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ABSTRACT This article aims to integrate k-NN regression, false-nearest neighborhood (FNN), and
trustworthiness and continuity (T&C) neighborhood-based measures into an efficient and robust feature
selection method to support the identification of nonlinear regression models. The proposed neighborhood
ranking-based feature selection technique (NRFS) is validated in three problems, in a linear regression task,
in the nonlinear Friedman database, and in the problem of determining the order of nonlinear dynamical
models. A neural network is also identified to validate the resulting feature sets. The analysis of the distance
correlation also confirms that the method is capable of exploring the nonlinear correlation structure of
complex systems. The results illustrate that the proposed NRFS method can select relevant variables for
nonlinear regression models.

INDEX TERMS Machine learning, nonlinear regression, feature selection, k-nearest neighbors, model-free
regression, trustworthiness and continuity, distance correlation.

I. INTRODUCTION
Neighborhood-based methods are model-free, nonparametric
algorithms that excel in feature selection tasks due to the lack
of costly model identification and evaluation.

The k-nearest neighbors (k-NN) method is a staple for
solving regression and classification problems due to its
lazy evaluation. During regression, the objective is to
approximate the output by computing the mean of the
dependent variables associated with the k neighbors of the
point in the independent variables. Therefore, the method
skips the model identification process and contains only
one hyperparameter that is often determined by the data
structure. In regression-based feature selection, the prediction
error may decrease significantly if only the relevant variables
remain during the selection process. As such, a model-free
nonparametric feature selection can be performed with the
help of the k-NN.
One of the key ideas of this work is that if k-NN is

capable of feature selection, other similar methods may
also be capable of it. Therefore, several neighborhood-based
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methods have been examined and we have established a
connection between them. An example is the false-nearest
neighbors (FNN) method, single closest neighbor case of
k-NN that is also capable of feature selection.

The FNN method compares the data with its closest
neighbor. The relationship of distances in the independent
and dependent variables determines whether it is a false
neighbor [1] by comparing the steepness between the points
with a threshold hyperparameter. The number of neighbors
that are above a threshold value defines the quality of the
relationship. The threshold can be determined based on
the Jacobian matrix of the data [2]. In a sense, the data
contain threshold values, which can be estimated from the
local covariance matrix. The FNN sums up the number of
false neighbors that are above the threshold and divides it
by the total number of data, resulting in a single score.
The number of false neighbors measures the degree of
correlation of the variables, which is supported by the
ability of the method to identify model structures [2]. FNN
has been used primarily to determine embedding dimen-
sions, however, another neighborhood-based method, namely
trustworthiness and continuity (T&C), is capable of that
as well.
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The T&C method focuses on the one-way embedding
of a set of variables to another, which can determine the
correlation [3]. Trustworthiness quantifies the projection of
the dependent variables against the independent variables by
establishing the local neighborhood in the dependent variable
and finding which neighborhoods cannot be considered
the same in the independent variables. Continuity can be
regarded as the measurement of the projection quality of
the independent variables to the dependent variables. Other
works featuring the T&C for feature selection are unknown
to the authors.

The connection between the methods has not yet been
established in a compiled work, and while k-NN and FNN
have been used with or as feature selection methods, T&C
has not yet been labeled as a feature selection method
in the literature. Moreover, as there are no methods that
are capable of solving all problems, neighborhood-based
techniques can be used somewhat interchangeably due
to their similar model-free, nonparametric nature. As the
authors were unable to find scientific work about the
connections between neighborhood-based methods and their
collective integration into a regression-based feature selection
framework, the article aims to integrate k-NN, FNN, and
T&C neighborhood-based methods into a novel approach to
robust feature selection of nonlinear models. The methods
are model-free and nonparametric, and therefore, the runtime
required to perform feature selection is reduced. Each core
neighborhood-based method is included in the framework,
including k-NN, FNN, T&C, and a novel neighborhood
ranking-based feature selection algorithm.

Inspired by neighborhood-based methods, we incorporate
novel local neighborhood ranking-based methods for model-
free feature selection. The key idea is that the rankings
of the independent and dependent variables differ as the
ordering of the neighbors may change according to the
model, and therefore their differences may provide the
necessary information about the relevance of a variable. If the
ranking difference of the points in the neighborhoods is
substantial, then the relationship may be false or non-existent
and is capable of qualifying nonlinear relationships
as well.

The proposed Neighborhood Ranking-Based Feature
Selection (NRFS) method ranks the distance matrices of both
variables, after which the ranking differences of the matrices
are taken and summed similarly to the Sum of Ranking
Differences technique [4], [5], [6]. During the examination of
the local neighborhood, NRFS can be localized to measure
the one-way correlation by subtracting the local ranks from
the independent variable to the corresponding ranks of
the dependent variable (NRFSX) or vice versa (NRFSY).
These ‘‘local’’ variations also consider a one-way nearest-
neighbor rank evaluation similar to the T&C. The connection
between the two becomes evident, though the total difference
between the rankings (NRFS) is not able to evaluate the
nonlinear correlation. According to the benchmarks, the
NRFSX (measuring the correlation of the independent to the

dependent) selected the features the fastest while retaining
precision similar to the continuity measure.

The techniques mentioned above can be used to evaluate
the nonlinear correlation between independent and dependent
variables. However, these neighborhood-based methods do
not actively select features but only measure the correctness
of the combination. Therefore, we use the techniques as
cost functions to optimize algorithms such as brute force,
forward selection [7] and genetic algorithms [8]. Themethods
are validated against distance correlation, distance rank
correlation, and neural network-based feature selection.

As such, this paper focuses on regression-based fea-
ture selection of neighborhood-based methods to eliminate
model identification and tackle nonlinear correlation. The
algorithms are tested on three distinct datasets, and are
benchmarked against each other. Therefore, the contributions
of this work can be defined as follows.

• First, we define the FNN as the special case of k-NN,
where the number of neighbors is defined as one. With
leave-one-out validation, we can determine a threshold
value that can be used to measure nonlinear correlation
robustly without model specificity. Second, we interpret
FNN as the special case of continuity metrics, where the
pairwise connection between two variables is measured.
Moreover, we propose a model-free feature selection
method based on the FNN and rank correlation of local
groups to select the relevant variables and determine the
correlation or causality of these variables.

• We employ brute force, forward selection, and genetic
algorithms to select the correct variation of the features
by incorporating neighborhood-based methods as cost
functions into optimization.

• We benchmark on a dynamic modeling example,
proposing that the methods can select the order of a
dynamic model. We also benchmark on a simple and
widely used dataset, the Friedman dataset [9].

• We introduce the theoretical background for the false
k-nearest neighbors (Fk-NN) technique, which is to
generalize the false nearest neighbors for the k-nearest
neighbors.

The following Section II (The method of neighbor-
hood ranking-based feature selection) discusses the algo-
rithms. We first introduce the theoretical background of
neighborhood-based methods in Section II-A (The back-
ground of neighbor-based methods), followed by the defini-
tion of the k-NN algorithm (Section II-B: k-nearest neighbors
with leave-one-out regression) and its special case, FNN
(Section II-C: The False nearest neighbors method). Then
T&C is described in Section II-D (Trustworthiness and con-
tinuity) before defining the generalized NRFS method (Sec-
tion II-E: Neighborhood ranking-based feature selection).
The connections and generalizations between the methods
are discussed in Section II-F (Discussion on the similarities
of the measures). The related works are introduced after the
discussion (Section II-G: Related works of neighborhood-
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based methods). The methods are applied to three datasets:
Simple linear, monotonous, and nonlinear equations are
examined first in section III-A: Linear, monotonous, and
periodic functions. The Friedman-1 dataset is evaluated
second(Section III-B: Friedman-1 model), in which we
describe the optimal number of neighbors for the dataset
and the use of forward selection and genetic algorithms to
execute feature selection. A neural network is also applied
to validate the results. Lastly, the identification of dynamic
models is described in Section III-C: Dynamic modeling -
polymerization reactor, and the work is concluded in the
Conclusion (Section IV).

II. THE METHOD OF NEIGHBORHOOD-RANKING-BASED
FEATURE SELECTION
Regression models assume a functional relationship yi =

f(xi), where the values of n independent variables can be
denoted as xi = [xi,1, xi,2, . . . , xi,n]). Models can predict
more than one dependent variable (yi), for simplicity, this
work considers only one output. Prediction error increases
with each irrelevant input added to the set of independent
variables, as they do not provide a substantive contribution to
the dependent variable. For this reason, selecting the relevant
features is essential to determine a functioning model.
Model-free machine learning methods assume a black-box
approach and, therefore, do not require parameters or the
mathematical background of the model. Neighborhood-based
methods are a subset of model-free learning and often
establish the connection between variables properly without
proper interpretation. Model-based algorithms often reflect
the concept in an interpretable way, but they are costly in both
time and computational power.

The feature selection problem can be formalized with
an n number of independent (input) variables, each with
N observations XN×n. The models estimate the dependent
(output) variables y = [y1, y2, . . . , yN ] for each point in the
independent variable space. The objective of the article is to
use neighborhood-based algorithms to select features, as they
provide favorable predictions compared to the original value
when the appropriate variables are included.

A. THE BACKGROUND OF NEIGHBOR-BASED METHODS
This section establishes the basic definitions required
throughout the paper. Each neighborhood-based method
evaluates the local environment of a point based on the
number of closest neighbors, which can be established based
on the Euclidean (L2-norm) distance between the points.
As such, for the mth point and the ith point, the distance
function can be defined as follows:

d(xi, xm) = ||xi − xm||2; i = 1, . . . ,N ; m = 1, . . . ,N ,

(1)

where d() denotes the Euclidean distance between the two
points, m represents the running index of a point whose
distance is calculated against the ith point.

A distance matrix represents the pairwise distances of all
points.

Dx
=

d(x1, x1) . . . d(xN , x1)
...

. . .
...

d(x1, xN ) . . . d(xN , xN )

 (2)

Dy
=

d(y1, y1) . . . d(yN , y1)
...

. . .
...

d(y1, yN ) . . . d(yN , yN )

 (3)

It is important to note that the distance matrices of
the independent and dependent variables (Dx and Dy) are
symmetric so that d(xm, xi) = d(xi, xm).
The neighbor rank with regards to the ith point can be

defined based on ith column of the distance matrix. The rank
determines which points are closest to the ith point.

rxi,m = rank(d(xi, xm)), rxi,m ̸= rxm,i (4)

where rxi,m is the rank value of the mth point to the ith point
according to the ranking function rank().

A rank matrix R can be constructed similarly to the
distance matrix (D).

Rx
=

r
x
1,1 . . . rxN ,1
...

. . .
...

rx1,N . . . rxN ,N


rxi,m ̸= rxm,i, i,m ∈ 1, . . . ,N ; i ̸= m (5)

where Rx denotes the ranking matrix.
The ranking matrix is the ordinality of the distance matrix.

Here, the ranking function ranks columnwise, therefore, row
vectors cannot be considered a coherent ranking vector.

As such, the mth data can be considered the jth closest
neighbor of the ith point if:

ix(j) =

{
m ∈ {1, . . . ,N }

∣∣∣∣rxi,m = j
}

j = 1, . . . ,N ; m ̸= i (6)

where ix(j) denotes the jth neighbor of the ith point in the
independent variables.

If the distance rank is less than or equal to k , then the point
ix(j) is the kth neighbor of the ith point. The set of neighbor
indices Sk (xi) can be defined as follows:

Sk (xi) =

{
ix(j) ∈ {1, . . . ,N }

∣∣∣∣rxi,ix (j) ≤ k
}

(7)

where Sk (xi) denotes the set of the kth closest neighbors
according to the ith point.
Neighborhood-based methods use nearest neighbors for

regression, classification, or correlation measurement; an
example is the k-nearest neighbors (k-NN) algorithm [10].
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B. K-NEAREST NEIGHBORS WITH LEAVE-ONE-OUT
REGRESSION
In k-nearest neighbors (k-NN)-based lazy regression with
leave-one-out validation, for each point (xi), the output yi
is estimated by finding the k-nearest neighbors in the set
of independent variables and aggregating the corresponding
weighted values in the dependent variables [10].
As such, the predicted output ŷi at xi can be calculated by

taking the mean of the outputs of the neighbors:

ŷi =
1
k

∑
ix (j)∈Sk (xi)

wix (j)yix (j) (8)

where ŷi denotes the predicted value of the dependent
variable, yix (j) represents the jth neighbor of the ith point in
the independent variables.wix (j) stands for the weight of yix (j).

The principle behind k-NN is illustrated in Figure 1.
The algorithm calculates the Euclidean distance in the
independent variables, finds the kth closest neighbor with
the least distances, and takes the mean of their values in the
dependent variable.

The neighbors can be assigned an equal weight 1/k or their
similarity to the selected value [11]:

wix (j) =

1
d(xi,xix (j))

1∑
i(j)∈Sk (xi)

d(xi,xix (j))

(9)

The mean squared error of the prediction defines how
accurate the k-NN regression is. The error of one point to its
neighbor is as follows:

ei = ∥yi − ŷi∥2 =

=

∥∥∥∥∥∥yi − 1
k

∑
ix (j)∈Sk (xi)

wix (j)yix (j)

∥∥∥∥∥∥
2

∣∣∣∣ix(j) ∈ Sk (xi)

ϵ =
1
N

N∑
i=1

ei (10)

where ei denotes the squared error of the predicted data ŷi and
the original data yi. ϵ represents the mean squared error of the
predicted and original data.
k-NN is sensitive to features. The error may increase

drastically if the set contains irrelevant features. Thus, it can
be used for feature selection; the lower the error value (ϵ), the
better the current combination of features may become.

C. THE FALSE NEAREST NEIGHBORS METHOD
The false nearest neighbor (FNN) technique was created
to determine the minimum embedding dimension of the
models [1]. The method was later applied to successfully
analyze the relationship between the inputs and outputs of
the models [12]. The FNN method shares a connection with
the k-NN technique, where the evaluation of a point requires
its closest neighbor (k = 1) in the independent variables. The
distances of two points are calculated in both sets of variables,
whose quotients are compared to a threshold value. A point

has a false neighbor if the quotient is above the threshold. The
ratio of false neighbors to all points determines the quality of
the projection.

Let us suppose that there is a connection between the
independent and dependent variables, which can be modeled
as [13]:

yi − yix (1) ≈

n∑
l=1

∂f
∂xi,l

(xi,l − xix (1),l) (11)

where yi−yix (1) denotes the change in the dependent variable,
xi,l represents the ith observation of the lth variable and ∂f

∂xi,l
stands for the partial derivative of the underlying model; in
other words, yi−yix (1) is approximated as the first order Taylor
series of model f(). Thus, FNN is based on the linearization
of f() around the point, including the first neighbor ix(1).

With the help of the Cauchy-Schwarz inequality, Eq. 11
can be reorganized [2]:

|yi − yix (1)| ≤

∥∥∥∥ ∂f
∂xi

∥∥∥∥
2
∥x − xi(1)∥2 (12)

|yi − yix (1)|
∥xi − xi(1)∥2

≤

∥∥∥∥ ∂f
∂xi

∥∥∥∥
2

= α (13)

If this inequality is true, the nearest neighbor is a good
neighbor. The selection of α is both an essential and gruesome
task, as it is impossible to select a robust threshold for
all databases. The threshold value directly influences the
determination of false neighbors (neighbors that are not
good neighbors); thus, overestimating it may deteriorate the
accuracy of the method. The threshold can be predicted based
on the Jacobian matrix. In a practical sense, this value can be
estimated based on the (local) covariance matrix of the data.

The FNN algorithm examines the relationship between the
value of the closest neighbor in the independent variables and
the value of its corresponding dependent variable. The more
false neighbors there are, the worse the relationship between
the input and the output is. The set of points or samples with
false neighbors can be defined as:

F1(xi, yi) =

{
||yi − yix (1)||2
||xi − xix (1)||2

> α

∣∣∣∣ix(1) ∈ S1(xi)
}

(14)

where the set F1(xi, yi) denotes whether the nearest neighbor
is located in the false neighbor set.

The inequality determines the neighbor. Neighborhoods
are asymmetric, as a neighbor in one set of variables may not
have the same rank in the other, which may indicate a false
or one-way relationship. The more false neighbors there are,
the worse the accuracy of the model.

FNN = 100
1
N

N∑
i=1

|F1(xi, yi)| (15)

where the length of the set of nearest neighbor |F1(xi, yi)| is
at maximum one.

Figure 2 depicts the nearest neighbor and false nearest
neighbor algorithms. Figure A) illustrates the k-NN algorithm
with k = 1. Here, leave-one-out cross-validation is
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FIGURE 1. Graphical illustration of the Euclidean distance and k-NN algorithm. A) subfigure depicts the Euclidean distance between two
points, while k-NN (B) evaluates the dependent variable based on the values of the closest (distance) neighbors in the independent variables.

performed to evaluate the accuracy of the predicted data.
In the FNN algorithm, however, the closest neighbor is
evaluated to determine whether it is located in the good or
false neighbor set. A neighbor is considered a good neighbor
if the mth point is the neighbor of the ith point in both
independent and dependent variables {i(j) ∈ GNN(xi)|ix(j) ∈

S1(xi) ∧ iy(1) ∈ S1(yi)} (depicted by green and red circles);
however, one-way false neighbors may appear {i(1) ∈

FNN(xi)|ix(1) ∈ S1(xi)⊕iy(1) ∈ S1(yi)} (green or red circles).
As such, points that are not neighbors of the ith point can also
be defined as {ix(1) ̸∈ S1(xi) ∧ iy(1) ̸∈ S1(yi)} (blue circles).
The FNN can be modified for more than one neighbor,

named the false k-nearest neighbor (Fk-NN). For a point with
a neighborhood of k size:

Fk (xi, yi) =

{
||yi − yix (j)||2
||xi − xix (j)||2

> α

∣∣∣∣ix(j) ∈ Sk (xi)
}

(16)

where the set Fk (xi, yi) denotes the set of false neighbors in a
k member neighborhood. Note: the length of Fk (xi, yi) is not
necessarily k .

Then the Fk (xi) sets are calculated for each point, and their
normalized length is taken as its mean:

Fk-NN = 100
1
N

N∑
i=1

1
k

|Fk (xi, yi)| (17)

The Fk-NN algorithm may be more robust than the
FNN algorithm, as the underlying model is trained in local
neighborhoods rather than the nearest neighbor.

D. TRUSTWORTHINESS AND CONTINUITY
Trustworthiness and Continuity (T&C) is another neighbor-
based algorithm that measures the precision of projection
from one set of variables to another [3].

The method counts the number of neighbors that are the k
neighbors of the ith point in the other set of variables. T&C
considers the degree of overlap between neighborhoods in

both sets of variables, providing a metric of neighborhood
similarity. The false nearest-neighbors technique is a special
case of continuity. In this subsection, iy(j) denotes the indices
of points that are the first kth neighbor of the ith point in
the independent variables, while ix(j) represents the indices
of points that are the first kth neighbor of the ith point in the
independent variables.

Suppose that the rank in the independent variables is
denoted by rxi,ix (j) ≤ k , then xix (j) is the jth neighbor of xi.
If xiy(j) cannot be located in the k neighborhood of xi, but
yiy(j) is in the k neighborhood of yi, then a set of untrustworthy
neighbors can be defined.

Uk (xi) =

{
iy(j) ∈ {1, . . . ,N }

∣∣∣∣ ryi,iy(j) ≤ k ∧ rxi,iy(j) > k
}
(18)

whereUk (xi) denotes the set where the k number of neighbors
of yi are not considered the kth neighbors of xi.

The rank distances of the false neighbors from the
neighborhood can be summed and scaled to the [0,1] interval,
resulting in the trustworthiness measure.

Tk = 1 −
2

Nk(2N − 3k − 1)

N∑
i=1

∑
iy(j)∈Uk (xi)

(rxi,iy(j) − k)

(19)

where Tk is the trustworthiness of the model based on kth
neighbor local models, N is the number of observations,
Uk (xi) is the set of indices of neighbors in the dependent
variable that are not the kth neighbors in the independent
variables. Trustworthiness is also scaled to 0 ≤ Tk ≤ 1 by
2/Nk(2N − 3k − 1) scaling coefficient.
Trustworthiness measures the accuracy of the projection

from the dependent variables yi to the independent variables
xi. If the neighborhood of yi is established and their neighbors
are not included in the neighborhood in the independent
variables (xi), then the projection is untrustworthy.
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FIGURE 2. Graphical illustration of the nearest neighbors and false nearest neighbors methods. The left-hand side subfigure depicts the
nearest neighbor method, where the closest neighbor determines the value of the dependent variable. The green and red circles depict the
neighborhood in one variable (similarly illustrated with the red edges for the independent and green filling for the dependent). The FNN (B)
algorithm evaluates the relationship between two variables by iterating through each point in the variables and determining which neighbors
in one set of variables are neighbors in the others. If a neighbor can only be found in one, then it is only a false neighbor. However, if a point
is located in both sets, it is considered a good neighbor (red edges and green filling).

Continuity measures the validity of projected points, where
k neighbors xix (j) may be located in the k neighborhood of xi,
however, ryi,ix (j) is outside of the predefined range of k .

Vk (yi) =

{
ix(j) ∈ {1, . . . ,N }

∣∣∣∣rxi,ix (j) ≤ k ∧ ryi,ix (j) > k
}
(20)

where Vk (yi) is the set where the neighbors of xi are not
neighbors of yi
The continuity measure is formalized as:

Ck = 1 −
2

Nk(2N − 3k − 1)

N∑
i=1

∑
ix (j)∈Vk (yi)

(ryi,ix (j) − k)

(21)

whereCk is the continuity of the model based on kth neighbor
local models, Vk (yi) is the set of neighbors that are not the kth
neighbor in the dependent variable. Continuity is scaled to the
range of 0 ≤ Ck ≤ 1 by applying the 2/Nk(2N − 3k − 1)
scaling coefficient.

Figure 3 presents the basic operation principle of trustwor-
thiness and continuity measures. The upper axis denotes the
indices of the closest neighbors in the dependent variable. The
lower axis does the same for the independent variables. Both
measures provide an evaluation of one-directional projection
by the rank distance of the false neighbors from k-sized
local neighborhoods. The indices denoted by green points are
parts of the neighborhood in the dependent variables. At the
same time, the red edge indicates membership in the local
neighborhood in the independent variables. The ones with
both marks are good neighbors, and those with only one are
considered false neighbors, whose ranks are adjusted to their
distance from the edge of the neighborhood. On the left-
hand side, the trustworthiness measure is illustrated, which

sums up the distance of the rank of the false neighbor from
the local neighborhood in the independent variables and vice
versa with continuity, but in the other direction. It is only
reasonable to use the continuity measure for feature selection,
as it evaluates the goodness of the projection of the first
k neighbors in the independent variable to the dependent
variable for each point.

E. NEIGHBORHOOD RANKING-BASED FEATURE
SELECTION
Neighborhood ranking-based feature selection (NRFS) is the
sum of the differences between the ranked distances of the
independent and dependent variables.

When a combination of independent variables is selected,
the Euclidean distance is calculated, which is then ranked,
resulting in a matrix Rx

N×N . Similarly, the ranking is also
established with the corresponding points of the dependent
variable (Ry

N×N ). Then the mean difference of the two
matrices is calculated. It is crucial to scale the ranking
differences to the zero-to-one interval, as the summation may
lead to incomprehensible numbers.

The theoretical maximum of the Sum of Ranking Dif-
ferences (SRD) method [4], [5], [6] is used as the scaling
coefficient. It is reasonable that the ranking difference of the
same vectors yields zero, whereas the maximum depends on
the number of observations.

SRDmax =


2

N
2∑

s=1

(2s− 1) = 2
(
N
2

)2

if N is even

2

N
2∑

s=1

2s = 2
N
2

(
N
2

+ 1
)

if N is odd

(22)

VOLUME 12, 2024 20157



Á. Ipkovich, J. Abonyi: Neighborhood Ranking-Based Feature Selection

FIGURE 3. Graphical illustration of trustworthiness and continuity (T&C) methods. The left-hand side subfigure depicts the trustworthiness
measure. Indices are sorted according to the closest neighbors in both variables, and the corresponding ranks are examined in the independent
ones. Continuity is the opposite of trustworthiness. The right-hand side of the figure shows continuity. Moreover, points with a green filling or
red edges are false neighbors, while having both is considered a sign of being a good neighbor. T&C can be calculated as in Eq. 19 and 21,
respectively.

where s is the index of a rank. The theoretical maximum
obtains its value by subtracting two opposite (in direction)
rankings that facilitate N ranks. Generally, only half of the
subtraction is required as the absolute values of the ranking
differences are symmetric; only half is calculated if the
number of observations is even. As an example, the ranking
difference of [1, 2, 3, 4] and [4, 3, 2, 1] is [−3, −1, 1, 3].
This proposes that the ranking difference between two
corresponding ranks is (2s − 1), where s is the index of
the ranks. A similar rule can be defined if the number
of observations is odd. For example, there is the ranking
difference between [1, 2, 3, 4, 5] and [5, 4, 3, 2, 1] that is
[−4, −2, 0, 2, 4] which can be generalized as (2s). The rules
only apply for one-half of the set. Thus, it is required to
be multiplied by 2. If N is even, the sum of the differences
returns 2(N/2)2, while if N is odd, the maximum ranking
difference becomes 2(N/2) · (N/2 + 1). Please see [5] for
more information.

To evaluate the relationship between the independent and
dependent variables, the neighbor ranks of the ith point in
both sets of variables are subtracted, which is carried out in
both ways:

ρ = 1 −

∑N
i=1

∑N
m=1(|r

y
i,m − rxi,m|)

N SRDmax
(23)

where ρ denotes the correlation of the independent and
dependent variables, rxi,m stands for the rank of the mth point
against the ith point in the independent variables in Rx .
ryi,m denotes the rank of the mth point against the ith data
point according to the dependent variables. The ρ value can
also be scaled to the [0, 1] interval with the maximum SRD
coefficient calculated in Eq. 22.

The NRFS can also be used with local neighborhoods
in both independent (NRFSX) and dependent variables
(NRFSY), similarly to T&C as the NRFS is considered its
generalization. The first k ranked points are chosen in one

set of variables, and the corresponding points in the other are
subtracted.

With k being the number of neighbors, the set of indices is
established:

ix(j) ∈ I x(rxi,m < k) (24)

iy(j) ∈ I y(ryi,m < k) (25)

where ix(j) denotes the indices of the k nearest neighbors in
the independent variables.
The sets incorporate all kth nearest-neighbor indices. Thus,

the local neighborhood-ranking-based feature selection can
be defined as follows:

ρxk = 1 −
2

∑N
i=1

∑
ix (j)∈I x (|r

x
i,ix (j)

− ryi,ix (j)|)

Nk(2N − 3k − 1)
(26)

ρ
y
k = 1 −

2
∑N

i=1
∑

iy(j)∈I y (|r
x
i,iy(j)

− ryi,iy(j)|)

Nk(2N − 3k − 1)
(27)

where ρxk denotes the local variation of the NRFS algorithm
in terms of the independent variables (NRFSX), while
ρ
y
k stands for the local variation of the neighborhood

ranking-based feature selection algorithm in terms of the
dependent variables (NRFSY). Eq. 26 denotes the variant of
NRFS in the neighborhood of the independent variable called
NRFSX, while Eq. 27 defines the variant of NRFS in the
neighborhood of the dependent variable, namely, NRFSY.

The method is a generalization of T&C as it provides
information on the neighborhood difference in each set of
variables.

F. DISCUSSION ON THE SIMILARITIES OF THE MEASURES
Throughout the paper, the relationship between the methods
is stated. This section discusses the connection between the
methods in depth.

The most obvious connection is between k-NN and FNN,
which is the inequality case of the nearest neighbors, where
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k = 1. As such, the error can be calculated as:

ei = ||yi − yix (1)||2 (28)

The FNN algorithm is fundamentally based on the nearest
neighbors, where the ei error value only matters if it is more
than a threshold value α and with equal weight:

ei > α||xi − xix (1)||2 |ix(j) ∈ Sk (xi)| (29)

Therefore, the FNN determines whether the distance quo-
tient is above the threshold value. k-NN provides information
on the validity of the model by taking the mean squared error
value, while the FNN determines the validity of the model by
summing up the number of false neighbors.

FNN is also related to the T&C technique, especially
the continuity method. T&C focuses on the neighbors that
are above a threshold that is specified in ordinal numbers.
Therefore, the continuity measure is the ranking difference
variant of the Fk-NN method.

Let us define the set of false neighbors:

Fk (xi, yi) =

{
||yi − yix (j)||2
||xi − xix (j)||2

> α

∣∣∣∣ix(j) ∈ rxi,i(j) < k
}

(30)

The set is established based on the neighborhoods accord-
ing to the first k ranks of the independent variables. We can
also determine the false neighbors if the ranking difference
is greater than the neighborhood. In other words, the rank
cannot be found in the neighborhood of the dependent
variable:

ryi,ix (j) > k

∣∣∣∣ix(j) ∈ {1, . . . ,N } (31)

We define the set of indices that are the kth nearest
neighbors in the independent variables but are excluded from
the neighborhood in the dependent variables:

Vk (xi, yi) =

{
rxi,ix (j) ≤ k ∧ ryi,ix (j) > k

∣∣∣∣ix(j) ∈ {1, . . . ,N }

}
(32)

The ratio of good neighbors can be calculated by oneminus
the false neighbors:

Gk-NN = 1 −
1
N

N∑
i=1

1
k

|Fk (xi)| (33)

If the set of good neighbors is determined based on ranks,
then the following is true:

Ĉk = 1 −
1
N

N∑
i=1

1
k
|Vk (xi, yi)| (34)

The content of the set may provide more information on
the local neighborhood, therefore, the distance of the ranks

of the set from the neighborhood is summed up and scaled
accordingly:

Ck = 1 −
2

Nk(2N − 3k − 1)

N∑
i=1

∑
ix (j)∈Vk (yi)

(ryi,ix (j) − k)

(35)

Both approaches measure the ratio of good neighbors.
While the Gk-NN sums up the length of the set of good
neighbors per point, continuity considers the amount of
neighbors not in the k vicinity of the point. In this way, the
rank deviation of the false neighbors is based on their distance
from their neighborhood.

T&C technique can be defined as a special case of the novel
local NRFS algorithms. Continuity only considers the rank of
the neighbor if it is a false one, while the NRFSX calculates
the total absolute difference of the dependent variable’s ranks
to the [1, . . . , k] ranking. This is also true for trustworthiness
and NRFSY.

ρxk = 1 −
2

∑N
m=1

∑
ix (j)∈I x |ryix (j),i − rxix (j),i|

Nk(2N − 3k − 1)
,

rxi,ix (j) ∈ [1, 2, . . . k] (36)

Let us suppose that only the false neighbors are taken into
account:

ix(j) ∈ I x(rxi,m ≤ k ∧ ryi,m > k) = ix(j) ∈ Vk (yi) (37)

Substituting into Eq. 36:

ρ̂xk = 1 −
2

∑N
m=1

∑
ix (j)∈Vk (yi)(|r

y
i(j),m − rxi(j),m|)

Nk(2N − 3k − 1)
(38)

If the ranking difference is measured from the end of the
neighborhood:

Ck = 1 −
2

∑N
m=1

∑
ix (j)∈Vk (yi)(|r

y
i(j),m| − k)

Nk(2N − 3k − 1)
rxix (j),m > k (39)

Thus, continuity is a special case of the NRFSX where
the ranking differences from the neighborhood of the false
neighbors are calculated.

The ranking difference is similar to the distance Spear-
man’s correlation, as is a special case of the distance
correlation (DC) technique [14]. The distance correlation
measures the covariance and the variance between the
multivariate variables. The significant difference from classic
measures, such as Pearson, is that DC requires the Euclidean
distance matrix of the variables to calculate the distance
covariance and variance, similar to what is defined in Eq.1.
The method can handle more than one independent and
dependent variables.

First, the distance correlation takes the double-centered
distances of the Euclidean distance matrix:

ai,m = dxi,m − d̄xi,· − d̄x·,m + d̄x (40)
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where ai,m denotes the double-centered distance of the
Euclidean distance of the ith and mth points in the inde-
pendent variables. d̄xi,· represents the mean of the ith row of
the independent distance matrix, d̄x·,m stands for the mean
of the mth column, and d̄x denotes the grand mean (mean of
the means) of the independent distance matrix. Similarly to
the distances in the independent variable, it can be done for
the dependent as well:

bi,m = dyi,m − d̄yi,· − d̄y·,m + d̄y (41)

where bi,m stands for the double-centered distance of the
Euclidean distance in the dependent variable.

The distance correlation is very much the same as
the general Pearson correlation, with the exception that
the (multivariate) Euclidean distance of the input data is
examined instead of the original variables:

DC =

∑N
i,m=1 ai,mbi,m√∑N

i,m=1 a
2
i,m

∑N
i,m=1 b

2
i,m

(42)

The ranking difference can be described as a particular case
of distance correlation (DC). Let us suppose that the ranks are
examined. If the ranking matrix consists of different ranks
(assuming that no distance is the same), then a Spearman
rank correlation based on the generalized correlation can be
derived [15]:

RDC = 1 −
6

∑N
i=1

∑N
m=1 r

x
i,m − ryi,m

N (N 2 − 1)
(43)

The only difference between ranking difference and
ranking distance correlation (RDC) is that the absolute value
of the differences is taken, and thus the scaling coefficient is
adjusted:

ρ = 1 −

∑N
i=1

∑N
m=1(|r

x
i,m − ryi,m|)

NSRDmax
(44)

where the SRDmax denotes the equations described in Eq. 22.

G. RELATED WORKS OF NEIGHBORHOOD-BASED
METHODS
Following the detailed description of the neighborhood
based methods, the related works are thoroughly intro-
duced to provide previously established use cases for the
above-mentioned methodology and related methods.

There has been precedent for the use of neighborhoods
in feature selection to improve classification performance.
Neighborhoods can be analyzed with the help of entropy
and select relevant features with low computational com-
plexity [16]. Fuzzy neighborhood-based entropy methods
measure the mutual information of input and output variables
and aim to improve feature selection algorithms [17].
Moreover, the k nearest neighbors algorithm has been
integrated into rough neighborhood-based feature selection
algorithms [18]. Variable Neighborhood Search, which
focuses on the optimum values of local neighborhoods, can
also be used to select the optimal subset of variables [19].

The accuracy of the k-NN classification improves with
other neighborhood-based feature selection [20], and being
neighborhood-based itself, it may not require any other
methods, except for an optimization algorithm to select
features that provide optimal accuracy.

As a nonparametric regression model, k-NN [21], [22] has
been researched as a potential feature selection algorithm,
e.g., k-NN classification has been used to accelerate feature
selection [23]. Sequential Random k-nearest neighbors (SRk-
NN) algorithm is used to select features based on the majority
vote of nearest neighbor classifiers [24], and a distance-
and attribute-weighted k-NN-based algorithm has also been
utilized for feature selection [25]. The performance of k -
NN-based feature selections has already been examined [26],
and a method for tuning the number of neighbors (k) has
also been developed, along with goal-oriented similarity
measures [27]. There has been precedent for the use of genetic
algorithm-based feature selection to improve the performance
of k-NN in a classification problem [28]. In the Internet of
Things application, the feature-selection aspect of k-NN has
been utilized for the detection of network intrusion [29].
The k-NN algorithm is often modified, e.g. the differential
nearest-neighbor regression approximates local gradients to
evaluate n-th Taylor polynomial, and, therefore, replaces the
mean function for prediction [30].
FNN is considered a method capable of supporting feature

selection [31], and has been used to select the appropriate
embedding dimension [12] and to detect determinism [32].
Practical applications include diagnosing bearing failure,
where the FNN selects parameters that indicate malfunc-
tioning operation [33]. Batteries have been analyzed by
determining the minimum embedding dimensions, which are
sent to a hybrid neural network to calculate the remaining
lifetime [34]. Moreover, in near-infrared spectroscopy, FNN
has been used to select characteristic wavelengths [35].
A mixture of FNN and Supervised Locality Preserving
Projection (SLPP) has been applied to eliminate weak
features based on a false neighborhood ratio [36].

Nonlinear correlation can also be assessed using the
distance correlation method (DC) [14]. Similarly to
neighborhood-based methods, DC requires distance matrices
for both sets of variables. However, the significant difference
is that the ranking is not used. The technique establishes
correlation based on the Euclidean distance of the variables,
whose distance covariance is divided by the product
of the distance standard deviation. DC has been used
successfully in feature selection, where DC feature selection
performed well in synthetic datasets compared to other
methods [37]. The technique has been tested in microarray
classification problems that provide accurate models for class
prediction [38].

In summary, while numerous methodologies implemented
practical application of neighborhood-based methods in
feature selection, the authors did not encounter publications
with trustworthiness and continuity-based feature selection
in its focus, neither a work that establishes the connections
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between neighborhood-based methods. Therefore, this study
aims to fill the research gap mentioned above.

III. RESULTS
Establishing a prediction model is not always expedient. It is
essential to explore the information content of the dataset,
as the model may not be able to reproduce the original output
without the necessary input variables. Model-free methods
can evaluate whether the dataset provides adequate informa-
tion and whether the features are relevant to the output. These
data-driven solutions may provide the necessary background
for establishing models, although they require a selection
algorithm. In simple cases where the number of variables
is relatively small (n <= 10), the brute force approach
can be used to find the correct combination of crucial
features. In general, themethods are used as cost functions for
optimization algorithms. As such, the proper interpretation of
the evaluation scores must be discussed. The k-NN returns
the mean squared error of the regression (which is to be
minimized), FNN provides information on how many false
neighbors can be found (and so it is to be minimized, albeit
FNN returns zero to various combinations. In this case, the
simplest solution should be selected. The remaining methods
(NRFSX, Continuity (Cont), Distance correlation (DC), and
rank distance correlation (RDC)) aim to demonstrate the
correlation between the independent and dependent variables,
which provides optimal solution at the maximum. During the
brute force approach, minimum/maximum scores should be
selected from the scores of all possible combinations. Its use
is not advised if the dataset consists of more than ten features,
as each combination is tested and can be time-consuming.
Distance correlation and ranking distance correlation is
described in Section II-F, with relevant equations (DC: 42,
RDC: 43).

A possible selection method is the forward selection
algorithm, which is a straightforward method for feature
selection [7]. The method requires two sets, one of which
is the set of unused variables, whereas the other contains
the selected ones. The new feature is added to the set of
selected features depending on which combination of new
and previously selected variables produces the least error. The
time complexity of this method is O(n2), while brute force
requiresO

(∑n
c=1

(n
c

))
. Note that the order of selection is also

provided, which may help establish an order of importance.
Performing feature selection with many (n ≫ 100)

features may decelerate the search, as both brute force and
forward selection would require a lot of time to select
the appropriate combination. As a response, heuristic algo-
rithms were implemented to randomly choose combinations.
A well-known example is the genetic algorithm (GA),
whose variations are widely used in a similar context [8].
GAs are complex metaheuristic methods in which random
samples aim to provide a sufficiently good solution. Iterative
competition between samples continues for generations
(iterations), which can result in the selection of a sufficiently
performing combination of features. However, the correct

combination may not be included in the starting population
due to randomization. Therefore, GAs behave in a heuristic
manner, but also retain some deterministic behavior in the
selection process due to the iterative evaluation of feature
combinations. As such, relevant variables often surface
during the selection process, whereas irrelevant ones remain
‘‘hidden’’.

Selecting only a handful of individuals may be worth the
effort, as the time required may drastically decrease. GAs are
heuristic, and the evaluation of their performance should be
statistical.

Neural networks are also included in this work, so the
results are validated with a well-known and high-accuracy
algorithm. If a valid model can be chosen, one should not for-
get that a model-driven structure is necessary. Neighborhood-
basedmethods requiremetaparameters to be optimized (k ,α),
similar to neural networks (number of hidden layers).

Feature selection plays a vital role in identifying the order
of dynamic systems. Here, the data required to calculate the
output comprises the input variables and their time-shifted
equivalents. The order of a system defines the lag required to
accurately describe the system. Inputs can be systematically
added to determine the order of the system; brute force can
be used.

The next section presents the ability of the methods
to describe nonlinear relationships through three simple
equations. The Friedman dataset is also benchmarked with
forward selection, GA, and validated by a neural network.
Finally, we determine the order of a simulated polymerization
reactor dataset as an example for dynamic system identifica-
tion.

The main goal of this work is to establish a link between
neighborhood-based methods and to use them for feature
selection. The application potentials are discussed in the
following subsections: In the first use case, we employ feature
selection in linear, monotonous, and nonlinear equations.
Then, we benchmark themethods on the Friedman data set [9]
with forward selection, GA, and a neural network. Lastly,
we analyze a simulated polymerization reactor to provide
an example in which the model order is determined for the
dynamic system models [39].

A. LINEAR, MONOTONOUS, AND PERIODIC FUNCTIONS
This subsection discusses didactic examples of feature selec-
tion problems. A four-feature dataset (n = 4) is generated for
each problem, with a thousand uniformly random samples
(N = 1000). The following simple equations represent linear,
monotonic, and nonlinear problems.

y = x1 + x2 (45)

y = x1 + log(x22 ) (46)

y = cos(x1) + exp(x2) (47)

where x denotes the value of an independent variable, y stands
for the value of the dependent variable
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As the number of features is meager, the brute force
approach is used for the selection algorithm. The following
cost functions are selected: the k-NN, FNN, continuity,
NRFSX, along with distance correlation, and rank distance
correlation to benchmark against state-of-the-art methods.
The number of nearest neighbors is selected to be ten for
each relevant method, and no cross-validation was applied.
The results are illustrated in Figure 4, where the scores of
the combinations are values between zero and one, except
for k-NN, where the mean square error is provided. Figure 4
is interpreted as follows: FNN sums up the inconsistency of
neighbors in the dataset, and k-NN presents the mean squared
errors of the incorporated features, therefore the scores must
be minimized. The others aim to provide a correlation-like
score and should be maximized. All approaches solve the
feature selection problem accurately for linear andmonotonic
problems. The nonlinear equation is problematic for ranking
and standard distance correlation.

B. FRIEDMAN-1 MODEL
The Friedman-1 data set is widely used in feature selection as
it contains five relevant variables, including a nonlinear one,
and five irrelevant random features [9]. A thousand uniformly
random points are generated for each feature, between zero
and one. The dependent variable is calculated as follows:

y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + σ (48)

where xi denotes a value of the ith independent variable, y
stands for the value of the dependent variable and σ defines
random noise.

The optimal number of neighbors must be determined
before applying the methods. Therefore, we analyze the
behavior of k-NN for one to fifty neighbors illustrated in
Figure 5. As the database is generated randomly, the number
of neighbors may differ with each retry. The seed of the
random number generator was set to the same value for
each experiment. In this example, the 12 nearest neighbors
provided the most negligible error.

Neighborhood-based methods are used as cost functions
for the forward selection optimizer algorithm. These methods
are often considered to select features on a correlational
basis and therefore, do not require cross-validation. Figure 6
illustrates the error of the methods and the order in which the
features were selected.

The neighborhood-based methods each selected the rele-
vant features in the same order. The error values of NRFSX,
k-NN, FNN, and continuity had their optimums at the
fifth inclusion of features, with the right combination of
variables. Both distance correlations reached their optimum
with the third. Nevertheless, DC determined the next two
features, while RDC failed with the last. The MATLAB
implementation of the rank-distance correlation is rather
costly. It may fail due to the analysis of the entire ranking,
which may not be able to represent a nonlinear correlation,
such as that shown in Section III-A. Cross-validation has not
been performed on neighborhood-based methods. Note that

k-NN has utilized the leave-one-out correlation to evaluate
feature relationship. It is a viable approach to cross-validate
the neighborhoods and their accuracy with less data. If data
is removed, the optimal number of neighbors will most
probably change to cope with the removal of relevant points.
We also included a way to calculate the k (nearest neighbors)
hyperparameter which can be found in Figure 5.

We validate the methods against the neural network (NN),
using the relevant features and all features as input data.
The NN was built as a feedforward network with a hidden
layer that contains 10 neurons. The predictive algorithm was
also validated by a 10-fold cross-validation with a random
partition, where the training (9 parts) and test (1 part) data
were selected randomly for each evaluation. Figure 7 is
includedwith one simple thing inmind; black-box algorithms
have the innate ability to be applied as feature selection
tools. The neural network (NN) is incorporated into a forward
selection algorithm to directly compare with the performance
of neighborhood-basedmethods. Themean squared errors are
illustrated in the form of boxplots, where the NN performs
better if any relevant features are added to the input set.
If irrelevant features are chosen, however, cross-validation
fails to provide constant results, as the method attempts
to adjust to the noise. The boxplots represent the typical
bias-variance problem, the validation error has a minimum
at a given model complexity that relates to 5 features (4-
2-1-5-3). As can be seen, when more features are added,
the models become overtrained, so when all of the features
are used (see the boxplot named 4-2-1-5-3-7-9-6-10-8) the
median and the variation of the validation MSE error show
statistically significant deterioration to what we registered
at the selected five features. We believe that this example
demonstrates the power of the proposed model-free feature
selection algorithm, as the difference between the two
cases is statistically significant. For further information on
evaluating the improvement of the mean squared error in
neural networks, see [40].

Genetic algorithms are also used as selection algorithms
and are one of the best techniques for feature selection. The
optimal number of neighbors must be determined before
the GA is used. GAs are heuristic in nature; therefore,
there is a chance that the optimal combination of features
is not included in the starting population. We iteratively
determined the combinations of variables needed to provide
the least error and summarized them in Figure 8. The starting
bitstring population was set to ten, while the algorithm
lasted five generations with a 0.1 chance of mutation. The
optimal number of neighbors remained at 12. The tests were
performed ten times for each method.

It is hard to generalize because of the heuristic nature
of GAs. In this case, the best method was the continuity
method, which failed to determine only one variable once
during the ten iterations. Other techniques also provided
sufficient results. FNN was seemingly the weakest of each,
as it cannot differentiate between good features combined
with irrelevant ones. Although distance correlation (DC)
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FIGURE 4. Heatmaps of the brute force feature selection algorithm with neighborhood-based
methods as cost functions. The local neighborhood size is selected as ten (k = 10). k-NN and
FNN cost functions should be minimized, while the others are maximized. Combinations with
the best score are selected. In the figure, a red rectangle is drawn on top of the selected
combination. The methods can undoubtedly solve the linear and monotonous functions, but the
distance correlation (DC) and distance rank correlation (RDC) may fail against the nonlinear one.
No cross-validation has been performed and all data have been included in the feature selection
process. Cont denotes continuity.

from Eq. 42 and rank distance correlation (RDC) from 43
provided adequate results, we assume that GAs can select

features with their help to some extent (as feature no. 3 was
missed), however, we recommend k-NN and continuity for
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FIGURE 5. Selection of the optimal amount of neighbors. For each k , a regression is performed to search for the minimum mean
squared error for the k-NN algorithm. The mean error yields the optimum if k = 12.

FIGURE 6. Forward selection with neighborhood-based methods as cost functions. The upper heatmap provides the scores (please note that for
k-NN and FNN, a smaller score is better, while for the remaining scores, the higher the better). The optimums are framed with red rectangles. The
lower table presents the order of the selected features. Cont denotes continuity.

GAs.We also measured the elapsed time for each method and
iteration, which can be seen in Table 1. Although continuity
(Cont) provided the best results, its runtime was three times
the runtime of DC and twice the runtime of FNN. RDC
failed to recognize two features properly. The two fastest
were distance correlation and FNN, which selected more
relevant features with shorter runtime. The higher runtime

of NRFSX, continuity and RDC can be attributed to the
additional ranking operation.

The neighborhood-based methods are capable of tackling
the Friedman-1 dataset; however, other works proposed
feature selection algorithms with different backgrounds that
can solve the same problem. For example, graph-based
feature selection may be able to build hierarchical models.
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FIGURE 7. The mean squared error of the neural network-based tenfold cross-validation for the Friedman dataset. A neural
network with only the relevant features predicts the output with higher accuracy, whilst adding irrelevant variables increases the
standard deviation of the mean squared error, due to the ability of the neural network to adjust for noise.

FIGURE 8. Genetic algorithm with neighborhood-based methods as cost functions. Continuity (Cont) performed the best, while NRFSX and
distance correlation (DC, Eq. 42) performed similarly. FNN failed, as the different combinations that include the correct variables still lack false
neighbors, therefore, this approach cannot be used with a genetic algorithm.

The best-path algorithm was tried on Friedman-1 while being
validated by model accuracy metrics such as the Akaike
information criterion [41]. However, the method focuses
on mutual information and conditional relationships, and
did not find a relevant variable, similar to the distance
correlation. Indeed, neighborhood-based methods cannot yet
build hierarchical models, but they are possible to implement.
Variance-based decomposition is also a familiar algorithm in
feature selection that proposes a low complexity technique

with a solid mathematical background [42]. It aims to
interpret the role of variables concerning the dependent
variable that the neighborhood-based methods are not yet
capable of; however, a SHAP-based approach may solve
this issue [43]. Interpreting why the algorithm selects the
feature is an essential aspect of the field; when using forward
selection or brute force, there is often a ranking of features
involved that may help establish which are dominant, or not
as relevant as others with regard to the output variables.
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TABLE 1. Genetic Algorithm runtime for each method.

FIGURE 9. Order identification of the Polymerization reactor. Each neighborhood-based method can calculate the order of the reactor. DC and RDC may
fail due to redundant input (time-delayed variable). The number of neighbors was selected to be k = 3.

C. DYNAMIC MODELING - POLYMERIZATION REACTOR
Dynamic modeling is a common task in process engi-
neering. Identification of dynamic models may help boost
the production of a factory; thus, it was selected as an
application example for neighborhood-based techniques. The
identification of reactormodels provides an excellent use case
for order identification. The dynamics within the reactor can
be described with a nonlinear function f():

yi = f(xi); i = 1, . . . ,N (49)

where yi denotes the output, xi stands for the input of the
model at the ith point.

As the function is nonlinear, the nonlinear autoregressive
models with eXogenous inputs (NARX) are employed for
output prediction. This model predicts the output based on
the past values of the input of the process (uk ) and the output
(yk ). The order of the model is defined by the number of past
values required for an accurate prediction [44]:

xi = [yi−1, yi−2, . . . yi−ny , ui−1, ui−2, . . . ui−nu ] (50)

where ny denotes the order of the output and nu stands for the
order of the input.

We use uniformly random generated input between
0.005s and 0.015s using a simulation model of a con-
tinuous polymerization reactor by [39] that polymerizes
methyl methacrylate with azobisisobutyronitrile (initiator)
and toluene (solvent). A jacketed CSTR houses the reaction
that can be analyzed, such as Eq. 50. For more information
on this model, see [45]. The first six orders for both input and
output were examined with brute force, using k-NN, FNN,
NRFSX, continuity, distance, and rank distance correlations.

For the FNN, we use ratio tables to determine the order
of the model. Identification works as follows: The first cell
with a close to zero number closer to the left upper corner
determines the order of the model [2]. In contrast, the others
are minimized/maximized. The methods, except for DC and
RDC, have been able to identify the order of the dynamic
system, which is illustrated in Figure 9. Most were able to
identify the system:NRFSX, k-NN, and continuity performed
well to find a two-degree input and a one-degree output delay.
In the FNN, a small number is delegated to (nu = 2, ny = 1).
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DC fails because of the similarity between the variables,
which are essentially the same vectors but time-delayed. The
input of rank DC is also shifted, so the highest correlation will
occur when only the first-order input and output are selected.

Two input delays (nu = 2), and one output delay (ny = 1)
have also been identified for the polymerization reactor in [2],
and the methods can identify the model order.

IV. CONCLUSION
This article demonstrated that neighborhood-based model-
free feature selection can significantly improve data-driven
modeling of complex nonlinear systems. Based on the
integration of false neighbors and rank correlation, a novel
method has been developed to select relevant variables and
determine the correlation of the model variables. The analysis
of the problem highlighted that FNN is the special case of
k-NN regression with a leave-one-out validation as well as
the special case of the continuity metric used to evaluate
multidimensional embeddings.

The proposed metrics have been incorporated into brute-
force, forward selection, and genetic feature selection algo-
rithms. The test results obtained in the dynamic modeling of
a polymerization reactor and in widely used benchmark data
sets confirmed the applicability of the method.

In the future, we will examine how the developed tool
can be applied for causality analysis, for outlier detection,
and for evaluating regions where the data do not adequately
cover the feature space. Similarly to feature selection, outlier
detection or active learning will also be used iteratively
to filter out invalid informative observations. As this work
focuses heavily on regression-based feature selection, one
can also perform feature selection for classification problems;
however, this is outside the scope of the present work.

The benefit of using neighborhood-based methods is that
it does not require model identification and evaluation.
The black-box nature of the methods can also incorporate
nonlinear correlation, whilst no model is defined. When one
opts for complex systems analysis, building a model may not
be worth the effort; the data may not be informative enough,
or problems regarding identification may mask the relevancy
of the input variables. This can be shown with neighborhood-
based methods.

Any feature selection problem with enough data and infor-
mation may be a potential use of the methods. For example,
in the process of monitoring infrared spectroscopy, FNN
has improved indexing [46], and an additional improvement
in performance may include variable selection. T&C and
k -NN-based topological mapping of infrared spectroscopy
(TOPNIR) can widely be used in e.g. the petrol industry to
predict the quality of the product [47], and could also be
used to select relevant features for customer satisfaction and
product development. The methods could also be useful in
fault detection and how the variables become distorted by
outliers. A similar work features dimensionality reduction
with FNN and retains a high failure detection rate [48].

A disadvantage of the methods is that causality cannot be
established and that there is no built-in interpretability. Addi-
tionally, the techniques require an optimization algorithm for
the selection itself, as they are cost functions. It is important
to note that the number of observed points directly influences
the run-time of the neighbor-based algorithms. However,
an immensely high observation count can significantly
decelerate feature selection, for which data sampling may be
a good solution.
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