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ABSTRACT The inadequate automation level in the transit of oil drilling tubular columns has led to
significant inefficiencies and safety issues. To address these challenges, a real-time detection algorithm,
ECS-YOLOv5s, has been proposed. This algorithm aims to improve the accuracy of drill pipe identification
during operational processes, facilitating the automation of tubular column handling It has the potential
to reduce drilling cycles and overall drilling costs. ECS-YOLOv5s enhance the detection accuracy of drill
pipes by incorporating a Bidirectional Feature Pyramid Network (BiFPN) architecture with an improved
multi-scale feature fusion network. The use of EfficientNet as the backbone network reduces the number
of parameters and computations while effectively merging features from different layers. Additionally, the
Spatial Pyramid Pooling (SPP) structure in the Neck is replaced with SPPF, and a Convolutional Block
AttentionModule (CBAM) is introduced to improvemodel robustness, reduce parameters and computations,
and enhance the model’s ability to detect dense targets. The ECS-YOLOv5s algorithm exhibits superior
performance in drill pipe inspection, achieving a mean Average Precision (mAP) of 90.2%, a frame rate
of 125 FPS, and a parameter count of only 37%. It achieves an accuracy of 98.6%, outperforming the original
model by 9.2%. The comparative analysis demonstrates that the improved algorithm surpasses traditional
models such as YOLOv5s, SSD, Faster-RCNN, and YOLOv7-tiny in both performance and accuracy. These
findings provide valuable insights for the research on automated processing of tubular columns in intelligent
oil drilling platforms.

INDEX TERMS Yolov5s, oil pipe column, deep learning, target detection, ESC-YOLOv5s.

I. INTRODUCTION
Drilling is a key link in the discovery, exploration, and
exploitation of oil and gas resources, but the existing drilling
technology is unable to meet the development needs of com-
plex oil and gas resources in terms of economy, safety, high
efficiency, and environmental protection. It is necessary to
develop a new generation of transformative drilling technol-
ogy. Intelligent drilling technology is a transformative drilling
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technology that integrates the theories and technologies of
large data, artificial intelligence, information engineering,
and downhole control engineering. Intelligent drilling tech-
nology is in its infancy, and for this reason, based on the
systematic analysis of the current status of the development
of key technologies and equipment for intelligent drilling,
the key direction of intelligent drilling is discussed. To pro-
mote the basic theory research of intelligent drilling and
improve the intelligent drilling technology system [1]. With
the increase in available data and the rapid development of
artificial intelligence (AI) technology. A large number of
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machine learning studies have been conducted in different
drilling applications. Data-driven models based on machine
learning methods can provide greater advantages than tradi-
tional analytical or numerical models. Such as flexible model
inputs, better prediction accuracy, and the ability to discover
hidden patterns [2].

At present, the level of automation in oil drilling is rel-
atively low, with most of the operation process still requir-
ing manual labor. This creates a high demand for personnel
and contributes to efficiency and safety problems. Therefore,
the development of oil drilling tubular column automation
processing technology is crucial in reducing manpower con-
sumption, work intensity, and operation cycles, while improv-
ing operation efficiency and quality. In intelligent drilling
pipe column inspection, the detection algorithm must pos-
sess strong robustness and adaptability to accurately identify
drilling targets amid complex environments such as temper-
ature, pressure, and vibration. High real-time performance is
also required during the detection process, which puts signif-
icant demands on the algorithm’s efficiency and speed. The
continuous detection of tubular columns requires large data
processing and analysis, which can be complex and require
model training and optimization, thus presenting a challenge
for model data storage and high-performance computing
power. Moreover, different drilling geology and environmen-
tal conditions can significantly impact target recognition,
necessitating strong environmental adaptability for different
drilling scenarios. Completing target detection before com-
plex processing for specific targets can effectively reduce
the difficulty of subsequent processing and improve effi-
ciency and accuracy. The image target detection technology,
which mainly utilizes distinguishable target image features
to complete target detection, is one of the key technologies in
vision technology and is widely used in the field of automatic
detection.

Currently, the level of automation in oil drilling remains
low. On drilling platforms, most operations still require man-
ual labor, resulting in high personnel demand, efficiency,
and safety issues. Therefore, the development of oil drilling
tubular column automation processing technology is cru-
cial in reducing manpower consumption, work intensity, and
operation cycles while improving efficiency and operation
quality. During intelligent drilling pipe column inspection,
the algorithm requires robustness and adaptability to handle
the complex environment, including temperature, pressure,
and vibration. The algorithm must also possess high real-
time performance to ensure accurate identification of drilling
targets. Processing and analyzing large amounts of data dur-
ing continuous tubular column detection often require com-
plex model training and optimization, posing challenges for
model data storage and high-performance computing power.
Different drilling geologies and environmental conditions can
impact target recognition, necessitating strong environmen-
tal adaptability for different drilling scenarios. Target detec-
tion involves identifying all interested targets in the image
and completing classification and localization accordingly.

Utilizing distinguishable target image features, image target
detection technology is a key aspect of vision technology and
is widely used in the field of automatic detection.

The use of traditional target detection models may have
problems such as low accuracy, slow speed, and large model
size, while the improved models can achieve better perfor-
mance in different fields. Therefore, the use of improved tar-
get detection models adapted to the needs of various domains
is necessary to enhance the detection accuracy, response
speed, and deployment efficiency in application scenarios to
better meet operational requirements. Fan et al. [5] replaced
the up-sampling module in the original model with the
CARAFE up-sampling module in the Neck layer to improve
the accuracy and average precision of the model to recognize
honeysuckle. Gu et al. [6] proposed an improved YOLOv5
(AYOLOv5) based on the attention mechanism to improve
the recognition rate of cell detection. Huang et al. [7] added
a small target detection layer in the Neck of the network
structure. The CBAM attention mechanism was added to the
convolutional module to optimize the model, and the accu-
racy of the model was assessed by sensory evaluation, tex-
ture profile analysis, and chromaticity analysis. Jia et al. [8]
improved the C3 module in the YOLOv5s feature fusion
network and designed the C3CA module by combining the
coordinated attention mechanism, which improved the accu-
racy of the metal corrosion recognition. Li et al. [9] intro-
duced the EIoU and the Quality Focal Loss to optimize the
loss function of the network, which solved the problem of
accuracy reduction caused by sample inhomogeneity, and at
the same time, accelerated the training convergence speed
and improved the regression accuracy. Li et al. [10] improved
the CSP, FPN, and NMS modules in YOLOv5s, which elim-
inated the influence of the external environment, enhanced
the ability of multiscale feature extraction, and improved the
detection distance and detection performance. Li et al. [11]
proposed an underwater scallop recognition algorithm based
on improved Yolov5s, designed a new lightweight back-
bone network model, and utilized group convolution and
inverse residual block to replace the original Yolov5s back-
bone network, which improved the detection accuracy and
accelerated the detection speed. Yu and Shin [12] proposed
an improved scheme based on YOLOv5s, which combines
coordinate concern blocks and uses a bidirectional feature
pyramid network for better feature fusion, showing the effec-
tiveness and applicability of the model in SAR image ship
detection. Yuan et al. [13] proposed a novel YOLOv5s-
CBAM-DMLHead method based on YOLOv5s to improve
the performance of themodel, which reduces the computation
of the original model and the detection time. Chuang [30]
summarized the current problems of the YOLO algorithm in
the field of target detection and the future research trends.

The aforementioned research has proposed several algo-
rithms that have been applied to various fields for detection
purposes. These algorithms have made significant break-
throughs in engineering, agriculture, medicine, and other
areas of identification. However, there have been very few
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FIGURE 1. Traditional YOLOv5s model structure.

studies conducted on the recognition and detection of drilling
pipe columns. The algorithm of ECS-YOLOv5s, presented
in this paper, provides accurate and efficient detection of
drilling pipe columns. Its robustness and performance have
been experimentally verified and compared in different envi-
ronments during the writing process.

II. CONVOLUTIONAL NEURAL NETWORK TARGET
DETECTION ALGORITHM
A. YOLO TARGET DETECTION ALGORITHM
Convolutional Neural Network target detection algorithms
include two main categories: region-based methods and
single-stage methods.1) Region-based Methods: R-CNN
(Region-based Convolutional Neural Networks) is one of the
milestones in the field of target detection. It first extracts
candidate regions using a selective search algorithm, then
performs convolutional feature extraction for each candidate
region, and finally performs target classification by a sup-
port vector machine classifier. Fast R-CNN [14]improves
on R-CNN by feeding the entire image into the network
and extracting features from the candidate regions through a
RoI pooling layer, which reduces repetitive computation and
memory consumption. Faster R-CNN introduces a candidate
region generation network Region Proposal Network, RPN,
based on R-CNN for fast generation of candidate regions
and joint training with shared convolutional features. This
allows for a more accurate extraction of candidate regions
at different scales and aspect ratios. Mask R-CNN [15] adds
segmentation of target instances to Faster R-CNN [16], which
not only detects and classifies the targets but also gener-
ates an accurate segmentation mask for each target instance.
2) Single-shotMethods): YOLO [17], [18], [19], [20] is a very
fast target detection algorithm that performs dense prediction
directly on the image and accomplishes target classification
and localization in a single stage. It divides the image into
grids and directly predicts the class probability and bound-
ing box information for each grid by using a convolutional
neural network. SSD [21] (Single Shot MultiBox Detector) is
another single-stage target detection algorithm, that employs

multi-scale feature maps for detecting targets of different
scales and aspect ratios. By applying multiple predefined
anchor boxes on different levels of the feature map, SSD
enables accurate detection of targets with different shapes
and sizes. Region-based methods usually have better perfor-
mance in terms of accuracy but are slower, while single-stage
methods have faster speed but may be slightly less accurate.
Depending on the specific needs, a suitable algorithm can be
chosen to realize the target detection task.

B. YOLOv5 ALGORITHM
YOLOv5 is a deep learning-based target detection algorithm,
which is the fifth version of the YOLO series of algo-
rithms.YOLOv5 is characterized by fast speed and high accu-
racy and is suitable to be deployed on devices with limited
resources. Arranged from smallest to largest model size,
they are YOLOv5n, YOLOv5s, YOLOv5 m, YOLOv5l, and
YOLOv5x. The different widths and depths of these models
make YOLOv5 applicable to different datasets, which makes
it easy for users to make choices. Because only one category
of drill pipe is recognized in this study, and considering
the need for real-time detection and easy deployment, the
YOLOv5s model, which has fewer parameters and less com-
putation, is used as the base model.YOLOv5s adopts the idea
of a single-stage detector, which means that target detection
is divided into two parts: firstly, we get the bounding box of
the object, and then we classify and localize the bounding
box. Moreover, YOLOv5s adopts the backbone network as
CSPDarknet, which is a network architecture that improves
accuracywith less computation and parameters through a new
grouped convolution scheme. The structure of the YOLOv5s
model is shown in Figure. 1.

YOLOv5s has the following key features: 1) Network
structure design: YOLOv5s uses a lightweight network struc-
ture design that contains a backbone network, a feature
pyramid network, and a prediction head. The backbone net-
work uses CSPDarknet53 as a feature extractor, which builds
more complex feature representations by using convolutional
blocks and cross-layer connections. The feature pyramid
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network is used to process feature maps at different scales
and generate multi-scale predictions. The prediction head is
then responsible for predicting target classification and local-
ization for features at different scales.2) Multi-scale training
and inference: to improve detection accuracy and robust-
ness, YOLOv5s employs a multi-scale training and inference
strategy. In the training phase, YOLOv5s randomly scales
the input images to different scales and performs data aug-
mentations to increase data diversity. In the inference phase,
YOLOv5s can receive an image of any size as input resize the
image to a fixed size by interpolation and padding operations,
and then perform target detection. 3) Adaptive Data Enhance-
ment: YOLOv5s introduces an adaptive data enhancement
strategy by adjusting the image enhancement according to
the size and location of the target. Smaller targets are more
strongly augmented to increase their importance in training,
while larger targets avoid over-enhancement to prevent infor-
mation loss.4) Detection and tracking strategy: YOLOv5s
provides target tracking by applying a Kalman filter in the
prediction process. The filter predicts the position of the
target and provides continuous target tracking until the detec-
tion results are stabilized. YOLOv5s strikes a good balance
between detection speed and accuracy compared to previous
versions. It can achieve relatively accurate target detection
and localization while ensuring high detection speed. Due to
its lightweight network structure, YOLOv5s is more advan-
tageous for embedded devices and mobile deployments. The
algorithm flowchart of YOLOv5s is shown in Figure 2. First,
the image is resized to a specified size and normalized to
a pixel value within the range of 0 to 1. Simultaneously,
data augmentation techniques like random image flipping,
rotating, and cropping are applied to augment the training
data and enhance the model’s generalization ability. Next, the
image is passed through a feature extraction network that’s
typically based on convolutional neural networks (CNNs) to
extract useful features from the image. In YOLOv5s, CSP-
Darknet53 is used as the feature extraction network, where
CSP refers to Cross cross-stage partial connections. This
architecture balances computational efficiencywith accuracy.
The feature extraction network produces different levels of
feature maps, and YOLOv5s uses a feature pyramid to detect
targets of varying sizes. The feature pyramid merges all levels
of feature maps using pooling and upsampling operations.
By joining shallow feature maps with deeper feature maps,
a feature pyramid with high-dimensional semantic informa-
tion is produced. A detection head is then applied to the
feature pyramid to detect objects in the image. YOLOv5s
uses a CenterNet-based detection head that can predict the
centroid and aspect ratio of the object simultaneously, thereby
improving the accuracy of target detection. The detection
head also employs optimization techniques like Feature Pyra-
mid Networks (FPN) and Path Aggregation Network (PANet)
to enhance detection performance. Finally, the prediction
results undergo several post-processing steps to determine
the final detection frames and category labels. These post-
processing steps include the de-duplication of frames and

confidence screening to improve the accuracy and reliability
of the prediction results.

FIGURE 2. Algorithm flowchart of YOLOv5s.

Compared with the YOLOv4 [22] algorithm, the improve-
ment of YOLOv5s is mainly in two aspects: 1) the back-
bone network adopts CSPDarknet, which not only improves
the accuracy, but also has higher computational efficiency;
2) during the training process, YOLOv5s adopts Mosaic
data augmentation, Self-Adaptive Training [23], and Label
Smoothing [24] to enhance the model’s generalization ability
and robustness.
Input Layer: The input layer mainly consists of Mosaic

image enhancement, adaptive anchor frame computation, and
adaptive image scaling. The structure of the input layer is
shown in Figure 3.

FIGURE 3. Input layer structure diagram.

• The Backbone: YOLOv5s backbone network is a deep
convolutional neural network consisting of several convolu-
tional layers, pooling layers, and activation functions. It is
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used in the YOLOv5 target detection algorithm and is one
of the core parts of the algorithm.

(1) The Focus structure in YOLOv5 is a convolutional neu-
ral network layer used for feature extraction, which is used to
compress and combine the information in the input feature
maps to extract higher-level feature representations. The dia-
gram of the Focus structure is shown in Figure. The Focus
structure is a special convolutional operation in YOLOv5,
which is used as the first convolutional layer in the network
to downsample the input feature maps to reduce the amount
of computation and the number of parameters. The Focus
structure diagram is shown in Figure 4.

FIGURE 4. Focus structure diagram.

(2) CSP (Cross Stage Partial) structure is an important
component in YOLOv5, which can effectively reduce the
network parameters and computation while improving the
efficiency of feature extraction. The core idea of the CSP
structure is to split the input feature map into two parts, one of
which is processed by a small convolutional network (called
a sub-network), and the other part is directly processed in the
next layer of processing. The two parts of the feature maps
are then stitched together and used as input for the next layer.
The structure is shown in Figure 5.

FIGURE 5. CSD structure diagram.

The neck network in YOLOv5 refers to the intermediate
feature extraction network added on top of the backbone net-
work, which is mainly used to enhance the feature expression
ability of the model and further improve the detection perfor-
mance of the model. Two different Neck network structures
are used in YOLOv5: SPP and PAN.

(2) SPP structure
Spatial Pyramid Pooling (SPP) structure is a pyramid pool-

ing structure that can pool feature maps of different sizes to

enhance the model’s ability to perceive targets at different
scales. The main idea of the SPP structure is to fuse infor-
mation at different scales by pooling input feature maps of
different sizes. Its structure is shown in Figure 6. As can be
seen from the figure, the SPP module consists of maximum
pooling with three different pooling kernel sizes, a jump join,
and a stacking operation, where kerbel size ={1 × 1, 5 × 5,
9 × 9, 13 × 13}.

FIGURE 6. SPP sturcture diagram.

(2) PAN structure
Path Aggregation Network (PAN) is a feature pyramid

network structure for target detection. The PAN structure
is mainly composed of two modules, feature pyramid, and
feature fusion, which aims to improve the model’s ability to
perceive targets at different scales through multi-level feature
fusion.

• Outputs: The output of YOLOv5 is mainly prediction
boxes, each of which consists of the following information:

1) confidence score: the probability of whether the target
exists in the box, ranging from 0 to 1; 2) class probabilities:
the probability that the target in the box belongs to each class,
generally the number of predefined classes; 3) bounding box
coordinates: indicates the position and size of the target,
usually represented by a rectangular box.

The output layer in YOLOv5 generally includes three fea-
ture maps at different scales, each feature map corresponding
to a prediction box at a different scale, and each prediction
box containing information as described above. Specifically,
YOLOv5 predicts the location and size of the bounding box
of the target in the output layer by using an anchor box, and
at the same time calculates the category probability by using
a softmax function for the prediction result corresponding to
each anchor box.

(1)Bounding box
The Bounding box loss function in YOLOv5 uses the IoU

loss function, which is mainly used to measure the difference
between the predicted bounding box and the true bounding
box.

IoU loss is a variant of Intersection over Union (IoU),
which is a metric used to measure the degree of overlap
between the predicted bounding box and the true bounding
box. In target detection, IoU is often used to evaluate the over-
lap between predicted and true boxes to determine whether
the predicted boxes are correct.

Specifically, for each predicted bounding box, we calculate
its IoU value with all the real bounding boxes, and then
select the real bounding box with the largest IoU as its
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corresponding matching target, to calculate its IOU loss. its
specific use of the DIOU loss function with the following
formula:

LDIOU = 1 − IOU +
P2

(
b, bgt

)
c2

(1)

LCIOU = 1 − IOU +
P2

(
b, bgt

)
c2

+ av (2)

a =
v

(1 − IOU) + v
(3)

v =
4
π2

(
tan−1 w

gt

hgt
− tan−1 w

h

)
(4)

(2) NMS non-maximum suppression
In a target detection task, an object may be detected by

multiple prediction frames, to avoid multiple detections of
the same object, the duplicate prediction frames need to be
filtered, this process is Non-maximum suppression (NMS).
The core of the NMS algorithm is to remove the redundant
prediction frames by comparing the IOUs between the dupli-
cate prediction frames and retaining the optimal result of pre-
diction frames and retaining the optimal result. In YOLOv5,
NMS can avoid the problem of repeated detection of the same
object and improve the accuracy and efficiency of detection.

III. BASED ON IMPROVED YOLOv5s
A. AN IMPROVED NECK STRUCTURE
The SPPF (Spatial Pyramid Pooling Fusion) structure further
introduces a feature fusion module based on the SPP struc-
ture to improve the model’s perceptual ability and detection
performance. Specifically, the SPPF structure first performs
different sizes of pooling operations on the input feature
maps, then fuses the pooling results of different scales by
convolution operations, and finally outputs the fused feature
maps. The structure is shown in Figure 7.

The SPPF structure is characterized by the ability to
adaptively fuse feature information of different scales, thus
enhancing the feature expression and sensing ability of the
model.

FIGURE 7. SPPF sturctures diagram

B. IMPROVED MULTI-SCALE FEATURE FUSION NETWORK
As the number of network layers deepens, the semantic infor-
mation of the feature graph becomes richer and richer, but the
detail information gradually decreases, which is extremely
unfavorable for small target detection. However, if only shal-
low features with rich detailed information are used for detec-
tion, it will reduce the detector’s performance. To overcome
the shortcomings of deep features and shallow features, the
fusion of deep and shallow features is generally used to obtain
more comprehensive and rich feature information. As shown

in the following figure, three typical design forms of multi-
scale feature fusion networks are demonstrated, and these
three structures also represent the development process of
feature fusion networks to some extent. The characteristics
of each network structure are introduced one by one below.
The multi-scale feature fusion network architecture is shown
in Figure 8.

FIGURE 8. Multi-scale feature fusion network architecture.

A Feature Pyramid Network (FPN) is a widely used net-
work structure for target detection tasks that address the
inadequacy of single-scale features. It utilizes bottom-up and
top-down connections to flow information from the feature
pyramid to detect targets at different scales. The FPN struc-
ture is shown in (a). From the figure, it can be seen that FPN
can only convey strong semantic information from the top
down, and fuses the deeper feature maps with the shallower
ones after up-sampling them.

Features are extracted from the input image by a backbone
network, usually a convolutional neural network, to obtain a
series of feature maps at different levels, with progressively
lower resolutions and different semantic information. Starting
from the highest resolution feature maps, the resolution of
the feature maps is increased by up-sampling, and a summing
operation is performed with lower resolution feature maps to
obtain the fused feature maps. Specifically, each up-sampled
feature map is summedwith the neighboring lower-resolution
feature maps to form a pyramid structure, and a 1 × 1 con-
volution operation adjusts the number of channels of the
neighboring feature maps to ensure the channel consistency
of the feature maps in the fusion process. However, in deep
neural networks, the path to pass shallow features to deep
features is generally very long, and most of the informa-
tion of the target may have been lost in the downsampling
process, and this approach fails to perform feature fusion
well.

Path Aggregation Network for Instance Segmentation
(PANet) improves based on FPN to further improve the per-
formance of the feature pyramid. Unlike FPN, PANet intro-
duces horizontal and vertical feature fusion mechanisms, and
the structure of PANet is shown in (b), which contains two
feature fusion paths, top-down and bottom-up. This shortens
the distance from the shallow features to the deeper features
optimizes the feature fusion of the FPN network to a certain
extent, and improves the effect of target detection. Still, at the
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same time, it also increases the number of parameters and
computation amount, which is different from FPN. Similar to
the lateral connection of FPN, PANet also adjusts the channel
number of neighboring feature maps by 1 × 1 convolution
operation. However, unlike FPN, PANet also introduces a
feature supplementation module, i.e., fusing the laterally con-
nected feature maps with the upper-level feature maps to
enhance the lower-resolution features. In FPN, the bottom-
up feature extraction network simply generates a feature
pyramid, whereas PANet introduces a cascade fusionmodule,
which fuses the features of each level of the feature pyramid
with the upper-level features.

Weighted Bidirectional Feature PyramidNetwork (BiFPN)
is a further improvement of the feature pyramid struc-
ture for target detection tasks. It adds a multi-level fea-
ture fusion mechanism based on PANet and introduces
cross-level feature connections to better balance the feature
information at different levels. The structure of BiFPN is
shown in (c), which verifies the effectiveness of bidirectional
feature fusion in the PANet network, but the structure is
simpler.

Bottom-up construction: similar to the traditional fea-
ture pyramid network, different levels of feature maps are
extracted through a backbone network. BiFPN introduces the
connection of top and bottom branches, and in the process of
bottom-up connection, each resolution level can connect the
feature maps of its upper and lower levels as needed. Such
a bidirectional connection can realize the transmission and
fusion of information. Based on bi-directional connection,
BiFPN further introduces feature fusion operation. Specifi-
cally, each node calculates the weighted sum between the fea-
ture maps of different resolution levels, where the weights are
adaptively calculated according to the resolution levels and
can be adjusted based on learning to balance the feature infor-
mation contribution of different levels. To further enhance the
information transfer, BiFPN also introduces additional cross-
layer connections. Specifically, for each resolution level,
it can not only connect the feature maps of the previous and
next levels but also connect with the levels that are far apart.
This extends the range of information flow and increases the
perceptual capability of target detection.

In 2020, Tan and his colleagues proposed a novel net-
work called BiFPN [39], which is an extension of the
PANet network that aims to further optimize its performance.
BiFPN mainly makes four key improvements to the PANet
architecture. Firstly, it removes nodes with only one input,
which do not contribute to feature fusion and increase compu-
tational complexity. Secondly, it increases jump connections
between features extracted from the backbone network and
those involved in downsampling fusion. This can fuse more
features without increasing the cost and effectively alleviate
the feature loss phenomenon caused by too many network
layers. Thirdly, BiFPN considers bi-directional paths as a
single unit, allowing more advanced features to be fused.
Lastly, it proposes a weighted feature map fusion strategy
that assigns learnable weights to the features of different

scales involved in fusion, thus regulating the importance of
features. These improvements enable BiFPN to achieve better
performance than the original PANet network.

C. HYBRID CBAM ATTENTION MECHANISM
The attentionmechanism distinguishes the importance of fea-
ture information by adjusting the size of the weights. Given
that the fusion of secondary features does not contributemuch
to the detection results and also increases the computational
effort, the weights of the secondary features have to be low-
ered while the important features are given higher weights.
Since YOLOv5 first fuses the features to different degrees at
the Neck side, and then the detection head directly outputs the
prediction results on the fused feature map, it is necessary to
add an attention mechanism to boost the critical features and
suppress the irrelevant features before the next feature fusion
at the Neck side.

The network structure after adding the CBAM [42] module
is shown below. The YOLOv5s-P2-CBAM model adds a
CBAM module after each C3 module at the Neck side and
before the convolution operation. That is, between two feature
fusions, the attention mechanism is added to enhance the
network’s attention to small targets. The network after adding
the CBAMmodule performs a feature enhancement operation
on the feature map before the next feature fusion. So that
the network ignores the interference of irrelevant information,
focuses on the key features, and fuses the relatively important
features. This not only makes the fused feature map contain
more effective information and improves the accuracy of
small target localization but also achieves the purpose of
reducing the amount of computation and improving the speed
of the model.

FIGURE 9. Convolutional black attention module.

As can be seen from Figure 9, after adding the CBAM
module, the feature processing flow at the Neck end is as
follows: 1) In the FPN structure, up-sampling operations are
continuously performed on the deep feature maps to fuse
the shallow feature maps of larger scales. For each fused
feature map, the C3 operation is performed first to reduce
the computation of the network. Then the CBAM attention
mechanism is added to enhance the network’s ability to pay
attention to key channels and key regions in the feature
map. Then operations such as convolution and upsampling
are performed for the next feature fusion. 2) The CBAM
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attentionmechanism is also introduced into the PAN structure
to update the feature map after the last fusion, to enhance the
network’s attention to important features, and to incorporate
more useful shallow geometric features into the deeper fea-
tures; and then the feature map is downsampled for fusion
with the small resolution feature map.

D. EFFICIENTNET LIGHTWEIGHT NETWORK
EfficientNet is a convolutional neural network architecture
and scaling method that uses composite coefficients to uni-
formly scale all dimensions of depth/width/resolution. It aims
to reduce the complexity and computational cost of the model
while maintaining high performance. The network was pro-
posed by a team of Google researchers and achieves efficient
and effective modeling by using a composite scaling param-
eter (composite scaling) approach that simultaneously scales
the depth, width, and resolution of the network at different
network layers. Unlike traditional approaches that arbitrarily
scale these factors, the EfficientNet scaling method uses a
fixed set of scaling coefficients to uniformly scale network
width, depth, and resolution. EfficientNet employs composite
coefficients to uniformly scale network width, depth, and
resolution in a principled manner. Experiments have justified
the composite scaling method in that if the input image is
larger, then the network needs more layers to increase the
receptive domain and more channels to capture finer-grained
patterns on the larger image. The underlying EfficientNet-B0
network is based on the reverse bottleneck residual block of
MobileNetV2, as well as the squeeze and excitation blocks.
The EfficientNets also have good migration accuracies on
CIFAR-100(91.7%), Flowers (98.8%), and three other migra-
tion learning datasets, and with an order of magnitude fewer
parameters.

The EfficientNetB0 structure is a powerful and efficient
neural network architecture, where ‘‘B’’ denotes the basic
version of the network. EfficientNetB was proposed by the
Google Brain team in 2019 to design a neural network with
excellent performance along with efficient computation and
parameter counts. It is the smallest EfficientNet model so far
with less number of parameters and computational complex-
ity. The composite scaling of the EfficientNetB0 model is
computed as in Eq.

depth : d = αϕ

width : ω = βϕ

resolution : r = γ ϕ

s.t.

{
α · β2

· γ 2
≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1
(5)

where α, β, γ are constants that can be determined from a
mini-grid search. ϕ is a user-specified factor that controls how
many resources are available for model scaling, while α, β,
and γ specify how to allocate these additional resources to
network width, depth, and resolution, respectively.

The core component of EfficientNetB0 is a convolutional
neural network whose architecture is based on a variant

TABLE 1. EfficientNet-B0 baseline network.

of the Inception model. It employs a range of convolu-
tional operations, which include standard convolution, depth-
separable convolution, and channel-by-channel linear com-
binations to improve the model’s representational power and
computational efficiency. An important feature of the Effi-
cientNetB0 architecture is the use of a design methodol-
ogy known as a depthwise separable convolutional network
(DSCN). Network) design methodology. This approach com-
bines two techniques, Depthwise Separable Convolutional,
and Channel-by-Channel Linear Combination, to reduce the
amount of computation and the number of parameters while
maintaining the model’s representational power. Specifically,
the EfficientNetB0 model consists of multiple stacked con-
volutional layers containing depth-separable convolutional
layers, channel-by-channel linear combination layers, and
standard convolutional layers. The entire network structure
is divided into multiple stages, each of which consists of
multiple convolutional modules. Each convolutional module
contains a depth-separable convolutional layer and a channel-
by-channel linear combination layer for extracting features
at different levels. The basic network structure is shown in
Table 1. In addition, EfficientNetB includes some additional
techniques such as the Swish activation function and the SE
[36] (Squeeze-and-Excitation) module. The Swish activation
function provides better nonlinear modeling capability while
maintaining high computational efficiency. The SE module
can adaptively adjust the weights of different feature chan-
nels to further improve the model’s characterization ability,
achieving a smaller number of parameters and computational
complexity while maintaining a strong feature extraction
capability.

MBConv is a modularized convolutional layer structure
used in EfficientNet, and its structure is shown schematically
in Figure 10. The core idea of the MBConv structure is to
build a lightweight and efficient neural network by using
a combination of deeply separable convolution and dilation
convolution. It combines the concepts of Inverted Residual
and Bottleneck and aims to improve the efficiency and per-
formance of themodel. In Table 1,MBConv1 does not expand
the number of channels of the features during feature extrac-
tion, whileMBConv6 indicates that the number of channels of
the features is expanded to six times the number of channels
of the input features, aiming at expanding the features in
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TABLE 2. Improved process of the YOLOv5s.

the channel dimension; k3 × 3 indicates that convolutional
kernel of size 3 × 3 is used in the MBConv structure, and
k5 × 5 indicates that convolutional kernel of size 5 × 5 is
used in the MBConv structure. k5 × 5 denotes a convolution
with kernel size 5 × 5 in the MBConv structure [5].
The MBConv structure consists of three parts: dilation

convolution, depth separable convolution, and projection con-
volution. The first is the dilation convolution, which applies a
convolution operationwith a dilation rate greater than 1 on the
input feature map. Dilation convolution has a larger sensory
field than traditional convolution and helps the model to
better capture the global information in the image. The next
step is depth-separable convolution, which is divided into
two steps: depthwise convolution and pointwise convolution.
Depthwise convolution first applies spatial convolution on
each input channel and then performs point-by-point convo-
lution on the channels to reduce the amount of computation
and the number of parameters. This operation allows for
better feature extraction with relatively minimal computing
expense. Finally, there is the projection convolution, which
is used to adjust and match the number of channels of the

input and output feature maps. The projection convolution
is a point-by-point convolution used to map the number of
channels of the input feature map to the number of channels
of the output feature map. With the combination of these
three components, the MBConv architecture provides higher
parametric and computational efficiency, thus excelling in
model lightweight and efficiency. It has already achieved
remarkable results in EfficientNet and some other excellent
lightweight networks.

E. LIGHTWEIGHT DRILL PIPE TARGET INSPECTION
MODEL
Replacing the traditional YOLOv5s backbone network with
the EfficientNet lightweight model, to reduce computational
and storage resources while maintaining high performance
and avoiding accuracy degradation. The proposed method
also incorporates an improved multi-scale feature fusion net-
work BiFPN architecture to enable the fusion of features
from different feature layers, enhancing the model’s ability
to extract features and improving training accuracy. Addi-
tionally, the SPP module is replaced with the SPPF module,

VOLUME 12, 2024 24141



B. Peng, K. Niu: Research on Intelligent Oil Drilling Pipe Column Detection Method

FIGURE 10. MBConv structure diagram.

and the CBAM attention mechanism module is introduced
to enhance the model’s robustness, reduce parameters and
computation, and further improve feature extraction ability
and detection accuracy. The proposed lightweight YOLOv5s
model is named ECS-YOLOv5s. The improved process of the
ECS-YOLOv5s model is shown in Table 1.

Therefore, the improved network model aims to improve
the model detection accuracy and robustness while reducing
the number of model parameters and computation, which is
suitable for lightweight scenarios and better able to identify
drill pipes in complex operating environments. The structure
of the improved lightweight YOLOv5s model is shown in
Figure 11.

IV. TEST METHODS
A. IMAGE DATA PROCESSING AND ENVIRONMENT
SETTINGS
The experimental validation of this study was conducted
under Windows 10 operating system with Intel(R) Core(TM)
i7-10700F CPU @ 2.90GHz, 64-bit operating system,
NVIDIA GeForce GTX 1060 6GB for GPU, 32GB of host
computer RAM, Pytorch deep learning framework, Pycharm
IDE, software environment is CUDA10.2, torch version
1.7.1, Python3.7 programming language to run.

B. NETWORK MODEL SELECTION
There are many convolutional neural network models for
target detection, such as the early R-CNN family of models,
SSD, CenterNet [48], RetinaNet [49], Mask R-CNN, Effi-
cientDet, etc., as well as new algorithmic models published in
the last few years such as MobileNet [50], EfficientNet, etc.,
the network models are getting smaller and more compact,
and the recognition speed as well as the recognition accuracy
of the models are getting higher and higher. Therefore, in this
paper, we use AlexNet, a network that has been used more

times in previous studies and a newly published network in
recent years, as a deep convolutional neural network model
for recognizing pipe columns, and by adjusting the hyperpa-
rameters of the network model such as the learning rate, the
number of training cycles, and the size of the sample batch,
the images of pipe columns are recognized.

C. NETWORK INFRASTRUCTURE
The convolutional neural networkmainly consists of the input
layer, convolutional layer, pooling layer, fully connected
layer, and output layer. In this paper, the recognition of drill
pipe is based on five kinds of convolutional network mod-
els, YOLOv5s, Faster-RCNN, SSD, improved light-weight
YOLOv5s, and YOLOv7-tiny [55], and through the com-
parison of the experiments, we find out the network model
suitable for the recognition of pipe columns. The flowchart
of the training and testing process. is shown in Figure 12.

D. NETWORK MODEL EVALUATION METRICS
In the process of target detection, the model outputs several
prediction frames after calculating the input image, and these
prediction frames can be categorized into four categories True
Positive (TP), false positive (FP), false negative (FN), and
True Negative(TN) according to their classifica-tion results
[28], and the corresponding evaluation indexes are calculated
according to the prediction frame judgment is correct or not
to calculate the corresponding evaluation index. Where TP
indicates that the true target A is correctly predicted as target
A, TN indicates that the true target B is correctly predicted
as target B, FN indicates that the true target A is incorrectly
predicted as target B, and FP indicates that the true target B
is incorrectly predicted as target A. The four categories are
shown in Figure 13.
Based on the above four categories of samples, various

evaluation metrics of the model can be obtained, such as
Recall, Precision, Average Precision (AP), mean Average
Precision (mAP), and Frame Rate (FPS).

1) Recall rate, also known as check all rate, refers to the
ratio of the number of correctly detected objects to the total
number of objects in the test set, and the expression is shown
in Eq:

Recall =
TP

TP+ TN
(6)

2) The accuracy rate, also known as the detection rate,
refers to the ratio of the number of correctly detected objects
to the total number of detected objects, and the expression is
shown in the formula:

Precision =
TP

TP+ FP
(7)

3) The average precision represents the average detec-
tion precision of the single-category model, which is the
area enclosed under the P-R curve formed by the coordi-
nate system established with the recall rate as the horizontal
coordinate and the precision rate as the vertical coordinate,
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FIGURE 11. Lightweight YOLOv5s network structure.

based on a certain threshold, with the expression shown in
Eq:

AP =

∫ 1

0
prdRe (8)

4) The average precision mean value indicates the average
precision of all categories N. The larger value indicates the
higher precision of the target detection model, and the spe-
cific expression is shown in Eq:

mAP =

∑
AP
N

(9)

5) The frame rate, i.e., the number of frames detected by
the model per second, is used as an important indicator of the
real-time performance of the model.

V. MODEL TRAINING AND RESULT ANALYSIS
A. TRAINING PARAMETER SELECTION
Hyperparameter selection is a very critical step in Convo-
lutional Neural Networks (CNN), which directly affects the
performance of the model and the training process. The
following are some common methods for hyperparameter
selection: 1) Grid Search: For each hyperparameter, define
a range and a set of candidate values, and then use the grid
search method to try all possible hyperparameter combina-
tions. The best-performing hyperparameter combination is
selected through cross-validation or other evaluation metrics.
2) Random Search: In contrast to Grid Search, Random
Search uses random sampling to assess the performance
of each set of hyperparameters inside the stated space of

hyperparameters. Finding the hyperparameters with improved
performance requires iterating through several combinations.
3) Experience-based selection: based on previous experi-
ments and experiences, the commonly used hyperparameter
values are selected as the initial tuning values. On this basis,
fine-tuning and optimization are carried out. 4) Automatic
tuning algorithms (such as Bayesian optimization, genetic
algorithms, etc.): automatic tuning algorithms are used to
search the hyper-parameter space, and optimize the hyper-
parameters according to the evaluation indexes. These algo-
rithms can intelligently adjust the values of hyperparameters
based on previous attempts and results, thus speeding up the
search process. 5) Use of heuristic rules: Heuristic rules are
used to select the range and initial values of hyperparameters
based on the characteristics of the CNN architecture and the
task. For example, the number of filters in the convolutional
layer is usually a power of 2, the initial value of the learning
rate can be set to 0.1, etc. 6) Visualization and analysis:
Observe the effects of different hyperparameters on the
model by visualizing and analyzing the model performance
and loss curves during the training process, and then make
adjustments. When making a hyperparameter selection, it is
necessary to weigh the computational resources and time.
Usually, a small portion of data can be used for initial hyper-
parameter search and experimentation, and then a few most
promising hyperparameter combinations can be selected for
more in-depth training and evaluation. In this way, better
hyperparameter settings can be found with limited resources.
After practical validation, the training parameters are shown
in Table 3.
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FIGURE 12. The flowchart of the training and testing process.

FIGURE 13. Evaluation indices.

B. DATA SET CONSTRUCTION
1) IMAGE PROCESSING
This studymainly verifies the detection effect of the improved
algorithm on oil drill pipe and lays a good foundation for the
subsequent automated processing of drilling pipe columns.
The detection-grabbing flowchart is shown in Figure 14.
This study presents a self-constructed dataset of drill

pipes due to the limited availability of photographs and

TABLE 3. Model training parameter.

datasets for this specific type of equipment. The imaging
data of the drill pipes was collected by Lan Shi Petroleum
Equipment Engineering Co. Ltd. in Lanzhou City, Gansu
Province. Images of the drill pipes in different environ-
ments were captured using a cell phone under natural light,
which included various lighting and positioning scenarios.
The acquired images were saved in .jpg format and under-
went data enhancement preprocessing, such as image mir-
roring, noise, and rotation, to increase dataset diversity and
improve the overall generalization ability of the model.
This approach effectively avoided overfitting problems and
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FIGURE 14. Drill pipe inspection-gripping flowchart.

FIGURE 15. Image processing diagram.

insufficient training due to a lack of sample images. In total,
2009 images with a resolution of 4032×3024 were obtained.
The processed images of some of the datasets are shown in
Figure 15.

2) DATA SET LABELING
Label the 2009 drill pipe images in the dataset using Labelimg
labeling software, using horizontal rectangular boxes to label
the drill pipes in the images individually. Save the labeling
information in the text format. Finally, the dataset images
are randomly divided into 1406 images for the training set
and 603 images for the validation set according to the ratio
of 7:3, the specific dataset directory structure is shown in
Figure 16.

C. ANALYSIS OF MODEL TRAINING AND VALIDATION
Figure 17 and Figure 18 present the bounding box regression
loss and confidence loss curves for the training and validation
sets of YOLOv5s and ECS-YOLOv5s. As shown in Figure 1,
the loss function curves for each part of the loss function

FIGURE 16. Data set directory structure.

exhibit a clear declining trend with each iteration, and when
the iteration reaches 500, the value of each loss is reduced and
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FIGURE 17. Comparison of train loss curves for the YOLOv5s with ECS-YOLOv5s.

FIGURE 18. Comparison of validation loss curves for the YOLOv5s with ECS-YOLOv5s.

tends to stabilize. Specifically, the bounding box regression
loss values for the training and validation sets of YOLOv5s
and ECS-YOLOv5s are 0.0105, 0.0247, and 0.0157, 0.0161,
respectively, when the iteration is 500 times. It is worth noting
that the bounding box loss of ECS-YOLOv5s is smaller, indi-
cating that the model’s prediction of the target bounding box
position is more accurate than that of YOLOv5s. Regarding
the confidence loss, when iterating 500 times, the confidence
loss values for the training and validation sets of YOLOv5s
and ECS-YOLOv5s are 0.0047, 0.0044, and 0.0231, 0.0130,
respectively. Again, the confidence loss of ECS-YOLOv5s is
smaller, indicating themodel’s high target detection accuracy.
The above analysis confirms that the detection accuracy of
ECS-YOLOv5s surpasses that of YOLOv5s, making it a
superior performer.

VI. EXPERIMENTAL VALIDATION ANALYSIS
A. EXPERIMENTAL ANALYSIS OF LIGHTWEIGHT
NETWORK ABLATION
The research paper proposes a drill pipe identification model,
which is divided into two groups - a lightweight network
group and a traditional network group. The model is sub-
jected to ablation experiments, where certain features are
removed, and model hierarchy and parameter adjustments
are made for each group. The study employs an improved
multi-scale feature fusion network BiFPN architecture, which
replaces the backbone network in the Backbone layer of
YOLOv5s with the backbone network of EfficientNet. Fur-
thermore, the SPPF module and the CBAM attention mod-
ule are introduced. The performance of the lightweight
network for drill pipe identification is evaluated using metrics
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TABLE 4. Ablation study of different components in ECS-YOLOv5s model.

FIGURE 19. Recognition effects of different models on drill pipe.

such as accuracy, recall, and number of parameters. Addi-
tionally, the models are compared based on their train-
ing time, memory occupation, and computational resource
consumption. The experimental results are presented in
Table 4.

From the experimental results, we can observe that the
revised model has significantly improved the recognition
accuracy. The recognition accuracy has increased from 89.4%
to 98.6% compared to the original model. Table 3 presents
the results of the ablation experiments, which concluded
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TABLE 5. AYOLOv5 and other network detection performance comparison.

that replacing the EfficientNet model’s backbone network
with the original model of YOLOv5s’ backbone network can
reduce the model’s parameters and computation to a larger
extent. This can also reduce the size of the weight file gener-
ated by the model while maintaining the mAP enhancement
and slightly reducing the recall. The SPPF module introduces
spatial pyramid pooling to extract features of different scales,
thereby improving the model’s ability to adapt to different
sizes of drill pipes and enhancing the detection accuracy. The
CBAM module introduces the channel attention mechanism
to enhance the useful features and inhibit the useless ones.
This improves the feature expression ability and robustness of
the model, leading to improved recognition of drill pipes in
different situations. The backbone network of the Efficient-
Net model uses depth-separable convolution, which effec-
tively reduces the number of parameters and computation vol-
ume generated by the model while ensuring the lightweight
of the network and high recognition accuracy. The intro-
duction of modules such as SPPF, CBAM, and EfficientNet
improves the model’s performance and accuracy. However,
this increases the amount of computation, which needs to
be weighed against the performance to select the appropriate
network model and technique according to the specific task
and resource constraints. The ablation test results show that
the recall decreases slightly after the lightweight improve-
ment of the model. Lightweight treatment reduces the com-
plexity of the network to a certain extent, which reduces
the model’s ability for network feature extraction. However,
in this study, only one category, drill pipe, is recognized,
and recall is relatively less important in drill pipe recogni-
tion. Precision and average precision are more important.
Therefore, the effect of a slight decrease in the recall can
be ignored on the premise that both precision and aver-
age precision have been improved. The primary objective
is to achieve a lightweight treatment of the model. The
above analysis shows that the performance of the lightweight
YOLOv5 network in drill pipe identification detection by
adding the attention mechanism can prove that the improved
YOLOv5s method in this research is reasonable and
correct.

B. IDENTIFICATION RESULTS
Several sets of data were set up to be detected with dif-
ferent models, and the results are shown in Figure. 19.
Among the algorithms, YOLOv5s, Faster-RCNN, SSD, and
YOLOv7-tiny dun algorithms have missed detections. The
missed drill pipe has been marked with red ellipses in the
figure. The improved algorithm has targeted miss-detection
cases. It shows that the improved algorithm has successfully
improved the performance of detection.

To conduct a comparative analysis of the improved ECS-
YOLOv5s network model with different algorithm models,
and to investigate the performance of various algorithms,
this study selected the current mainstream target detection
algorithms, such as YOLOv5s, Faster RCNN, SSD, and
YOLOv7-tiny, for conducting comparative experiments. The
results of the experiment are presented in Table 4, which
highlights the superiority of the improved algorithms over the
existing ones.

FIGURE 20. ESC-YOLOv5s precision.

Table 5 combined with Figure. 20 shows that based on the
evaluation criteria, the traditional YOLOv5smodel appears to
be a practical option for lightweight application settings due
to its high accuracy and smaller number of parameters and
computation. However, the Faster-RCNN network model has
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a relatively poor detection accuracy despite having a higher
number of parameters and computations, generating a larger
weight file size. On the other hand, the SSD network model
exhibits improved detection accuracy with decreased param-
eters and processing and a smaller weight size compared to
Faster-RCNN. Although the YOLOv7-tiny network model
has the smallest computational effort, it has poor accuracy
and is therefore not suitable for the drill pipe recognition
task. Meanwhile, the ECS-YOLOv5s model has the highest
recognition accuracy and optimal mAP score, but its num-
ber of parameters, computational volume, and weight file
size is higher compared to the traditional YOLOv5s model.
Nonetheless, the improved network model ECS-YOLOv5s
has a detection speed that only slightly differs from the origi-
nal YOLOv5s model and performs better than all other mod-
els in terms of real-time detection requirements. Considering
the requirements of the drill pipe application scenario, the
ESC-YOLOv5s network model may be adopted to balance
accuracy and computational efficiency.

VII. CONCLUSION
The proposed ECS-YOLOv5s algorithm is a new lightweight
target detection algorithm that is specifically designed for
the automatic detection of tubular columns in intelligent oil
drilling platforms. The algorithm combines several advanced
techniques, including SPPF, CBAM, EfficientNet, and an
improved multiscale feature fusion network, BiFPN, based
on the traditional YOLOv5s model. This approach enhances
the model’s ability to detect dense targets and improves its
accuracy in complex environments with varying angles, dis-
tances, different light conditions, different orientations of the
drill pipe, and different operating conditions.

The experimental comparative analysis shows that the
ECS-YOLOv5s model outperforms the traditional YOLOv5s
model, the SSD model, the Faster-RCNN model, and the
YOLOv7-tiny model in both performance and accuracy. The
model achieved a mAP of 90.2%, an accuracy of 98.6%, and
a frame rate of 125 FPS. Furthermore, the number of parame-
ters is only 37% of the traditional model, which demonstrates
the algorithm’s lightweight, high efficiency, and high accu-
racy.

Despite the promising results, the study acknowledges
that the current research is limited by the size and qual-
ity of the dataset. Therefore, future research will focus on
enhancing the model’s adaptability to complex backgrounds,
light changes, and occlusion, among other factors. It is also
necessary to consider the processing of large-scale data and
ensure real-time performance while maintaining high detec-
tion accuracy. The study provides valuable insights into the
automatic tubular column detection in smart oil rigs and
provides a reference for further research in this field.
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