + LCE (6)

The total loss enhances the feature representation and the
predicted output of the classifier.

IV. EVALUATION
A. EXPERIMENT SETUP
1) EVALUATION DATASET
The study utilized ten Java projects to analyze the perfor-
mance of the proposed work. The data of these projects were
collected from the PROMISE1 repository, which is a publicly
accessible code repository. The corresponding source code
was collected from GitHub2 and Apache3 websites. Fifteen
experiments were conducted to evaluate the model. For each
experiment, the model is trained on an old version of a project
and validated/tested on the latest version of the project. For
example, Ant version 1.5 was used to train the model, and
Ant version 1.6 to test the effectiveness of the model. The

1http://openscience.us/repo/defect/
2https://github.com/
3https://www.apache.org/

repository was chosen because it is publicly available and
has been extensively utilized by many studies to evaluate
the performance of their proposed work. Table 3 outlines
the details of the dataset i.e., the project name, versions
of projects employed in various experiments, the project
description, the average No. of Java files in a project, and the
corresponding percentage of defects. The average Java files
across all projects span from 122 to 815, while the average
rate of bugs ranges from 20 percent to 63 percent.

2) EVALUATION METRICS
F1 and MCC Scores were calculated to measure the
performance of the DP-CCLmodel. These evaluation metrics
have been widely used in previous studies [13], [26], [27],
[66], [74]. F1 is the harmonicmean of precision and recall and
assigns equal weight to both precision and recall. The better
the F1 score, the higher the performance of the prediction
model.

F1 =
2 × precision× recall
precision+ recall

(7)

Recall and Precision can be calculated as:

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

where TP stands for True Positive, TN for True Negative,
FP for False Positive, and FN for False Negative.

Matthews Correlation Coefficient (MCC) is the evaluation
metric that is less affected by the class imbalance [9],
[75]. It provides more informative and accurate scores when
applied to binary classifications [9], [76]. It is a correlation
coefficient between the predicted and true class labels,
ranging from -1 to 1. The upper value, 1, represents that
the prediction is perfect, and the lower value,-1, indicates
that the model is worst [9] in its performance. MCC can be
calculated as:

MC =
(TP× TN−FP× FN)

(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)
(10)

where TP represents True Positive; TN represents True
Negative; FP represents False Positive; FN represents False
Negative;

3) STATISTICAL METHODS
To prove the statistical efficacy of the DP-CCL model,
Scott-Knott ESD (effect size difference) was applied [3],
[74]. Scott-Knott ESD is a hierarchical clustering method
that arranges different data into ranks, facilitating a deeper
understanding of the data distribution.

The win\tie\loss test on the F1 and MCC scores was
also applied to compare the model with existing approaches.
In case the DP-CCL model achieved the best result on
the same project and metric (such as MCC or F1), it was
counted as a win for the DP-CCL model. Conversely, if the
model performed worse, it was considered a loss for the

VOLUME 12, 2024 22587

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

TABLE 3. Detail of PROMISE dataset.

proposed model. If both approaches had the same result,
it was considered a tie. Moreover, the delta effect size was
also applied to measure the effectiveness of each method.

4) PARAMETER SELECTION
During the training phase, a dropout rate of 0.2 was applied
to prevent overfitting. A Dense layer with 300 hidden units,
a training batch size of 16, the Adam optimizer, and 25 epochs
were used to fine-tune the model.

5) BASELINE METHODS
Following defect prediction approaches were adopted as
Baseline methods:

1) HC-RF: Random forests Model with Traditional
handcrafted features.

2) DBN-LR: The model generates semantic features
using Deep-Belief Network followed by Logistic
Regression [13].

3) CNN: The model generates semantic features using a
Convolutional Neural Network followed by a Logistic
Regression Classifier.

4) CNN-HC: A modified version of the CNN model.
It combines semantic features with traditional
handcrafted features [29] to classify the code.

5) LSTM: LSTM-based deep features with LR
Classifier [30].

6) LSTM-HC: LSTM with traditional metrics to classify
the bugs.

7) CodeBERT-LR: CodeBERT generated features with
LR Classifier.

8) CodeBERT-CNN: CodeBERT incorporated with the
CNN model to predict the defects.

9) CodeBERT-LSTM: CodeBERT incorporated with the
LSTM model to predict the defects.

B. EXPERIMENTAL RESULTS
This section answers the following four research questions.

RQ1: How proficient is the proposed method in
performance as compared to the existing algorithms?

RQ2: How does the performance of features extracted
by DP-CCL using contrastive learning compare to existing
approaches?

RQ3. How do different variants of the Bert model behave
in the context of evaluation measures?

RQ4. What is the impact of the number of hidden units in
the Dense layer on the performance of the proposed model?

RQ1 involves assessing the performance of the proposed
model against existing algorithms using F1 and MCC
evaluation metrics. RQ2 aims to examine the impact of
contrastive learning on factors like the F-score and provides
visual representations of features extracted by both the
proposed and existing approaches. RQ3 is dedicated to
evaluating the performance of various Bert variants. RQ4
delves into the influence of Hidden units of the Dense Layer
on the defect prediction model’s performance.

1) RQ.1: HOW PROFICIENT IS THE PROPOSED METHOD IN
PERFORMANCE AS COMPARED TO THE EXISTING
ALGORITHMS?
a: MOTIVATION
Contrastive learning with the pretrained language model has
been proven effective and achieved satisfying results [34],
[35], [36], [37], [41]. That motivates us to incorporate
contrastive learning to predict defective files. In this question,
the study has examined whether the DP-CCL can achieve
superior performance compared to the existing approaches
or not.

b: APPROACH
To address this question, Fifteen experiments were conducted
to evaluate the model. For each experiment, the model was
trained on an old version of a project and validated/tested on
the latest version of the project. F1 and MCC scores were
used to compare the performance of DP-CCL with baseline
approaches.

c: RESULTS
Table 4 displays the F-Score of DP-CCL and the baseline
studies. The proposed approach achieved an average F-score
of 0.66, compared to 0.0.51 for CNN, 0.53 for CNN-HC,
0.51 for DBN, 0.51 for LSTM, 0.53 for LSTM-HC models,
0.56 for CodeBERT-LR, 0.58 for CodeBERT-LSTM, and
0.61 for CodeBERT-CNN. It is worth noticing that methods
that generated features using the pretrained CodeBERT
model outperformed the other baseline methods, which

22588 VOLUME 12, 2024

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

TABLE 4. F1-score of existing and proposed approaches.

FIGURE 4. Ranking of existing and proposed methods using F1-Score with Scott-Knott.

shows that features generated by CodeBERT are more effec-
tive. The DP-CCL model incorporated contrastive learning
with CodeBERT and achieved a higher F-Score compared to
all baseline methods.

Table 5 shows the average MCC-Scores of DP-CCL
and existing models. The average scores of the pro-
posed technique, HC-RF, DBN-LR, CNN, CNN-HC,
LSTM, LSTM-HC, CodeBERT-LR, CodeBERT-LSTM, and
CodeBERT-CNN models are 0.37, 0.32, 0.21, 0.24, 0.26,
0.29, 0.31,0.22,0.21 and 0.28 respectively. The mean value of
the DP-CCLmodel is 4.7% to 16.3% higher than the baseline
methods.

The Scott-Knott ESD test further validates that the
DP-CCL approach consistently occupies the highest rank in
F1 andMCCScore. Figure 4 and Figure 5 illustrate the results
obtained from the Scott-Knott ESD analysis based on the F1
and MCC scores, respectively. The middle horizontal lines of
the graphs represent the median value of the F-measure and
MCC Score.

Win\Tie\Loss test also supports the suggested approach
over the baseline approaches. The result of the delta effect
size shows that the performance difference between the
proposed and baseline is statistically significant, with a
noticeable effect size.

In conclusion, DP-CCL significantly improves accuracy,
which means it can detect more defective software instances

than baseline methods. This may be because our study used
CodeBERT, which extracts the embedding of the specific
token according to its position in the statement. Previous
studies exploited the word2vec. Word2vec generates only
one embedding vector regardless of its position. Second,
our study applied contrastive learning. Contrastive learning
generates embedding vectors of positive classes that are the
same as other positives and apart from negative classes.
Previous studies did not apply Contrastive learning at the file
level.

The proposed method exhibits a higher level of accuracy,
improving the state-of-the-art by 4.7% to 16% in terms of
MCC and 10.9% to 14.9% in terms of F1-Score.

2) RQ2. HOW DOES THE PERFORMANCE OF FEATURES
EXTRACTED BY DP-CCL USING CONTRASTIVE LEARNING
COMPARE TO EXISTING APPROACHES?
To assess the impact of features derived from DP-CCL,
a comparative analysis of the proposed model was conducted
under two scenarios. Initially, we compared the DP-CCL,
which incorporates contrastive learning, with a model that
lacks contrastive learning. The results of this comparison
are presented in Figure 6 and Table 6. The comparison
demonstrates that the DP-CCL showed 3% higher results as
compared to the model without contrastive learning.

VOLUME 12, 2024 22589

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

FIGURE 5. Ranking of existing and proposed methods using MCC-score with Scott-Knott.

TABLE 5. MCC-score of existing and proposed approaches.

TABLE 6. F1-Score of DP-CCL model and CodeBERT-CE model.

In the second scenario, the study validates the enhanced
discriminative capabilities of the proposed model. The study
compares the proposed and baseline techniques by visualiz-
ing and analyzing the features extracted from the different
datasets using t-distributed stochastic neighbor embedding
(t-SNE) [43]. Figure 7 illustrates the t-SNE distribution
of each model. In this visualization, red denotes instances
with defects, while blue represents instances without defects.

FIGURE 6. Impact of contrastive learning on model using F1-score.

Upon close inspection of Figure 7, it becomes evident
that there is an increased overlap of red and blue regions
within the feature distributions of DBN, CNN, CNN-HC,
LSTM, LSTM-HC, CodeBERT-LR, CodeBERT-LSTM, and
CodeBERT-CNN algorithms. DP-CCL exhibits a clearer
separation compared to Figure 7. This indicates that different
types of instances, both with and without defects, maintain
consistent intra-class distinctions in DP-CCL.

Consequently, these results strongly suggest that the
implementation of contrastive learning through DP-CCL
significantly enhances the discriminative power of the model
for both defective and non-defective data.

22590 VOLUME 12, 2024

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

FIGURE 7. Tsne visualization of DP-CCL and exisiting apporaches.

3) RQ3. HOW DO DIFFERENT VARIANTS OF THE BERT
MODEL BEHAVE IN THE CONTEXT OF EVALUATION
MEASURES?
The study performed a comparative evaluation of various
BERT model variants to gauge their respective performance.
Table 7 illustrates the F-Score comparison among the
BERT-case model, Roberta model, and CodeBERT model.

The outcome demonstrated that across all scenar-
ios, CodeBERT surpassed both BERT-Case and Roberta
encoders, achieving the highest classification performance.
CodeBERT exhibited an average improvement of 4%, and in
comparison to Roberta, it showed a 2% improvement.

4) Q4. WHAT IS THE IMPACT OF THE NUMBER OF HIDDEN
UNITS IN THE DENSE LAYER ON THE PERFORMANCE OF THE
PROPOSED MODEL?
Within this segment, the primary focus is to assess the impact
of the number of hidden units of the Dense Layer on the
performance of the DP-CCL model. To address this question,

TABLE 7. F1-Score of different variants of BERT.

specific options for the hidden units within the dense layer
and the lambda value of L2 regularization have been chosen.
The selected hidden values are 500, 300, and 100. For the
lambda value of L2 regularization, the values considered

VOLUME 12, 2024 22591

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

FIGURE 8. Selection of hidden nodes with L2-value in dense layer.

are 0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001. The
performance of the model on these parameters was evaluated
using Ant, Log4j, Jedit, and Poi projects. Figure 8 depicts
four distinct trend lines, each corresponding to one of these
projects.

V. VALIDITY THREATS
The following threats may affect the validity of the DP-CCL
model.

A. INTERNAL VALIDITY THREATS
1) TheAbstract Syntax Treewas employed to generate the

token sequences in the proposed model. Other parsing
tools, such as Control FlowGraphs (CFG), can produce
different sequences, potentially affecting the overall
results.

2) Furthermore, the selection of parameters to fine-tune
the model may not be the optimal one. There could be
alternative parameter combinations that result in better
model performance.

3) The CodeBERT model has a maximum token length
limit of 512, while the code may have up to 2000 token
features. This limit might result in the loss of crucial
information and degrade the performance of the model.
In the future,We plan to explore a solution to hold more
relevant features to save more important information.

B. EXTERNAL VALIDITY THREATS
1) In the experiments, the study used ten different projects

written in the Java language. Projects written in other
programming languages or different Java projects may
yield distinct results. We plan to include various
language versions for the experiment in the Future.

2) The study implemented the baseline technique from
scratch because the code of the original paper is
not publicly available. This may loss some important
information. However, we try our best to adjust the
parameters of the baseline model according to the
original paper.

VI. CONCLUSION AND FUTURE WORK
In this study, we designed a model DP-CCL that employs a
pretrained language model to extract the semantic features
of the source code. Results show that features generated
by CodeBERT are more effective. We integrated supervised

contrastive learning with pretrained CodeBERT and found
that it generated similarity among code instances with the
same labels and dissimilarity among those with different
labels. CodeBERT-generated Features were combined with
handcrafted software metrics to obtain the benefits of both
semantic and HC features. The combined features are input
to the logistic regression model for code classification as
either buggy or clean. The approach was evaluated on
Promise datasets. Results show that the DP-CCL model
achieved significant improvement, specifically a 4.9 to
14.9% increase in accuracy compared to existing approaches
in terms of F-Score. In our opinion, our model would
be helpful for the industry in identifying defective code
more accurately. Moreover, researchers can use contrastive
learning to improve their methodology.

In the future, we will experiment with Cross-Project
Defect Prediction (CPDP). Additionally, we will assess the
performance of DP-CCL on projects written in different
languages. Furthermore, other pretrained models, such as
Unixcoder, will also be employed to evaluate the efficacy of
the DP-CCL model. The supplementary material of research
work is available at https://github.com/saharsadia/DP-CCL

ACKNOWLEDGMENT
The authors would like to thank the esteemed reviewer and
insightful feedback, which significantly contributed to the
refinement of their manuscript and also would like to thank
the Chief Editor and his team for their valuable guidance
throughout the review process. Their expertise and support
have been instrumental in enhancing the overall quality of
their article.

REFERENCES
[1] M. S. Hasan, F. Alvares, T. Ledoux, and J.-L. Pazat, ‘‘Investigating energy

consumption and performance trade-off for interactive cloud application,’’
IEEE Trans. Sustain. Comput., vol. 2, no. 2, pp. 113–126, Apr. 2017.

[2] S. Qiu, H. Huang, W. Jiang, F. Zhang, andW. Zhou, ‘‘Defect prediction via
tree-based encoding with hybrid granularity for software sustainability,’’
IEEE Trans. Sustain. Comput., 2023, doi: 10.1109/TSUSC.2023.3248965.

[3] D. Fang, S. Liu, and A. Liu, ‘‘Gated homogeneous fusion networks with
jointed feature extraction for defect prediction,’’ IEEE Trans. Rel., vol. 71,
no. 2, pp. 512–526, Jun. 2022, doi: 10.1109/TR.2022.3165115.

[4] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, ‘‘Within-
project defect prediction of infrastructure-as-code using product and
process metrics,’’ IEEE Trans. Softw. Eng., vol. 48, no. 6, pp. 2086–2104,
Jun. 2022, doi: 10.1109/TSE.2021.3051492.

[5] S. Qiu, L. Lu, S. Jiang, and Y. Guo, ‘‘An investigation of imbalanced
ensemble learning methods for cross-project defect prediction,’’ Int. J. Pat-
tern Recognit. Artif. Intell., vol. 33, no. 12, Nov. 2019, Art. no. 1959037.

[6] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, ‘‘A survey on
automated log analysis for reliability engineering,’’ ACM Comput. Surv.,
vol. 54, no. 6, pp. 1–37, Jul. 2021.

[7] G. Lin, S.Wen, Q.-L. Han, J. Zhang, and Y. Xiang, ‘‘Software vulnerability
detection using deep neural networks: A survey,’’ Proc. IEEE, vol. 108,
no. 10, pp. 1825–1848, Oct. 2020, doi: 10.1109/JPROC.2020.2993293.

[8] T. Lee, J. Nam, D. Han, S. Kim, and H. Peter In, ‘‘Developer
micro interaction metrics for software defect prediction,’’ IEEE
Trans. Softw. Eng., vol. 42, no. 11, pp. 1015–1035, Nov. 2016, doi:
10.1109/TSE.2016.2550458.

[9] L. Šikic, P. Afric, A. S. Kurdija, and M. ŠIlic, ‘‘Improving software
defect prediction by aggregated change metrics,’’ IEEE Access, vol. 9,
pp. 19391–19411, 2021, doi: 10.1109/ACCESS.2021.3054948.

22592 VOLUME 12, 2024

http://dx.doi.org/10.1109/TSUSC.2023.3248965
http://dx.doi.org/10.1109/TR.2022.3165115
http://dx.doi.org/10.1109/TSE.2021.3051492
http://dx.doi.org/10.1109/JPROC.2020.2993293
http://dx.doi.org/10.1109/TSE.2016.2550458
http://dx.doi.org/10.1109/ACCESS.2021.3054948

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

[10] M. Wen, R. Wu, and S.-C. Cheung, ‘‘How well do change sequences
predict defects? Sequence learning from software changes,’’ IEEE
Trans. Softw. Eng., vol. 46, no. 11, pp. 1155–1175, Nov. 2020, doi:
10.1109/TSE.2018.2876256.

[11] A. E. Hassan, ‘‘Predicting faults using the complexity of code changes,’’ in
Proc. IEEE 31st Int. Conf. Softw. Eng., Vancouver, BC, Canada, May 2009,
pp. 78–88, doi: 10.1109/ICSE.2009.5070510.

[12] H. Wang, W. Zhuang, and X. Zhang, ‘‘Software defect prediction based on
gated hierarchical LSTMs,’’ IEEE Trans. Rel., vol. 70, no. 2, pp. 711–727,
Jun. 2021, doi: 10.1109/TR.2020.3047396.

[13] S. Wang, T. Liu, J. Nam, and L. Tan, ‘‘Deep semantic feature learning
for software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 46, no. 12,
pp. 1267–1293, Dec. 2020, doi: 10.1109/TSE.2018.2877612.

[14] H. Liang, Y. Yu, L. Jiang, and Z. Xie, ‘‘Seml: A semantic LSTMmodel for
software defect prediction,’’ IEEE Access, vol. 7, pp. 83812–83824, 2019,
doi: 10.1109/ACCESS.2019.2925313.

[15] M. Caulo and G. Scanniello, ‘‘A taxonomy of metrics for soft-
ware fault prediction,’’ in Proc. 46th Euromicro Conf. Softw. Eng.
Adv. Appl. (SEAA), Portoroz, Slovenia, Aug. 2020, pp. 429–436, doi:
10.1109/SEAA51224.2020.00075.

[16] M. H. Halstead, Elements Of Software Science. Amsterdam,
The Netherlands: Elsevier, 1977.

[17] T. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. SE-2,
no. 4, pp. 308–320, Dec. 1976, doi: 10.1109/TSE.1976.233837.

[18] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002.

[19] V. R. Basili, L. C. Briand, andW. L. Melo, ‘‘A validation of object-oriented
design metrics as quality indicators,’’ IEEE Trans. Softw. Eng., vol. 22,
no. 10, pp. 751–761, Oct. 1996, doi: 10.1109/32.544352.

[20] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object-oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Mar. 1994,
doi: 10.1109/32.295895.

[21] J. C.Munson and S. G. Elbaum, ‘‘Code churn: Ameasure for estimating the
impact of code change,’’ in Proc. Int. Conf. Softw. Maintenance, Bethesda,
MD, USA, 1998, pp. 24–31, doi: 10.1109/icsm.1998.738486.

[22] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, ‘‘Micro interaction metrics
for defect prediction,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf.
Found. Softw. Eng., Sep. 2011, Art. no. 311321.

[23] F. Yang, H. Xu, P. Xiao, F. Zhong, and G. Zeng, ‘‘A method-level
defect prediction approach based on structural features of method-
calling network,’’ IEEE Access, vol. 11, pp. 7933–7946, 2023, doi:
10.1109/ACCESS.2023.3239266.

[24] T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, and N. Ubayashi,
‘‘DeepJIT: An end-to-end deep learning framework for just-in-time
defect prediction,’’ in Proc. IEEE/ACM 16th Int. Conf. Mining Softw.
Repositories (MSR), Montreal, QC, Canada, May 2019, pp. 34–45, doi:
10.1109/MSR.2019.00016.

[25] X. Huo, Y. Yang, M. Li, and D.-C. Zhan, ‘‘Learning semantic features for
software defect prediction by code comments embedding,’’ in Proc. IEEE
Int. Conf. Data Mining (ICDM), Singapore, Nov. 2018, pp. 1049–1054,
doi: 10.1109/ICDM.2018.00133.

[26] J. Lin and L. Lu, ‘‘Semantic feature learning via dual sequences for
defect prediction,’’ IEEE Access, vol. 9, pp. 13112–13124, 2021, doi:
10.1109/ACCESS.2021.3051957.

[27] J. Xu, F. Wang, and J. Ai, ‘‘Defect prediction with semantics and
context features of codes based on graph representation learning,’’
IEEE Trans. Rel., vol. 70, no. 2, pp. 613–625, Jun. 2021, doi:
10.1109/TR.2020.3040191.

[28] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, ‘‘Deep semantic feature
learning with embedded static metrics for software defect prediction,’’ in
Proc. 26th Asia–Pacific Softw. Eng. Conf. (APSEC), Putrajaya, Malaysia,
Dec. 2019, pp. 244–251, doi: 10.1109/APSEC48747.2019.00041.

[29] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Quality,
Rel. Secur. (QRS), Jul. 2017, pp. 318–328.

[30] J. Deng, L. Lu, and S. Qiu, ‘‘Software defect prediction via LSTM,’’ IET
Softw., vol. 14, no. 4, pp. 443–450, Aug. 2020.

[31] Q. P. Hu, M. Xie, S. H. Ng, and G. Levitin, ‘‘Robust recurrent neural
network modeling for software fault detection and correction prediction,’’
Rel. Eng. Syst. Saf., vol. 92, no. 3, pp. 332–340, Mar. 2007.

[32] G. Hinton, ‘‘Deep belief networks,’’ Scholarpedia, vol. 4, no. 5,
p. 5947, 2009.

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, ‘‘CodeBERT: A pre-trained model for
programming and natural languages,’’ in Proc. Findings Assoc. Comput.
Linguistics, 2020, pp. 1536–1547.

[34] T. Gao, X. Yao, and D. Chen, ‘‘SimCSE: Simple contrastive learning of
sentence embeddings,’’ 2021, arXiv:2104.08821.

[35] V. Suresh and D. C. Ong, ‘‘Not all negatives are equal: Label-aware con-
trastive loss for fine-grained text classification,’’ 2021, arXiv:2109.05427.

[36] S. Mai, Y. Zeng, and H. Hu, ‘‘Learning from the global view: Supervised
contrastive learning of multimodal representation,’’ Inf. Fusion, vol. 100,
Dec. 2023, Art. no. 101920.

[37] S. Mai, Y. Zeng, S. Zheng, and H. Hu, ‘‘Hybrid contrastive learning
of tri-modal representation for multimodal sentiment analysis,’’ IEEE
Trans. Affect. Comput., vol. 14, no. 3, pp. 2276–2289, Jul. 2022, doi:
10.1109/TAFFC.2022.3172360.

[38] C. Tao, Q. Zhan, X. Hu, and X. Xia, ‘‘C4: Contrastive cross-language
code clone detection,’’ in Proc. IEEE/ACM 30th Int. Conf. Program
Comprehension (ICPC), Pittsburgh, PA, USA, May 2022, pp. 413–424,
doi: 10.1145/3524610.3527911.

[39] X. Wang, Q. Wu, H. Zhang, C. Lyu, X. Jiang, Z. Zheng, L. Lyu, and S. Hu,
‘‘HELoC:Hierarchical contrastive learning of source code representation,’’
inProc. IEEE/ACM30th Int. Conf. ProgramComprehension (ICPC), Pitts-
burgh, PA, USA,May 2022, pp. 354–365, doi: 10.1145/3524610.3527896.

[40] M. A. Fokam and R. Ajoodha, ‘‘Influence of contrastive learning on source
code plagiarism detection through recursive neural networks,’’ in Proc.
3rd Int. Multidisciplinary Inf. Technol. Eng. Conf. (IMITEC), Windhoek,
Namibia, Nov. 2021, pp. 1–6, doi: 10.1109/IMITEC52926.2021.9714688.

[41] Z. Liu, C. Wen, Z. Su, S. Liu, J. Sun, W. Kong, and Z. Yang,
‘‘Emotion-semantic-aware dual contrastive learning for epistemic emotion
identification of learner-generated reviews in MOOCs,’’ IEEE Trans.
Neural Netw. Learn. Syst., 2023.

[42] Q. Meng, Y. Song, J. Mu, Y. Lv, J. Yang, L. Xu, J. Zhao, J. Ma, W. Yao,
R. Wang, M. Xiao, and Q. Meng, ‘‘Electric power audit text classification
with multi-grained pre-trained language model,’’ IEEE Access, vol. 11,
pp. 13510–13518, 2023, doi: 10.1109/ACCESS.2023.3240162.

[43] R. Sharma, F. Chen, F. Fard, and D. Lo, ‘‘An exploratory study on
code attention in BERT,’’ in Proc. IEEE/ACM 30th Int. Conf. Program
Comprehension (ICPC), Pittsburgh, PA, USA, May 2022, pp. 437–448,
doi: 10.1145/3524610.3527921.

[44] S. Yu, J. Su, and D. Luo, ‘‘Improving BERT-based text classification
with auxiliary sentence and domain knowledge,’’ IEEE Access, vol. 7,
pp. 176600–176612, 2019, doi: 10.1109/ACCESS.2019.2953990.

[45] S. Arshad, S. Abid, and S. Shamail, ‘‘CodeBERT for code clone
detection: A replication study,’’ in Proc. IEEE 16th Int. Workshop
Softw. Clones (IWSC), Limassol, Cyprus, Oct. 2022, pp. 39–45, doi:
10.1109/IWSC55060.2022.00015.

[46] A. A. Ishtiaq, M. Hasan, M. M. A. Haque, K. S. Mehrab, T. Muttaqueen,
T. Hasan, A. Iqbal, and R. Shahriyar, ‘‘BERT2Code: Can pretrained
language models be leveraged for code search?’’ 2021, arXiv:2104.08017.

[47] P. Salza, C. Schwizer, J. Gu, and H. C. Gall, ‘‘On the effectiveness of
transfer learning for code search,’’ IEEE Trans. Softw. Eng., vol. 49, no. 4,
pp. 1804–1822, Apr. 2023, doi: 10.1109/TSE.2022.3192755.

[48] R. Wang, H. Zhang, G. Lu, L. Lyu, and C. Lyu, ‘‘FRET: Functional
reinforced transformer with BERT for code summarization,’’ IEEE Access,
vol. 8, pp. 135591–135604, 2020, doi: 10.1109/ACCESS.2020.3011744.

[49] X. Sun, Z. Ye, L. Bo, X. Wu, Y. Wei, T. Zhang, and B. Li, ‘‘Automatic
software vulnerability assessment by extracting vulnerability elements,’’
J. Syst. Softw., vol. 204, Oct. 2023, Art. no. 111790.

[50] C. Thapa, S. I. Jang, M. E. Ahmed, S. Camtepe, J. Pieprzyk, and
S. Nepal, ‘‘Transformer-based language models for software vulnerability
detection,’’ in Proc. 38th Annu. Comput. Secur. Appl. Conf., Nepal,
Dec. 2022, pp. 481–496.

[51] J. Liu, J. Ai, M. Lu, J. Wang, and H. Shi, ‘‘Semantic feature learning
for software defect prediction from source code and external knowledge,’’
J. Syst. Softw., vol. 204, Oct. 2023, Art. no. 111753.

[52] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada, ‘‘Software
defect prediction employing BiLSTM and BERT-based semantic feature,’’
Soft Comput., vol. 26, no. 16, pp. 7877–7891, Aug. 2022.

[53] C. Pan, M. Lu, and B. Xu, ‘‘An empirical study on software defect
prediction using CodeBERT model,’’ Appl. Sci., vol. 11, no. 11, p. 4793,
May 2021.

VOLUME 12, 2024 22593

http://dx.doi.org/10.1109/TSE.2018.2876256
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/TR.2020.3047396
http://dx.doi.org/10.1109/TSE.2018.2877612
http://dx.doi.org/10.1109/ACCESS.2019.2925313
http://dx.doi.org/10.1109/SEAA51224.2020.00075
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/icsm.1998.738486
http://dx.doi.org/10.1109/ACCESS.2023.3239266
http://dx.doi.org/10.1109/MSR.2019.00016
http://dx.doi.org/10.1109/ICDM.2018.00133
http://dx.doi.org/10.1109/ACCESS.2021.3051957
http://dx.doi.org/10.1109/TR.2020.3040191
http://dx.doi.org/10.1109/APSEC48747.2019.00041
http://dx.doi.org/10.1109/TAFFC.2022.3172360
http://dx.doi.org/10.1145/3524610.3527911
http://dx.doi.org/10.1145/3524610.3527896
http://dx.doi.org/10.1109/IMITEC52926.2021.9714688
http://dx.doi.org/10.1109/ACCESS.2023.3240162
http://dx.doi.org/10.1145/3524610.3527921
http://dx.doi.org/10.1109/ACCESS.2019.2953990
http://dx.doi.org/10.1109/IWSC55060.2022.00015
http://dx.doi.org/10.1109/TSE.2022.3192755
http://dx.doi.org/10.1109/ACCESS.2020.3011744

S. Sahar et al.: DP-CCL: A Supervised CL Approach Using CodeBERT Model in SDP

[54] Q. Chen, R. Zhang, Y. Zheng, and Y. Mao, ‘‘Dual contrastive
learning: Text classification via label-aware data augmentation,’’ 2022,
arXiv:2201.08702.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple framework
for contrastive learning of visual representations,’’ in Proc. Int. Conf.
Mach. Learn., 2020, pp. 1597–1607.

[56] T. Pan, Y. Song, T. Yang, W. Jiang, and W. Liu, ‘‘VideoMoCo: Contrastive
video representation learning with temporally adversarial examples,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 11205–11214.

[57] X. Cheng, G. Zhang, H.Wang, and Y. Sui, ‘‘Path-sensitive code embedding
via contrastive learning for software vulnerability detection,’’ in Proc. 31st
ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2022, pp. 519–531.

[58] H. Fang, S. Wang, M. Zhou, J. Ding, and P. Xie, ‘‘CERT: Con-
trastive self-supervised learning for language understanding,’’ 2020,
arXiv:2005.12766.

[59] Y. Meng, C. Xiong, P. Bajaj, P. Bennett, J. Han, and X. Song, ‘‘COCO-LM:
Correcting and contrasting text sequences for language model pertaining,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 23102–23114.

[60] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, ‘‘Auto-
matic feature learning for predicting vulnerable software components,’’
IEEE Trans. Softw. Eng., vol. 47, no. 1, pp. 67–85, Jan. 2021.

[61] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, ‘‘Software defect prediction
via attention-based recurrent neural network,’’ Sci. Program., vol. 2019,
pp. 1–14, Apr. 2019.

[62] R. B. Bahaweres, D. Jumral, I. Hermadi, A. I. Suroso, and Y. Arkeman,
‘‘Hybrid software defect prediction based on lstm (long short term
memory) and word embedding,’’ in Proc. 2nd Int. Conf. Smart Cities,
Autom. Intell. Comput. Syst. (ICON-SONICS), Tangerang, Indonesia,
Oct. 2021, pp. 70–75, doi: 10.1109/ICON-SONICS53103.2021.9617182.

[63] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim,
and C.-J. Kim, ‘‘Lessons learned from using a deep tree-based model for
software defect prediction in practice,’’ in Proc. IEEE/ACM 16th Int. Conf.
Mining Softw. Repositories (MSR), Montreal, QC, Canada, May 2019,
pp. 46–57, doi: 10.1109/MSR.2019.00017.

[64] X. Zhou and L. Lu, ‘‘Defect prediction via LSTM based on
sequence and tree structure,’’ in Proc. IEEE 20th Int. Conf. Softw.
Qual., Rel. Secur. (QRS), Macau, Dec. 2020, pp. 366–373, doi:
10.1109/QRS51102.2020.00055.

[65] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[66] K. Shi, Y. Lu, J. Chang, and Z. Wei, ‘‘PathPair2Vec: An AST path
pair-based code representation method for defect prediction,’’ J. Comput.
Lang., vol. 59, Aug. 2020, Art. no. 100979.

[67] M. Allamanis, H. Peng, and C. Sutton, ‘‘A convolutional attention network
for extreme summarization of source code,’’ in Proc. Int. Conf. Mach.
Learn., vol. 2091, 2016, p. 2100.

[68] U. Alon, S. Brody, O. Levy, and E. Yahav, ‘‘Code2seq: Generating
sequences from structured representations of code,’’ in Proc. Int.
Conf. Learn. Represent., 2019. [Online]. Available: https://openreview.
net/forum?id=H1gKYo09tX

[69] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation,’’
in Proc. 26th Conf. ProgramComprehension, May 2018, pp. 200–210, doi:
10.1145/3196321.3196334.

[70] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, ‘‘A novel
neural source code representation based on abstract syntax tree,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 783–794.

[71] X. Yuan, G. Lin, Y. Tai, and J. Zhang, ‘‘Deep neural embedding for soft-
ware vulnerability discovery: Comparison and optimization,’’ Secur. Com-
mun. Netw., vol. 2022, pp. 1–12, Jan. 2022, doi: 10.1155/2022/5203217.

[72] Y. Wang, Y. Dong, X. Lu, and A. Zhou, ‘‘GypSum: Learning hybrid
representations for code summarization,’’ in Proc. IEEE/ACM 30th Int.
Conf. Program Comprehension (ICPC), Pittsburgh, PA, USA, May 2022,
pp. 12–23, doi: 10.1145/3524610.3527903.

[73] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, ‘‘Supervised contrastive learning,’’ in Advances
in Neural Information Processing Systems, vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY,
USA: Curran Associates, Inc., 2020, pp. 18661–18673.

[74] C. Pornprasit and C. K. Tantithamthavorn, ‘‘DeepLineDP: Towards
a deep learning approach for line-level defect prediction,’’ IEEE
Trans. Softw. Eng., vol. 49, no. 1, pp. 84–98, Jan. 2023, doi:
10.1109/TSE.2022.3144348.

[75] R. M. O’Brien, ‘‘A caution regarding rules of thumb for variance inflation
factors,’’ Qual. Quantity, vol. 41, no. 5, pp. 673–690, Sep. 2007.

[76] J. Akosa, ‘‘Predictive accuracy: A misleading performance measure for
highly imbalanced data,’’ in Proc. SAS Global Forum, vol. 12, 2017,
pp. 1–4.

SADIA SAHAR is currently pursuing the Ph.D.
degree with Government College University
Faisalabad (GCUF), Pakistan. Also, she is a
Lecturer with the Computer Science Depart-
ment, Government College Women’s University
Faisalabad (GCWUF), Pakistan. Her research
interests include software engineering, software
defect prediction, and natural language processing.

MUHAMMAD YOUNAS received the Ph.D.
degree from the Faculty of Engineering, School
of Computing, Universiti Teknologi Malaysia
(UTM). He is currently anAssistant Professor with
the Computer Science Department, Government
College University Faisalabad, Pakistan. His
research interests include software engineering,
agile software development, cloud computing, and
code clone detection.

MUHAMMAD MURAD KHAN received the
Ph.D. degree from the Faculty of Engineering,
School of Computing, UTM. He is currently an
Assistant Professor with the Computer Science
Department, Government College University
Faisalabad, Pakistan. His research interests
include recommender systems, android security,
software security, and data mining.

MUHAMMAD UMER SARWAR received the
Ph.D. degree from the Department of Computer
Science, GCUF, Pakistan. He is currently an
Assistant Professor with the Computer Science
Department, Government College University
Faisalabad, Pakistan. His research interests
include software engineering and code clone
detection.

22594 VOLUME 12, 2024

http://dx.doi.org/10.1109/ICON-SONICS53103.2021.9617182
http://dx.doi.org/10.1109/MSR.2019.00017
http://dx.doi.org/10.1109/QRS51102.2020.00055
http://dx.doi.org/10.1145/3196321.3196334
http://dx.doi.org/10.1155/2022/5203217
http://dx.doi.org/10.1145/3524610.3527903
http://dx.doi.org/10.1109/TSE.2022.3144348

