
Received 14 January 2024, accepted 29 January 2024, date of publication 5 February 2024, date of current version 15 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3362645

ACRF: Aggregated Conditional Random Field for
Out of Vocab (OOV) Token Representation
for Hindi NER
SUMIT SINGH , (Graduate Student Member, IEEE),
AND UMA SHANKER TIWARY , (Senior Member, IEEE)
Indian Institute of Information Technology Allahabad, Allahabad 211012, India

Corresponding author: Sumit Singh (pse2017004@iiita.ac.in)

ABSTRACT Named entities are random, like emerging entities and complex entities. Most of the large
language model’s tokenizers have fixed vocab; hence, they tokenize out-of-vocab (OOV) words into multiple
sub-words during tokenization. During fine-tuning for any downstream task, these sub-words (tokens) make
the named entity classification more complex since, for each sub-word, an extra entity type is assigned for
utilizing the word embedding of the sub-word. This work attempts to reduce this complexity by aggregating
token embeddings of eachword. In this work, we have appliedAggregated-CRF (ACRF), where a conditional
random field (CRF) is applied at the top of aggregated token embeddings for named entity prediction.
Aggregation is done at embeddings of all tokens generated by a tokenizer corresponding to a word. The
experiment was done with two Hindi datasets (HiNER and Hindi Multiconer2). This work showed that the
ACRF is better than vanilla CRF (where token embeddings are not aggregated). Also, our result outperformed
the existing best result at HiNER data, which was done by applying a cross-entropy classification layer.
Further, An analysis of the impact of tokenization has been conducted, both generally and according to entity
types for each word present in test data, and the results show that ACRF performed better for the words which
tokenized in more than one sub-words (OOV) compared to vanilla CRF. In addition, this work conducts
a comparative analysis between two transformer-based models, MuRIL-large and XLM-roberta-large and
investigates how these models adopt aggregation strategy based on OOV.

INDEX TERMS CRF, LLM, NER, NLP, transformer.

I. INTRODUCTION
Named Entity Recognition (NER) is an essential lower-level
task [1] in Natural Language Processing (NLP), used to
extract and categorize named entities from structured and
unstructured text into a predefined set of classes such as
person, location, organization, numeral and temporal entities.
An example of the named entity recognition task is illustrated
in Fig.1, and the corresponding Hindi example is illustrated
in Fig.2.

Text summarization [2], [3], Web Scraping [4] question-
and-answer applications [5], and machine translation [6], [7]
are just a few of the uses for named entity recognition.

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

Recent NER models are based on deep learning like
LSTM-CRF [8] and other transformer-based language mod-
els [9]. These models used Conditional Random Field (CRF)
[10] and Cross-Entropy (CE) [11] for decoding tags [12].
These models required data for training for the NER task.
NER data consists of annotated entity types for each word
present in an example. According to our requirement, these
entity types can be from any predefined set, and non-entities
are annotated as other (‘‘O’’). A broader range of entity-type
sets is considered a good data distribution for training; also,
a balanced data distribution with a large number of examples
in training data is considered a good dataset. However, the
Hindi language is taken as a low-resource language since
data availability of the Hindi language is much less than
the available data of rich resource languages like English.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 22707

https://orcid.org/0000-0002-3292-4131
https://orcid.org/0000-0001-7206-9013
https://orcid.org/0000-0002-4789-6700


S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

FIGURE 1. An illustration of the named entity recognition task.

FIGURE 2. An illustration of the named entity recognition task (Hindi
text).

Recently publically available NER datasets for the Hindi
language are HiNER [13] (with 76025 training examples
and 11 entity-type), MultiCoNER1 [14] (with 15300 training
examples and six entity-type) and Multiconer2 [15] (with
9,632 training examples, six course-grained entity-type and
36 fine-grained entity-type). This work experiments with
feeding word embeddings to the CRF layer (tag-decoder)
with and without aggregated word embeddings for the NER
task at HiNER [13] and Multiconer2 [15] datasets.
HiNER [13] established a benchmark of weighted F1-score

of 88.78, and their best result was 89.2 weighted F1-score,
which utilized xlm-roberta-large (XLM-R) for feature extrac-
tion. More detail about the data is given in the section III.
However, the best score achieved by the Hindi Multiconer2
dataset with cross-entropy classification layer (without the
use of any external knowledge-base) is 77.62 weighted
f1-score with theMuRIL languagemodel and 43.55 weighted
f1-score with the XLM-R language model [16].
The motivation behind our approach emerged due to two

reasons. The first one is that all transformer models use

FIGURE 3. An example of the XLM-R tokenizer for OOV word.

sub-word tokenizer.1 An example of a subword tokenizer for
XLM-R model has been shown in Fig. 3. Doylestown is a
village (Location); however, it is not part of the vocab of the
XLM-R tokenizer; hence, the tokenizer splits it into subword
tokens.

Second, there are numerous emerging named entities [17]
or rarely occurring entities, and they are not part of the vocab
of the corresponding model tokenizer. Both reasons affect the
NER task complexity by assigning an extra label to a subword
token (if a word is tokenized into multiple tokens). These
extra tokens can be bigger based on the tokenizer and entity
form.

This work studied at HiNER and Multiconer2 dataset,
and found statistics of these extra Entity types (tags). These
statistics are shown in Table 2 for HiNER dataset and in
Table 3 for Multiconer2 dataset. It is apparently shown in
Table 2 and 3 that XLM-R tokenizer has more OOV than
MuRIL tokenizer.

Our methodology is based on the architecture of NER
models as it does not require a Knowledge-Base (KB)
or gazetteers [17], [18]. Knowledge-based methods require
domain-specific prior knowledge base [19].
In this work, to handle out-of-vocabulary (OOV) words

in the appropriate way, Aggregated CRF (ACRF) is applied
where a CRF layer (Tag decoder) at the top of aggregated
token embeddings for each word is applied for named entity
recognition.

We provided entity-wise and tokenization-length2-wise
F1-score, for example, score generated by entities whose
tokenization-length is one, two, three. It is clear from
the definition of tokenization-length that in-vocab entities
have tokenization-length of one, and OOV entities have
tokenization-length of more than one.

Following are some key points that outline our
contribution.

Our first contribution is to produce state-of-the-art results
on the HiNER dataset by applying Aggregated-CRF. When
using our architecture (Aggregated-CRF), XLM-R performs

1Subword tokenizer split a word into multiple tokens (subwords) if the
word is not present on tokenizer vocab (OOV).

2This is the number of tokens generated by tokenizer for a word.

22708 VOLUME 12, 2024



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

better than XLM-R (benchmarks) by 0.77% F1-score while
MuRIL performs better than MuRIL (benchmarks) by 1.71%
F1-score. The other contribution of this work is an analysis
of the effect of aggregation with CRF tag decoder based
on transformer-based pretrained model’s tokenizers at two
recent Hindi datasets for the NER task.

In the next section, related work is defined. Section III
describes the HiNER and Multiconer2 datasets. Our method-
ology is defined in Section IV. Experimental setup and
evaluation metrics are described in Section V and VI.
Thereafter, results and analysis are explained in Section VII,
and Section VIII concludes this paper.

II. RELATED WORK
Recent advancements in Deep learning-based approaches for
NLP showed the strong capability of solving downstream
tasks like NER [9]. These models automatically extract the
hidden features, due to which the accuracies of these models
are high compared to the traditional NER approaches.

While most state-of-the-art is based on transformer-
based self-supervised pretrained models [20] and pretraining
requires a large corpus, rich resource languages have seen
significant research due to the availability of large corpora.
However, for the Hindi language, there is a lack of structured
resources in this domain [21], such as large corpora, web
content, or data for the downstream task, necessitating
the use of more robust methods. If we uncover the NER
task independent of data availability, it can be divided
into two subtasks. The First is to encode the sequences
into knowledge space, also known as a feature extractor.
The second one is tag decoders, which decode sequence
knowledge into Entity types (labels). For encoding, there
are two types of models. The first one is those encoders
initialized with random weights for training like LSTM [22],
GRU [23], CNN [24] and its variants, and the second one
is pretrained large language models (LLMs). For NLP tasks
most LLMs are transformer-based, like Bert [8], mbert [8],
xlm-roberta (XLM-R) [25], MuRIL [26], indicbert [27].
LLMs are pre-trained on large data in self-supervised ways
with millions of parameters, and these models are domain
and language-specific. Transformer-based pretrained models
generate contextual word-embeddings since the representa-
tion of a word-embedding of a word in a context (sentence)
is dependent on the context. Some sequence tagging-specific
LLM architectures like LUKE [19] are based on entity-aware
pretraining and using Wikipedia entities to decode the
extracted features with encoders. Indic-bert, MuRIL, mbert
and XLM-R are pretrained for Hindi languages, and among
these models, the performance of XLM-R and MuRIL
in [26] and [28] motivated us to choose these language
models for this work. Also, for the Hindi Multiconer2 [15]
dataset, MuRIL performed best when any external KB is not
used [16].
Earlier tag decoders are linear statistical models, which

include Hidden Markov Models (HMM), Maximum entropy
Markov models (MEMMs) [29], and Conditional Random

Fields (CRF) [10]. CRF achieved popularity for the NER task
and achieved state-of-the-art results for the NER task [8],
[9], [30]. Convolutional network-based model [31] consists
of a convolutional network and a CRF layer on the top of
the convolutional network for sequence tagging. References
[8], [9], and [30] utilize CRF at the top of bidirectional
and provide promising results with LSTM. The zero-
shot generalisation of large language models (LLMs) [32]
has also revolutionised natural language processing (NLP).
An analysis of zero-shot NER using ChatGPT was conducted
in [33] and [34], and so far, the findings were not as good as
the Benchmark results using the transformer encoder-based
models.

For Hindi data like HiNER, the best score was achieved by
finetuning XLM-R, and the second-best score was achieved
by finetuning MuRIL-base. These models have used cross
entropy as a classification of tags at the top of base
models. For Multiconer1 and Multiconer2 datasets, MuRIL,
without a knowledge base, scored best [14], [16], [28].
However, XLM-R with augmented retrieval got the best
score [14], [35].

In this work, an experiment with aggregation over the word
embeddings corresponding to each token of a word is done
with a CRF tag encoder.

III. DATASET
Our work done with two state-of-the-art datasets HiNER [13]
and Multiconer2 [15].

HiNER [13] data contain 108,608 annotated examples,
divided into training, validation and testing data by a ratio of
70, 10, and 20. This data contains 11 tags, and their statistics
are defined in Table 1. HiNER follows conll format with
I-O-B encoding. OOV-based statistics for each tag of the
Hiner test data are tabulated in Table 2.

TABLE 1. Entity distribution for HiNER dataset.

Multiconer2 [15] dataset has 9632 training, 514 validation
and 18399 testing examples. A total of 33 tags are annotated
for the sentences in I-O-B format. OOV-based Entity
distribution for the Multiconer2 test data is tabulated in
Table 3.

IV. METHODOLOGY
Overall Methodology shown in Fig. 4. The details of our
Methodology can be divided into the subsequent subsections.

VOLUME 12, 2024 22709



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

FIGURE 4. Generalized transformer-based NER model architecture.

A. TRANSFORMER-BASED ENCODER SELECTION
Our work has taken advantage of pretrained models based
on transformer encoders for encoding the input text into
deep feature vectors. The architecture of the transformer is
based on a multi-head self-attention mechanism, and selected
encoders are pretrained in a self-supervised way with a
large amount of data. The chosen models of this work were
pretrained with a large amount of text data, including Hindi,
and performed state-of-the-art results for various Hindi NLP
tasks. Our work experiments with MuRIL and XLM-R
models for finetuning the task, motivated by [13], [16], and
[28]. The selection of encoders is independent of the overall
architecture.

B. TOKENIZATION
After selecting encoders, we processed the input sentence
with padding to LLM max length and generated an attention
mask for each sentence. Labels are assigned an integer value

starting from zero. Thereafter, we tokenize each sentence
of a dataset with the selected encoder tokenizer. Tokenizer
also assigns an index to each token. Along with tokenization,
Word IDs list has also been created. Indices of tokens
corresponding to each word can be found using Word IDs,
which can be created during tokenization; it is the list in
which indices correspond to each token stored indices of
parent words in a sentence. Word IDs are beneficial during
the pooling of word features after feature extraction with the
encoder. For a given sentence S containing m words, the
sub-word tokenizer splits it into tokens T .

T< t1, t2, . . . tn > = tokenizer(S< w1,w2, . . .wm >) (1)

C. FEATURE EXTRACTION
Tokenized sentence T is fed into transformer-based encoders
(XLM-R Large and MuRIL in our work). The encoder
generates contextual features in the form of word embeddings

22710 VOLUME 12, 2024



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

TABLE 2. Entity-wise OOV information with XLM-R and MuRIL tokenizers
for HiNER test Data.

for each token ti.

embed < e1, e2, e3 . . . en > = encoder(T ) (2)

D. FEATURES AGGREGATION
The tokens corresponding to ith word of sentences are
added together to form the word representation WRi. Given
a sentence sub-word (token) representation3 T , the final
contextual word representation4 WRi express as

WRi =

ENDi∑
j=STARTi

ej (3)

where STARTi and ENDi are the start and end indices of
the sub-words constituting word wi. We have used additive
pooling for aggregation.

E. TAG DECODER
A conditional random field is globally conditioned on the
mentioned sequence. The correlation between neighbouring
tags can be taken into account using CRF as a probabil-
ity model for sequence prediction to provide the overall
tag sequence. Also, in feature-based supervised learning
techniques, CRFs have been employed extensively. A CRF
layer is frequently used as the tag decoder in NER models
based on deep learning; for example, CRF used at the top
of the bidirectional LSTM layer [18], CNN layer [17] and
XLM-R [35]. Fig. 5 shows the structures of CRF.
Aggregated features from the previous stage were fed into

a linear layer, which transforms each word representation into
logits with size (1, total number of labels in our data).

logits = linear_layer(WR) (4)

Thereafter, a CRF layer was applied at logits to compute
the likelihood of the tag sequence and loss for the input

3Tokenized sentence.
4Word embedding generated by the encoder for each word.

TABLE 3. Entity-wise OOV information with XLM-R and MuRIL tokenizers
for Multiconer2 test Data.

sentence.

prob = CRF(logits) (5)

Here, the prob vector is the best likelihood of a sequence of
tags for the given sequence of words. In a sequence tagging
task like NER, the neighbour tags can help the model learn
current tag information in a given sequence of tags. For
example, given in Fig. 1, the second tag I-PER confirms that
the previous tag is either B-PER or I-PER according to BIO
format. To learn this global information at a sequence level,
we need to learn the tag result according to the score of the
whole tag sequence.

V. EXPERIMENTAL SETUP
In the HiNER dataset, the average tokenized length5 of all
words is 1.5 for XLM-R and 1.2 for MuRIL. In Multiconer2

5Tokenized length of a word is the number of tokens generated after
tokenization of that word.

VOLUME 12, 2024 22711



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

TABLE 4. Hyper-parameters for MuRIL and XLM-R setups for Hiner dataset.

TABLE 5. Hyper-parameters for MuRIL and XLM-R setups for Multiconer2 dataset.

FIGURE 5. Structure of CRF.

dataset, the average tokenized length of all words is 2.54 for
XLM-R and 1.78 for MuRIL.

Therefore, word embeddings of three subwords (tokens)
corresponding to each word are utilized for aggregation. If a
word is tokenized into one token, then it is utilised in its
original form since, here, aggregation is not required. For
aggregation, the summation of each subword embeddings is
applied to correspond to each word of the examples. For
training, experiments were done with batch sizes of 16, 32,
and 64, with the learning rate of 5e-6, 5e-5, 1e-5, 2e-5, 4e-5,
8e-5 andwith different random seeds. AdamW [36] optimizer
optimizes the weights during backpropagation. Tokenizer
max length set to 92 for better utilization of GPU as it does not
affect results since only a few examples had their length over
92. CRF is implemented using Pytorch-CRF.6 All instances
were fine-tuned for 20 epochs with different combinations
of hyperparameters. In each case, the models that yield the
lowest validation loss throughout an epoch are the ones
that are chosen as the best. Details of hyperparameters and
experimental setup for the best model of each architecture

6https://pytorch-crf.readthedocs.io/en/stable/

are tabulated in Table 4 for HiNER dataset and in Table 5
for Multiconer2 dataset.

VI. EVALUATION METRICS
For evaluation, strict F17 score applied. Strict match is used
to evaluate sequence tagging when examples contain both
entity type and boundary to an entity, and we have to predict
both entity type and boundary correctly. For illustration, Let
a sentence is given, and we need to find the entity present in
the sentence in I-O-B format.

Sentence: ‘‘Taj Mahal situated in Uttar Pradesh.’’
Here, ‘‘Uttar Pradesh’’ is a Location entity. Therefore,

according to the I-O-B format, theNERmodel should predict:
‘‘Uttar’’ as B-LOC and ‘‘Pradesh’’ as I-LOC.

Here, Prefix B (Begain) and I (Inside) depict the entity’s
boundaries, and LOC depicts the Type of the entity. So,
during the matching of the ground truth and prediction, if we
consider both boundary and type, it is called as strict match,
and the corresponding F1-score will be a strict F1-score.
However, for matching other combinations of ground truth
and prediction, some other metrics are defined, like partial
match. Strict match metric is used in the HiNER paper;
therefore, we have mentioned it explicitly in this work. It is
also the default metric for NER evaluation.

It can be computed using the following formula:
Strict F1-Score = 2 × (Strict Precision × Strict Recall) /

(Strict Precision + Strict Recall)
After computing the strict F1-score of each class, we have

also computed the average of the strict F1-score of all classes.

VII. RESULT AND ANALYSIS
Next subsections explain the results for both the datasets
HiNER and Multiconer2. All the F1-scores are strict
F1-scores.

7https://github.com/MantisAI/nervaluate

22712 VOLUME 12, 2024



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

TABLE 6. Strict F1-score (%) for XLM-R (benchmark), MuRIL (benchmark), XLM-RCRF, MuRILCRF, XLM-RAggregated CRF, and MuRILAggregated CRF for each
tag along with overall weighted, macro and micro average of all tags (For HiNER Dataset).

TABLE 7. Tokenized length-wise F1-score (%) for XLM-RCRF, MuRILCRF, XLM-RAggregated CRF, and MuRILAggregated CRF (HiNER dataset).

FIGURE 6. Architecture-wise comparison of weighted average F1-score
for XLM-R and MuRIL for HiNER Dataset.

A. RESULTS FOR THE HINER DATASET
1) COMPARISON WITH BENCHMARK RESULTS
Table 6 shows the average results of the top three models
of both architectures CRF and Aggregated-CRF, along with
benchmarks (cross-entropy without aggregation) architecture

FIGURE 7. Architecture-wise comparison of weighted average F1-score
for XLM-R and MuRIL for multiconer2 Dataset.

for MuRIL and XLM-R. Table 6 contains tag-wise results
along with their weighted average, macro average and
micro F1-scores. XLM-R and MuRIL with Aggregated-CRF

VOLUME 12, 2024 22713



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

TABLE 8. Strict F1-score (%) for XLM-R (benchmark), MuRIL (benchmark), XLM-RCRF, MuRILCRF, XLM-RAggregated CRF, and MuRILAggregated CRF for each
tag along with overall weighted average of all tags (For Multiconer2 Dataset).

architecture outperform both XLM-R and MuRIL bench-
marks over all three evaluation metrics: weighted average,
macro average and micro F1-score. Also, MuRIL with CRF
architecture outperforms the MuRIL benchmark over all the
evaluation metrics weighted average, macro average and
micro F1-score. Architecture-wise comparison of weighted
average F1-score for both models is also shown in Fig. 6.
Scores of both architectures, CRF and Aggregated-CRF,
are averages of the top three performances of XLM-R and
MuRIL. When using Aggregated-CRF, XLM-R performs
better than XLM-R (benchmarks) by 0.77 F1-score, while
MuRIL performs better than MuRIL (benchmarks) by
1.71 F1-score.

2) COMPARISON BETWEEN CRF AND AGGREGATED-CRF
Results for comparison between the CRF and
Aggregated-CRF have been shown in Fig. 6 and details
tabulated in Table 6 as CRF architecture performed well for
MuRIL; however, results of XLM-R with CRF architecture
were not good comparatively, and it might be happening
because of the large number (135130) OOV words found
by XLM-R tokenizer during the tokenization of test data
while for MuRIL it was 55224. However, with aggregated
architecture, both XLM-R and MuRIL performed better than

CRF architecture, and the improvement of XLM-R with
aggregated architecture is notable (Fig. 6).

3) TOKENIZATION LENGTH-WISE COMPARISON
Tokenization Length-wise comparison between the CRF
and Aggregated-CRF has been tabulated in Table 7. Model
tokenizers tokenize each word of test data into one, two or
more subwords. For analysis of the effect of these lengths,
all words of test data were divided into classes based on
their tokenized length (number of subwords, a word tokenized
into.) and a strict F1-score was calculated for each tag in
Table 7. For Aggregated-CRF architecture, all scores are
almost uniform if the tokenized length increases from one to
three. However, for CRF architecture, the weighted F1-score
decreases if the tokenized length increases. Words with
tokenized lengths greater than three are not considered for
analysis since their support is lesser.

B. RESULTS FOR THE MULTICONER2 DATASET
1) COMPARISON WITH BENCHMARK (CROSS-ENTROPY)
RESULTS
Table 8 shows the tag-wise results of the best models of both
architectures, CRF and Aggregated-CRF, along with bench-
marks (cross-entropy without aggregation) architecture for

22714 VOLUME 12, 2024



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

FIGURE 8. Comparative evaluation of a few examples from testing data.

MuRIL and XLM-R. XLM-R with Aggregated-CRF archi-
tecture outperforms XLM-R benchmarks (cross-entropy)
on comparison of weighted F1-score. However, MuRIL
with Aggregated-CRF architecture is comparable with the
cross-entropy architecture. When using Aggregated-CRF,
XLM-R performs better than XLM-R (CE) by 19 F1-scores,
while MuRIL performed comparably with MuRIL (CE).
Architecture-wise comparison of weighted average F1-score
for both models is shown in Fig. 7.

2) COMPARISON BETWEEN CRF AND AGGREGATED-CRF
Results for comparison between the CRF and
Aggregated-CRF for the Multiconer2 dataset have been
shown in Fig. 7 and details tabulated in Table 8. With
the Aggregated-CRF architecture, both XLM-R and MuRIL
(with weighted average F1-score of 66.62 and 77.02)
performed better than CRF architecture (with weighted
average F1-score of 59.21 and 71.85). After tokenization,
the average length of each entity type in the test data is
2.58 for the XLM-R tokenizer and 1.78 for the MuRIL

tokenizer. MuRIL tokenizer has less OOV compared to the
XLM-R tokenizer. This might be the reason for MuRIL’s
better performance.

3) TOKENIZATION LENGTH-WISE COMPARISON
The overall performance of Aggregated-CRF architecture is
better than CRF architecture for both types of tokens (OOV
and in vocab). However, if we compare the tokenization
length-wise results, the result of entities in Vocab is almost
comparable with the result of entities that are OOV. It might
be possible that in the Multiconer2 dataset, the number of
entities that are OOV, are in a bigger ratio (Table 3).

C. ERROR ANALYSIS
The overall results show the advancement of the
Aggregated-CRF architecture. A comparative examination
of a few test data examples is displayed in Fig. 8 together
with the ground truth and prediction for both the datasets and
the language models for both architectures. Serial numbers
A1 to A5 have the predictions of examples of the HiNER

VOLUME 12, 2024 22715



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

dataset with XLM-R LM. These rows compare the prediction
of CRF and Aggregated-CRF architectures. In row A2,
the Aggregated-CRF architecture predicts the whole entity
PERSON correctly; however, CRF architecture didn’t predict
the whole entity PERSON. Similarly, rows B1 to B5 have the
predictions of examples of the HiNER dataset with MuRIL
LM. Row B5 depict that with MuRIL CRF architecture,
it is not able to predict entity LITERATURE correctly
for the corresponding example. However, Aggregated-CRF
architecture predicts it correctly. Similarly, Rows C1 to
C5 and D1 to D5 of Fig. 8 depict some examples of the
Multiconer2 dataset with XLM-R andMuRIL LMs. Rows C4
and D4 also depict that Aggregated-CRF predicts the whole
entity; however, CRF architecture separates one entity into
two entities.

The results above suggest that the aggregation method
has been shown to be beneficial for the NER task if
tokenized sentences contain more OOV words.

VIII. CONCLUSION
This work addresses the challenges posed by named entity
recognition in the context of large language models and tok-
enization. These models tokenize out-of-vocabulary words
into multiple sub-words, complicating the task of named
entity recognition. To mitigate this complexity, the study
proposes a technique that aggregates token embeddings for
each word and introduces a conditional random field (CRF)
layer on top of these aggregated word embeddings for named
entity prediction.

The study focuses on HiNER and Multiconer2 datasets,
and contrasts the suggested strategy with existing work for
both datasets. In the case of more OOV, utilising a CRF
layer with aggregated word embeddings performs better than
conventional CRF models without aggregation. In addition,
we have compared our method to the existing methods and
found that it performed better for the HiNER dataset and
yielded state-of-the-art results for the Multiconer2 dataset.

The paper thoroughly examines the effects of tokenization
on a word-by-word basis and finds that words which are
tokenized intomultiple sub-words (OOV) perform better with
the Aggregated-CRF architecture. A comparison between the
two transformer-based models MuRIL and XLM-R is also
included in the work.

Overall, this work emphasises the benefits of word embed-
ding aggregation and the use of CRF layers while providing
useful insights into improving named entity recognition in the
setting of large language models.

REFERENCES
[1] X. Ma and E. Hovy, ‘‘End-to-end sequence labeling via bi-directional

LSTM-CNNs-CRF,’’ in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics, vol. 1, 2016, pp. 1064–1074. [Online]. Available:
https://aclanthology.org/P16-1101

[2] C. Chen, W. E. Zhang, A. S. Shakeri, and M. Fiza, ‘‘The exploration of
knowledge-preserving prompts for document summarisation,’’ inProc. Int.
Joint Conf. Neural Netw. (IJCNN), Jun. 2023, pp. 1–8.

[3] C. Aone, ‘‘A trainable summarizer with knowledge acquired from robust
NLP techniques,’’ Adv. In Autom. Text Summarization, pp. 71–80, 1999.
[Online]. Available: https://cir.nii.ac.jp/crid/1571135650129558656

[4] B. Bhardwaj, S. I. Ahmed, J. Jaiharie, R. S. Dadhich, and M. Ganesan,
‘‘web scraping using summarization and named entity recognition (NER),’’
in Proc. 7th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), vol. 1,
Mar. 2021, pp. 261–265.

[5] M. Al-Smadi, I. Al-Dalabih, Y. Jararweh, and P. Juola, ‘‘Leveraging linked
open data to automatically answer Arabic questions,’’ IEEE Access, vol. 7,
pp. 177122–177136, 2019.

[6] A. Reddy and R. C. Rose, ‘‘Integration of statistical models for dictation of
document translations in a machine-aided human translation task,’’ IEEE
Trans. Audio, Speech, Language Process, vol. 18, no. 8, pp. 2015–2027,
Nov. 2010.

[7] B. Babych and A. Hartley, ‘‘Improving machine translation quality with
automatic named entity recognition,’’ in Proc. 7th Int. Workshop MT Other
Lang. Technol. Tools, Improving MT Through Other Lang. Technol. Tools
Resour. Tools Building MT, 2003, pp. 1–8.

[8] Z. Huang, W. Xu, and K. Yu, ‘‘Bidirectional LSTM-CRF models for
sequence tagging,’’ 2015, arXiv:1508.01991.

[9] J. Li, A. Sun, J. Han, and C. Li, ‘‘A Survey on deep learning for named
entity recognition,’’ IEEE Trans. On Knowl. and Data Eng., vol. 34, no. 1,
pp. 50–70, Mar. 2020.

[10] C. Sutton, K. Rohanimanesh, and A. McCallum, ‘‘Dynamic conditional
randomfields: Factorized probabilistic models for labeling and segmenting
sequence data,’’ in Proc. 21st Int. Conf. Mach. Learn., Jul. 2004, p. 99.
[Online]. Available: https://api.semanticscholar.org/CorpusID:219683473

[11] T. Qian, M. Zhang, Y. Lou, and D. Hua, ‘‘A joint model for named
entity recognition with sentence-level entity type attentions,’’ IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 29, pp. 1438–1448,
Mar. 2021.

[12] R. Sharma, S. Morwal, and B. Agarwal, ‘‘Named entity recognition
using neural language model and CRF for Hindi language,’’ Comput.
Speech Lang., vol. 74, Jul. 2022, Art. no. 101356. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0885230822000055

[13] R. Murthy, P. Bhattacharjee, R. Sharnagat, J. Khatri, D. Kanojia, and
P. Bhattacharyya, ‘‘HiNER: A large Hindi named entity recognition
dataset,’’ in Proc. Int. Conf. Lang. Resour. Eval., Jun. 2022, pp. 1–10.

[14] S. Malmasi, A. Fang, B. Fetahu, S. Kar, and O. Rokhlenko, ‘‘SemEval-
2022 task 11: Multilingual complex named entity recognition (Multi-
CoNER),’’ in Proc. 16th Int. Workshop Semantic Eval. (SemEval), 2022,
pp. 1412–1437.

[15] B. Fetahu, S. Kar, Z. Chen, O. Rokhlenko, and S. Malmasi, ‘‘SemEval-
2023 Task 2: Fine-grained multilingual named entity recognition (Multi-
CoNER 2),’’ 2023, arXiv:2305.06586.

[16] S. Singh and U. Tiwary, ‘‘Silp_nlp at SemEval-2023 task 2: Cross-lingual
knowledge transfer for mono-lingual learning,’’ in Proc. The 17th Int.
Workshop Semantic Eval. (SemEval), 2023, pp. 1183–1189.

[17] T. Meng, A. Fang, O. Rokhlenko, and S. Malmasi, ‘‘GEMNET: Effective
gated gazetteer representations for recognizing complex entities in low-
context input,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics, Hum. Lang. Technol., 2021, pp. 1499–1512.

[18] B. Chen, J.-Y. Ma, J. Qi, W. Guo, Z.-H. Ling, and Q. Liu,
‘‘USTC-NELSLIP at SemEval-2022 task 11: Gazetteer-adapted
integration network for multilingual complex named entity recognition,’’
in Proc. 16th Int. Workshop Semantic Eval. (SemEval-), 2022,
pp. 1613–1622.

[19] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
‘‘LUKE: Deep contextualized entity representations with entity-aware
self-attention,’’ 2020, arXiv:2010.01057.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1–11.

[21] M. Sabane, A. Ranade, O. Litake, P. Patil, R. Joshi, and D. Kadam,
‘‘Enhancing low resource NER using assisting language and transfer
learning,’’ in Proc. 2nd Int. Conf. Appl. Artif. Intell. Comput. (ICAAIC),
May 2023, pp. 1666–1671.

[22] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078.

[24] K. O’Shea and R. Nash, ‘‘An introduction to convolutional neural
networks,’’ 2015, arXiv:1511.08458.

22716 VOLUME 12, 2024



S. Singh, U. S. Tiwary: ACRF for OOV Token Representation for Hindi NER

[25] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov,
‘‘Unsupervised cross-lingual representation learning at scale,’’ in Proc.
58th Annu. Meeting Assoc. Comput. Linguistics, Jul. 2020, pp. 8440–8451.

[26] S. Khanuja, D. Bansal, S. Mehtani, S. Khosla, A. Dey, B. Gopalan,
D. K. Margam, P. Aggarwal, R. T. Nagipogu, S. Dave, S. Gupta,
S. C. B. Gali, V. Subramanian, and P. Talukdar, ‘‘MuRIL: Multilingual
representations for Indian languages,’’ 2021, arXiv:2103.10730.

[27] D. Kakwani, A. Kunchukuttan, S. Golla, N. C. Gokul, A. Bhattacharyya,
M. M. Khapra, and P. Kumar, ‘‘IndicNLPSuite: Monolingual corpora,
evaluation benchmarks and pre-trained multilingual language models for
Indian languages,’’ in Proc. Findings Assoc. Comput. Linguistics,
(EMNLP). Association for Computational Linguistics, Nov. 2020,
pp. 4948–4961. [Online]. Available: https://aclanthology.org/2020.
findings-emnlp.445/

[28] S. Singh, P. Jawale, and U. Tiwary, ‘‘Silpa_nlp at SemEval-2022 tasks 11:
Transformer based NERmodels for Hindi and Bangla languages,’’ in Proc.
16th Int. Workshop Semantic Eval. (SemEval), 2022, pp. 1536–1542.

[29] A.McCallum,D. Freitag, and F. C. N. Pereira, ‘‘Maximum entropyMarkov
models for information extraction and segmentation,’’ in Proc. ICML,
Nov. 2001, vol. 17, no. 2000, pp. 591–589.

[30] R. Panchendrarajan, ‘‘Bidirectional LSTM-CRF for named entity recogni-
tion,’’ in Proc. 32nd Pacific Asia Conf. Lang. Inf. Comput., 2018, pp. 1–10.
[Online]. Available: https://aclanthology.org/Y18-1061

[31] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, ‘‘Natural language processing (almost) from scratch,’’ J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, 2011.

[32] OpenAI. Introducing Chatgpt. Accessed: Dec. 1, 2023. [Online]. Avail-
able: https://openai.com/blog/chatgpt

[33] T. Xie, Q. Li, J. Zhang, Y. Zhang, Z. Liu, and H.Wang, ‘‘Empirical study of
zero-shot NER with ChatGPT,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process., 2023, pp. 7935–7956.

[34] C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang,
‘‘Is ChatGPT a general-purpose natural language processing task solver?’’
in Proc. Conf. Empirical Methods Natural Lang. Process., 2023,
pp. 1339–1384.

[35] X. Wang, Y. Shen, J. Cai, T. Wang, X. Wang, P. Xie, F. Huang,
W. Lu, Y. Zhuang, K. Tu, W. Lu, and Y. Jiang, ‘‘DAMO-NLP at
SemEval-2022 task 11: A knowledge-based system for multilingual
named entity recognition,’’ in Proc. 16th Int. Workshop Semantic Eval.
(SemEval-), 2022, pp. 1457–1468.

[36] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’
2019, arXiv:1711.05101.

SUMIT SINGH (Graduate Student Member,
IEEE) received the bachelor’s degree in science
and the master’s degree in computer application
and in information technology (specializing in
software engineering). He is currently a Research
Scholar with the Indian Institute of Information
Technology Allahabad, Allahabad. His work spe-
cializes in Indic languages. He also works on
deep learning-based pretrained models, such as
transformers and other sequence learning models.

His research interests include named entity recognition, natural language
generation, and question-answering.

UMA SHANKER TIWARY (Senior Member,
IEEE) received the Ph.D. degree from the Depart-
ment of Electronics Engineering, Institute of
Technology, Banaras Hindu University, Varanasi,
India, in 1991. He was a Lecturer with the
Department of Electronics and Communication,
J. K. Institute of Applied Physics and Technology,
University of Allahabad, from September 1988 to
March 1992, where he was a Reader in computer
science with the J. K. Institute of Applied Physics

and Technology, from March 1992 to June 2002. He was also a Visiting
Scientist with the Department of Computer Science and Engineering, IIT
Kanpur, from December 1995 to July 1996. He was an Associate Professor
with the Indian Institute of Information Technology Allahabad, Allahabad,
India, from July 2002 to December 2006, where he has been a Professor
with the Department of Information Technology, since December 2006.
He is holding research and teaching experience for more than 30 years,
in which he is very much involved in image processing, computer vision,
medical image processing, pattern recognition and script analysis, digital
signal processing, speech and language processing, wavelet transforms, soft
computing and fuzzy logic, neurocomputing and softcomputers, speech-
driven computers, natural language processing, brain simulation, cognitive
science, and affective computing.

VOLUME 12, 2024 22717


