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ABSTRACT To ensure the privacy of power system users while maximizing the efficiency of decentralized
computational resources, this paper presents a novel decentralized power flow algorithm. Its core focus lies
in preserving bus privacy through the integration of neighboring partial derivative information. Initially,
the algorithm utilizes partial derivative data from adjacent buses to formulate a bus-level voltage iterative
function, rooted in the bus power balance equation. Each bus in the power network is treated as an individual
computational unit managed by an agent. This process involves scanning the network’s buses, computing
estimated bus voltage values using a designated iteration formula, and iterating until convergence is achieved.
Subsequent utilization of the latest neighbor information accelerates this iterative process. To fortify the
algorithm’s reliability, a strategy assessing local convergence, utilizing the Jacobian matrix at the solution’s
convergence, is proposed. The simulation results across various IEEE test systems unequivocally validate
the proposed algorithm’s efficacy in power flow computation, showcasing accelerated speed and robust anti-
interference capabilities. Compared to the traditional decentralized power flow method at the bus level, this
algorithm significantly optimizes the iterative process, slashing the number of iterations by a minimum of
1.36 times. Notably, this efficiency boost amplifies in larger system scales, boasting an impressive reduction
of up to 9.21 times fewer iterations.

INDEX TERMS Decentralized power flow, privacy preservation, voltage iterative function, local
convergence.

NOMENCLATURE
ABBREVIATIONS
PF Power flow.
NR Newton-Raphson method.
GS Gauss-Seidel method.
ADMM Alternating directions method of multipliers.
ACPF Alternating current power flow.
SA Straightforward Approximation neighbor bus volt-

age method.
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SINGLE VARIABLE
i and j Numbers of the i-th and j-th bus.
Pi Active power injection of the i-th bus.
Qi Reactive power injection of the i-th bus.
Vi and θi Magnitude and phase of the i-th bus voltage.
θij Phase angle difference θi − θj
Gij Real parts of the ij-th element of the

admittance matrix.
Bij Imaginary parts of the ij-th element of the

admittance matrix.
Ni Set of adjacent buses of the i-th bus.
Bus_Type Bus type: PQ, PV or Slack bus.
P_load Active load of the bus.
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Q_load Reactive load of the bus.
G_parallel Compensated conductance of the bus.
B_parallel Compensated Susceptance of the bus
P_Gen Active power generation of the bus.
Q_Gen Reactive power generation of the bus.
Statue_Gen Generator running status.
R and X Resistance and Reactance of Lines.
B Equivalent capacitance of π -type line.
Ratio Transformer ratio in the line.
Statue_Line Line running status.
ε Maximum convergence error.
1S Maximum power unbalance value.

VECTOR VARIABLE
θ The vector consisting of θi.
V The vector consisting of Vi.
J The Jacobian matrix.
Di The partial derivative of i-th bus with respect to the

voltage of i-th bus.
U ij The partial derivative of i-th bus with respect to the

voltage of j-th bus.

FUNCTION VARIABLE
fPi (θ,V) The Active power function of i-th bus.
fQi (θ,V) The reactive power function of i-th bus.
o2 (θ0,V0) The higher order errors of

Taylor expansions.
g (θk ,V k) The overall iterative function of system.
g′ (θ∗,V∗) The Partial derivative of system iteration

function at convergence point.
ρ
(
g′ (θ∗,V∗)

)
The Spectral radius of partial derivative
of system iteration function at
convergence point.

I. INTRODUCTION
A. RESEARCH MOTIVATION
Power flow (PF) is a highly influential computational tool in
power system analysis, and it is now widely used in power
system planning, operation and control [1], [2], [3], [4].
Essentially, PF is the solution of a set of high-dimensional
nonlinear equations for bus voltage, bus injected power,
and bus load [5]. It is widely known that the commonly
used approach for solving nonlinear equations is Newton-
Raphson’s method (NR) [6]. As shown in figure 1.(a), the
traditional PF mode is that the power system control center
collects the injected power and load information of all buses,
and then uses the NRmethod to solve the steady-state voltage
value of each bus. Clearly, traditional PF are performed in a
centralized manner.

In the future, a large number of power load units,
distributed generation, distributed energy storage devices and
plug-and-play devices will be added to the power system [7],
[8], [24]. At that time, the structure of the power system
will become increasingly complex and PF will construct a
set of nonlinear equations with a huge computational load.
It not only requires the control center of the traditional
centralized approach to have an ultra-high-performance
solver, but also requires ensuring that the communication
lines connecting each bus to the control center are stable and
reliable. In addition, more and more generators/consumers
are concerned about the leakage of their private information
(such as bus injection power and load). It is difficult for a
single control center to ensure that their private information
will not be leaked [9], [10]. A bus-oriented decentralized
PF approach can avoid the above problems. As shown in
figure 1.(b), the decentralized approach disperses a large
number of computations into each bus, which eliminates the
computational burden of the control center andmakes full use
of the computing resources distributed in the buses. Since
there is no control center, there is no need to worry about
privacy leaks. The motivation of this paper is to develop a
reliable and efficient approach in the direction of bus-level
decentralized PF.

B. LITERATURE REVIEW
In the past, the PF has been highly developed. The fast decom-
position method [11], [12] improves the calculation speed
by modifying the Jacobian matrix to decouple the active PF
and reactive PF. the powerful PF [5], [13] transforms the
power flow problem into an optimization problem and makes
the PF of the ill-conditioned system converge. the Newton-
Krylov method [14], [15] uses the least squares idea to
approximately solve the inverse of the Jacobianmatrix, which
reduces the compu-tational complexity of large systems.
the higher-order Newton’s method [16], [17] constructs a
special iteration formula that makes each iteration closer
to the correct solution, which improves the computational
efficiency of large systems.

In recent years, distributed PF algorithms have also been
greatly developed. Numerous academics have worked on
developing distributed algorithms at the subsystem level.
Their main idea is to decompose the PF of the entire
network into centralized PF of several subsystems and iterate
repeatedly between the subsystems until the boundary bus
PF variables are consistent. References [18] and [19] solve
the subsystem PF with a centralized approach, which not
only enjoys the fast convergence of a centralized approach,
but also prevents the high computational cost brought by
the overall operation. References [20] and [21] utilize state
estimation to obtain the voltage information of the boundary
bus, and set an agent in each subsystem to perform PF.
When the voltages of all boundary buses tend to be stable,
the agents no longer exchange data and the distributed
PF is completed. This method enables real-time distributed
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FIGURE 1. Different approaches for power grids. (a) centralized approach; (b) decentralized approach (bus-to-bus).

PF computation. To prevent the private information in the
transmission process from being intercepted and deduced by
reverse reasoning, [11], [22] adds encryption and decryption
algorithms when the subsystem boundary agent transmits
data. Reference [23] considers the distributed PF of an ill-
conditioned system, transforms the PF model into a convex
model whose minimum is the PF solution, and then solves
for the minimum of the model via the ADMM method.

The subsystem-level distributed PF algorithm has shown
great improvement. However, the subsystem distributed
approach is not sufficient to make full use of the computing
resources distributed at the generation/load units and does
not ensure that each generation/load unit independently
participates in the electricity market. Bus-level decentralized
algorithms can handle the above problems well. In fact, the
traditional Gauss-Seidel method (GS) is a natural bus-level
decentralized algorithm [24], but the convergence speed is
slow, and the convergence time increases exponentially as
the scale of the system grows. Reference [25] propose to
set up an agent at each bus to perform backward/forward
sweep iterative computation of PF, which requires the PF
to be executed in a specific direction, resulting in slower
PF computation. Actually, if the subsystem-level distributed
PF algorithm sets the subsystem as a bus, its computational
form is similar to this approach. Reference [26] proposes to
approximately linearize the ACPF equation and then solve
the approximate linear equation by bus-level decentralized
iteration. This method is able to solve the bus-level PF
quickly, but the linear approximation will bring inherent
errors to the PF that cannot be eliminated by iteration.
Reference [27] constructed the power equation of the bus
into two circle equations with the bus voltage as the variable,
an intersection of the circles is an approximate solution, and
all buses repeatedly solve the intersection until the system
converges. Since the iteration is an approximate process, there
is no guarantee that each bus will have an intersection at each

iteration, and the method will be greatly affected when there
are multiple occurrences of two circles that do not intersect.
Reference [28] derived the bus-level voltage iterative update
formula from a single-bus perspective, which enables bus-
level PF computation, but the computation speed is similar
to that of GS method, which is difficult to apply in general.

C. ARTICLE CONTRIBUTION
In general, the main contributions of this paper are in the
following three aspects:

1. We develop a bus-level decentralized PF algorithm.
This algorithm protects the private information of the
buses, prevents the central computer from taking all the
computational burden, and enables each bus to participate in
the PF computation.

2. Using the latest neighbor bus information, we speed up
the computation of the proposed algorithm.

3. We present a strategy for judging the local convergence
of the proposed algorithm. This strategy requires only the
value of the Jacobian at the convergence point.

D. ARTICLE ORGANIZATION
The rest of this article is organized as follows. Section II
describes the mathematical model for PF and the existing
solutions to the PF problem. Section III presents a bus-level
decentralized PF algorithm considering neighbor first-order
information. Section IV presents a strategy for analyzing
the local convergence of the proposed algorithm. Section V
presents the numerical results to show the performance of the
proposed algorithm to solve the PF problem, and Section VI
presents the conclusions.

II. POWER FLOW PROBLEM
A. MATHEMATICAL MODEL FOR POWER FLOW
For the convenience of description, we assume that the power
system has n buses, where the n-th bus is a slack bus and
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the rest of the buses are PQ buses. According to Kirchhoff’s
Current Law and Tellegen’s Theorem, the power balance
equation of PF in polar coordinates can be as follows



fPi (θ,V) = Pi − Vi

j=n∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0

fQi (θ,V) = Qi − Vi

j=n∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0

(i = 1, 2, · · · , n− 1)

(1)

B. CENTRALIZED NEWTON-RAPHSON METHOD FOR
POWER FLOW
As mentioned in the introduction, the NR method is
currently considered one of the most dominant approaches
for PF problems. Its general iterative form for solving PF
mathematical equations is as follows.

(
θk+1
V k+1

)
=

(
θk
V k

)
− [J (θk ,Vk)]−1

[
f Pi (θk,Vk)

f Qi (θk,Vk)

]
(2)

where J is called the Jacobian matrix, which is the partial
derivative of the system of equations (1) with respect to
(θk ,V k).

III. BUS-LEVEL DECENTRALIZED POWER FLOW
ALGORITHM CONSIDERING NEIGHBOR FIRST-ORDER
INFORMATION
The traditional NR method must solve the inverse of the
Jacobian, which requires a centralized solution. How to
avoid computing the inverse of the Jacobian when solving
the PF problem? We believe that this requires deriving a
new PF algorithm from the bottom layer (independent bus)
of the PF problem object.

A. GENERAL DESCRIPTION OF THE PROPOSED
ALGORITHM
Starting from the power balance equation of a single bus.
For i-th bus, take out the active and reactive power balance
equations based on the i-th bus from formula (1).


fPi (θ,V) = Pi − Vi

j=n∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0

fQi (θ,V) = Qi − Vi

j=n∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0

(3)

At the initial approximate solution (θ0,V0), there is a first-
order Taylor expansion.

fPi (θ,V) = fPi (θ0,V0)+
∂fPi
∂θi,0

(
θi − θi,0

)
+

∂fPi
∂Vi,0

(
Vi − Vi,0

)
+

∑
j∈Ni

∂fPi
∂θj,0

(
θj − θj,0

)
+

∑
j∈Ni

∂fPi
∂Vj,0

(
Vj − Vj,0

)
+ o2 (θ0,V0) = 0

fQi (θ,V) = fQi (θ0,V0)+
∂fQi
∂θi,0

(
θi − θi,0

)
+

∂fQi
∂Vi,0

(
Vi − Vi,0

)
+

∑
j∈Ni

∂fQi
∂θj,0

(
θj − θj,0

)
+

∑
j∈Ni

∂fQi
∂Vj,0

(
Vj − Vj,0

)
+ o2 (θ0,V0) = 0

(4)

Ignore the error o2 (θ0,V0) caused by the first-order Taylor
approximation, and rewrite formula (4) into matrix form.[
fPi (θ0,V0)

fQi (θ0,V0)

]
+


∂fPi
∂θi,0

∂fPi
∂Vi,0

∂fQi
∂θi,0

∂fQi
∂Vi,0


([

θi

Vi

]
−

[
θi,0

Vi,0

])

+

∑
j∈Ni


∂fPi
∂θj,0

∂fPi
∂Vj,0

∂fQi
∂θj,0

∂fQi
∂Vj,0

([ θj
Vj

]
−

[
θj,0
Vj,0

])
=0

(5)

For simplicity of description, we set

Di,0 =


∂fPi
∂θi,0

∂fPi
∂Vi,0

∂fQi
∂θi,0

∂fQi
∂Vi,0

← Di,k =


∂fPi
∂θi,k

∂fPi
∂Vi,k

∂fQi
∂θi,k

∂fQi
∂Vi,k


(6)

U ij,0 =


∂fPi
∂θj,0

∂fPi
∂Vj,0

∂fQi
∂θj,0

∂fQi
∂Vj,0

← U ij,k =


∂fPi
∂θj,k

∂fPi
∂Vj,k

∂fQi
∂θj,k

∂fQi
∂Vj,k


(7)

Formula (5) becomes the following simplified form[
fPi (θ0,V0)

fQi (θ0,V0)

]
+ Di,0

([
θi
Vi

]
−

[
θi,0
Vi,0

])
+

∑
j∈Ni

U ij,0

([
θj
Vj

]
−

[
θj,0
Vj,0

])
= 0 (8)

Move the variables to be solved ((θi,Vi) and
(
θj,Vj

)
) in (8)

to the left side of the formula.

Di,0

[
θi
Vi

]
+

∑
j∈Ni

U ij,0

([
θj
Vj

])
= Di,0

[
θi,0
Vi,0

]

+

∑
j∈Ni

U ij,0

([
θj,0
Vj,0

])
−

[
fPi (θ0,V0)

fQi (θ0,V0)

]
(9)
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Next, we denote the known initial value as the k-th step
approximate solution, and denote the value to be solved as the
k+1-th step approximate solution, then formula (9) becomes
the following iterative form.

Di,k

[
θi,k+1
Vi,k+1

]
+

∑
j∈Ni

U ij,k

([
θj,k+1
Vj,k+1

])
= Di,k

[
θi,k
Vi,k

]

+

∑
j∈Ni

U ij,k

([
θj,k
Vj,k

])
−

[
fPi (θk,Vk)

fQi (θk,Vk)

]
(10)

Before each iteration, the subscript containing k is the
known variable, and the subscript containing k + 1 is the
variable waiting to be solved. Clearly, formula (10) has
only two equations; However, there are more than two
variables subscripted by k+1. These variables are the voltage
magnitude and phase of the i-th bus

(
θi,k+1,Vi,k+1

)
, and the

voltage magnitude and phase of the j-th bus
(
θj,k+1,Vj,k+1

)
,

respectively.
Since iteration is a process of approximating the exact point

from the initial point, the solution at each step in iteration
is an estimated solution. In order to solve the problem of
more unknown variables than equations, we intend to take an
approximation to convert the voltage variable of the neighbor
bus

(
θj,k+1,Vj,k+1

)
to a known estimate.

B. STRAIGHTFORWARD APPROXIMATION
The simplest and most straightforward approximation is to
replace the current value with the previous value of the
neighbor bus. Namely, the neighbor bus voltage variable
whose subscript contains k+1

(
θj,k+1,Vj,k+1

)
in formula (10)

is directly approximated to the known approximation(
θj,k ,Vj,k

)
obtained from the previous iteration.[

θi,k+1
Vi,k+1

]
≈

[
θi,k
Vi,k

]
(11)

Neglecting the error caused by the estimation and substi-
tuting formula (11) to formula (10)[

θi,k+1
Vi,k+1

]
=

[
θi,k
Vi,k

]
− D−1

i,k

[
fPi (θk,Vk)

fQi (θk,Vk)

]
(12)

Formula (12) is the iterative formula for the i-th bus voltage
derived by straightforwardly estimating the neighbor bus.
At this time, the variables to be solved in the iterative formula
are consistent with the number of equations, and when all
buses update the voltage through the formula (12) to meet
the convergence condition, the PF calculation ends.

Although the straightforward approximation method is
very simple, it will slow down iterations due to too
much information being ignored in the estimation. Next,
we preserve the first-order information of the neighbors
during estimation to speed up the iteration.

C. CONSIDER FIRST-ORDER NEIGHBOR PARTIAL
DERIVATIVE INFORMATION APPROXIMATION
The straightforward approximation is available for all buses
in the system. If we regard formula (11) as the iterative

formula of the j-th bus, we can get[
θj,k+1
Vj,k+1

]
=

[
θj,k
Vj,k

]
− D−1

j,k

[
fPj (θk,Vk)

fQj (θk,Vk)

]
(13)

Let us return to the question of how to approximate
the neighbor bus voltage. Certainly, when the j-th bus is
a neighbor bus, formula (13) can be considered as an
approximation of the neighbor bus. Substituting formula (13)
into formula (10) can obtain a fresh iterative formula for
updating the i-th bus voltage.[

θi,k+1
Vi,k+1

]
=

[
θi,k
Vi,k

]
+

∑
j∈N1

D−1
i,k U ij,kD

−1
j,k

[
fPj (θk,Vk)

fQj (θk,Vk)

]

− D−1
i,k

[
fPi (θk,Vk)

fQi (θk,Vk)

]
(14)

According to formula (6) and (7), it can be known thatDj,k
and U ij,k are the first-order information of neighbors, and
they can provide a more accurate correction direction for the
iterative formula of the i-th bus voltage. Therefore, (14) is a
more accurate iterative formula for the i-th bus voltage.

From the iterative formula (14), it can be seen that the
iterative formula for solving the latest voltage of the i-th
bus only includes the variables in the i-th bus (θi,k ,Vi,k ,Di,k
and U ij,k) and the non-private variables of the neighbor
bus (θk,Vk and Dj,k). Thus, the voltage iterative formula
considering the first-order information of neighbors is a
simple iterative algorithm that can preserve privacy.

It is worthmentioning that it is feasible to take formula (14)
as the iterative formula of the neighbor bus and then substitute
it into (10) to obtain a more accurate and faster iterative
formula. However, the obtained voltage update formula
contains the information of the non-neighbor bus, which not
only increases the communication burden, but also makes the
decentralized algorithms become more complex. We choose
to keep formula (14) and use other ways to speed it up.

D. ITERATIVE ACCELERATION
Noting the formula (14), it can be found that the subscript
of the neighboring bus is always the k-th step. Although
decentralized decoupling computation has been achieved, all
buses require synchronous computation, which poses a huge
challenge to communication and computing speed.

In fact, when a bus performs formula (14), its neighbor
bus may have acquired the latest iteration value (subscript
value greater than k). Since the iteration is a process of
approximating the exact solution, the iterative value greater
than the k-th step is closer to the exact solution. If we put the
newly obtained iterative solution of the neighbor bus into the
local iteration, we will get a voltage iteration formula with
better convergence. In other words, as soon as the neighbor
bus gets the latest voltage value, the local bus applies this
latest value to the iteration. Simulating in the laboratory, this
idea is that when j < i, the neighbor bus j takes the value
of the k + 1-th step, otherwise it takes the value of the kth
step. In the following, we apply this accelerated idea to give
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an accelerated voltage iteration formula.[
θi,k+1
Vi,k+1

]
=

[
θi,k
Vi,k

]
+

∑
j∈N1

D−1

i,k̃
U ij,k̃D

−1

j,k̃

[
fPj
(
θ k̃,V k̃

)
fQj
(
θ k̃,V k̃

) ]

− D−1

i,k̃

[
fPi
(
θ k̃,V k̃

)
fQi
(
θ k̃,V k̃

) ] (15)

where

k̃ =

{
k + 1 for j < i
k for j > i

(16)

In the previous description, for the sake of uniformity,
we assumed that there is no PV bus in the power network.
In fact, the voltage iterative derivation process for the PV
bus is similar to the PQ bus. Below, we present the iterative
formulation of the PV bus.

θi,k+1 = θi,k +
∑
j∈N1

D−1
i,k̃
Ũ ij,k̃D̃

−1

j,k̃ f̃ j
(
θ k̃,V k̃

)
− D−1

i,k̃
fPi
(
θ k̃,V k̃

)
(17)

where

Di,k̃ =
∂fPi
∂θi,k̃

(18)

Ũ ij,k̃=


[

∂fPi
∂θj,k̃

∂fPi
∂Vj,k̃

]
for the jth bus is PQ bus

∂fPj
∂θj,k̃

for the jth bus is PV bus

(19)

D̃j,k̃=




∂fPj
∂θj,k̃

∂fPj
∂Vj,k̃

∂fQj
∂θj,k̃

∂fQj
∂Vj,k̃

 for the jth bus is PQ bus

∂fPj
∂θj,k̃

for the jth bus is PV bus

(20)

f̃ j
(
θ k̃,V k̃

)
=


[
fPj
(
θ k̃,V k̃

)
fQj
(
θ k̃,V k̃

) ] for the jth bus is PQ bus

fPj
(
θ k̃,V k̃

)
for the jth bus is PV bus

(21)

E. ALGORITHM OPERATION PROCESS
In figure 2, we give a diagram of the iterative process of
bus-level PF calculation for a five-bus system. It should be
noted that five buses need to be configured with the necessary
computing resources. If a local bus cannot provide any
computing resources, it can seek assistance from neighbor
buses as agent. The agent can establish an independent
computing unit for the local bus to join the decentralized PF
calculation, or it can combine their information to perform
the decentralized PF calculation.

Returning to figure 2, we can see that when all buses com-
plete calculations according to formula (14), the entire system

completes one iteration. Repeat the iteration until the con-
vergence condition

{
|fP1| , · · ·

∣∣fP(n−1)
∣∣ ,
∣∣fQ1∣∣ · · · ∣∣fQ(n−1)

∣∣}
< 1e − 6 is satisfied (equivalent to the maximum error of
the bus power under the actual value is less than 0.1kW).
Currently, the solution is considered as the final PF solution.

Algorithm 1 Bus-Privacy-Preserving Decentralized
Power Flow Algorithm Considering Neighbor Partial
Derivative Information

Bus Data: Bus_Type, P_load,Q_load ,
G_parallel and B_parallel

1 Reading
Generator Data: P_Gen, Q_Gen,

Statue_Gen
Line Data: R, X , B, Ratio, Statue_Line

2 Pre-compute Gij,Bij,Pi and Qi for all buses based on
reading data

3 Initializing θi,0= 0,Vi,0 = 1 for all buses, set
ε = 10−6, 1S = 1 and k = 1

4 While (1S >ε) do
5 For i = 1, . . . , n− 1
6 fPi

(
θ k̃,V k̃

)
and fQi

(
θ k̃,V k̃

)
← Solve by (3) and (16)

7 If Bus_Type is PQ
8 Di,k̃, Dj,k̃ and U ij,k̃ ← Solve by (6), (7) and

(16)
9 fPj

(
θ k̃,V k̃

)
and fQj

(
θ k̃,V k̃

)
← Solve by (3) and

(16)
10 θi,k ,Vi,k ← Solve by (15)
11 Else if Bus_Type is PV
12 Di,k̃ , Ũ ij,k̃ and D̃j,k̃ ← Solve by (16)

and (18)-(20)
13 f̃ j

(
θ k̃,V k̃

)
← Solve by (3), (16) and

(21)
14 θi,k ← Solve by (17)
15 End If
16 k = k + 1
17 End For
18 1S = Max(f P

(
θ k̃+1,V k̃+1

)
, f Q

(
θ k̃+1,V k̃+1

)
)

19 End while
20 Return Vi, θi∀ buses i = 1, . . . ,n− 1;

IV. CONVERGENCE ANALYSIS
In the field of mathematical analysis, research on the conver-
gence of nonlinear equations focuses on local convergence
and semi-local convergence. Due to the uncertainty in the
iterative solution of nonlinear equations, global convergence
is difficult to confirm. As far as we know, for PF with
nonlinear equation properties, except for the NR method
with a special iterative form that can verify the semi-local
convergence property from the initial point, other methods
can only verify local convergence.

The proposed algorithm can verify local convergence.
Local convergence is the analysis of why the algorithm can
achieve iterative convergence when the solution to the system
of equations is known. If the algorithm has local convergence
in a known system, the algorithm is relatively reliable. For
unknown systems, it is likely to be able to find solutions as
well.
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FIGURE 2. A five-bus system demonstrates the proposed voltage iteration algorithm.

Next, we give a local convergence proof for the decen-
tralized PF algorithm proposed in this paper. Convergence
is a characteristic of the whole system, so it is necessary to
analyze its convergence based on the iterative equation of the
whole system. The following is a 2n − 2 equation system
formed by formula (15) when i = 1, 2, · · · , n− 1 to analyze
the convergence of the proposed algorithm.

(θk ,V k) =



θ1,k+1
V1,k+1

...

θi,k+1
Vi,k+1

...

θn−1,k+1
Vn−1,k+1


=



θ1,k
V1,k

...

θi,k
Vi,k

...

θn−1,k
Vn−1,k



−

(
D−1k Uk + I

)
D−1k



fP1 (θk ,V k)

fQ1 (θk ,V k)
...

fPi (θk ,V k)

fQi (θk ,V k)
...

fP(n−1) (θk ,V k)

fP(n−1) (θk ,V k)


(22)

where Dk is a diagonal matrix whose elements are the matrix
Di,k in formula (6).

Dk =



D1,k
. . .

Di,k
. . .

Dn−1,k


(n−1)×(n−1)

(23)

Uk satisfies the following formula

Uk = Dk − J (24)

where J is the Jacobian matrix in formula (2).

According to Ostrowski’s theorem [29], at the exact
solution (θ∗,V∗)T , if the spectral radius of the first-order
partial derivative matrix of the iterative function g (θk ,V k)

is less than 1, the iterative function has local convergence.
According to formula (22), for the proposed algorithm in this
paper, the first-order partial derivative of the iterative function
at the exact solution is:

g′ (θ∗,V∗) = I−
(
D−1∗ U∗ + I

)
D−1∗ J∗ (25)

Now, if we solve the spectral radius ρ
(
g′ (θ∗,V∗)

)
< 1,

we can infer that the algorithm has local convergence. Next,
we look for an equivalent solution to ρ

(
g′ (θ∗,V∗)

)
< 1.

First, construct an H matrix

H∗ = D−1∗ U∗ = D−1∗ (D∗ − J∗) = I−D−1∗ J∗ (26)

By (26) we can get

D−1∗ J∗ = I−H∗ (27)

Substitute equation (27) into equation (25)

g′ (θ∗,V∗) = H2
∗ (28)

Furthermore, it is worth mentioning that the spectral radius
is the largest eigenvalue of thematrix, so there is the following
relationship.

ρ
(
H2
∗

)
< ρ (H∗) < 1 (29)

To sum up, if ρ (H∗) < 1, it can be proved that the
algorithm proposed in this paper has local convergence.
We give ρ (H∗) of some test cases in the appendix, and it can
be found that they all satisfy the condition of ρ (H∗) < 1.

V. CASE STUDIES
In this section, we conduct simulation analysis to test the
speed performance and anti-disturbance performance of the
pro-posed algorithm (PA). We performed simulations using
IEEE test cases from the matpower database [30], where
these systems included the common test systems (14, 30,
39, 57bus systems), the radiation test systems (33, 69 bus
systems) and the larger test systems (118, 300, 1354pegase,
2383wp case system). We also show the results calculated by
the Gauss-Seidel method (GS) [24] and the Straightforward
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Approximation neighbor bus voltage method (SA) for the
above test system. All simulations have been done under
Windows 10 on a 3.20GHz Intel Core i5-6500 CPU personal
computer (4-GB RAM). It is worth mentioning that, in order
to avoid the influence of other computing activities, the
results reported for the larger test system are obtained as
the average of 100 simulations, and the results reported
for the remaining system are obtained as the average of
1000 simulations.

FIGURE 3. Semi-log plot of the maximum power mismatch for the
standard 14-, 30-, 118- IEEE bus systems under PA operation.

A. SPEED PERFORMANCE OF PROPOSED ALGORITHM
First, we study the convergence speed of the proposed
algorithm at low precision (ε = 10−3) on standard IEEE-
14, −30, −118 systems. As shown in figure 3, the proposed
algorithm completes convergence within dozens of iterations,
where the computation time is 0.005s, 0.018s and 0.355s
for IEEE-14, −30- and −118 systems, respectively. Clearly,
when computing commonly used test systems, the proposed
algorithm is able to complete the computation quickly.

Next, at high precision (ε = 10−6), we compare the
number of iterations and computation time between the PA
and other approaches. It needs to be acknowledged that the
traditional centralized NR method has fewer iterations and
shorter calculating time than the PA. Its excellent iterative
effect is achieved by sacrificing the privacy information of all
buses and letting the central control bear all the computational
burden. The starting point of our study is precisely to avoid
these shortcomings.

For comparison with bus-level decentralized PF
approaches, we show in Table 1 the number of iterations and
the ratio of PA reductions for PA, GS, and SA. Comparing the
number of iterations, it is easy to see that PA has considerably
fewer iterations than GS and SA, regardless of the system
size. The reason why PA has fewer iterations is that it
considers first-order neighbor bus information further than
existing methods. The first-order neighbor bus information
reflects the tendency of the bus voltage to change toward a

steady state.Taking them into account during the iteration will
enable the voltage iteration to be updated in a more accurate
direction. Thus, PA can reduce the number of iterations by a
large amount.

By analyzing the ratio of PA reductions, it can be found
that larger test systems have larger reduction ratios, while
radiation test systems have smaller reduction ratios. This
implies that PA can better reflect its speed advantage in
calculations of large-scale systems. For the radiation test
system, the reduction is relatively minor due to its special
structure (the system structure is not closed loop and each
bus is only conn- ected to adjacent numbered buses), which
makes it difficult to reflect the acceleration effect of the
decentralized algorithm.

FIGURE 4. Curves with less computation time for GS and SA compared
to PA.

FIGURE 5. Curves with less computation time for PA compared to GS
and SA.

Then, in figure 4 and 5, we show the difference between
the PA and GS, SA computation times. For common test
systems and radiation test systems, figure 4 shows that the
conven-tional approach takes less time to compute these
systems. Executing the simulation on a single computer
cannot distribute the computational burden of the first-order
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TABLE 1. The number of iterations calculated by GS, SA and PA under different test systems and the ratio of PA reductions.

information of the neighbor bus, so the calculation time of
PA is longer than that of the existing method. For large test
systems, figure 5 shows that PA computes these systems in
less time, and the time reduction is greater as the system size
increases. Although PA requires additional calculations for
first-order information, it reduces the number of iterations too
much, which makes the entire process calculation time faster
than existing methods.

B. ACCURACY ANALYSIS OF PROPOSED ALGORITHM
In order to verify that PA can accurately calculate the PF
solution, we use the solution of NR method as a stable PF
solution, and subtract the voltage solution calculated by PA.
If the deviation value is within the acceptable range, the
calculation result of PA can be considered to be accurate
enough.

FIGURE 6. The deviation values of PA and NR when calculating the
IEEE-14 bus system.

Firstly, taking the IEEE-14 bus system as an example,
calculate the PF solutions for all buses using NR and PA, and
then subtract the two solutions. figure 6 shows the deviation
values of PA and NR when calculating the IEEE-14 bus
system.The maximum voltage amplitude and phase deviation

in figure 6 are 4.4×10−8 and 5.7×10−7, respectively, which
is equivalent to an error of 4.4W and 57W in practice. For
a MW-level power grid, the error is very small. Therefore,
the calculation results of the PA and NR methods can be
considered to be equal.

Furthermore, we followed a similar strategy to obtain the
maximum deviation values for other IEEE testing systems,
as shown in Table 2.

TABLE 2. The ρ (H∗) value of test system.

In Table 2, the largest error value is 9.6×10−6, which
is obviously small enough. Considering various types of
systems, the calculation results of the PA method and the NR
method are the same. Therefore, it can be inferred that the
calculation of the PA is sufficiently accurate.

C. ANTI-DISTURBANCE PERFORMANCE OF PROPOSED
ALGORITHM
The actual power flow calculation process may be affected
by the instability of renewable energy generation, uncertainty
of electric vehicle loads, and the impact of extreme weather
on the power grid. These negative effects can lead to
fluctuations in generation/load or changes in the power
network topology. Whereas the centralized PF approach
requires re-computation to solve such problems, the bus-level
decentralized PF algorithm can overcome the disturbance
during computation and iterate each bus voltage in a new
steady-state direction. As depicted in figure 7, We imposed
some actual possible situations in the IEEE-14 bus system:
adding a new bus, outage of a branch with a load, and
changing the load demand of some buses. It should be noted
that to reflect the perturbation in the calculation process,
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FIGURE 7. Wiring diagram of IEEE-14 bus system with disturbance.

we implemented the perturbation at the 40th iteration (a
standard IEEE-14 bus test system requires 55 iterations under
the PA algorithm operation)

FIGURE 8. Dynamic graph of voltage amplitude in IEEE-14 system with
bus added under PA operation.

1) ADDING A NEW BUS
We added a PQ bus with P = 3.5MW,Q = 1.8MVAR to the
IEEE-14 bus system and monitored the voltage changes of
the bus to verify the ability of the PA to handle the changes in
the power network structure caused by the addition of the bus.
Figures 8 and 9 take some buses as examples, from which we

can see that all buses respond quickly when the 15th bus is
added. In the first few iterations, the bus undergoes relatively
large corrections to deal with interference. In subsequent iter-
ations, the bus is repeatedly modified to achieve converged
accuracy. Judging from the resolution of the interference
process, PA can resolve problems such as sudden increase
of buses.

FIGURE 9. Dynamic graph of voltage angle in IEEE-14 system with bus
added under PA operation.

FIGURE 10. Dynamic graph of voltage amplitude in IEEE-14 system with
load branch outage under PA operation.

2) OUTAGE A BRANCH WITH LOAD
Under certain extreme conditions, the power system suffers
a power outage on a loaded line. We simulate the occurrence
of faults by disconnecting the 10-11 branches of the IEEE-
14 system during the PF calculation. Taking the 10th, 11th,
13th, and 14th buses as an example, we can observe their
voltage changes in figures 10 and 11, where we can find that
the voltage of the 10th and 11th buses changes a lot due to
the disconnection of the connected branches. The remaining
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FIGURE 11. Dynamic graph of voltage angle in IEEE-14 system with load
branch outage under PA operation.

bus voltages will also be corrected accordingly in a small
range to handle the occurrence of interference. After several
iterations to correct the voltage to a new steady-state value,
the bus power tends to balance. obviously, the PA algorithm
success-fully resolves the interference caused by the line
disconnection.

FIGURE 12. Dynamic graph of voltage amplitude in IEEE-14 system with
load fluctuation under PA operation.

3) LOAD FLUCTUATION
During the operation of the power system, the load demand of
the power users changes frequently. A mature and stable PF
algorithm should have the ability to resist such interference.
Next, we select three disconnected PQ buses on the IEEE-
14 test system to apply fluctuating load for testing, where
they are bus 4 with load demand becoming 1.75 times, bus 9
with load demand becoming 0.75 times, and bus 13 with
load demand becoming 1.5 times. From figures 12 and 13,

FIGURE 13. Dynamic graph of voltage angle in IEEE-14 system with load
fluctuation under PA operation.

we can observe that buses 4, 9, and 13 substantially adjust
the voltage to a new steady-state value within a few iterations
when load fluctuations occur. The load demand of bus 7 does
not change, but since it is a neighbor of buses 4 and 9 with
varying loads, it also needs to be retuned in the direction
of the voltage iteration to bring the power of the buses
to equilibrium. After 17 more iterations than planned, the
PA reached a new equilibrium under disturbance, therefore,
the PA was able to cope with the disturbance of load
fluctuations.

VI. CONCLUSION
This paper proposes a bus-level decentralized power flow
calculation algorithm considering the first-order information
of neighbors. The proposed algorithm has a simple iterative
structure and can protect the privacy of all buses involved
in power network power flow calculations. Since the
constructed iterative format takes into account the first-order
information value of the neighbor bus, the proposed algorithm
reduces a large number of iterations compared to the existing
methods, and as the system scale increases, the number of
iterations decreases more.

The bus-level decentralized power flow algorithm can
solve the privacy leakage problem caused by the integration
of large-scale renewable energy sources (such as wind
energy and solar energy distributed power supplies) and
uncon-trollable loads (such as electric vehicles) into the
power grid. In addition, it will also make full use of low-
performance computing resources scattered on the load side,
which makes the overall power flow calculation workload
dispersed. However, there is still room for improvement in
the algorithm we developed, such as considering higher-
order neighbor information to speed up iteration and how to
prove the semi-local convergence of iteration. In the future,
the proposed algorithm will be continuously improved in
application.
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TABLE 3. The ρ (H∗) value of test system.

APPENDIX
The ρ (H∗) value of the test system is given in table 3.
As demonstrated above, when ρ (H∗) < 1, the algorithm
has local convergence on the given test system. Evidently,
the ρ (H∗) of our given test systems are all less than 1,
but they are close to 1. According to [31], we think that
ρ (H∗) can reflect the iterative efficiency of the algorithm,
the smaller the ρ (H∗), the higher the iterative efficiency of
the algorithm. Since the decentralized algorithm preserves
privacy among the buses, it sacrifices a part of the iteration
efficiency. So ρ (H∗) in Tab. 2 is relatively close to 1.

In fact, in the description in [32], for the iterative type
G(x) = x − f (x)/A′(x)(iterative form of the algorithm
in this paper), ρ

(
G(x∗)

)
is slightly larger than 1, and the

algorithm can also convergence. Therefore, ρ
(
G(x∗)

)
<1

is a sufficient but not necessary condition for the algorithm
to have local convergence. In this paper, it is proved that
ρ
(
G(x∗)

)
= ρ

(
H2
∗

)
< ρ (H∗). The algorithmmay converge

even ρ (H∗) is larger than 1, so ρ (H∗) close to 1 is not
directly related to the local convergence of the algorithm.
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