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ABSTRACT The rise of the Internet of Things (IoT) technology during the past decade has resulted in
multiple applications across a large variety of fields. Some of the data processed using this technology can
be specially sensitive, and the devices involved can be prone to cyberattacks, which has resulted in a rising
interest in the field of information security applied to IoT. This study presents a method for analyzing an
IoT network to detect attacks using side-channel techniques that monitor the power usage of the devices.
It shows that it is possible to employ a monitoring system powered by Machine Learning to detect intrusions
without interfering with the normal behavior of the devices. Tests yield positive results under a range of
scenarios, including using a custom dataset, detecting new attacks previously unseen by the models, and
detecting attacks in real time. The main advantages of the proposed system are simplicity, reproducibility
(both code and data are made available) and portability, since it can be deployed on all kinds of devices and
does not have a high demand of resources. Several deployment strategies are proposed, depending on the
structure of the target IoT network and the power constraints of the devices.

INDEX TERMS Cybersecurity, intrusion detection system (IDS), Internet of Things (IoT), machine learning,
side-channel.

I. INTRODUCTION
The growth experienced by Internet of Things (IoT) technolo-
gies since the termwas introduced in [1] has been remarkable.
The ability to connect millions of different devices has turned
IoT into one of the most important technologies of our time.

However, the existence of so many devices connected to
the Internet poses a risk from a security perspective. It is
imperative to investigate, design and develop cybersecurity
techniques that guarantee the preservation of the CIA
(Confidentiality, Integrity and Availability) model.

Given the characteristics of IoT environments and the
devices involved, many classic cybersecurity measures can-
not be directly reused. It is necessary to study those classic
measures and determine whether they can be applied to IoT
devices and how to do so, as well as exploring new measures
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that leverage the specifics of these IoT networks to protect the
devices.

In order to increase the security of IoT systems, specific
Intrusion Detection Systems (IDS) geared to low-resource
devices were introduced. Among them are AI-powered
IDS, which employ Machine Learning, Deep Learning,
or other AI techniques to detect and mitigate attacks against
IoT devices.

AI-powered IDS in IoT environments are a somewhat
recent research line, since the article that claims to be the first
one to apply Machine Learning to develop an IoT-specific
IDS was published in 2017 [2]. Since then, the development
of IDS in IoT environments using Machine Learning has
received scientific interest.

Side-channeling is a common technique in the IoT world.
It involves reading external signals from a device, such as
power usage, temperature, or CPU time, to find out the task
the device is performing on a given instant. Side-channeling
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is more often employed to perform attacks on the devices, but
it can also be used to protect them.

The objective of this study is developing an IDS for IoT
devices that employs side-channel techniques and Machine
Learning to detect software attacks. It studies the viability
of creating a simple, flexible and scalable system that can
recognize attacks and other undesired device behaviors by
reading and analyzing their power usage.

In order to better guide the research process, the following
research questions are proposed:

• RQ1: Is it possible to develop a system that uses power
usage data to detect attacks against IoT devices?

• RQ2: Can the system distinguish between normal
behavior and attacks, including the exact attack type?

• RQ3: Can the system detect new attacks that were not
included in the data used to train it?

• RQ4: Can the system be deployed on an end device,
distinguishing attacks from the power increase caused
by the model itself?

• RQ5: Can the system detect attacks happening in real
time without an excessive delay?

• RQ6: Can the system learn to detect attacks using data
from different kinds of devices simultaneously?

The main contributions of this work are:
1) The introduction of a system capable of detecting

attacks against IoT devices by reading their power
usage using an external device.

2) Several datasets containing power usage data for mul-
tiple attacks under different scenarios. These datasets
could be used by the scientific community to perform
further research on the topic.

3) The code used for the whole project. Providing the code
ensures the study can be easily reproduced and used for
research purposes.

The rest of this paper is structured as follows: Section II
shows previous work on this research line. Section III
describes the methodology used in this study, which includes
the hardware components used, the behavior of the system,
the developed attacks, how data was processed, which
Machine Learning algorithms were used and how models
were trained and tested. Section IV details how the concepts
introduced in Section III were implemented. Section V shows
and analyzes the results obtained. Section VI contains the
conclusions of the study and future research lines. The
Appendix shows the power usage of the IoT devices under
different circumstances.

II. RELATED WORK
As explained before, IDS in IoT environments were intro-
duced just a few years ago. Since then, all kinds of
systems have been developed, with varying characteristics
and purposes. These systems have been categorized in a
review by Thakkar and Lohiya [3], which introduces a
taxonomy for IDS in IoT environments. This taxonomy
classifies IDS based on four attributes. See Section III for how
our system would be classified under this taxonomy.

Most developed IDS work with network-level data, using
packet captures to detect abnormal network behavior. Deep
Learning techniques are common in this field (such as [4],
which stacks nonsymmetric deep autoencoders to simplify
the features passed to a regular classifier; [5], which samples
network packets over time to create the features that will be
passed to a Deep Learning model; or [6], which employs a
distributed Convolutional Neural Network to detect botnet
attacks).

Machine Learning systems have been developed as well
(such as [7], which uses an existing dataset and multiple
Machine Learning algorithms to detect different kinds of
attacks; or [8], which compares network activity with
previously recorded normal behavior to detect the specific
attack that is taking place).

Even though network-based system are quite popular,
studies that use specific features of the devices (such as power
usage) have also appeared in the last years.

The authors previously published a conference paper that
employed device power usage reads to detect attacks [9]. The
preliminary results were very promising.

Lightbody et al. [10] shows that different kind of software
attacks against IoT devices have specific power usage
signatures that could be used to recognize which attack is
being performed on a device.

This idea has already been applied before. For example,
Azmoodeh et al. [11] propose a ransomware detection system
based on the power usage of multiple devices. The authors
employ simple classification algorithms and time series
analysis, achieving an F1 score value of 92.31%.

Shi et al. [12] propose a more versatile system, capable
of detecting both software-based and physical attacks. They
employ more complex classification algorithms, such as
neural networks. The developed system has two detection
modes: A fast one, which can detect anomalies in just
5 seconds but has lower accuracy; and a slow one, which
needs 3 minutes to perform a detection but has an accuracy
of 99%.

Al-tekreeti et al. [13] propose a system that analyzes
the frequency spectrum of the power signal of an Android
smartphone to detect malicious behavior. They extract
376 features from that analysis and then perform Principal
Component Analysis (PCA) to remove redundant features.
Finally, they apply three different classification algorithms
(Support Vector Machine, Naive Bayes and Decision Trees),
with SVM obtaining the best results (an accuracy between
96 and 99 %).

Ding et al. [14] use Deep Learning and device power data
obtained through side-channel techniques to detect real-world
IoT attacks with accuracy values averaging 90%. It employs
signal preprocessing and feature selection to increase the
quality of the data provided to the model.

Other works employ different metrics as input to the
models, such as [15] and [16], which use electromagnetic
signals recorded using an external device, or [17], which
records heat produced by the devices to detect the task
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performed by the CPU. This information can then be analyzed
to detect malware attacks.

Jaafar et al. [18] combine both power reads and network
metrics to detect botnet attacks against several IoT devices,
achieving an average F1 score of 0.986 with a Random Forest
model.

There are also similar works on the field of Smart
Homes. Relevant articles here include Dilraj et al. [19] and
Nimmy et al. [20], which propose Machine Learning-based
models that can detect anomalous patterns on the power
usage of smart cameras, although they do not classify those
anomalies in separate attack categories. The first paper uses
simpler detection algorithms that achieve an accuracy of
approximately 94%, whereas on the second paper, which
is a continuation of the first, Deep Learning techniques
are employed, such as Deep Feedforward Neural Networks
(DFNN), which achieve an accuracy of 99.2%.

Reference [21] reviews 32 datasets containing power usage
data in Smart Home environments. It concludes that, other
than the dataset proposed by the authors themselves, none
of the analyzed datasets can be used for anomaly detection
because they are unlabeled.

Deep Learning is also employed to process raw data from
IoT devices. For example, [22] treats device data as a time
series and uses a Convolutional Neural Network (CNN) to
predict the next value. This allows comparing the expected
value with the real value, which can be used to flag anomalies.
Similarly, [23] employs a CNN to detect botnet attacks
through power consumption analysis.

These studies generally conclude that this kind of IDS
is very promising, sometimes reaching an accuracy value
over 99%. However, most of them present one or more defi-
ciencies in their methodology. The most common problems
are:

• Only one algorithm is used to analyze the data, which
prevents knowing if that algorithm is the most suitable
for the task.

• Only one attack is used, so it is not possible to know if the
developed system can detect different kinds of threats.

• Multiple attacks are used, but the model does not
distinguish between them; it only reports whether an
attack is happening or not.

• Only one IoT device is used, therefore there is no
guarantee that the deployed system would work on a
different environment.

• The developed system performs well, but it is too
complex to be deployed on a real IoT device due to
excessive resource requirements.

• The datasets or the code used in the study are not public,
so the study cannot be reproduced.

Our proposal presents a detection system based on
well-known models that can be deployed on the end devices
or on intermediate devices, making it more suitable for real
IoT networks. The problems listed above are addressed by
employing multiple Machine Learning algorithms, multiple
attacks and multiple devices. We also provide the dataset and

code used for the project, which makes it easier to reproduce
the results and create future derived works.

Table 1 provides a comparison between previous works
and this proposal. ‘‘No. of unique devices’’ represents how
many unique IoT devices were employed in the study, or how
many IoT devices were used to create the dataset employed.
‘‘No. of algorithms’’ indicates how many Machine Learning
algorithms or systems were used to analyze the data. ‘‘No.
of attack types’’ lists how many types of attack were tested,
or howmany attack categories the employed dataset contains.
‘‘Detection type’’ refers to the type of predictions made by
the developed system. If the system can only detect if an
attack is taking place, without providing the exact type, the
value will be ‘‘Boolean’’. If it outputs the most likely attack,
it will be listed as ‘‘Best match’’. If it can detect multiple
attacks at once, ‘‘Multiple attacks’’ will be displayed. ‘‘Data
available?’’ will be ‘‘Yes’’ if the dataset used or created for the
study is public, or ‘‘On request’’ if it can only be obtained by
requesting it. Otherwise, the value will be ‘‘No’’. If multiple
datasets are used but only some of them are public, the cell
will show the number of public and total datasets used. The
same logic is applied for the ‘‘Code available?’’ column,
which represents whether the source code of the project is
publicly available.

III. METHODOLOGY
One of the main limitations found when starting this research
line was the lack of existing datasets that could be used
as a starting point. There are some datasets that have been
used in the past to train models designed to detect different
types of attacks, such as standard network intrusions (KDD
CUP [24], NSL-KDD [25], CICIDS2017 [26]), wireless
network intrusions (AWID2 [27], AWID3 [28]), or even IoT-
specific attacks (N-BaIoT [29], BotIoT [30]). However, none
of these datasets was deemed adequate for this study, mainly
because it requires power usage data as its input.

The analysis of previous works shows a clear trend towards
the generation of custom datasets, which is to be expected,
since each IoT network tends to have very specific character-
istics. This study follows the same approach. In order to create
the dataset, a custom IoT setup has been designed. This setup
allows emulating an IoT network, monitor its power usage,
launch different types of software attacks and analyze power
usage data in order to identify the attacks experienced by the
devices.

Under the taxonomy introduced by [3], this proposal would
be classified as follows:

Placement strategy: The system allows for a centralized,
distributed or hybrid approach depending on which models
are deployed and where.

Analysis strategy: The system can be considered hybrid,
since it combines signature-based analysis (matching power
reads with reads from known attacks) with anomaly-based
analysis (power reads that deviate from standard behavior
will probably be classified as malicious).
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TABLE 1. Proposal comparison.

Intrusion type: Since multiple attack scripts that target
individual devices were developed, the intrusions can be
classified as software attacks.

Attack detection technique: Machine Learning techniques
are used to simplify the system and lower resource usage on
the devices.

A. HARDWARE COMPONENTS
Side-channel techniques can be applied to almost any device,
provided that a method to read their power consumption is
available. This means that an IDS that employs power reads
to detect attacks does not need to be deployed in a particular
kind of IoT device, as opposed to many IDS proposed in
previous works, which were designed to operate under a
specific environment (for example, a Smart Home).

As a result of this, it was decided to employ generic
IoT devices for this study. Generic devices can be easily
configured to imitate the behavior of many types of devices,
which makes them ideal for research experiments.

Another requirement considered when choosing the
devices is that they must have networking capabilities, since
most attacks against IoT devices come from the internet or
from other compromised devices in the same network.

Two different IoT hardware setups were created for this
study. A primary setup, used for the majority of the study,
and a secondary setup with another set of devices, used to
test how the system behaves when deployed on devices with
different power usage profiles (research question RQ6).

Both setups have the same basic structure, which is
composed of several end devices, one main device, and a
power reading system.

The main device sends commands and attacks to the end
devices and monitors them. The power reader reads power
usage from the end devices and sends that data to the main
device. The end devices perform different actions in order to
simulate normal device operation.

It is not required that main device be an IoT device, since it
simply acts like a control center. A computer or a server can
fulfill the same role.

Details about the devices used can be found in
Section IV-A.

B. DEVICE BEHAVIOR AND ATTACKS
Each of the three end devices used for the primary setup has a
different behavior. The first device acts as a sensor that sends
an HTTP POST request to a server every 10 minutes. The
second device plays a video every 10 minutes, and the third
device is left in an idle state.

The two additional devices used for the secondary setup
are always on an idle state.

The objective of creating different behaviors is determining
if the resulting attack detection model can be deployed on
heterogeneous networkswith several kinds of deviceswithout
compromising accuracy.

Some additional tests were also performed with more
complex behaviors, such as a device that runs one of the attack
detection models every few seconds, in order to detect attacks
against itself.

Several software attacks were developed for this study.
They are launched by themain device against the end devices,
and were created to simulate real-world attacks without
posing a real risk to the affected devices.

In particular, three attacks were used to train the models,
and two additional attacks were used as validation, to check
how the models respond to previously unseen attacks
(research question RQ3).

Details about each of the five attacks can be found in
Section IV-B.

C. CLASSIFICATION ALGORITHMS
When evaluating which classification models to use for the
study, two main requirements were considered:

First, it was necessary to find models capable of accurately
and timely predicting if a device is being attacked given its
recent power usage data.

Second, it was also important to ensure that deployed mod-
els do not have high resource requirements, since IoT devices
cannot afford to continuously perform resource-heavy tasks
like a regular PC would.

Following those ideas, the following algorithms were
selected:

• K-Nearest Neighbors (KNN): Each instance is classi-
fied depending on its similarity with previously seen
instances.
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• Random Forest (RF): Builds multiple decision trees and
combines their predictions.

• Extreme Boosting Trees (XBT) [31]: Sequentially
builds decision trees by applying the Gradient Boosting
algorithm. Each tree tries to improve the results of the
previous one.

• Time Series Forest (TSF) [32]: Processes data as a
time series, building a forest of trees that are created
with a specific algorithm. It uses basic features of the
data (mean, std and slope) instead of the original input
features.

• Feature Summary (FS): Processes data as a time series,
summarizing each instance with a list of relevant
features (mean, std, P5, P25, P75 and P90). These
features (and not the original power ones) are passed to
a Random Forest model for classification.

Support VectorMachine and Logistic Regressionwere also
considered, but they were discarded early due to their poor
performance.

D. DATA PROCESSING AND FEATURE EXTRACTION
By default, the main device will read power usage data from
the end devices every 0.2 seconds. This raw power data has
certain transformations applied to it before being passed to
the models.

The transformation process depends on two hyperparame-
ters: group_amount (ga) and num_groups (ng).
First, data entries are grouped in groups of group_amount

elements. Each group will contain the average power usage
and the mode of the attacks field of all the grouped entries.

Once the groups have been formed, a new dataset is
created. In this new dataset, each row represents a temporal
window composed of the last num_groups groups for each
instant of time.

The purpose of this transformation is twofold: Smoothing
the data to reduce the effect of voltage peaks that could
introduce errors and reducing the size of the final dataset
without losing too much information.

As a result of this transformation, the final dataset will have
num_groups features. For example, if a model is trained with
ga = 5 and ng = 60, it will receive 60 features as input, with
each feature representing an average of the original power
usage data in groups of five elements. Since the measurement
delay is 0.2 seconds, this model will use the last 60×5×0.2 =

60 seconds of data to make a prediction.
Fig. 1 represents the window creation process graphically.
The last transformation applied to the data before passing

it to the models is normalizing it to the (0, 1) range.
It is important to highlight that attacks are only active

during certain periods while the data is being recorded, so the
resulting dataset is unbalanced, containing significantly
more regular behavior instances than attack instances. For
details on how the different datasets used on the study
were created and their contents (including label counts),
see Section IV-E.

FIGURE 1. Dataset transformation process.

E. MODEL TRAINING AND TESTING
In order to combine all five classifiers with the two
hyperparameters that affect how the dataset is built (ga and
ng), all the classifiers were trained and tested with multiple
hyperparameter configurations.

The chosen hyperparameter combinations are shown on
Table 2. The Total time column shows the duration of the
time window when using the given hyperparameter values
with the set measurement delay of 0.2 seconds. Some other
combinations, mainly those with lower total times, yielded
worse results and were discarded early.

TABLE 2. Hyperparameter combinations.

Multiple tests were run under different scenarios. In sce-
narios that involve both training a model and testing it, 80%
of the dataset was used for training, and the remaining 20%
was used to test and score the model.

Fig. 2 represents the whole methodology step-by-step.

F. SCENARIOS
As shown by the research questions proposed in Section I,
one of the main objectives of this study is to test the
system under different kinds of situations. In order to do so,
five scenarios were designed. They follow the methodology
explained before, but each one has its own peculiarities.

1) SCENARIO 1 - STANDARD BEHAVIOR
This is the main scenario. Its main purpose is answering
research questions RQ1 and RQ2. The main device measures
power usage on the end devices while they run their set
behaviors. A dataset containing 6 hours of power usage
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FIGURE 2. Methodology. a) Sometimes only one model is used. b) Training is not always performed.

measurements and attacks on all three end devices was
created, and this dataset was then used to train and test each
model. The results were used to determinewhether the system
can properly distinguish attacks or not and which model and
hyperparameter combination performed the best.

A second test with a bigger dataset (12 hours) was also
performed to find out if increasing the amount of data resulted
in higher model accuracy.

2) SCENARIO 2 - VALIDATION ATTACKS
As mentioned in Section III-B, two of the five implemented
attacks are used for validation.

In this scenario, two short datasets containing a trace of
those validation attacks are passed to each of the models from
Scenario 1 in order to see if they can correctly classify them
as an attack. This helps answer research question RQ3, since
those two attacks were not present in the data used to train the
models.

3) SCENARIO 3 - END DEVICE RUNNING MODEL
In a real-world situation, deploying the models on the end
devices themselves might be worth considering, since this
helps reduce the load on other devices and the IoT network.
However, running the model periodically to check for attacks
also generates additional power usage, which could be
detected as abnormal behavior by a previously trained model.

In order to solve this problem, a new scenario is proposed.
In this scenario, one of the end devices runs a model in a
continuous loop, checking for attacks every 5 seconds. At the
same time, it receives random attacks from the main device,
which reads the end device’s power usage. The process ends
after 6 hours, which results in a 6-hour long dataset that
labels the power usage caused by running themodel as normal
behavior.

Once this new dataset has been created, it is used to train
and test a new version of the deployed model, in order to find
out how the model performs on this situation. This provides
an answer to research question RQ4.

The process is repeated for multiple models, which allows
determining which model type is the most accurate when
deployed on the end device.

4) SCENARIO 4 - REAL-TIME ATTACK DETECTION
Scenario 4 has some key differences compared to the rest.
In this scenario, one of the best performing models from
scenarios 1 and 2 is tested live. The model runs on the
main device for 30 minutes, trying to detect attacks that are
launched against the end devices in real time. No dataset is
created.

In order to answer research question RQ5, both accuracy
and delay metrics are recorded, which allows determining if
the model can detect live attacks and how long it takes to
do so.

5) SCENARIO 5 - MULTI-DEVICE DATASET
The last scenario implemented in this study aims to answer
RQ6 by creating a dataset that includes measurements from
new devices not used during previous scenarios and then
training several models with it. Devices from both the primary
and secondary hardware setups were used.

G. MODEL POWER USAGE
Since the developed IDS is expected to be deployed on IoT
devices, which often have limited power available, we also
wanted to briefly compare the power usage of the different
models that were used. The power requirements of each
model, alongside their accuracy, can be used to determine
which one would be a better choice when deploying the
system.

IV. IMPLEMENTATION
This section is dedicated to explaining how the proposed
methodology has been implemented in more detail.

A. HARDWARE COMPONENTS
As mentioned in Section III-A, two hardware setups were
created.
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1) PRIMARY SETUP
The primary setup is used throughout the entire study. It is
composed of three end devices, one main device, and a power
reader.

The three end devices are Raspberry Pi 3 Model B. They
can be powered through their general purpose in/out pins
(GPIO), which makes it easy to insert a device to read their
power usage.

The power usage measurement system used is known as
INA3221. It is a low-cost power usage sensor. It has three
different channels, so it can measure the power usage of up
to three devices at the same time. The INA measures electric
current, so this metric is used as an indicator of a device’s
power usage.

The main device is a Raspberry Pi 4 Model B. This
device communicates with the INA3221 using the i2c
communication protocol to read power usage data and write
it to a file.

A diagram showing the resulting circuit is shown on Fig. 3.
The bottom of the image shows the three end devices, the
top shows the main device, the center shows the INA3221
device and the left shows the power source that powers the
end devices.

2) SECONDARY SETUP
In order to prove that the system can work with multiple
kinds of devices (as proposed in research question RQ6),
an additional setup using different devices was also created.

The secondary setup is very similar to the primary setup,
however it only has two end devices: An Odroid N2
board [33] and an Asus Tinker Board [34]. They are both
connected to the INA3221 so the main device (which is still
a Raspberry Pi 4) can read their power usage.

These two devices were chosen because their power usage
is different than that of the Raspberries.

FIGURE 3. Circuit connection diagram for the primary setup.

The secondary setup, unlike the primary setup, is only used
during the final part of the study.

B. SOFTWARE ATTACKS
The following attacks were run while creating the datasets
that were later used to train the models:

• Mining attack: A cryptocurrency mining program [35]
is run on the target device, greatly increasing its CPU
usage. The program uses all available cores on the device
(four in our setup).

• Login attack: A program run from the main device tries
to guess the password of the target device employing
brute force to gain unauthorized access. The attack
launches multiple concurrent SSH connections, which
also forces the target device to handle all the requests at
once. The attack has been implemented using the Hydra
software [36].

• Encryption attack: An encryption program is sent to the
target device and executed. The program encrypts some
of the files on the target device, simulating the behavior
of a ransomware virus.

Following the idea proposed in research question RQ3,
two additional attacks were used for validation. They are not
present in the datasets used to train the models.

• Password attack: The remote device is forced to run a
script that tries to crack a password hash through brute
force by computing SHA-256 hashes. The program
sleeps at random intervals to avoid being detected.

• Lite Mining attack: Similar to the Mining attack, but it
only uses two threads instead of four. This reduces its
power usage, making it harder to detect.

See the Appendix for a set of graphs displaying the power
usage of each device behavior and attack.

C. CLASSIFICATION ALGORITHMS
All the chosen classification algorithms listed in Section III-C
were implemented in Python 3.11.2 using the scikit-
learn [37] library.

D. DATA RECORDING AND FORMATTING
The main device reads the power usage of all three end
devices every 0.2 seconds. The reads for each device are
stored in separate CSV files, one for each device. The
files contain three columns: A UNIX timestamp, an integer
representing the active attacks and the electrical current
in mA.

Since the main device keeps track of which attacks are
currently active on each device, this ensures that the resulting
dataset is properly labeled automatically.

E. SCENARIOS
1) SCENARIO 1 - STANDARD BEHAVIOR
Both datasets used in this scenario were created with the same
parameters, only varying in length. They are provided here to
facilitate reproduction of the results.

• Event generation seed: 1693795488
• Attacked devices: sensor (1), video (2) and idle (3)
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• Duration: 360 minutes / 720 minutes, depending on the
dataset

• Time between attacks: 30±10 minutes
• Minimum time between attacks: 60 seconds
• Attacks: Mining (0), Login (1) and Encryption (2)
• Attack duration: 3±1 minutes
• Minimum attack duration: 10 seconds
• Multiple attack chance: 20%
• Short attack chance: 20%
• Short attack average duration: 20 seconds
The ‘‘time between attacks’’ and ‘‘attack duration’’ fields

represent the parameters of the normal distributions used
to generate delays between attacks and the duration of the
attacks.

Table 3 lists the amount of instances of each type on the
6-hour dataset. Table 4 lists the amount of instances on the
12-hour dataset.

TABLE 3. Instance count - Scenario 1, 6h dataset.

TABLE 4. Instance count - Scenario 1, 12h dataset.

2) SCENARIO 2 - VALIDATION ATTACKS
On this scenario, models were run in multi-prediction mode.
In this output mode, models will output the probability of
each of the possible scenarios. That is, the chance of a power
read corresponding to normal behavior and the chance of it
corresponding to each of the attack combinations the model
has been trained with.

In order to determine the accuracy of the models, their
output needs to be converted to a boolean prediction. This
is accomplished through the usage of a threshold value. If the
total attack chance reported by the model is greater or equal
than the threshold, the system considers that an attack is
taking place.

We set this threshold to 0.35 after manually tuning it
through multiple tests, in an attempt to balance false positives
and false negatives.

In a real-world setting, the user would follow a similar
approach, changing this threshold in order to control the
sensitivity and the false positive rate of the model. A higher
threshold reduces the amount of false positives, but risks
missing a real attack; whereas a lower threshold increases
the odds of detecting an attack, but could result in more false
alarms, which would require re-training the model with more
data to avoid them.

The parameters used to create the two datasets used in this
scenario were the following:

• Event generation seed: 1008264224
• Attacked devices: sensor (1), video (2) and idle (3)
• Duration: 60 minutes
• Time between attacks: 10±5 minutes
• Minimum time between attacks: 60 seconds
• Attacks: Password (3) / Lite Mining (4), depending on
the dataset

• Attack duration: 2±1 minutes
• Minimum attack duration: 10 seconds
• Multiple attack chance: 0%
• Short attack chance: 20%
• Short attack average duration: 20 seconds
Each of the two datasets contains 1 hour of data for each

of the three devices. Table 5 lists the amount of instances of
each type on the LiteMining dataset, whereas Table 6 lists the
amount of instances of each type on the Password dataset.

TABLE 5. Instance count - Scenario 2 - Lite Mining dataset.

TABLE 6. Instance count - Scenario 2 - Password dataset.

3) SCENARIO 3 - END DEVICE RUNNING MODEL
The chosen device for this scenario was the idle device.

Three different models were tested, which resulted in three
datasets being generated. They share the same parameters,
which means they all have the same amount and types of
instances. The difference between them is the power usage
values, since it depends on the model being run on the device.

• Event generation seed: 1116918666
• Attacked devices: idle (3)
• Duration: 360 minutes
• Time between attacks: 15±5 minutes
• Minimum time between attacks: 60 seconds
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• Attacks: Mining (0), Login (1) and Encryption (2)
• Attack duration: 3±1 minutes
• Minimum attack duration: 10 seconds
• Multiple attack chance: 20%
• Short attack chance: 20%
• Short attack average duration: 20 seconds
A higher attack rate was used to compensate for the fact

that this dataset only contains data for a single end device,
and therefore is three times smaller than a regular dataset.
This ensures that there are enough instances of each attack
type.

Table 7 lists the amount of instances of each type.

TABLE 7. Instance count - Scenario 3 datasets.

4) SCENARIO 4 - REAL-TIME ATTACK DETECTION
Scenario 4 is aimed at knowing how well the model detects
all types of live attacks and how long it takes to detect them.
Since normal behavior periods are not specially useful for this
scenario, a much higher attack rate is used.

Just like in Scenario 2, the model is run in multi-prediction
mode with a threshold value of 0.35.

Scenario 4 does not have a dataset file, however the attacks
used during the test were also created with a certain set of
parameters. Those parameters are listed here.

• Event generation seed: 2143702874
• Attacked devices: sensor (1), video (2) and idle (3)
• Duration: 30 minutes
• Time between attacks: 1.25±0.5 minutes
• Minimum time between attacks: 40 seconds
• Attacks: Mining (0), Login (1), Encryption (2) and Lite
Mining (4)

• Attack duration: 1±0.25 minutes
• Minimum attack duration: 30 seconds
• Multiple attack chance: 10%
• Short attack chance: 0%

5) SCENARIO 5 - MULTI-DEVICE DATASET
This scenario combines data from devices from both the
primary and secondary hardware setups. In particular, the
dataset contains data from the following devices, with 6 hours
of measurements per device:

• Raspberry Pi sensor
• Raspberry Pi video player
• Raspberry Pi idle device

• Odroid N2 (idle)
• Asus Tinker Board (idle)
The Odroid N2 and Asus Tinker Board devices have

different power usage wile idling than the Raspberry Pi
devices, which makes them suitable to create this mixed
dataset.

Although a single dataset file is passed to the models, said
file was actually created through the composition of two sub-
datasets.

The first one is the same dataset used in Scenario 1. Refer
to Section IV-E1 for details.

The second one was generated separately for the Odroid
N2 and Asus Tinker Board devices, using the following
parameters:

• Event generation seed: Not recorded
• Attacked devices: Odroid N2 (4) and Asus Tinker
Board (5)

• Duration: 360 minutes
• Time between attacks: 10±5 minutes
• Minimum time between attacks: 40 seconds
• Attacks: Mining (0), Login (1), Encryption (2) and
Password (3)

• Attack duration: 5±1 minutes
• Minimum attack duration: 40 seconds
• Multiple attack chance: 20%
• Short attack chance: 25%
• Short attack average duration: 20 seconds
Just like in Scenario 3, this dataset was created with a

higher attack rate to compensate for the fact that it only
contains data for two devices, and therefore contains less
instances.

Table 8 lists the amount of instances of each type on the
final dataset.

TABLE 8. Instance count - Scenario 5 datasets.

6) SCENARIO SUMMARY
Table 9 summarizes the main features of each scenario.

The ‘‘Device behavior’’ column shows which devices were
used and what behavior they were running (Blank: Not used,
S: Sensor, V: Video, I: Idle, R: Running a model).
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TABLE 9. Scenario summary.

The ‘‘Attacks launched’’ column specifies which attacks
were used (M:Mining, L: Login, E: Encryption, P: Password,
LM: Lite Mining). Attacks marked with an asterisk (*) were
only launched against devices 4 and 5.

The ‘‘Model train behaviors’’ column shows which
behaviors and attacks the models were trained with.

The ‘‘Test prediction type’’ column refers to the format of
the output when the model is tested. ‘‘Exact attack’’ means
the model is trained and tested with a single dataset. The
model is then asked to assign the most likely label to each test
instance. ‘‘Boolean’’ means the model is tested with a dataset
that contains labels it was not trained with, so the model must
simply predict if an attack is happening or not.

Counting the number of individual trials (step 3 depicted
on Fig. 2) run on each scenario gives the following totals:

• During Scenario 1, all five algorithms are trained
with the seven hyperparameter combinations shown on
Table 2, resulting in 35 total tests.

• Scenario 2 works similarly, with all algorithms being
trained for both the Lite Mining and Password datasets,
therefore it contains 70 total tests.

• For Scenario 3, four different models are run on the
end device, and for each model, all 35 possible test
combinations are run, resulting in 140 tests.

• A single model is run during Scenario 4.
• Scenario 5 is similar to Scenario 1, with five algorithms
and seven hyperparameter combinations, resulting in
another 35 tests.

In total, 281 tests were run across all five scenarios. These
counts have been summarized on Table 10.

TABLE 10. Individual tests performed.

V. RESULTS AND DISCUSSION
This section contains the results of training and testing
different model variants on each scenario, as well as some
commentary on them.

Only themost relevant rows of the result tables are included
in this section. A document containing the full version of all

the result tables can be found on this article’s supplementary
material, available online at https://ieeexplore.ieee.org.

In order to measure the quality of the models, the following
metrics were used:

• F1 score: The F1 score is the harmonic mean between
recall and precision. It is a value between 0 (worst)
and 1 (best). Since input data usually has more than two
classes, the final F1 score was computed using themicro
method, which accounts for label imbalance (normal
behavior instances are significantly more common in the
dataset).

• TPc (True positives, correct): Instances that represent an
attack, were classified as such and the predicted attack
type is correct.

• TN (True negatives): Instances that represent normal
behavior and were classified as such.

• TPi (True positives, incorrect): Instances that represent
an attack and were classified as such, but the predicted
attack type is incorrect.

• FP (False positives): Instances that represent normal
behavior but were classified as an attack.

• FN (False negatives): Instances that represent an attack
but were classified as normal behavior.

A. TEST RESULTS - SCENARIO 1
The summarized results of testing all the models and
hyperparameter combinations are shown on Table 11.Models
are listed using the name of the algorithm followed by the
value of the ga and ng hyperparameters. This table only
includes the top three variants, as well as the best variant of
each model.

TABLE 11. Scenario 1 results - 6h dataset.

These results prove that models can properly distinguish
between attacks and regular device behavior. The low amount
of incorrect true positives (TPi) shows that they are also
capable of determining the exact type of attack with high
accuracy. These two facts give a positive answer to research
questions RQ1 and RQ2.
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The table also shows that TSF is the best performing
model, closely followed by FS. RF and XBT also achieve
good results, whereas KNN performs the worst.

All the models have a high F1 score, however it should be
noted that this happens due to the label imbalance present in
the dataset (most instances represent normal behavior, which
is usually labeled correctly by all models).

Since the amount of instances seen by each model depends
on the group_amount parameter, metrics other than the
F1 score cannot be directly compared across models with
different group_amount values.
It is worth noting how TSF and FS are the best models

despite the fact that they do not directly use the power reads to
make their predictions, relying only on summarizing features.
This shows that processing the data as a time series is a
more effective approach than treating each power read as an
independent variable.

A second test was performed with a bigger dataset
containing 12 hours of data. The results can be seen on
Table 12.

TABLE 12. Scenario 1 results - 12h dataset.

The results of the 12-hour version of the scenario remain
similar to the results of the 6-hour version. This proves that
bigger datasets are not required to properly train the models
and achieve good results.

Finally, the time required to train and test the models was
also measured. The entire set of models trained with the 6-
hour dataset took 16 minutes to train and test, whereas the set
trained with the 12-hour dataset took 34 minutes. These times
can be considered reasonable.

B. TEST RESULTS - SCENARIO 2
In this scenario, model output is based on whether the total
attack chance reported by the models is lower or higher than
the set threshold of 0.35. This effectively results in a boolean
prediction, so the TPi metric is not used here.
Table 13 lists the most relevant results for each of the tested

models when making predictions on the dataset containing
traces of the Lite Mining attack. Three additional columns
have been added. Thmax and Thmin display the range of the
threshold parameter for which the F1 score of the givenmodel
is maximized. Best F1 shows what that maximum F1 score
would be.

The Extreme Boosting Trees algorithm is not included
since it does not support probability-based predictions.

Results show that the Lite Mining attack can be detected
with an acceptable level of accuracy. The F1 score is slightly

lower than the one obtained by the best model in Scenario 1,
but this is to be expected.

The best performing model in this scenario is still TSF, but
on its 5 60 variant. The amount of false positives is significant.
The reason for this is that the model takes too long to flag the
end of the attack, which is not too concerning. Regular device
behavior does not get incorrectly flagged, and it still would
not even if the threshold value was lowered.

Another interesting point is that the highest Best F1 value
corresponds to RF 10 40. This means that if the threshold
value was raised, RF 10 40 would achieve the best results,
surpassing TSF.

Table 14 lists the main test results for each of the tested
models when making predictions on the dataset containing
traces of the Password attack.

It can be seen that the F1 scores in this case are
significantly lower. The False Negative Rate of the best model
is 465/(1353 + 465) = 25.58%, so a good portion of the
attack instances were not detected. This is to be expected,
since the Password attack is the hardest attack to detect, due
to its low power usage and its random sleep intervals designed
to avoid detection.

The score of the model could be improved by lowering the
threshold, as indicated by the Thmin and the Thmax columns.
The optimal threshold for the best model would be between
0.165 and 0.16, however, lowering the threshold this much
would raise the amount of false positives and worsen the
results of the model when trying to classify Lite Mining
instances.

The best performing model in this case is RF. TSF and
FS struggle to detect the Password attack, requiring very low
thresholds to achieve decent F1 scores.

The results of this scenario provide an answer to research
question RQ3: It is possible to detect new attacks that the
model was not trained with, although the accuracy might be
lower depending on the specific behavior of the attack.

C. TEST RESULTS - SCENARIO 3
Different runs were performed for Scenario 3. On each run,
a different model type was running on the end device while
the dataset was created. The best performing models from
scenarios 1 and 2 were chosen for this scenario (4 in total).
Table 15 lists the test results for each of the deployed models.

To add some context to the data, a table listing the test
results for all variants of the deployed models has been
included in this article’s supplementary material.

These results show that the models still achieve great
results, despite the fact that a model was running on the tested
device, increasing its power consumption. Therefore, it is
proven that the system still works under these conditions,
answering research question RQ4.

The Feature Summarymodel performs best when deployed
in one of the end devices. It can properly distinguish between
attacks and the power spikes caused by running the model
itself.
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TABLE 13. Scenario 2 results - Lite mining attack.

TABLE 14. Scenario 2 results - Password attack.

TABLE 15. Scenario 3 results.

The TSF model also achieves a decent result, specially
on its 5 60 variant, which once again outperforms the 10
50 variant, just like in Scenario 2.

The Random Forest model had another variant that
performed better, so it might be possible to increase its
score by deploying and testing the variant RF 5 60 instead.
However, it is unlikely that this will result in a better score
than the one obtained by FS and TSF, given the large gap in
F1 scores between those models and the best RF variant.

The RFmodel has a low amount of false positives and false
negatives, but a higher amount of incorrect true positives.
Most of those come from the misclassification of instances
where multiple attacks are active at the same time. Since the
model is being run on the device, the difference between a
combination of two attacks, such as Mining + Login, and a
single attack, such as Mining only, is barely noticeable, so it
is not too much of an issue if the model cannot make this
distinction.

D. TEST RESULTS - SCENARIO 4
In Scenario 4, the model was running while attacks were
being run against the end devices.

The model chosen to be deployed was TSF 5 60, since it
was the second best performing model from Scenario 1 and
the best performing model on the Lite Mining attack test in
Scenario 2. All types of attacks were used, except for the
Password attack, since Scenario 2 already proved that this
model is not good at detecting it.

Besides the previously introduced metrics, two new ones
were added for this scenario: Attack detection delay and
Attack over detection delay. These two values measure how
long it took the model to detect the beginning and the end

of an attack, respectively. They are measured in model runs:
If the model detects an attack the first time the model runs
after the attack begins, the value will be 0. If it detects it on
its second run, it will be 1, and so on.

The result metrics for this scenario are shown on Table 16.

TABLE 16. Scenario 4 results.

The detection delay can be converted to seconds to make
it easier to visualize. Since the model is run every 5 seconds,
in average, it will be run 2.5 seconds after an attack starts.
It then takes 5 × 0.55 = 2.75 seconds to detect the attack,
so the model takes an average of 5.25 seconds to detect an
attack after it starts. Similarly, it needs an average of 2.5+5×

1.5526 = 10.263 seconds to detect the end of an attack. These
times can be reduced by running the model more frequently.

These results show how the model takes longer to detect
the end of an attack than the beginning, which results in an
increased amount of false positives. However, this behavior is
not specially concerning, since the main purpose of the model
is detecting the start of an attack as soon as possible.

Deeper analysis of the output generated by the script shows
that the model tends to take longer to detect the Encryption
attack, likely since its power usage is similar to the one
observed when device 2 plays its video. The model also takes
longer to detect the end of a Login attack, since it contains
drops in power usage while the attack is active, which makes
it difficult to know if a power drop represents the end of the
attack or not.

In general, the model can detect live attacks with a reason-
able delay, which positively answers research question RQ5.

E. TEST RESULTS - SCENARIO 5
During Scenario 5, the best models from previous scenarios
were trained with the multi-device dataset, with 20% of
instances being used to test the trained models.
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Table 17 shows the most relevant results for this scenario.

TABLE 17. Scenario 5 results.

The results are very positive. It can be seen how TSF is
once again the best performing model. Comparing them to
the results TSF obtained in Scenario 1, the F1 score is only
slightly lower than the one obtained by the 10 50 variant
(0.9983), and higher than the one obtained by the 5 60 variant
(0.9978). This proves that it is possible to combine data from
different devices and still achieve good prediction results,
which answers research question RQ6.

F. MODEL POWER USAGE
As stated before, the power consumption of the different
models can be an important factor when determining which
one to deploy on a real IoT network.

Power usage was measured by deploying the models on
the idle device. The models run every 5 seconds for a total of
2 minutes. The final power usage was obtained by averaging
the power usage during that time period.

The average power usage for each model was:
• TSF: 435.519 mA
• FS: 330.7 mA
• KNN: 329.323 mA
• RF: 324.757 mA
• XBT: 324.451 mA
See the Appendix for a set of graphs displaying the power

usage of each model.
Results show that the TSF model, while being the most

accurate, is also the one with the highest energy consumption
by far. The rest of the models all have a similar power usage.

This means that in IoT networks where energy consump-
tion is an important factor (such as in a network of battery-
powered devices), using one of the models that has a lower
power usage (such as FS) would likely be the best option,
as long as the small decrease in model accuracy is acceptable.
If power usage is not a concern, using the most precise model
(in this case, TSF) would be a better choice.

G. DEPLOYMENT STRATEGIES
The results of the study can be used to proposed different
ways in which the system can be deployed. In particular, the
following three deployment strategies are proposed.

One of the possible deployment strategies would be a
centralized system, where a main device gathers information
from the end devices and runs the attack detection model
using that information.

Such a deployment would avoid having to run the models
on the end devices directly, which reduces the overall power

usage of the network and reduces the chances of an attacker
tampering with the system.

The best model to deploy on this situation would be the
Time Series Forest model, since it has the best results. Both
the 10 50 and the 5 60 variants seem like good choices. The
former has a higher F1 score in Scenario 1, but the latter
seems to perform better in other scenarios.

A distributed deployment approach is also an option. In this
case, the models would run directly on the end devices. The
main device can be used for monitoring or omitted entirely.

In this situation, the best model to deploy on the final
IoT devices could be either Feature Summary or Random
Forest. The former is better at distinguishing the exact type
of attack that is taking place (as seen in Table 15), whereas
the latter is better at detecting new types of attacks (as seen in
Tables 13 and 14). Both models have a low power usage,
which makes them useful for this situation.

Finally, it would also be possible to deploy the system
following a hybrid approach. A simpler model with less
energy consumption could be run on the end devices, perhaps
in boolean prediction mode, while a stronger model in
multi-prediction mode is run on the main device. This
approach offers a trade-off between energy consumption and
accuracy.

Fig. 4 shows the three proposed deployment strategies.
Regardless of which model is deployed, the user will likely

have to adjust the attack detection threshold to balance true
and false positives. The optimal threshold will depend on the
regular behavior of the device, as well as on whether the
model is deployed on a main device or on an end device.

FIGURE 4. Model deployment strategies. (a) Centralized deployment.
(b) Distributed deployment. (c) Hybrid deployment.

VI. CONCLUSION AND FUTURE WORK
The results obtained in Section V allow us to draw some
general conclusions, as well as to answer the research
questions proposed in Section I.

It was proven that an attack detection system based on
the power usage of IoT devices is a viable strategy that can
detect attacks against the devices (RQ1). The F1 score levels
achieved are very positive, although it is partially due to the
dataset being unbalanced.
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It is also possible to distinguish between different types of
attacks, as long as their power usage differs (RQ2). However,
the system cannot detect attacks that do not cause a noticeable
increase in power usage, since it is the only predictor variable
used. The system is also capable of detecting attacks that
were not present during its training phase, although the exact
accuracy depends on the specifics of the attacks (RQ3).

Models can be run on an end device and successfully detect
attacks without being affected by their own power spikes
(RQ4). The system can also detect attacks in real time with an
acceptable level of delay (RQ5). It is also capable of detecting
attacks even when the provided data has been collected from
multiple devices with different power reads (RQ6).

A study on the power usage of the different models was
performed, concluding that some models might be preferred
when operating on a power-constrained network. Three
different strategies on how the system could be deployedwere
also proposed.

It has been proven that it is not necessary to use a large
dataset to train the model. Results from Scenario 1 show
that the 6-hour dataset is enough to get satisfactory results.
Furthermore, increasing the size of the dataset does not
improve the results.

After arriving at these conclusions, we also propose the
following future research lines:

1) Performing tests with more complex device behaviors,
to ensure that the model does not incorrectly flag them
as attacks.

2) Testing the models against real malware in order to
determine if the system is capable of successfully
detecting it as malicious behavior.

3) Employing oversampling and/or undersampling tech-
niques to balance the datasets provided to the models.

APPENDIX
POWER USAGE CHARTS
This appendix contains the power usage charts for all the
device behaviors, attacks, and models.

A. DEVICE BEHAVIORS AND ATTACKS
Fig. 5 contains several graphs that show power usage reads
on the devices when different behaviors and attacks are run
on them.

1) Fig. 5(a) shows power usage on the sensor device. Two
small peaks of power usage can be seen near the middle
and the end of the graph. Said peaks correspond to
sensor reads, which happen every 10 minutes.

2) Fig. 5(b) shows power usage on the video player
device. The peaks of power usage that correspond to the
moments when the video is played (every 10 minutes)
can be seen clearly.

3) Fig. 5(c) shows power usage on the idle device. The
power usage remains constant for the most part.

4) Fig. 5(d) displays power usage when the Mining attack
is active. This is a very resource-demanding attack,

FIGURE 5. Power usage for all the device behaviors and attacks.

FIGURE 6. Model power usage.

since it exhausts the CPU in all available cores of the
device.

5) Fig. 5(e) displays power usage when the Login attack is
active. The device must both handle SSH connections
and password hash calculations. Since the connections
do not come at regular intervals, power usage is
constantly rising and falling.
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6) Fig. 5(f) displays power usage when the Encryption
attack is active. This attack only uses one core, so the
total power usage is lower than that of other attacks.

7) Fig. 5(g) displays power usage when the Password
attack is active. This attack only uses one core and
sleeps at random intervals, so power usage is not
especially high nor constant.

8) Fig. 5(h) displays power usage when the Lite Mining
attack is active. This attack only uses 2 cores, so the
power usage is lower than the one observed during the
standard Mining attack.

B. MODELS
Fig. 6 represents the power usage reads of each model over
2 minutes.
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