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ABSTRACT This paper introduces a real-time visual SLAM system, TDO-SLAM, using only a stereo vision
camera. TDO-SLAM works not only in static but also in dynamic road environment by incorporating the
object motion and the planar property of standing traffic signs. Traditional visual SLAM systems assume
that the road environment is static. However, a variety of dynamic objects exist in the real-world urban
environment. Thus, the traditional SLAM systems are subject to fail due to the various motion of the
dynamic objects. To solve this inherent problem in the dynamic environment, TDO-SLAM detects, tracks,
and manages the global object identification of dynamic objects and standing traffic signs through a novel
Object-Level-Tracking method. We improve the accuracy of camera pose estimation through several steps
of bundle adjustments, including the residual terms for the planar constraint of traffic signs and the dynamic
object motion. Experimental results show that pose estimation accuracy is improved in complex environment
with several dynamic objects and traffic signs. Performance of TDO-SLAM is analyzed and compared with
ORB-SLAM2, ORB-SLAM3, and DynaSLAM using three benchmark datasets, KITTI Odometry dataset,
KITTI Raw dataset, and Complex Urban dataset.

INDEX TERMS Dynamic SLAM, visual localization, pose estimation, autonomous vehicle.

I. INTRODUCTION
Dynamic visual SLAM (Simultaneous Localization and
Mapping) is a task of simultaneous localization and map
generation from the image sequence of dynamic indoor or
outdoor environment. Conventional visual SLAM systems
assume that an outdoor road environment is static without
or few moving objects. The visual information such as
texture and color from the image sequence is extracted
to estimate the 3D pose of vehicle or robot [1], [2], [3],
[4]. Conventional SLAM systems perform well in the static
environment as presented in a variety of investigations [5],
[6], [7], [8]. However, the static environment assumption is
unsuitable for complex urban or highway driving scenarios.
In this scenario, various dynamic objects, such as moving
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cars, trucks, bicycles, and pedestrians, hinder the continuous
observation of static elements from a vision camera. Dynamic
objects moving continuously over time can cause inevitable
pose estimation error in the static visual SLAM. This is
because the relative motion of a static object from a driving
or neighboring vehicle is fixed. On the contrary, the relative
motion of a dynamic object changes depending on both
object and driving vehicle’s motion. For example, as shown in
Figure 1(a), moving objects with different dynamic motions
in a highway environment cause a significant error in the
visual odometry. In Figure 1(a), all objects move in the same
direction with the driving vehicle, however if the relative
speed of dynamic objects faster than the driving vehicle,
motion estimation can be done as if the vehicle is moving
relatively backward.

With recent advances in computer vision techniques,
the performance of object detection, semantic or instance
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FIGURE 1. Comparison of the proposed dynamic SLAM with a traditional
static scene visual SLAM (a) An ORB-SLAM2 result shows that the vehicle
odometry is distorted due to the dynamic objects. (b) The vehicle motion
is correctly estimated in the same dynamic scene using the proposed
TDO-SLAM.

segmentation of object region has been dramatically
improved. In this reason, various pose estimation methods
in dynamic environment have been introduced by employing
the recent learned-based techniques in the visual SLAM [9],
[10], [11], [12].

This study also proposes a dynamic visual SLAM system,
TDO-SLAM, to solve the pose estimation problem of a
stereo vision camera in the dynamic road environment. The
motion of dynamic objects and the planar constraints of the
traffic sign are combined in Bundle Adjustment (BA) for
the pose estimation of the camera. In this study, the camera
pose is considered as the same as the vehicle pose. The
proposed system employs a lightweight instance segmenta-
tion module, YOLACT-Edge [13] and the famous framework
of ORB-SLAM2 [5] in the consideration of real-time
application.

The proposed system works in the presence of both
dynamic and static objects through the instance segmentation
as shown in Figure 1(b). Local Static BA (LSBA) and Local
Dynamic BA (LDBA) are introduced for robust and accurate
pose estimation in dynamic and static environments. LSBA
improves the modeling of the traffic sign and camera pose
estimation accuracy by including the planar constraint of the
traffic sign. LDBA simultaneously estimates the motion of
dynamic objects and the pose of the stereo camera. Since the
motion estimation of a moving object provides the relative
pose with respect to the camera, it can improve both the
robustness and the accuracy of camera pose estimation.

The contributions of the proposed TDO-SLAM are sum-
marized as follows:

i) A real-time dynamic visual SLAM system is proposed,
which can run in for both static and dynamic environ-
ments.

ii) Local Static BA is proposed to incorporate the 3D plane
constraint of standing traffic signs. LSBA improves the
robustness of camera localization in scenarios where

traffic signs are detected in either static or dynamic road
environments.

iii) Local Dynamic BA is proposed to estimate dynamic
object’s motion state and motion transformation. When
a moving object is found, LDBA determines the motion
state of the moving object and simultaneously estimates
the motion transformation between the camera and the
moving object. In addition, in a scenario where traffic
signs and dynamic objects are found simultaneously,
pose estimation performance can be enhanced by
simultaneously performing LDBA on the motion of
dynamic objects and LSBA on the planar traffic signs.

iv) This study is the first attempt using the Complex Urban
dataset [14] for evaluation of dynamic visual SLAM. The
Complex Urban dataset contains many moving objects
in several cluttered urban environments, which make
difficult for running dynamic visual SLAM methods.

To evaluate the performance of the proposed system,
we provide experimental results using the KITTI dataset [15]
and the Complex Urban dataset [14]. In addition, com-
parative evaluation with ORB-SLAM2, ORB-SLAM3, and
DynaSLAM [12] is provided using the same dataset.
TDO-SLAM achieves improved performance compared with
other studies.

II. RELATED WORK
A. TRADITIONAL VISUAL SLAM
A traditional visual SLAM based on well-known image
feature is ORB-SLAM2 [5]. As a representative example,
ORB-SLAM2 shows real-time performance because the
system is configured based on multithreading and BA for
reprojection error minimization of feature points. It can also
reconstruct the mapping scale through stereo matching and
shows high performance in various benchmarks. However,
because the static environment is assumed, its performance
is degraded in such scenarios involving moving and dynamic
objects. In addition, pose estimation fails when image fea-
tures are distributed mostly in dynamic objects. To overcome
this inherent problem, the proposed TDO-SLAM system
extends the framework of ORB-SLAM2 and presents a new
solution that works robustly and accurately in both static and
dynamic environments.

B. DYNAMIC VISUAL SLAM WITHOUT DYNAMIC OBJECT
MOTION
DynaSLAM [12], StaticFusion [16], and ElasticFusion [17]
are such approaches that extract only the static object and
background areas by masking the dynamic object area to
estimate the camera pose in the dynamic environment.
DynaSLAM extends ORB-SLAM2, and the dynamic object
segmentation is based on Mask-RCNN [18], one of the
learned semantic segmentation techniques. The feature points
in the dynamic areas are removed to reduce the pose error due
to the dynamic features. However, it shows lower accuracy
than ORB-SLAM2 in some scenarios (e.g., a car waiting for
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a traffic light) because even non-moving dynamic objects
are removed. In addition, real-time performance cannot
be guaranteed due to the heavy resources of the learned
segmentation module.

Guan et al. [19] use ORB-SLAM3 [20] as the backbone
of a dynamic SLAM method. They use YOLOv5 [21] to
detect objects and remove image features which are on the
dynamic object areas. Their method is only evaluated using
the TUM-RGBD [22] dataset which consists of only indoor
image sequences. DE-SLAM [23] proposes a dynamic visual
SLAM method which can be applied to a field robot. In this
method, MobileNet V2 [24] is used to extract the deep
features in input images and those features on moving objects
are removed to improve the robot’s localization performance.
The performance of DE-SLAM is evaluated by using several
indoor and outdoor scenes. However, all evaluations are done
with only moving human objects, not including road objects.

Chen et al. [25] introduces a semantic SLAM method to
address the real time performance in dynamic environment.
PSPNet18 [26]. The key idea of the method is to assign
dynamic probability to each image feature point. Initially,
they assign probability 0.5 to each feature and use the
semantic segmentation information to update the probability
in keyframes. If the probability of a feature point is high, it is
not used in the BA optimization process.

RDS-SLAM [27] is similar with the method proposed by
Chen et al. [25] in that the moving probability is used to
detect and remove outliers from feature tracking. The initial
probability of a map point is assigned as 0.5 and it is updated
by the Bayesian filtering [28].

Su et al. [29] use YOLOv5 to detect dynamic feature points
and propose to use the homography matrix in the optical flow
tracking module for more efficient and real-time tracking.
In the optical flow step of the ORB-SLAM2, if the magnitude
of a feature tracking flow is larger than a threshold, then the
corresponding feature is removed and its object mask value
is set to zero to remove from the tracking.

C. DYNAMIC VISUAL SLAM WITH DYNAMIC OBJECT
MOTION
CubeSLAM [30], ClusterVO [31], and VDO-SLAM [32]
apply the motion of the dynamic objects to camera pose
estimation by utilizing the feature information of dynamic
objects detected in the segmentation task. The performance
of pose estimation by simply removing dynamic objects
depends on the number of feature points included in the
dynamic objects. In the worst case, if all feature points
in an image are included in the moving objects, camera
pose estimation may fail because all feature points can be
removed. To improve this problem, the individual motion
of dynamic objects and camera poses are optimized by
BA simultaneously. This approach has been proven through
studies such as DyanSLAM II [11] and DOT-SLAM [9],
where motion estimation of moving objects improves the
accuracy of camera pose estimation.

DynaSLAM II [11] is an extended study of DynaSLAM
[12], and handles static and dynamic features separately
by masking dynamic objects using instance segmentation
information. In themethod, dynamic features are not removed
and simultaneous estimation of camera pose and dynamic
object motion is proposed by considering the linear and
angular velocity of dynamic object motion. However, it can’t
run in real-time because object segmentation must be done
offline in advance.

DOT-SLAM [9] solves the real-time problem caused by
the processing time of the instance segmentation module.
By using the mask propagation method, DOT-SLAM can run
in real-time regardless of the computation time of the seg-
mentation module. In addition, the camera motion is decided
through dynamic object motion estimation for dynamic
feature points. An object without motion is considered as a
static feature and included in the existing SLAM system to
be used to estimate the camera pose.

DOE-SLAM [33] proposes a method of determining
whether a dynamic object is moving. It also proposes a
method of estimating the camera pose when the dynamic
object area is large. DOE-SLAM even utilizes the motion
of dynamic objects when it is impossible to estimate the
camera pose using only background features due to the
moving dynamic objects. In addition, an object modeling
method was proposed to estimate the correspondences
between the dynamic objects detected by Mask-RCNN [18]
in consecutive frames.

III. SYSTEM OVERVIEW
The system architecture of the proposed TDO-SLAM is
shown in Figure 2, which is the extension of the architecture
of ORB-SLAM2. The proposed system consists of Instance
segmentation, Tracking, Local mapping, and Loop closing
thread modules. The input of the system is synchronized
stereo images, and outputs are poses of the camera and
map points of static and moving objects. The instance
segmentation thread module detects dynamic objects and
standing traffic signs from the left stereo image. The tracking
thread module performs stereo matching from a frame
sequence and ORB-feature tracking with the previous frame,
and estimates the camera pose after excluding dynamic
features.

In the proposed system, an object-based feature classifi-
cation & tracking module classifies object feature categories
and assigns a global object identification (ObjectID) through
object tracking between previous frames. The camera track-
ing module estimates the camera pose after excluding the
features included in the dynamic object. The local mapping
module includes LSBA and LDBA modules, instead of
ORB-SLAM2’s local BA module. LSBA performs BA for
reprojection error minimization using only map-points from
background and traffic signs. Non-linear optimization for
keyframe pose and map-point mapping is also done in LSBA.
The proposed 3D plane constraint for traffic sign is applied.
LDBA consists of Object Motion BA (OMBA), Is Motion?
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FIGURE 2. The architecture of TDO-SLAM. The baseline framework of TDO-SLAM is ORB-SLAM2. In addition to the
ORB-SLAM2 architecture, the blue boxes are newly added in TDO-SLAM.

(IMQ), and Fusion BA (FBA). As the first step, OMBA
fixes the static map point and camera pose and estimates
only dynamic object motion. Then, the initially estimated
object motion determines whether or not it is moving through
a threshold value. In the next step, IMQ, a static object
in a stationary state is optimized identically to the static
object, and a moving object in a moving state is optimized
considering the object motion. As the final step of LDBA,
FBA performs BA simultaneously with camera pose and
static map-point, dynamic map-point, and dynamic object
motion. More details of local BA are presented in Section VI.

IV. INSTANCE SEGMENTATION
Instance segmentation thread detects and segments standing
traffic signs and potential dynamic objects in an image
sequence in real-time based on YolackEdge [13] optimized
through TensorRT [34]. Total six dynamic object classes
are defined, pedestrians, bicycles, cars, motorcycles, buses,
and trucks. The background region is also defined if any
region is not categorized into traffic sign or dynamic
object. Since all regions of an image are segmented, the
network’s output is modified to output the segmentation
mask of all regions from the image. Each pixel in the
output segmentation mask contains class (ClassID) and
local object (ObjectID) identification. The backbone network
uses the R-101-FPN model [35], considering real-time and
accuracy. YolackEdge’s pre-trained weight was trained using
the COCO 2017 [36] dataset containing standing traffic
signs and potential dynamic objects. However, although
standing traffic signs are included in COCO 2017, the KITTI
odometry dataset [15] rarely contains standing traffic signs
due to the small amount of the dataset. To overcome this
problem, we have retrained the network to segment standing
traffic signs and dynamic objects using the COCO 2017,
Cityscape [37], and DFG [38] datasets. In addition, since
these datasets do not have labeling information for continuous

images, we trained the YolackEdge network without the
partial feature transformation. Figure 3 shows an example of
instance segmentation of a road image with dynamic moving
objects. Image features on each segmentation cluster are
handled by ObjectID in the data management graph descried
in the next section.

FIGURE 3. Instance segmentation for traffic signs and dynamic objects in
a highway environment. Image features on each dynamic object is
managed by identification number.

V. TRACKING
A. FEATURE EXTRACT AND TRACKING
The feature extraction and tracking step works similar
with the process in ORB-SLAM2. The ORB features are
extracted from a current image frame and feature matching is
performed with the previous frame. Additionally, we assign
identification attributes (ObjectID, ClassID) to every ORB
feature using instance segmentation masks. ObjectID is used
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to group ORB features to the same object. ClassID is used
to determine if an object is static or potential dynamic state.
ORB features included in the same object are clustered and
managed based on ObjectID by the tree structure shown in
Figure 4. ObjectID expresses a local object identification
and the ID number is randomly assigned even though the
same object is observed in consecutive image frames. This
is because object tracking information is unknown at this
stage. When classified as the background object, (ObjectID,
ClassID) is assigned as (−1, −1).

FIGURE 4. The graph structure of data management for the keypoints of
an ObjectID cluster.

B. OBJECT LEVEL TRACKING
Object tracking information for several frames is required
to perform bundle adjustment based on graph optimization
for traffic signs and potential dynamic objects. The proposed
Object Level Tracking (OLT) method aims to maintain and
manage consistent global ObjectID for the same object in
consecutive frames. An example is shown in Figure 5. In the
right of the figure, a potential moving object in the current
frame has a local ObjectID and five features. Then, the
five features match with the features in the previous frame’s
features. At the same time, the matching count is also used
to find the global ObjectID in the previous frame, who has
the highest matching count. Finally, the global ObjectID is
decided to the moving object in the current frame.

FIGURE 5. Description of Object Level Tracking. Left: ObjectID is assigned
to features in the previous frame. Right: Local features in the current
frame is matched with the global ObjectID features.

As shown in the figure, the local ObjectID of the moving
vehicle is updated to the same global ObjectID with the
previous frame. If the size of the matching count is less than
0.5 times the number of feature points in the object area of
the current frame, it is regarded as a new object and a new
global ObjectID is assigned. Global ObjectID is assigned
sequentially in ascending order starting from 0.

If there is any occlusion on the moving object, in either
the current or previous frame, the number of tracking feature

maybe reduced. However, as mentioned in the previous
paragraph, if the number of tracking features is more than
0.5 times the number of feature points in the object area of the
current frame, the global ObjectID can be identified through
the consecutive frames.

C. CAMERA TRACKING
In this step, camera pose is predicted using feature points
tracked between the previous and the current frames.
Similar to a previous investigation [39], map initialization
or initial camera pose prediction is performed using the
PnP (Perspective-n-Point) algorithm based on photometry
reprojection error for all feature points tracked in all input
images. In this step, all potential dynamic object features are
considered as outliers to maintain real-time and stability, and
the camera pose is estimated using static object features as
shown in Figure 6.

FIGURE 6. In the camera tracking module, all features in potential
dynamic objects are considered as outliers, marked X on the dynamic
object segmentations in the current frame. Only inlier features are used
for PnP algorithm.

VI. LOCAL MAPPING
The local mapping module of TDO-SLAM is similar with
ORB-SLAM2, and the original Local BA part is replaced
with the proposed Local BAmethod, which estimates camera
poses for keyframes. The proposed Local BA is divided into
Local Static BA (LSBA) and Local Dynamic BA (LDBA)
sub-modules. LSBA performs BA using background and
traffic sign features. It simultaneously reconstructs 3D map
points and estimates camera pose by minimizing the residual
for both static map points and the traffic sign constraint using
a nonlinear optimization algorithm. The residual for the static
map point is an error function for fine-tuning the camera pose
and the static map point. Residual for traffic sign constraint is
an error function that includes the constraint of the 3D planar
surface of the traffic sign, which reconstructs the traffic sign
to be a 3D planar surface. If no traffic sign exists, LSBA
works exactly same as the ORB-SLAM2’s Local BA [5].
LSBA is followed by LDBA. The optimized map points

and camera poses are used as initial information of LDBA.
The LDBA sub-module can be skipped if there is no
potential dynamic object. LDBA includes the BA method
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for estimating static map point, dynamic map point, dynamic
object motion, and camera pose, constituting the factor graph
structure shown in Figure 7. LDBA consists of three steps:
Object motion BA (OMBA), Is Motion? (IMQ), and Fusion
BA (FBA). OMBA estimates the initial motion information
of a potential dynamic object. IMQ determines whether
the motion state of the potential dynamic object is moving
state or static state. FBA is an error function that combines
LSBA and OMBA, and fine-tunes the camera poses and
all map points. All nonlinear optimization solutions use the
Levenberg-Marquardt [40] (LM) algorithm.

FIGURE 7. BA factor graph representation of traffic signs and dynamic
objects.

A. LOCAL STATIC BA
The residual of OMBA consists of two terms; residual for
static point and residual for traffic sign constraint. First,
the residual for static point is residual to minimize the
photometric reprojection error of the static point to the
observed keyframes. The static points include the points
of both the background and traffic signs. Keyframes used
in optimization consist of the current keyframe and other
keyframes included in the covisibility graph [41], [42].
Nodes in the covisibility graph are keyframes, and the edges
between the nodes are created when the number of map
points observed between two keyframes is fifteen or more.
In addition, the covisibility is determined according to the
number of map points shared by two keyframes. This means
that the sizes of edges for all nodes are determined differently.
It creates a powerful graph for keyframes, including the case
where the covisibility is one hundred ormore, and it is defined
as an essential graph. The essential graph is used in the loop
closure module.

The second term is the proposed residual for traffic sign
constraint. The face of a traffic sign is a planar 3D surface
in the real world. Considering this geometric condition,
map points belong to a traffic sign are reconstructed on a
3D planar surface in the BA process. Because the camera
pose estimation and map point reconstruction are performed
simultaneously in the BA process, the improvement of map
point reconstruction performance is directly related to the
camera pose estimation performance. The proposed residual
with traffic sign constraint is also used in the residual for static
points because the traffic sign is a static object.

FIGURE 8. Static point residual based on the projection of map points to
keyframes.

B. RESIDUAL FOR STATIC POINT
As for the static point, the photometric reprojection error
is used as a residual for the keyframe (KF) included in the
covisibility graph. Let Pbi be the set of map points of the
background represented in the world coordinate system and
observed in the current keyframe Fi. And let Pti be the set of
map points of the t-th traffic sign represented in the world
coordinate system and observed in the current keyframe Fi.
As a method of reconstructing the initial map points, the
stereo matching and triangulation algorithm is used through
the observation of multiple keyframes. The reconstructed
map points are robust enough because the stereo matching
and triangulation is used across multiple keyframes.

In (1), a set of map points, Psi is defined and it represents
an element of the sets, Pbi and Pti . In the world coordinate
system, 3D map points Xb,lb

i ∈ Pbi and Xt,lt
i ∈ Pti refer to the

lb-th background map-point observed in Fi and the lt -th map
point included in the t-th traffic sign, respectively. Then, Xs,ls

i
is a static feature observed as Xb,lb

i or Xt,lt
i in Fi as shown

in (2). The map point is represented with the homogenous
coordinate system as shown in (3).

Psi ∈

{
Pbi ,P

t
i

}
(1)

X s,lsi ∈

{
Xb,lbi ,X t,lti

}
(2)

X s,lsi =
[
x y z 1

]T (3)

The residual for static point uses an optimizationmethod to
minimize the photometric projection error, as presented in (4)
and Figure 8. Xs,ls

i means ls-th static map-point found in Fi.
Fc is a set of keyframes connected to Fi in the covisibility
graph. Fv is the set of keyframes that can observe Xs,ls

i but
are not connected to Fi. The keyframe pose of Fv is fixed as a
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constant parameter (blue color KF in Figure 8). Keyframe Fj
means a vector as in (5), and xs,lsj represents the 2D keypoint

for Fj corresponding to Xs,ls
i . T cw,j ∈ SE (3) is the pose of Fj,

and T is the homogeneous transformation matrix as shown
in (6).

In this study, the notation for transformation T ∗
a,b is defined

as follows. ′
∗

′ means the target object in T ∗. If ′
∗

′ is c,
it means transformation for camera, and it is d for dynamic
object. Ta,b means the coordinate system transformation from
the reference coordinate system b to a. T ∗

−1

a,b can be expressed
as T ∗

b,a. The camera intrinsic matrix is defined by (7) and
determined through camera calibration in advance.

(
fx , fy

)
is

the focal length for the pinhole camera model, and
(
cx , cy

)
is the principal point. Function 5(·) means the perspective
projection model function as in (8). Symbol smeans the scale
factor to normalize the z value projected onto the image to one
in (8).

es,lsj = xs,lsj −

∏ (
T cw,j

−1X s,lsi

)
(4)

Fj ∈ {Fi,Fc,Fv} (5)

T =

 r11 r12 r12 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (6)

K =

 fx 0 cx
0 fy cy
0 0 1

 (7)

 Ix
Iy
1

 ≈
1
s
5(T ,X) =

1
s

×

 fx 0 cx
0 fy cy
0 0 1

  r11 r12 r12 tx
r21 r22 r23 ty
r31 r32 r33 tz



x
y
z
1


(8)

C. RESIDUAL WITH TRAFFIC SIGN CONSTRAINT
Since the surface of a traffic sign in the real world is flat as
shown in Figure 9, this paper proposes a residual with traffic
sign constraint to reconstruct the map points of a traffic sign
on a 3D plane. The proposed method allows the map points
of the traffic sign to be located on a 3D plane when mapping
them on the world map. The proposed traffic sign constraint
only applies if the number of map points contained in the
traffic sign is four or more. When the number of map points
contained on a traffic sign is three or less, these map points
can form a single plane without applying the residual with the
traffic sign constraint.

The residual with the traffic sign constraint is defined
by (9). Equation (9) consists of three vectors and creates the
constraint for four map points on the traffic sign. Each of the
three vectors represents the vector from the central point to
other three map points as shown in Figure 10. If four map
points lie on a 3D plane, Equation (9) has a scalar value
of zero. Function N

(
Pti

)
returns the number of elements in

FIGURE 9. Examples of detecting traffic sign features. There are multiple
image features on various traffic signs.

FIGURE 10. Model of a standing traffic sign and four map points on the
planar surface.

Pti . lt stands for the index of 3D map points for t-th object.
In the traffic sign constraint, the scope of lt is limited by (10).
This means the number of constraint residuals for the map
point of the traffic sign. For example, if there are N

(
Pti

)
map points on a traffic sign, then

(
N

(
Pti

)
− 3

)
residual with

traffic sign constraints are created. In summary, Equation (9)
is the constraint to maintain the 3D planar property of the
map-point of the traffic sign as shown in Figure 10.

eltt =

((
X t,(l+1)t
i − X t,lti

)
×

(
X t,(l+2)t
i − X t,lti

))
·

(
X t,(l+3)t
i − X t,lti

)
(9){

lt |0 ≤ lt ≤ (N
(
X ti

)
− 3)

}
(10)

The error value in (11) is minimized by the optimization
algorithm for fine tuning Psi =

{
Pbi ,P

t
i

}
, the keyframes pose,
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and map-points for local window C.

min
∑

j∈C

(∑
ls∈Ps

j
ρ

(∥∥∥es,lsj

∥∥∥2∑ls
j

))
+

∑
t∈Qt

∑
lt∈X ti

ρ

(∥∥∥eltt ∥∥∥2) (11)

where ρ (·) is the Huber robust norm function [43], [44],
∑ls

i
is covariance matrix, and Qt is a set of indexes for traffic
signs. In this study, all non-linear optimization is performed
using the LM algorithm.

If there is no potential dynamic object, the result of LSBA
is used as the final output of the pose and map points of the
current keyframe. However, if there is a potential dynamic
object, the result of LSBA is used as the initial camera pose
and initial map points of LDBA. Equation (11) is performed
by non-linear optimization of the LM algorithm in LSBA.
The Jacobian matrices for the residuals for static points
and traffic sign constraints are described in the following
paragraphs.

The residual for static points defined by (4) has as unknown
parameters of static map points and keyframe poses. The
residual for static points needs to calculate for each Jacobian
matrix for static map points and keyframe poses, respectively.
First, the Jacobian matrix for static map points is defined
by (12). Jθ is the partial derivative of e

s,ls
j with respect to Tθ ,

and the chain rule of differentiation holds. Tθ is an unknown
keyframe pose, m̃ is the partial derivative of the perspective
projection function5(·), and K denotes the camera intrinsic
parameter matrix. Computation efficiency can be obtained
by minimizing the number of parameters when calculating
the solution of non-liner optimization. If Tθ is composed of
twelve parameters for a 3 × 3 rotation matrix and a 3 ×

1 translation matrix as in (6), it can result in very complicated
calculations. To minimize the rotation matrix parameters,
Tθ follows Lie algebra SO(3). The translation parameters
are defined as

(
tθx , t

θ
y , t

θ
z

)
. The rotation parameter of wθ is

defined as
(
wθx ,w

θ
y ,w

θ
z

)
as in (14). This can be logarithm

mapped from R3 to R3×3 by a skew-symmetric matrix as
in (15). Conversely,R3×3 can be exponentially mapped to the
Lie group asR3 in (16). The Jacobian matrix for the keyframe
pose is defined in (17). Xξ indicates an unknown parameter
for map points.

Jθ

(
es,lsj

)
=
δes,lsj

δTθ
=
δes,lsj

δm̃
·
δm̃
δK

·
δK

δTθ
(12)

Tθ =
[
wθx w

θ
y w

θ
z t

θ
x tθy tθz

]
(13)

wθ =
[
wθx w

θ
y w

θ
z
]

(14)

exp
(
wθ

)
= exp

 0 −wθz wθy
wθz 0 −wθx

−wθy wθx 0

 = Rθ3×3 ∈ SO (3)

(15)

ln
(
Rθ3×3

)
= wθ ∈ SO (3) (16)

Jξ

(
es,lsj

)
=
δes,lsj

δXξ
=
δes,lsj

δm̃
·
δm̃
δK

·
δK
δTθ

·
δTθ
δXξ

(17)

The residual with traffic sign constraint defined by (9) has
static map points included in the traffic sign as an unknown
parameter. The Jacobian for traffic sign constraint is defined
by (18). Xt,lt

ξ indicates an unknown parameter of a static map

point included in the traffic sign. If Xt,lt
ξ is the same static

map point as Xs,ls
i , it is shared equally with Xξ . ψ1, ψ2, ψ3,

and ψ4 mean the indices of each unknown parameter for the
four traffic sign map points for eltt .

Jψ1

(
eltt

)
=

δeltt
δX t,ltξ

, Jψ2

(
eltt

)
=

δeltt
δX t,(l+1)t

ξ

,

Jψ3

(
eltt

)
=

δeltt
δX t,(l+2)t

ξ

, Jψ4

(
eltt

)
=

δeltt
δX t,(l+3)t

ξ

(18)

D. LOCAL DYNAMIC BA
The LDBA module is performed as the next step of LSBA
when a potential dynamic object is detected in the instance
segmentation module. If the potential dynamic object is not
detected, LDBA is not performed. Instead, the optimized
keyframes poses and static map points are calculated in
LSBA as the final result. This BA consists of three steps,
OMBA, IMQ, and FBA and each step runs sequentially.
OMBA uses keyframe poses optimized from LSBA as input.
OMBA estimates the relative motion matrix of the potential
dynamic object, which minimizes the reprojection error for
the potential dynamic object. IMQ calculates the rotation
and translation scale of the estimated motion matrix and
determines the moving state through a threshold comparison.
If the state is ‘stop’, the motion matrix is initialized as the
identity matrix. If the state is ‘moving’, the motion matrix
is refined in the FBA step. FBA optimizes all of static and
dynamic map points, keyframe poses, and dynamic object
motion matrices.

1) OBJECT MOTION BA
In this step, the 3D transformation of a potential dynamic
object is estimated. The keyframe pose of {Fi,Fc} is used
and set as constant values. Pdi denotes a map point set of
d-th potential dynamic object observed at Fi. X

d,ld
i ∈ Pdi

denotes the ld -th map point of the d-th potential dynamic
object observed at Fi. Reprojection error using the constant
keyframe poses and motion of the potential dynamic object is
defined by (19). Keyframe Fj denotes the frame at which the
d-th potential dynamic object map point is created.1T dwj,wj ∈

SE (3) represents the object transformation matrix from Fj to
Fj in the world coordinate system of d-th potential dynamic
object. If Fj ≡ Fi, 1 T dwj,wj is initialized to the identity
matrix as in (20). This is because there is no movement of
the potential dynamic object in the current keyframe if the
potential dynamic object is observed for the first time.

ed,ldj = xd,ldj −

∏ (
T cw,j

−1
1T dwj,wjX

d,ld
i

)
(19)
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Init
(
1T dwj,wj

)
= I4×4 (20)

Figure 11 shows an example case where the camera motion
and the object motion occur simultaneously. If there is no
motion of the object, the corresponding line between the map
points and the feature points between multiple keyframes
are represented as blue and green dotted lines. Map points
of motionless objects can be regarded as static map points.
However, if the dynamic object moves simultaneously with
the camera motion, the correspondences between the map
points and feature points of the keyframe cannot be explained
without knowing the object motion.

FIGURE 11. Dynamic object reprojection error for the camera poses and
moving dynamic objects. The blue and green dotted lines represent the
correspondence points between map points and feature points without
object motion. The black dotted line represents the correspondences
between the map points and the feature points with simultaneous
camera and object motion.

In order to reconstruct consistent map points of a dynamic
object, the motion of the dynamic object must be considered
from the keyframe when the object is first observed. If the
motion of the moving object is not considered, the 3D-2D
correspondence is not correct, and the method for residual for
the static points may cause errors. In this reason, we propose a
residual for dynamic object motion by considering themotion
of the dynamic object as shown in (21). This represents the
reprojection error to the keyframe considering the motion of
the dynamic object. In other words, OMBA estimates the
relative motion of a potential dynamic object with respect to
a fixed camera pose included in the local sliding window(C).
This means, T cw,j in (19) is not included in this optimization
and is used as a constant value. Residual in (21) is minimized
by the LM algorithm, and the dynamic object map points and
the object motion transformation are optimized.

min
∑

j∈C

(∑
ld∈Pdj

ρ

(∥∥∥ed,ldj

∥∥∥2∑k,ld
j

))
(21)

Equation (21) requires Jacobian matrix for the LM non-
linear optimization. Projection error ed,ldj defined by (19) has
unknown parameters of dynamic map point, dynamic motion
transformation, and keyframe pose. In OMBA step, the
keyframe pose is set as constant parameters, but in FBA step,
it is reset as unknown parameters. The Jacobian matrix for

keyframe poses is defined by (22). The Jacobian matrix for
the dynamic motion matrix is defined in (23). Here, Tφ is an
unknown parameters for the dynamic motion transformation
in (24), and the rotation part follows Lie algebra SO(3). The
rotation parameters are defined as

(
wφx ,w

φ
y ,w

φ
z

)
, and the

translation parameters are defined as
(
tφx , t

φ
y , t

φ
z

)
on the Tφ .

The Jacobian of the map points for the dynamic object are
defined in (25). Xϖ represents unknown parameters for a
dynamic map point.

Jθ

(
ed,ldj

)
=
δed,ldj

δTθ
=
δed,ldj

δm̃
·
δm̃
δK

·
δK

δTθ
(22)

Jφ

(
ed,ldj

)
=
δed,ldj

δTφ
=
δed,ldj

δm̃
·
δm̃
δK

·
δK

δTθ
·
δTθ
δTφ

(23)

Tφ =

[
wφx w

φ
y w

φ
z t

φ
x tφy tφz

]
(24)

Jϖ

(
ed,ldj

)
=
δed,ldj

δXϖ
=
δed,ldj

δm̃
·
δm̃
δK

·
δK

δTθ
·
δTθ
δTφ

·
δTφ
δXϖ

(25)

2) IS MOTION?
In this step, the object motion state (Sd ) is determined using
the motion information of the d-th potential dynamic object
estimated by OMBA in Fi. The estimated transformation
matrix of a dynamic object contains 6-DoF rotation and
translation. We determine the state of the dynamic object
as Sd shown in (26), depending on the magnitude of the
rotation and translation. Sd represents the motion state of
1T dwj,wj , the stop state is set to zero, and the moving state
is set to one. The moving state of the estimated potential
dynamic object is decided by threshold values,

{
τ dR , τ

d
t
}
for

rotation and translation, respectively. Dynamic object motion
can be divided into a rotation matrix (Rdwj,wj ) and a translation

vector(tdwj,wj ) in which 1T dwj,wj is represented as (27). Rdwj,wj
and tdwj,wj are the 3D rotation matrix and translation vector of
the dynamic object observed in the j-th frame with respect
to the j-th frame where the d-th dynamic object was first
observed. If the d-th potential dynamic object is stationary,
the ideal values of the rotation matrix and translation vector
are shown in (28). To compare the threshold values for object
motion, each scale for rotation and translation is defined as
in (29). Definition of the Norm L2 function for the matrix
is defined in (30). Matrix M represents an arbitrary matrix
for Norm L2 description, and m represents an element forM
as in (30). Here, r and c represent the indices for row and
column, respectively.

Sd ∈ {stop (0) ,moving (1)} (26)

T dwj,wj =

[
Rdwj,wj t

d
wj,wj

01×3 1

]
(27)

Rdwj,wj =

 1 0 0
0 1 0
0 0 1

 , tdwj,wj =

 0
0
0

 (28)
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SdR =

∥∥∥Rdwj,wj − I3×3

∥∥∥
2
, Sdt =

∥∥∥tdwj,wj∥∥∥2 (29)

M=

m(1,1) · · · m(1,c)
...

. . .
...

m(r,1) · · · m(r,c)

 , ∥M∥2 =

∑Nr

r=1

∑Nc

c=1

(
m(r,c)

)2
(30)

Themotion state Sd is decided by comparing the thresholds
for rotation and translation as shown in (31). In this study,
the threshold values are set as τ dR = 3.0 and τ dt = 2.0.
The threshold values of

(
τ dR , τ

d
t
)
was experimentally set by

considering the scale values SdR and Sdt for the rotation matrix
and translation vector of stationary dynamic objects from the
KITTI odometry dataset. In the case of a parked stationary
car, 2.827 for SdR and 1.857 for Sdt were estimated in most
cases. SdR and Sdt for each vehicle are calculated with higher
values of all vehicles which are moving in the highway
environment of Sequence 01 in the KITTI odometery dataset.
The threshold values

(
τ dR , τ

d
t
)
are set as constants for all test

datasets in the paper.

Sd =

{
1, if

(
SdR > τ dR

)
or

(
Sdt > τ dt

)
0, otherwise

(31)

3) FUSION BA
Fusion BA (FBA) simultaneously minimizes reprojection
errors for background points, traffic sign points, dynamic
object points, dynamic object motions, and keyframe poses.
In other words, as the last step of LDBA, both static and
dynamic map points, dynamic object motion, and keyframe
poses are simultaneously optimized to reconstruct map points
and estimate the motions of dynamic objects and keyframe
poses. FBA combines three residuals for static point, traffic
sign constraint, and dynamic object motion as in (32). The
keyframe pose {Fi,Fc} intitialized as constant parameters in
the OMBA step is optimized in this step. In addition, if the
motion state of 1T dwj,wj for a potential dynamic object is
decided as stop state in IMQ, it is set as constant in this
optimization step.

min
∑
j∈C

∑
ls∈Psj

ρ

(∥∥∥es,lsj

∥∥∥2∑ls
j

)+

∑
t∈Qt

∑
lt∈X ti

ρ

(∥∥∥eltt∥∥∥2)

+

∑
j∈C

 ∑
ld∈P

j
d

ρ

(∥∥∥ed,ldj

∥∥∥2∑d,ld
j

) (32)

VII. EXPERIMENTAL RESULTS
To evaluate the performance of camera trajectory estimation
of the proposed TDO-SLAM, quantitative and qualitative
evaluations are performed on three benchmark datasets,
KITTI odometry dataset, KITTI raw dataset, and Complex
Urban dataset. Each dataset contains stereo RGB images
synchronized at 10Hz and high-precision GPS data. GPS
data is used as Ground-Truth (GT) data of the camera pose.
The KITTI Odometry dataset contains twenty-one sequences,

TABLE 1. KITTI odometry dataset evaluation (APE, unit: meter).

however GT pose data is provided for only eleven sequences.
The KITTI raw dataset is collected in various locations,
but has fewer images and shorter playtime than the KITTI
odometry dataset. We evaluate using seven sequences with
dynamic environments in the KITTI raw dataset. As the third
dataset, the stereo images from the Complex Urban dataset
are used for evaluation. The Complex Urban dataset consists
of a very dynamic and long-term dataset compared to the
KITTI dataset. We choose the Complex Urban dataset to
demonstrate robust and accurate visual odometry results in
very dynamic road environments.

In this study, we use RMSE Absolute Trajectory Error
(ATE) and RMSE Relative Pose Error (RPE) as evaluation
metrics. The average execution time of TDO-SLAM is
evaluated including the instance segmentation module. The
evaluation tools [45], [46] are used for fair quantitative
measurement. The proposed method is compared with
ORB-SLAM2, ORB-SLAM3, and DynaSLAM provided via
open-source code and evaluation results from two recent
papers. All algorithms are performed on desktop PCwith intel
i7-9700K (3.60 GHz), TITAN RTX 24GB, and 16GB RAM.
ORB-SLAM2 and TDO-SLAM’s operating systems run on
Ubuntu 18.04, while DynaSLAM runs on Ubuntu 16.04.

A. KITTI ODOMETRY DATASET
The quantitative and qualitative results are compared and
analyzed using sequence number from 00 to 10 in the KITTI
odometry dataset. The KITTI odometry dataset includes
urban and highway environments.Most of the dataset consists
of static environment and includes dynamic objects in some
parts. Table 1 presents the quantitative results for the KITTI
odometry dataset. TDO-SLAM is compared with the baseline
method ORB-SLAM2 and DynaSLAM. RMSE ATE of
ORB-SLAM3 is also compared by referring two papers [25],
[47].

In Table 1, the proposed TDO-SLAM shows the best
results in almost all sequences. The KITTI odometry dataset
contains mostly static environments and many scenes with
parked cars. Given that stationary and parked cars contain
static feature points, they can be useful for estimating the
camera’s pose. DynaSLAM does not use all of the image
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TABLE 2. KITTI raw dataset evaluation (APE, unit: meter).

features contained in stationary road objects such as parked
vehicles. In contrast, TDO-SLAM determines the motion
state of the potential dynamic objects and actively utilize the
features included in the dynamic objects.

Especially, sequence 01 contains several dynamic objects.
In the case of ORB-SLAM2 and ORB-SLAM3, a large error
occurs in this sequence because of many dynamic objects.
In sequence 06, the error of ORB-SLAM3 and DynaSLAM
is less the proposed method. In this sequence, there is
no dynamic object and only one traffic sign. Therefore,
the average error must be similar to ORB-SLAM2 or
ORB-SLAM3 because almost all frames consist of static
scenes. Except the sequence 06, the proposed method shows
better performance than ORB-SLAM3 andDynaSLAM. This
means that the proposed method provides stable performance
in either static or dynamic environment.

B. KITTI RAW DATASET
The KITTI Raw dataset is used as the second evaluation
dataset. The KITTI Raw dataset consists of City, Residential,
Road, Campus, and Person categories and contains various
category sequences. However, in our experiments, we only
evaluate sequences that are representatively used for dynamic
SLAM evaluation [9], [10], [11], [12]. These sequences
contain many moving dynamic objects, thus, it is a useful
dataset for performance evaluation. However, the data
playback time is shorter than that of the KITTI Odometry
dataset. Table 2 shows quantitative evaluations for the KITTI
Raw dataset. TDO-SLAM achieves the lowest ATE. It also
provides stable results in all sequences. Sequence 1003-
0047 continuously detects moving dynamic objects from
the first frame. In the initial stage of the SLAM system,
a moving dynamic object can cause a large drift error. In this
reason, ORB-SLAM2 suffers from a large error. In contrast,
DyanSLAM and TDO-SLAM show relatively lower errors.
This experimental result shows that the initialization of the
SLAM system in the dynamic environment is also critical
point.

C. COMPLEX URBAN DATASET
Most previous dynamic SLAM studies [9], [10], [11], [12]
have been tested and evaluated on simple environments such
as the KITTI dataset. The KITTI dataset contains moving
dynamic objects, however the number of moving objects
is small and even their motion is not large. Furthermore,

TABLE 3. Complex Urban dataset evaluation with loop closure (APE, unit:
meter).

TABLE 4. Complex Urban dataset evaluation without loop closure (APE,
unit: meter).

because there is little change in lighting condition, many
strong static features can be detected, thus track loss does not
occur.

In order to evaluate TDO-SLAM using a long-term
sequence with changing light and many dynamic objects,
we use the Complex Urban dataset. Thirteen sequences
of urban areas in the Complex Urban dataset are used.
The Complex Urban dataset is provided to be read in
real-time within Robot Operating System (ROS). However,
DynaSLAM cannot run in real-time, it is not possible to use
in this complex urban dataset. Therefore, ORB-SLAM2 and
TDO-SLAM are only evaluated with this dataset.

Table 3 shows quantitative results, including the loop
closure module, while Table 4 shows results excluding
the loop closure module. TDO-SLAM outperforms ORB-
SLAM2 in all sequences. In addition, ORB-SLAM2 results
in track loss in Sequences 31, 35, and 39. Sequences 31 and
35 cause large error in the initialization phase because
a large number of moving dynamic objects are observed
from the beginning of the sequences. In Sequence 39, the
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TABLE 5. Runtime analysis of the segmentation, tracking, and Local BA
part compared to ORB-SLAM2, DynaSLAM in KITTI odometry dataset
(unit: millisecond).

map points are initialized in a static environment. However,
many dynamic objects appear in the middle of sequence,
which causes drift errors and eventually the camera tracking
fails. However, TDO-SLAM shows that camera tracking can
be successfully performed in complex urban environments
without track loss.

Figure 12 shows estimated trajectories of ORB-SLAM2
and TDO-SLAM in Sequence 38 of the Complex Urban
dataset. BecauseORB-SLAM2 fails in Sequence 39, we show
a similar sequence for visual comparison of estimated
trajectories. Compared with the ground truth, TDO-SLAM
shows better estimation result. At the bottom right corner of
the trajectory as shown in Fig. 12, the proposedmethod yields
a larger error than ORB-SLAM2, because of feature tracking
errors due to pure black or white colored sedans running
across the camera.

D. RUNTIME ANALYSIS
Processing time is also measured as shown in Table 5
using Sequences from 00 to 10 of the KITTI odometry
dataset. The measured module is the Local BA step of the
segmentation module, Tracking module, and Local mapping
module. ORB-SLAM2 is excluded because it does not have
a segmentation module. The Loop-closure and Full BA
steps are also excluded from the analysis because they
act as backends and are completely identical to those of
ORB-SLAM2. Because the input of the tracking module
is the instance segmentation mask, the total computation
time of the segmentation module and the tracking module
represents the estimated time of camera tracking. As the
speed of the stereo camera of all datasets is 10Hz, it can
operate in real time if the total processing time of the
segmentationmodule and trackingmodule is less than 100ms.
TDO-SLAM operates in real-time at approximately 13 fps,
as presented in Table 5.

Most of the time in the local mapping module is spent in
the Local BA step. In addition, all the other steps except Local

FIGURE 12. Comparison of each trajectory in Sequence 38 from the
Complex Urban dataset.

BA in the local mapping module take time as the same as in
ORB-SLAM2. Therefore, we measure the computation time
for the Local BA step. Local BA of TDO-SLAM contains
the traffic sign constraint. The local mapping module only
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processes keyframes, not all input frames. Therefore, the
proposed method can operate in real-time at five keyframes
per second as shown in Table 5. For example, if the keyframes
are five frames apart, then, our method can run in 25 fps.

VIII. DISCUSSION AND CONCLUSION
This study proposes TDO-SLAM, a real-time visual SLAM
system with the consideration of dynamic objects and stand-
ing traffic sign constraint. The proposed system uses only a
stereo camera without any IMU or GPS positioning sensor.
Thus, the proposed system can be employed any autonomous
vehicle equipped with only a stereo camera. TDO-SLAM
utilizes a real-time instance segmentation method to detect
potential dynamic objects and traffic signs. We consider
various types of vehicles and pedestrians as potential dynamic
objects. In the tracking thread module, TDO-SLAM based on
the ORB-SLAM2 system extracts and matches ORB features
for successive image frames. The extracted ORB feature
is assigned attributes for ClassID and ObjectID using the
instance segmentation mask. We also propose the Object
Level Tracking method to track objects across successive
frames and manage the global ObjectID. In the steps of map
initialization and initial pose estimation of the camera, all
ORB features included in the mask area of the potential
dynamic object are removed as outliers, and initialization is
performed with the remaining inlier features.

In the Local Mapping module, the Local BA part of
ORB-SLAM2 is modified to LSBA and LDBA. LSBA calcu-
lates the poses and map points of both background keyframes
and traffic signs through optimization. The standing traffic
sign constraint is designed such that the map points of the
traffic sign lie on a planar surface while simultaneously
improving the performance of pose estimation. The result
of LSBA is used as the initial value of LDBA. LDBA
consists of OMBA, IMQ, and FBA. OMBA estimates motion
of a potential dynamic object using a constant keyframe
pose. In the IMQ step, the moving state is determined by
calculating the rotation and translation scale of the estimated
potential dynamic object motion. FBA performs optimization
for background, traffic sign, map-point of the dynamic object,
dynamic object motion, and keyframe pose.

To analyze the performance of the proposed method,
we use three datasets, KITTI Odometry dataset, KITTI Raw
dataset, and Complex Urban dataset. Experimental results
show that the proposed TDO-SLAM is more robust and
accurate compared with ORB-SLAM2 and DynaSLAM.
TDO-SLAM runs with very small drift error in both static
and dynamic environments. Especially, TDO-SLAM yields
robust and accurate odometry estimation performance in the
Complex Urban dataset which consists of very dynamic and
long-term road image sequences.

REFERENCES
[1] S. Saeedi, ‘‘Navigating the landscape for real-time localization and map-

ping for robotics and virtual and augmented reality,’’ Proc. IEEE, vol. 106,
no. 11, pp. 2020–2039, Nov. 2018, doi: 10.1109/JPROC.2018.2856739.

[2] J. P. M. Covolan, A. C. Sementille, and S. R. R. Sanches, ‘‘A mapping of
visual SLAM algorithms and their applications in augmented reality,’’ in
Proc. 22nd Symp. Virtual Augmented Reality (SVR), Nov. 2020, pp. 20–29,
doi: 10.1109/SVR51698.2020.00019.

[3] C. Theodorou, D. V. Velisavljevic, D. V. Dyo, and F. Nonyelu, ‘‘Visual
SLAM algorithms and their application for Ar, mapping, localization and
wayfinding *,**,’’ SSRN Electron. J., vol. 15, Mar. 2022, Art. no. 100222,
doi: 10.2139/ssrn.4058786.

[4] U. Frese, R. Wagner, and T. Röfer, ‘‘A SLAM overview from a User’s
perspective,’’ KI Künstliche Intelligenz, vol. 24, no. 3, pp. 191–198,
Sep. 2010, doi: 10.1007/s13218-010-0040-4.

[5] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,’’ IEEE
Trans. Robot., vol. 33, no. 5, pp. 1255–1262, Oct. 2017, doi:
10.1109/TRO.2017.2705103.

[6] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, ‘‘MonoSLAM:
Real-time single camera SLAM,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 6, pp. 1052–1067, Jun. 2007, doi: 10.1109/TPAMI.2007.1049.

[7] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, ‘‘DTAM: Dense
tracking and mapping in real-time,’’ in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 2320–2327, doi: 10.1109/ICCV.2011.6126513.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, ‘‘ORB-SLAM: A versa-
tile and accurate monocular SLAM system,’’ IEEE Trans. Robot., vol. 31,
no. 5, pp. 1147–1163, Oct. 2015, doi: 10.1109/TRO.2015.2463671.

[9] I. Ballester, A. Fontán, J. Civera, K. H. Strobl, and R. Triebel,
‘‘DOT: Dynamic object tracking for visual SLAM,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 11705–11711, doi:
10.1109/ICRA48506.2021.9561452.

[10] M. Gonzalez, E. Marchand, A. Kacete, and J. Royan, ‘‘TwistSLAM:
Constrained SLAM in dynamic environment,’’ IEEE Robot. Autom. Lett.,
vol. 7, no. 3, pp. 6846–6853, Jul. 2022, doi: 10.1109/LRA.2022.3178150.

[11] B. Bescos, C. Campos, J. D. Tardos, and J. Neira, ‘‘DynaSLAM II: Tightly-
coupled multi-object tracking and SLAM,’’ IEEE Robot. Autom. Lett.,
vol. 6, no. 3, pp. 5191–5198, Jul. 2021, doi: 10.1109/LRA.2021.3068640.

[12] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, ‘‘DynaSLAM: Tracking,
mapping, and inpainting in dynamic scenes,’’ IEEE Robot. Autom. Lett.,
vol. 3, no. 4, pp. 4076–4083, Oct. 2018, doi: 10.1109/LRA.2018.2860039.

[13] H. Liu, R. A. R. Soto, F. Xiao, and Y. J. Lee, ‘‘YolactEdge: Real-time
instance segmentation on the edge (Jetson AGXXavier: 30 FPS, RTX 2080
Ti: 170 FPS),’’ 2020, arXiv:2012.12259.

[14] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, ‘‘Complex urban
dataset with multi-level sensors from highly diverse urban environments,’’
Int. J. Robot. Res., vol. 38, no. 6, pp. 642–657, May 2019, doi:
10.1177/0278364919843996.

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:
The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013, doi: 10.1177/0278364913491297.

[16] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers,
‘‘StaticFusion: Background reconstruction for dense RGB-D SLAM in
dynamic environments,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 3849–3856, doi: 10.1109/ICRA.2018.8460681.

[17] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. J. Davison, ‘‘ElasticFusion: Dense SLAM without a pose graph,’’ in
Robotics: Science and Systems, 2015, doi: 10.15607/RSS.2015.XI.001.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397, Feb. 2020,
doi: 10.1109/TPAMI.2018.2844175.

[19] H. Guan, C. Qian, T. Wu, X. Hu, F. Duan, and X. Ye, ‘‘A dynamic
scene vision SLAM method incorporating object detection and object
characterization,’’ Sustainability, vol. 15, no. 4, p. 3048, Feb. 2023, doi:
10.3390/su15043048.

[20] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, ‘‘ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,’’ IEEE Trans. Robot., vol. 37, no. 6,
pp. 1874–1890, Dec. 2021, doi: 10.1109/TRO.2021.3075644.

[21] G. Jocher. (2022). Ultralytics/YOLOv5: V7.0 YOLOv5 SOTA Real-
time Instance Segmentation (v7.0). [Online]. Available: Https://Github.
Com/Ultralytics/Yolov5/Tree/V7.0

[22] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
‘‘A benchmark for the evaluation of RGB-D SLAM systems,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012, pp. 573–580, doi:
10.1109/IROS.2012.6385773.

VOLUME 12, 2024 24581

http://dx.doi.org/10.1109/JPROC.2018.2856739
http://dx.doi.org/10.1109/SVR51698.2020.00019
http://dx.doi.org/10.2139/ssrn.4058786
http://dx.doi.org/10.1007/s13218-010-0040-4
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://dx.doi.org/10.1109/ICCV.2011.6126513
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/ICRA48506.2021.9561452
http://dx.doi.org/10.1109/LRA.2022.3178150
http://dx.doi.org/10.1109/LRA.2021.3068640
http://dx.doi.org/10.1109/LRA.2018.2860039
http://dx.doi.org/10.1177/0278364919843996
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/ICRA.2018.8460681
http://dx.doi.org/10.15607/RSS.2015.XI.001
http://dx.doi.org/10.1109/TPAMI.2018.2844175
http://dx.doi.org/10.3390/su15043048
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/IROS.2012.6385773


S.-Y. Park, J. Lee: TDO-SLAM: Traffic Sign and Dynamic Object Based Visual SLAM

[23] Z. Xing, X. Zhu, and D. Dong, ‘‘DE-SLAM: SLAM for highly dynamic
environment,’’ J. Field Robot., vol. 39, no. 5, pp. 528–542, Aug. 2022, doi:
10.1002/rob.22062.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[25] L. Chen, Z. Ling, Y. Gao, R. Sun, and S. Jin, ‘‘A real-time semantic
visual SLAM for dynamic environment based on deep learning and
dynamic probabilistic propagation,’’ Complex Intell. Syst., vol. 9, no. 5,
pp. 5653–5677, Oct. 2023, doi: 10.1007/s40747-023-01031-5.

[26] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing
network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 6230–6239, doi: 10.1109/CVPR.2017.660.

[27] Y. Liu and J. Miura, ‘‘RDS-SLAM: Real-time dynamic SLAM
using semantic segmentation methods,’’ IEEE Access, vol. 9,
pp. 23772–23785, 2021, doi: 10.1109/ACCESS.2021.3050617.

[28] S. Thrun, B. Wolfram, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). Cambridge, MA, USA: MIT Press,
2005.

[29] P. Su, S. Luo, and X. Huang, ‘‘Real-time dynamic SLAM algorithm based
on deep learning,’’ IEEE Access, vol. 10, pp. 87754–87766, 2022, doi:
10.1109/ACCESS.2022.3199350.

[30] S. Yang and S. Scherer, ‘‘CubeSLAM: Monocular 3-D object SLAM,’’
IEEE Trans. Robot., vol. 35, no. 4, pp. 925–938, Aug. 2019, doi:
10.1109/TRO.2019.2909168.

[31] J. Huang, S. Yang, T.-J.Mu, and S.-M.Hu, ‘‘ClusterVO: Clusteringmoving
instances and estimating visual odometry for self and surroundings,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 2165–2174, doi: 10.1109/CVPR42600.2020.00224.

[32] J. Zhang, M. Henein, R. E. Mahony, and V. Ila, ‘‘VDO-SLAM: A visual
dynamic object-aware SLAM system,’’ 2005, arXiv:2005.11052.

[33] X. Hu and J. Lang, ‘‘DOE-SLAM: Dynamic object enhanced
visual SLAM,’’ Sensors, vol. 21, no. 9, p. 3091, Apr. 2021, doi:
10.3390/s21093091.

[34] NVIDIA TensorRT, NVIDIA Developer, NVIDIA, Santa Clara, CA,
USA, 2021.

[35] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944, doi:
10.1109/CVPR.2017.106.

[36] T. Y. Lin, ‘‘Microsoft COCO: Common objects in context,’’ in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 740–755, doi: 10.1007/978-3-319-10602-
1_48.

[37] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset for
semantic urban scene understanding,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3213–3223, doi:
10.1109/CVPR.2016.350.

[38] D. Tabernik and D. Skocaj, ‘‘Deep learning for large-scale traffic-sign
detection and recognition,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4,
pp. 1427–1440, Apr. 2020, doi: 10.1109/TITS.2019.2913588.

[39] V. Lepetit, F. Moreno-Noguer, and P. Fua, ‘‘EPnP: An accurate O(n)
solution to the PnP problem,’’ Int. J. Comput. Vis., vol. 81, no. 2,
pp. 155–166, Feb. 2009, doi: 10.1007/s11263-008-0152-6.

[40] J. J. Moré, ‘‘The Levenberg–Marquardt algorithm: Implementation and
theory,’’ Argonne Nat. Lab., IL, USA, Tech. Rep. CONF-770636-1, 1978,
doi: 10.1007/bfb0067700.

[41] C. Mei, G. Sibley, and P. Newman, ‘‘Closing loops without places,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2010, pp. 3738–3744,
doi: 10.1109/IROS.2010.5652266.

[42] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige,
‘‘Double window optimisation for constant time visual SLAM,’’
in Proc. Int. Conf. Comput. Vis., Nov. 2011, pp. 2352–2359, doi:
10.1109/ICCV.2011.6126517.

[43] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
‘‘G2O: A general framework for graph optimization,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2011, pp. 3607–3613, doi:
10.1109/ICRA.2011.5979949.

[44] E. Malis and E. Marchand, ‘‘Experiments with robust estimation
techniques in real-time robot vision,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2006, pp. 223–228, doi: 10.1109/IROS.2006.282572.

[45] H. Zhan, C. S. Weerasekera, J.-W. Bian, and I. Reid, ‘‘Visual
odometry revisited: What should be learnt?’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 4203–4210, doi:
10.1109/ICRA40945.2020.9197374.

[46] M. Grupp. Evo: Python Package for the Evaluation of Odometry and
SLAM. Accessed: Aug. 5, 2023. [Online]. Available: https://github.
com/MichaelGrupp/evo

[47] D. Hug, P. Bänninger, I. Alzugaray, andM. Chli, ‘‘Continuous-time stereo-
inertial odometry,’’ IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 6455–6462,
Jul. 2022, doi: 10.1109/LRA.2022.3173705.

SOON-YONG PARK received the B.S. and M.S.
degrees from the School of Electronics Engi-
neering, Kyungpook National University, Daegu,
South Korea, in 1991 and 1993, respectively, and
the Ph.D. degree from Stony Brook University,
NY, USA, in 2003. He was with the Korea Atomic
Energy Research Institute, from 1993 to 1999, and
the Electronics and Telecommunications Research
Institute, from 2004 to 2005. He was a Professor
with the School of Computer Science and Engi-

neering, Kyungpook National University, from 2005 to 2019, where he
is currently a Professor with the School of Electronics Engineering. His
research interests include 3-D scanning, 3-D registration, and robot vision.

JUNESUK LEE received the B.S. degree from
the Department of Computer Science and Engi-
neering, Hanbat National University, Daejeon,
South Korea, in 2017, the M.S. degree from
the School of Computer Science and Engi-
neering, Kyungpook National University, Daegu,
South Korea, in 2019, and the Ph.D. degree from
the School of Electronics and Electrical Engi-
neering, Kyungpook National University, in 2023.
He is currently a Research Staff with 42dot, Seoul,

South Korea. His research interests include robot vision, deep learning, and
visual-inertial localization and mapping.

24582 VOLUME 12, 2024

http://dx.doi.org/10.1002/rob.22062
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1007/s40747-023-01031-5
http://dx.doi.org/10.1109/CVPR.2017.660
http://dx.doi.org/10.1109/ACCESS.2021.3050617
http://dx.doi.org/10.1109/ACCESS.2022.3199350
http://dx.doi.org/10.1109/TRO.2019.2909168
http://dx.doi.org/10.1109/CVPR42600.2020.00224
http://dx.doi.org/10.3390/s21093091
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/CVPR.2016.350
http://dx.doi.org/10.1109/TITS.2019.2913588
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1007/bfb0067700
http://dx.doi.org/10.1109/IROS.2010.5652266
http://dx.doi.org/10.1109/ICCV.2011.6126517
http://dx.doi.org/10.1109/ICRA.2011.5979949
http://dx.doi.org/10.1109/IROS.2006.282572
http://dx.doi.org/10.1109/ICRA40945.2020.9197374
http://dx.doi.org/10.1109/LRA.2022.3173705

