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ABSTRACT In addressing challenges associated with the constrained enhancement of range performance
in pure electric tractors, the difficulty in achieving genuinely eco-friendly agricultural machinery with
hybrid powertrains, and the outdated approaches to energy optimization in hydrogen fuel cell tractors,
a comprehensive methodology covering the entire spectrum of system design, optimization, and validation is
presented. This method constructs an integrated electromechanical and hydraulic power bond graph model
for an agricultural tractor, encompassing energy systems, drive systems, and lifting systems. It achieves rapid
interaction between 20-sim software and Matlab/Simulink software through a script toolbox. In order to
tackle the real-time applicability challenges of dynamic programming, a hierarchical dynamic programming
is proposed. The dynamic programming strategy results serve as the upper-level output. At the lower
layer, preprocessing of impact value variables is carried out to filter the input variables for the general
regression neural network. This enables the real-time application of the dynamic programming algorithm
and significantly reduces training time. Finally, validation is conducted through both model-in-the-loop
and hardware-in-the-loop. The results demonstrate the correctness and superiority of the designed tractor
simulation model and energy management strategy model compared to the power-following strategy.
Specifically, in plowing conditions, the dynamic programming and hierarchical dynamic programming
strategies exhibited reductions of 10.278% and 6.728%, respectively, in equivalent hydrogen consumption
compared to power-following strategy. In transportation conditions, the reductions are 16.02% for dynamic
programming strategy and 4.87% for hierarchical dynamic programming strategy, both relative to power-
following strategy. This study lays the theoretical groundwork for modeling dynamic systems of tractors
and optimizing energy management.

INDEX TERMS Hydrogen fuel cell tractors, bond graph, energy management strategy, model-in-the-loop,
hard-ware-in-the-loop.
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I. INTRODUCTION
As the foundation of modern agricultural development,
agricultural machinery is advancing towards electrification,
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intelligence, and environmental sustainability [1]. Among
these, general-purpose tractors, celebrated for their versatility
and consistently high annual utilization, stand at the heart
of agricultural machinery. The rapid evolution of energy and
electric drive technologies is opening up new avenues for the
development of highly efficient and eco-friendly tractors [2].
Traditional tractors, which rely solely on diesel engines

as their exclusive energy source, present formidable chal-
lenges when it comes to addressing issues related to energy
deficiency and pollution emissions. In contrast, new energy
tractors, equipped with cutting-edge energy systems, offer a
viable solution to mitigate environmental pressures. Based
on the type of energy source employed, new energy tractors
can be classified into three categories: electric tractors, hybrid
tractors, and hydrogen fuel cell tractors (HFCTs).

Due to the heavy loads and variable working conditions
in agricultural operations, the advancement of pure electric
tractor endurance performance is hindered by limitations
in battery technology [3]. Although hybrid tractors offer a
certain level of protection for the longevity of power bat-
teries [4], [5], [6], their utilization of diesel engines as part
of the energy system makes it challenging to achieve the
goal of zero pollution emissions. Fuel cells (FCs) offer a
host of advantages, including being clean, highly efficient,
emission-free, and having a high energy density. As a result,
they have emerged as one of the most promising sources
of energy in the realm of new energy [7]. However, due
to their slower dynamic response and lower power density,
FCs are typically combined with other energy units such as
battery and supercapacitors to form the energy system of the
HFCT. Xu et al. [8] using FC/battery/supercapacitor as the
energy system, Sun et al. [9] using fuel cell/supercapacitor as
the energy system, and Quan et al. [10] using FC/battery as
the energy system, designed the HFCT respectively. A com-
prehensive comparative analysis reveals that supercapacitors
indeed offer advantages in terms of high discharge efficiency
and an extended lifespan. However, they are constrained by
limited energy storage capacity and are known to exhibit
notable voltage fluctuations during discharge, which can pose
significant challenges in terms of control. The integration of
FCs/ batteries/ supercapacitors serves as an effective strategy
to mitigate the drawbacks associated with diverse energy
sources. Nevertheless, in the context of tractor operations
characterized by frequent load fluctuations and the influence
of ground reaction forces on the front and rear wheels, which
can have a direct impacts tractor safety, this emphasizes the
critical need for a well-thought-out layout of these energy
devices. Conversely, batteries stand out due to their swift
dynamic response, high power density, and versatile applica-
bility. They effectively address the limitations of FCs while
satisfying the tractor’s load requirements. Moreover, they
offer a straightforward structure that is both easy to control
and implement.

Energy management strategies (EMSs) form the founda-
tion of control system development for new energy tractors,

and they can be divided into three main categories [11]: rule-
based, optimization-based, and intelligent-based. Several
scholars have delved into optimization-based and intelligent-
based research for pure electric and hybrid electric tractors.
LEE et al. [12] optimized power distribution in parallel
hybrid tractors using dynamic programming (DP) algorithms,
yielding significant results. Meanwhile, Li et al. [13] pro-
posed an enhanced DP algorithm for pure electric tractors,
demonstrating superior optimization effects across three load
conditions, resulting in an 18% reduction in total energy
consumption. However, regarding the HFCT with fuel cell/
battery topologies, Wang [14] designed a power-following
(PF) strategy. Compared to traditional tractors, this strategy
resulted in a 21.8% improvement in fuel economy. Addition-
ally, Yang et al. [15] proposed an optimization-based EMS
that combines temperature control, PF and fuzzy logic control
strategies. Utilized a taboo search algorithm was utilized to
enhance overall system efficiency. Martini et al. [16] pro-
posed a reference velocity control strategy and evaluated the
current reference commands of the converter using power
request functions. In comparison to traditional tractors, this
approach effectively reduces carbon emissions. Xu et al. [17]
introduced an EMS based on fuzzy control, resulting in a
reduction in equivalent hydro-gen consumption when com-
pared to CS/CD control strategies. Liu et al. [18] presented an
EMS that utilized a multi-objective genetic algorithm. In con-
trast to PF strategy, it resulted in notably higher remaining
state of charge (SOC) levels, with an increase of approxi-
mately 11.22% and 6.1% higher, respectively. Moreover, the
theoretical hydro-gen fuel consumption saw reductions of
approximately 26.49% and 36.21%.

Based on the above research, it can be observed that for
the HFCT with FC and battery as energy system, most opti-
mization methods are still using rule-based EMSs that rely
on expert experience. There is a dearth of optimization-based
and intelligence-based EMSs that offer robust control accu-
racy and high stability. Furthermore, a comprehensive
electromechanical-hydraulic integrated dynamicmodel of the
tractor powertrain has not been developed specifically for the
topologies of FC and battery systems.

Therefore, the principal aim of this study is to develop a
methodology for configuring parameters, optimizing energy
utilization, and simulating a single-motor drive system tai-
lored for the dynamic operational demands of the HFCT. The
main tasks to achieve this goal are outlined as follows:

(1) For the designedHFCTwith an energy system compris-
ing FCs and batteries, a comprehensive electromechanical-
hydraulic integrated power bond graph model (BGM) is
constructed, encompassing the tractor’s power system, drive
system, and lifting system.

(2) To address the current gap in the field of EMS
for the HFCT, a hierarchical dynamic programming (HDP)
algorithm is designed.

(3) A Matlab-HIL test platform is established, enabling
the validation of the designed power system and EMS

VOLUME 12, 2024 21383



Y. Li et al.: Energy Management Optimization and Validation

FIGURE 1. Schematic diagram of power system for the hydrogen fuel cell tractor (HFCT).

through both model-in-the-loop (MIL) and hardware-in-the-
loop (HIL) simulations, confirming their correctness and
superiority.

This research offers theoretical backing for developing the
tractor model and optimizing the energy system of the HFCT
that utilize both FCs and batteries as their energy sources.

II. DYNAMICAL MODEL
A. SCHEME DESIGN
The comprehensive structure of the designed power system
for the HFCT is illustrated in Figure 1. Irregular road surfaces
result in the load exhibiting time-varying characteristics,
which in turn induce high-frequency motor fluctuations dur-
ing plowing operations. Therefore, the power supply system
needs to not only operate continuously for an extended period
but also provide instantaneous peak power. FC offer high
energy density. However, they cannot maintain a stable output
voltage or current. Therefore, FCs are employed as the pri-
mary power source to provide steady-state loads. To regulate
the output power and stabilize the output voltage, the FC
system is coupled with a unidirectional boost-type DC/DC
converter in a serial arrangement. Simultaneously, to compen-
sate for soft output characteristics of the FC system, a battery
pack in parallel with the DC bus. This setup is designed to
reach the instantaneously high power requirements of the
drive motor [19].

B. POWER BOND GRAPH OF ENERGY SYSTEM
1) FUEL CELL MODEL
In this paper, a commercial FC rated at 75kW is chosen and
paired with two hydrogen tanks. The related parameters of
the FC are shown in Table 1.

The FC stack stands as a pivotal element within the FC
system. Hydrogen undergoes disintegration into protons and
electrons within the catalytic layer of the anode. Protons
navigate the proton exchange membrane, converging with
oxygen molecules to produce water, while electrons follow
through the external circuit to power the load [20]. The
chemical reactions occurring within the fuel cell stack can

TABLE 1. Fuel cell (FC) properties.

be delineated as follows:
Anode: H2 → 2e− + 2H+

Cathode: 2e− + 2H+
+

1
2
O2 → H2O

General formula :
1
2
O2 + H2 → H2O

(1)

PEMFC possesses advantages such as high-power density
and strong temperature tolerance. The equivalent circuit dia-
gram is illustrated in Figure 2 [21]. Among them, ENernst is
the thermodynamic electromotive force of the PEMFC, V;
Ract is internal resistance of activated polarization, �; Rcon is
internal resistance of concentration polarization, �; Rohm is
ohmic polarization resistance, �; Ecell is the terminal voltage
of the PEMFC, V.

FIGURE 2. The equivalent circuit diagram of single FC.

The operational process of a FC entails the electrochemical
transformation of the chemical energy stored in the fuel into
electrical energy. When operating under conditions of con-
stant temperature and pressure, the upper limit of electrical
power that a FC can achieve is dictated by the negative value
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of the change in Gibbs free energy, denoted as [22]:

Welec = −1G (2)

where 1G represents the change in Gibbs free energy; Welec
represents the electrical work output of the FC, kW · h.
The electrical power generated by a FC is the result of

multiplying the voltage difference between the anode and
cathode by the transferred charge. Given that electrons carry
the charge, the electrical work output of the FC can be suc-
cinctly represented as follows:

Welec = −nFE (3)

where n is the number of free electrons, n= 2; F is Faraday’s
constant, F = 96485.3383C/mol; E is the voltage difference
between the anode and cathode, V.

Combining the two equations mentioned above, the rela-
tionship can be expressed as follows:

1G = −nFE (4)

The Gibbs free energy change for a hydrogen-oxygen FC
under standard conditions is1G0

= −237kJ/mol Therefore,
the reversible cell voltage under standard conditions is:

E0
= −

1G0

nF
= 1.229V (5)

In automotive environments, FC typically operate under
non-standard conditions, experiencing pressures ranging
from 3 to 5 atmospheres and cell temperatures between
60 ∼ 80◦C .Consequently, a modification is essential for
the reversible cell voltage in the equation. This modification
establishes a comprehensive relationship between voltage,
substance concentrations, gas pressures, and temperature,
encapsulated in the Nernst equation:

ENernst =
1
2F

[1G− 1S(T − T0) + RT (lnPH2 +
lnPO2

2
)]

(6)

where 1S represents the standard molar entropy change,
J/mol/K ; T is the operating temperature of the FC stack;
T0 is the temperature under standard conditions; R is the gas
constant; PH2 and PO2 are the partial pressures of hydrogen
and oxygen, respectively.

Combining the dynamic characteristics of a FC, In steady
state, a single PEMFC can be expressed as follows:

Ecell = ENernst − Uact − Uconc − Uohm
Uact = ε1 + ε2T + ε3T ln(Co2) + ε4T ln(ifc)

Uconc = b ln(1 −
i
ilim

)

Uohm = ifcRohm

(7)

where Uact is the activation polarization loss voltage, V;
Uconc is the concentration polarization loss voltage, V; Uohm
is the ohmic polarization loss voltage, V; ε1 ∼ ε4 is a
semi-empirical coefficient derived from principles in electro-
chemistry, thermodynamics, and fluid dynamics;Co2 denotes

the oxygen concentration within the cathodic catalytic layer,
mol/cm3; b is an empirical coefficient; i is electric current
density, A/cm3; ifc is the current of the fuel cell stack, A; T is
the system operating temperature; ilim is limited current, A.

The effective output voltage of the FC is as follows:

Vfc = Nfc · Ecell (8)

where Vfc represents the actual output voltage of the FC, V;
Nfc represents the quantity of the FC in series.
The FC output power is as follows:

Pfc = Vfc · ifc (9)

where Pfc is the output power, kW.
The efficiency is as follows:

ηfc =
Vfc

Nfc · ENernst
(10)

where ηfc represents the efficiency.
Combining the empirical formula for polarization voltage

mentioned above and the fundamental principles for con-
structing BG [23], the BGM for the FC is depicted in Figure 3.

FIGURE 3. Bond graph model for the FC.

The curve depicting the relationship between ‘‘Current’’
and ‘‘Voltage’’ is illustrated in Figure 4. Considering that

FIGURE 4. Current-Voltage curve of FC system.

VOLUME 12, 2024 21385



Y. Li et al.: Energy Management Optimization and Validation

FIGURE 5. Efficiency curve of FC system.

the electrical power consumption by the auxiliary system
of a FC typically constitutes 10-20% of the power output
from the FC stack, its impact on system efficiency cannot be
overlooked. Consequently, when accounting for the auxiliary
system consumption, the efficiency curve of the FC system is
presented in Figure 5.

2) BATTERY MODEL
The battery model described in this paper uses a first-order
RC model, and the equivalent circuit is shown in Figure 6
[23]. The relevant parameters are listed in Table 2. In this
figure, UBatt is the terminal voltage, V; IBatt is the output
current, A; RBatt is Ohmic resistance, �. Uocv is the open
circuit voltage, V.

FIGURE 6. The diagram of equivalent circuit for battery.

TABLE 2. Battery properties.

According to the equivalent circuit, the output current of
the lithium battery is as follows:

IBatt =
Uocv −

√
U2
ocv − 4 · RBatt · PBatt
2 · RBatt

(11)

The SOC at the next moment is as follows:

SOC(k + 1) = SOC(k)−
Uocv −

√
U2
ocv − 4RBattPBatt (k)

2RBattQBatt
1t

(12)

Utilizing the general method of BGM, the BGM of the
battery can be obtained, as shown in Figure 7. The potential
source ‘‘Se’’ in the BGM can be utilized to represent Uocv.
Due to the negligible temperature variations observed in prac-
tical experiments, the adjustable resistor element ‘‘MR’’ is
employed to denote the internal resistance of the battery, with
the temperature changes being disregarded. The ‘‘SOC’’ in
the diagram signifies the battery’s state of charge, which is
utilized for adjusting control strategies and the SOC signal
of the battery. The terms ‘‘voltage and current’’ represent the
ports connecting external loads, supplying voltage and energy
to the outside, with the current value being feedback from the
load.

FIGURE 7. The BGM of battery.

C. POWER BOND GRAPH OF DYNAMICAL SYSTEM
Tractors, as off-road machinery, play a crucial role in
agricultural activities, encompassing tasks such as plow-
ing, planting, and harvesting. Establishing an integrated
model that includes agricultural machinery aids in accurately
analyzing agricultural operation levels. The BGM enables
cross-physical system modeling. 20-sim provides an interac-
tive, object-oriented modeling and simulation platform [24],
[25]. Combined with the specific parameters mentioned
above, utilizing the 20-sim software, facilitates the automated
modeling of the electromechanical-hydraulic integrated engi-
neering system of the agricultural tractor.

Following the general principles of BGM, establish a
power flow diagram model for the HFCT that includes
the energy system, drive system, and lifting system. The
modeling assumes that the system operates at a constant
temperature and has reached a steady state. The meanings of
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TABLE 3. The meanings of the nine basic components.

FIGURE 8. The implementation of the bond graph model in 20-sim software.

FIGURE 9. The interaction process of Matlab/Simulink and 20-sim.

the nine basic elements are presented in Table 3. The BGM
constructed using the BGM software 20-sim is illustrated
in Figure 8.
The automation of modeling is achieved with the help of

the 20-sim script toolbox, which can automatically recognize
and execute matrix scripts that are exported from the 20-sim
environment and can be used within the Matlab environment.
This eliminates the necessity of manually deriving state equa-
tions and significantly reduces modeling time [26]. The rapid
interaction process between Matlab/Simulink and 20-sim is
il-lustrated in Figure 9.

D. PERFORMANCE VERIFICATION
Based on the original model YTO-LX1000 with rated power
of 75 kW, it is paired with the 1LF-430 plow, and the main
parameters as listed in Table 4:

In theMatlab/Simulink environment, the correctness of the
model construction is verified based on the BGM exported
from 20-sim, by assessing the tractor’s traction characteristics
and dynamic response characteristics.

The traction characteristics analysis is performed under
the following conditions: ① Gear transmission efficiency
is assumed to be 99%, and friction transmission efficiency
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TABLE 4. Tractor properties.

FIGURE 10. The traction characteristics of the HFCT.

is 96%; ② According to reference [27], it is indicated that
the transmission efficiency of a tractor utilizing a continu-
ously variable hydraulic transmission using volume control is
significantly affected by the transmission ratio, ranging from
0.7 to 0.99. The mean value is taken for analysis; ③ the ratio
of driving resistance to rated traction force is 0.87. Figure 10
depicts the tractor’s traction characteristics. In the figure, Prat
is the motor’s rated power, kW; vmax is the maximum speed
during plowing operations. As the traction force rises, so does
the traction power, edging closer to the ideal external char-
acteristic. Point A represents the maximum traction power
point. As the traction force increases, the slip rate also rises.

When analyzing the dynamic characteristics, a unit angular
displacement step signal is applied, and the inertia element’s
inertia, the amplitude of the angular dis-placement step
response function, and system sensitivity are normalized. The
step response characteristics of the tractor’s driving wheel
are shown in Figure 11. In comparison to a certain model
of YTO-tractor with the same power, the designed tractor
exhibits smoother operation, shorter stabilization time, and
better responsiveness.

In summary, the traction characteristics meet the design
requirements, and the established dynamic model is accurate.

The dynamic response characteristic is superior to that of
a YTO tractor with the same power, and the driving wheel
exhibits superb dynamic responsiveness.

III. ENERGY MANAGEMENT STRATEGY
The EMS for a HFCT with the FC/battery energy system is
a multidimensional, nonlinear, constrained, and finite-time
domain optimization problem [28]. In practical systems
where a FC is linked in series with a DC/DC converter,
the output power of the FC is effectively managed by the
DC/DC unit, which is typically regulated by control-ling the
current. This means that the actual output power of the FC is
contingent on the power delivered at the output of the DC/DC
converter.

A. DYNAMIC PROGRAMMING
Dynamic programming, by transforming multi-stage deci-
sions into a series of single-stage optimal decisions enables
the attainment of global optimal control for the system,
provided that complete operating condition information is
available. This approach proves to be particularly suitable
for conducting research on EMSs for the HFCT. Adher-
ing to Bell-man’s principle, which states that irrespective
of the starting state and initial choice, subsequent deci-
sions should collectively form the optimal decision [29].
The schematic diagram for the solution of DP is shown
in Figure 12, where xk is the set of all discrete state
points at time k; x ik the i-th discrete state point at time k;
arc_ cos t(x i→j

k ) is the arc-cost from the i-th state point at
time k to the j-th state point at time (k+1); J_temp(xk )
is the temporary cost function for each point at time k;
J_cost_to_go(xk ) is the optimal cost function for each point
at time k .

1) PROBLEM FORMULATION
In this paper, the state variable is the SOC and the control
variable is the output power of the DC/DC converter. There-
fore, in discrete-time, the general form of the state equation
is typically as follows:

x(k + 1) = f (x(k), u(k))
x = SOC
u = PDC/DC

(13)

where x is the state variable; k is the discretization computa-
tion step size; u is the control variable. PDC/DC is the output
power of the DC/DC converter, kW.
The power equilibrium equation is as follows:

Pload
ηDC/AC

= PDC/DC + PBatt (14)

where ηDC/AC is the efficiency of the DC/AC converter, set
to constant; Pload is the motor demand power, kW.

Combining Equation (12). and Equation (14), the
equation describing the transition of the system’s state is
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FIGURE 11. Dynamic response characteristics of the HFCT.

FIGURE 12. Schematic diagram for the solution of DP.

as follows:

SOC(k + 1)

= SOC(k) −
Uocv

2RBattQBatt
· 1t

+

√
U2
ocv − 4RBatt (Pload/ηDC/AC − PDC/DC )

2RBattQBatt
· 1t (15)

where 1t = 1s indicates the sampling interval.
The overall hydrogen consumption is selected as the objec-

tive function:

J = min
N∑
k=1

L[x(k), u(k)] =

N∑
k=1

JH2 (k) (16)

JH2 (k) = Cfc(k) + µCBatt (k) (17)

where Cfc(k) is FC hydrogen consumption, g/s. CBatt (k) is
the equivalent hydrogen consumption of the battery, g/s.

µ is the penalty coefficient. Due to SOC that is too high or
too low will reduce the charge and discharge efficiency, SOC
should be maintained in a relatively stable state. Therefore,
the concept of penalty function for SOC is introduced to
correct SOC [30]:

µ = 1 − 2β
SOC(k) − 0.5(SOCmax + SOCmin)

SOCmax − SOCmin
(18)

where β is the adjustment coefficient, β = 0.4; SOCmax and
SOCmin are the upper and lower bounds of SOC.
Based on the FC model shown in Figure 2, hydrogen

consumption of the FC can be acquired as follows:

Cfc(k) =
1

LHV

∫
Pfc(k)
ηfc(k)

dt (19)

where LHV stands for the low calorific value of hydrogen,
LHV = 120MJ/kg. ηfc represent the FC’s output efficiency.
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During operation, the battery of the non-plug-in tractor
described in this paper exclusively relies on the consumption
of hydrogen by the FC for its energy. Therefore, the variation
of SOC can be considered equivalent to the consumption
of hydrogen. An expression for the instantaneous equivalent
hydrogen consumption is established [31]. Equation (20),
as shown at the bottom of the page, where CBatt_chg and
CBatt_dis are instantaneous equivalent hydrogen consumption
of the battery during charging and discharging processes,
g/s; Cfc_avg is the average hydrogen consumption of the FC,
g/s; ηchg_avg and ηdis_avg represent the average charging and
discharging efficiency of the battery, respectively; Pdc_avg is
the average power of the DC/DC converter; Rchg and Rdis
represent the internal resistance of the battery during charging
and discharging, respectively.

In the optimization process, several constraints are
imposed to prevent over-charging and over-discharging of
the battery, extend its lifespan, and limit the wide-ranging
output of the FC to maintain its durability. Additionally,
constraints are introduced to protect the FC stack by lim-
iting the maximum power change rate, thereby controlling
transient response variations. The specific constraints are as
follows: 

SOCmin ≤ SOC ≤ SOCmax

Pfc_min ≤ Pfc ≤ Pfc_max

1Pfc ≤ 1Pfc_max

(21)

where SOCmax = 0.7, SOCmin = 0.5; Pfc_min = 5kW ,
Pfc_max = 60kW ; 1Pfc_max = 15kW/s.
In order to eliminate the points that do not fit the constraints

of Equation (16). existing in the discrete points, a penalty term
is introduced. This ensures that each control variable in the
feasible region is a point within the constraints.

Q(k) =

{
0 If Eq.(21) is satisfied
inf If Eq.(21) is not satisfied

(22)

where Q(k) is the penalty term.
In summary, the objective function is extended as follows:

JH2 (k) = Cfc(k) + µCBatt (k) + Q(k) (23)

In order to comprehensively observe the optimization
effects of the proposed control strategy, initial and final
values for the battery SOC is separately predefined for plow-
ing and transportation conditions, taking into account power

requirements and previous experiences:{
SOCIP = 70%
SOCFP = 65%

,

{
SOCIT = 72%
SOCFT = 70%

(24)

where SOCIP and SOCFP are the initial and final SOC under
plowing conditions; SOCIT and SOCFT are the initial and
final SOC under transportation condition.

2) SOLUTION METHODS
Based on the fundamental concept of DP, use the Matlab
simulation software to perform offline inverse analysis for
determining the optimal control input. Then, input these
results into simulation model of the HFCT for forward opti-
mization simulation, yielding the best decision variables and
optimal trajectory.

The specific DP algorithm process is shown in the diagram
as depicted in Figure 13.

1) Initialization. Research [32] has demonstrated an
inverse relationship between the precision of discretiza-
tion and the value of objective function. Additionally,
the impact of the state variable’s level of discretization
on this function surpasses that of the control variable.
Therefore, 1SOC = 0.005, the discrete grid number
M = 60; 1PDC/DC = 2.75, the discrete grid number
T = 20.

2) Reverse solving. As the terminal state values are known
at the N-th stage, the implementation process can be
divided into three stages: N →(N-1), (N-1)→1, and
1→0. The first and third stages follow the following
equation:

arc_cost
(
x iN−1

)
= J_temp

(
x iN−1

)
= J_cost_to_go

(
x iN−1

)
(25)

It’s important to emphasize that, irrespective of the
infinitesimal discretization precision applied to state
and control variables, it does not ensure that every point
in the space aligns perfectly with the grid points. Linear
interpolation serves as the method for determining the
optimal cost function by interpolating between data
points.

• If xk+1 precisely coincides with the grid
point xi−1

k+1 :{
J_temp

(
x ik

)
=arc_cost

(
x ik

)
+J_ cos t_to_go

(
x i−1
k+1

)
J_ cos t_to_go

(
x ik

)
=min J_temp

(
x ik

)
(26)

CBatt (k) =


CBatt_dis(k) =

PBatt (k)
ηchg_avg

Cfc_avg
Pdc_avg

(
1
2

+
1
2

√
1 −

4RdisPBatt
V 2
ocv

)−1PBatt ≥ 0

CBatt_chg(k) = PBatt (k)ηdis_avg
Cfc_avg
Pdc_avg

(
1
2

+
1
2

√
1 −

4RchgPBatt
V 2
ocv

)−1PBatt < 0

(20)
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FIGURE 13. The flowchart of DP algorithm.

• If xk+1 does not align with the grid point: J_temp
(
x ik

)
=arc_cost

(
x ik

)
+J_ cos t_to_go

(
x∗

k+1
)

J_ cos t_to_go
(
x ik

)
= min J_temp

(
x ik

)
(27)

where x ik , x
i−1
k+1, x

∗

k+1 are the discrete state variables of
interpolation points: i at time k , point (i-1) at time (k+1)
and point interpolation at time (k+1) respectively.

3) Forward optimization. Following the reverse solving
process, the optimal objective functions and corre-
sponding control sequences for different states at each
stage with respect to the N stages are stored. This pre-
pares the system for forward computation. The optimal
decision values are derived through linear interpola-
tion, allowing calculations to proceed up to stage N.
As a result, the complete optimal state trajectory and

the corresponding optimal control decision sequence
are obtained.

B. HIERARCHICAL DYNAMIC PROGRAMMING
The DP algorithm is powerful but not suitable for real-time
applications due to its prerequisites. Addressing this issue,
a hierarchical dynamic programming (HDP) control strategy
is proposed. The upper layer takes the results of a DP as
its output. The lower layer, utilizing the general regression
neural network (GRNN) algorithm, learns from the upper
layer’s power allocation results and applies them in real-
time. Additionally, the mean impact value (MIV) algorithm
is employed to reduce training times caused by large data
dimensions, as illustrated in the flowchart in Figure 14.

1) GENERALIZED REGRESSION NEURAL NETWORK
The GRNN exhibits superior learning efficiency and general-
ization capabilities [33]. It is founded on nonlinear regression
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FIGURE 14. The control strategy diagram of hierarchical dynamic programming.

FIGURE 15. The architectural layout of the generalized regression neural
network (GRNN).

analysis, rendering it well-suited for ad-dressing nonlinear
multi-constraint problems. The architectural layout of the
GRNN, as depicted in Figure 15 [34], encompasses four tiers
of neurons. Each tier comprises multiple nodes, with inter-
connections between nodes of different layers established by
weighted connections. Conversely, nodes within the same
layer remain unconnected.

The optimization process is as follows:

1) Establishing the centers for the radial basis functions
within the hidden layer neurons. In this step, data

samples are transmitted from the input layer to the
hidden layer, with the input matrix denoted as U, and
the corresponding output matrix denoted as R:

U =


u11 u12 . . . u1Q
u21 u22 . . . u2Q
...

...
. . .

...

uP1 uP2 . . . uPQ

 ,

R =


r11 r12 . . . r1Q
r21 r22 . . . r2Q
...

...
. . .

...

rS1 rS2 . . . rSQ

 (28)

where P corresponds to the input variable size; S repre-
sents the output variable size; Q stands for the sample
count in the training set; uij denotes the i-th input
variable on the j-th samples; tij denotes the i-th output
variable on the j-th sample.
The centers of the radial basis functions for the Q
hidden layer neurons are as follows:

C = UR (29)

where C is the centers of the radial basis function.
2) Determining the thresholds of hidden layer neurons.

The threshold values for the Q neurons in the hidden
layer are as follows:

b1 = [b11, b12, · · · , b1Q]′ (30)
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where b is the threshold;b11 = b12 = · · · =

b1Q = 0.8326/spread , spread is the spreading rate of
the radial basis functions.
During the training process, the only parameter that
needs adjustment in the GRNN is the smoothing factor,
which is the most critical factor determining the size
of prediction errors. The smoothing factor denoted as
σ , and if σ is too small, it can lead to overfitting,
if σ is too large, the errors can become too significant.
Therefore, the optimal value of σ is chosen through
iterative tuning. The parameter tuning approach is to
directly adjust the spreading coefficient of the radial
basis functions associated with σ .

3) Determining the weights connecting the hidden layer
and the output layer. The output of the hidden layer
neurons is:

ai = exp(− ∥C − ui∥2 b1), i = 1, 2, · · · ,Q (31)

where pi = [pi1, pi2, · · · , piR]′ is the i-th training sam-
ple vector; ai is the output of the hidden layer neurons.
W is the connection weights in order to train the set
output matrix, expressed as follows:

W = R (32)

4) Calculating the output layer neuron outputs.
When the connection weights are determined, they can
be calculated using the normalized dot-product weight
function and the linear transfer function. As shown in
follows:

ni =
Wai

Q∑
j=1

aij

, i = 1, 2, · · · ,Q (33)

yi = purelin(ni) = ni, i = 1, 2, · · · ,Q (34)

2) PREPROCESSING OF INPUT VARIABLES
In order to mitigate challenges like prolonged training times
and unwieldy net-work sizes arising from high-dimensional
data, feature dimension reduction techniques are applied
to the input variables of neural networks. Commonly used
dimension reduction methods encompass principal compo-
nent analysis, factor analysis, and MIV. Among these, MIV
stands out as one of the most effective indicators for evaluat-
ing variable relevance within a neural network [35].
The positive and negative signs of MIV represent the

direction of influence that independent variables exert on
the output variable, while the absolute value signifies the
extent of their impact. A common technique involves creating
two new training samples by adding and subtracting 10%
to the feature indicator values of the independent variables.
Then, the change in influence on the output information
variable (IV) is calculated for each variable, and the average
of these IV values is computed to obtain the MIV value for
that specific independent variable. This process is iteratively
repeated for each independent variable, resulting in MIV

values for all variables. Finally, these MIV values are ranked
based on their absolute magnitude. This ranking approach
helps in retaining important features from the original data
while revealing the essential characteristics of the dataset.

The specific screening process is as follows:
1) Constructing training samples. Initially, the neural net-

work is trained with matrix X as the input and the
PDC/DC as the output. Subsequently, two new training
samples denoted asXi(1),Xi(2) are generated by adding
and subtracting 10% from the input matrix X.

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...

xn1 xn2 . . . xnm

 (35)

Xi(1) =


x11 x12 · · · x1i + 10%x1i · · · x1m
x21 x22 · · · x2i + 10%x2i · · · x2m
...

...
. . .

...
. . .

...

xn1 xn2 · · · xni + 10%xni · · · xnm


(36)

Xi(2) =


x11 x12 · · · x1i − 10%x1i · · · x1m
x21 x22 · · · x2i − 10%x2i · · · x2m
...

...
. . .

...
. . .

...

xn1 xn2 · · · xni − 10%xni · · · xnm


(37)

where m represents the quantity of variables; n repre-
sents the quantity of samples each variable contains.

2) Calculating IV The IV of the i-th variable is as follows:

IVi = Yi(1) − Yi(2) (38)

where Yi(1) and Yi(2) is the output value of the i-th
variable.

3) Calculating MIV and relative contribution rate.
Using the DP optimization results as training sam-
ples, initially, five feature variables are preliminar-
ily selected, including demand power, vehicle speed,
power from the previous time step in the battery, power
from the previous time step in the FC, and SOC. The
MIV and relative contribution rate denoted as are com-
puted for each of these feature variables. Variables
with high relative contribution rates are chosen as input
variables for the GRNN.
The formula for calculating MIV is as follows:

MIVi =
1
n

n∑
j=1

IVi(j), i = 1, 2, . . . ,m (39)

Relative contribution rate pertains to the ratio of the
impact value of the i-th feature variable to the total sum
of MIV values, which is shown as follows:

αi =
|MIVi|
n∑
i=1

|MIVi|
, i = 1, 2, . . . , 5 (40)
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4) Evaluating quality.
The quality of the GRNN is assessed by evaluating the
mean square error denoted as E and the coefficient of
determination denoted as R2.

E =
1
l

l∑
i=1

(ŷi − yi)2

R2 =

(l
l∑
i=1

ŷiyi −
l∑
i=1

ŷi
l∑
i=1

yi)2

(l
l∑
i=1

ŷ2i − (
l∑
i=1

ŷi)2)(l
l∑
i=1

y2i − (
l∑
i=1

yi)2)

(41)

where l is sample size; yi represents the real output value of
the i-th sample; ŷi represents the predicted value of the neural
network for sample i, i = 1, 2, . . . , l.

IV. SIMULATION AND RESULT ANALYSIS
In accordance with the V-shaped rapid development process,
the simulation is di-vided into two phases: MIL and HIL.
MIL is utilized for the initial validation of the correctness
of the HTCT’s simulation model and the EMS simulation
model. HIL is then employed to bolster model confidence and
significantly reduce development time.

In order to enhance the vertical comparability of EMSs,
a rule-based PF strategy is chosen as the comparative control
strategy. The PF strategy diagram is depicted in Figure 16.

FIGURE 16. The diagram of power-following (PF) strategy.

A. WORKING CONDITION
1) PLOUGHING CONDITION
To ensure an accurate simulation of real-world operations,
and in accordance with the parameter selection results for
key components, the YTO-1000 tractor produced by the col-
laborative enterprise YTO Group Corporation, paired with
the 1LF-430 bidirectional amplitude-adjustable plow for field
tests [36], is selected. The test location is the field test site
for all terrain types in Mengjin test base of China YTO
Group, and the conditions for the field tests are detailed in

TABLE 5. Conditions for measuring ploughing resistance.

Table 5. During the experiment, in the latter 200 seconds, the
plowing depth is reduced while simultaneously decreasing
the vehicle’s speed. This adjustment is made to better observe
whether the overall operating status of the tractor under vari-
ous load conditions aligns with the settings of the EMS. The
experimental conditions and the load spectrum for plowing
operations are illustrated in Figure 17. The average tractive
resistance is 11.23kN.

2) TRANSPORTATION CONDITION
The transportation condition is optimized for the suburban
cycle condition EUDC_Man at 30% intensity, with a max-
imum speed of 36 km/h, as illustrated in Figure 18. The
tractor is operating under full load with an effective payload
of 2340kg.

B. MODEL-IN-THE-LOOP
The MIL approach utilizes the 20-sim simulation software to
create the for-ward simulation model for the HFCT. In par-
allel, the Matlab/Simulink simulation software is employed
to develop the EMS simulation model. The simulation soft-
ware interaction is facilitated through the script toolbox for
seamless communication.

Figure 19 and Figure 20 display the variations in the speed
when three different EMSs are implemented, respectively.
These figures illustrate that the actual speed can basically
track the target speed in real-time. These simulation results
affirm the precision of the constructed simulation model.
Specifically, under plowing conditions, the speeds with the
three EMSs fluctuate within an error range of [−0.49, 0.27].
The reason for these tracking fluctuations is attributed to
the complex and variable operating conditions of the tractor,
leading to a Gaussian-distributed random fluctuation in the
traction load during plowing operations. And during trans-
portation conditions, slight fluctuations occur at moments of
speed stability, with the remaining periods exhibiting negli-
gible fluctuations below 0.01.

C. HARDWARE-IN-THE-LOOP
HIL simulation involves integrating an actual controller with
the vehicle simulation model, resulting in a semi-physical
simulation. The simulation platform setup can be seen in
Figure 21 and the HIL implementation process is shown
in Figure 22. This simulation encompasses both hardware
and software components. The hardware includes an HIL
cabinet manufactured by the National Instruments company
and a specialized vehicle control unit for FC systems called
PowerECU-57A, produced by Shan-dong EXP Fuel Cell
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FIGURE 17. The experimental conditions for ploughing.

FIGURE 18. Schematic diagram of transportation operating conditions.

FIGURE 19. Comparison chart between target speed and actual speed
under plowing conditions.

Technology Co.,Ltd. The EMS communication interface set-
tings are finetuned using the I/O modules provided by the
PowerBSP plug-in software. Utilizing tools likeMatlab/RTW

FIGURE 20. Comparison chart between target speed and actual speed
under transportation conditions.

code generation and PowerBOOT code loading, C code for
the energy management strategy and seamlessly integrate it
with the ECU’s low-level programming is generated. The
compiled vehicle simulation model is then imported into NI
VeriStand software and connected to the NI real-time sim-
ulator through con-figuration board interfaces. Information
exchange between the drive controller and the real-time sim-
ulation processor is accomplished via the CAN bus. Online
data observation and calibration are performed through Pow-
erCAL in the host computer [37], [38].

D. RESULTS ANALYSIS
1) PLOUGHING CONDITION
Figure 23 displays the power output from various energy
sources of the HFCT under three different EMSs. The longi-
tudinal comparison shows that, due to the working conditions
and ploughing load settings are the same across these three
strategies, the power output from the motor remains con-
sistent. However, there are variations observed in the power
output from the FC as follows: DP<HDP<PF. In contrast to
the PF strategy, both the DP and HDP strategies demonstrate
the ability to maintain a steady output from the FC, with
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FIGURE 21. Hardware-in-the-loop test setup diagram.

FIGURE 22. The flow chart of implementation process for hardware-in-the-loop test.

peak fluctuation power being supplemented by the battery.
Notably, during the initial 6s of operation, both DP and HDP
strategies effectively address the output power deficiencies
of the FC. Be-yond the 1000s, as the overall load on the

vehicle decreases, the FC operates at a higher efficiency
region, producing substantial power output. It utilizes this
power to charge the battery within the allowable charging
rate, thus extending the lifespan of the traction battery pack.
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FIGURE 23. The output power of each energy source under three energy
management strategies (EMSs) (a) DP; (b) HDP; (c) PF.

In particular, under the DP strategy, in order to meet the
specified condition where SOCT = SOCN = 0.65, a notable
increase in FC’s output power is observed at the 1162s. Under

FIGURE 24. The state of charge (SOC) changes under the three strategies.

FIGURE 25. The cumulative consumption changes of equivalent hydrogen
fuel under the three EMSs.

the PF strategy, before reaching 1000 seconds, SOCmin <

SOC < SOCmax, there is a gradual increase in the output
power of the FC, accompanied by a decrease in the output
power of the battery. Between the time interval of 1000 to
1029 seconds, there is a shift in the dynamics. This period
is marked by a reduction in the overall load on the vehicle,
leading to a simultaneous decrease in both FC and battery
output powers. After surpassing the 1029s, SOC < SOCmin,
The FC not only supplies the required power for the vehicle
but also takes on the additional task of charging the bat-
tery., which in accordance with the settings specified by the
PF strategy.

Figure 24 displays the changes in SOC under three strate-
gies, and Table 6 shows the corresponding SOC results. Upon
examining the graph, it becomes evident that the changes in
SOC under the DP and HDP strategies closely resemble each
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FIGURE 26. The output power of each energy source under three EMSs
(a) DP; (b) HDP; (c) PF.

other during the initial 1000 seconds. However, it is worth
noting that DP exhibits a slightly gentler slope compared
to HDP, suggesting a smoother discharge pattern for the
battery under the DP strategy. Under the DP strategy, after
1162s, to achieve the pre-set value, the discharge power of FC
increases. From the DP results, it’s evident that and deviate

FIGURE 27. The SOC changes under the three strategies.

from by 0.075, which is caused by the cumulative error in the
energy consumption assessment of batteries. In a longitudinal
comparison, the extent of SOC variation is ranked as follows:
DP < HDP < PF, relative to the initial value SOCIP.
Figure 25 and Table 7 respectively depict changes and

results in the cumulative equivalent hydrogen fuel con-
sumption for the three EMSs. The order of cumulative FC
consumption is: PF<DP<HDP. The order of cumulative
equivalent hydrogen fuel consumption for battery is: DP<

HDP< PF. The order of the equivalent hydrogen consumption
from FC and battery is: DP< HDP< PF. As a result, under
the PF strategy, the FC has the lowest utilization rate, while
the battery has the highest utilization rate. This strategy does
not effectively harness the FC to maximize zero emissions
and somewhat shortens the lifespan of battery. Due to slightly
larger FC power fluctuations under HDP compared to DP,
the FC hydrogen consumption is slightly higher than DP.
In a longitudinal comparison, compared with PF, the equiv-
alent hydrogen consumption of DP and HDP decreased by
10.278% and 6.728%, respectively.

2) TRANSPORTATION CONDITION
To better reflect real-world driving conditions and extend
the duration of transportation condition, the transportation
condition is simulated three times for repetition during the
optimization process.

Figure 26 illustrates the power output of various energy
sources for the HFCT across three EMSs.With an initial SOC
set at 72%, the entire power demand is initially borne by the
battery until the SOC decreased to 70%. Specifically, under
the PF strategy, the battery carried a higher load of the tractor
demanded power than the FC, leading to an underutilization
of the fuel cell as the primary energy source and a reduction in
the lifespan of the battery. In the DP strategy, the FC exhib-
ited the most stable power output, thereby safeguarding the
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TABLE 6. The SOC results for the three strategies under ploughing condition.

TABLE 7. Hydrogen fuel consumption results under ploughing condition.

TABLE 8. The SOC results for the three strategies under transportation condition.

TABLE 9. Hydrogen fuel consumption results under transportation condition.

FIGURE 28. The cumulative consumption changes of equivalent hydrogen
fuel under the three EMSs.

lifespan of both the FC and the battery. In the HDP strategy,
the FC efficiently provided the primary power demand for the
tractor in its high-efficiency zone, maximizing the utilization
of the FC.

Fig. 27 illustrates SOC changes under three strategies, and
Table 8 presents the SOC outcomes. Notably, the DP strategy
exhibits the smoothest SOC variation, closely approaching
the target final value SOCFT compared to HDP. The HDP
strategy, leveraging the fuel cell extensively, results in a slight
SOC increase. In summary, the SOC changes, relative to the
initial values, follow the order: DP < HDP < PF.

Fig. 28 and Table 9 show equivalent hydrogen consumption
changes and outcomes under three strategies. FC consump-
tion ranks: DP<PF <HDP. Battery consumption order:
HDP< DP< PF. The equivalent hydrogen consumption from
energy sources order: DP< HDP< PF. Notably, under HDP
strategy, FC utilization is highest, DP strategy results in the
least hydrogen consumption, and PF strategy, relying on
the battery for main power, incurs the highest equivalent
hydrogen consumption. Vertically comparing DP and HDP to
PF, there are reductions of 16.02% and 4.87%, respectively,
in equivalent hydrogen consumption.

V. CONCLUSION
This paper presents a comprehensive approach that encom-
passes the entire process of system design, optimization, and
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validation for a HFCT with a fuel cell/battery hybrid energy
system.

1) This study focuses on HFCT utilizing the FC and bat-
tery as the energy system. Following tractor design
principles and employing a general modeling approach
based on BG, the powertrain system for HFCT is
developed, and a machine-electric-hydraulic integrated
power BGM is constructed in the 20-sim simulation
software environment, which includes the energy sys-
tem, drive system, and lifting system. Furthermore,
rapid interaction between 20-sim and Matlab/Simulink
software is achieved.

2) In the realm of FC/ battery energy system, a HDP
algorithm is introduced. The upper layer produces DP
power allocation results. The lower layer employs the
GRNN algorithm to learn from the DP outputs and
applies MIV preprocessing to the input variables. This
method resolves the real-time application challenge
faced by DP and reduces training time.

3) Employing the V-model rapid development framework
in conjunction with field test plowing condition data
and the designed transportation condition, a Matlab-
HIL test platform is established. The platform, com-
prising 20-sim, Matlab/Simulink, HIL cabinet, and
PowerECU-57A control unit, served as the core hard-
ware and software components. Through MIL and HIL
validation processes, the accuracy and superiority of
both the HFCT model and the EMS are confirmed.

4) The simulation results demonstrated that the designed
tractor simulation model and EMS model exhib-
ited correctness and superiority. In plowing condi-
tions, the DP and HDP strategies exhibited reductions
of 10.278% and 6.728%, respectively, in equiva-
lent hydrogen consumption compared to PF strategy.
In transportation conditions, the reductions are 16.02%
for DP strategy and 4.87% for HDP strategy, both
relative to PF strategy.

The findings of this research offer theoretical backing for
the modeling and optimization of energy management in
the HFCT. Furthermore, they offer certain insights for the
development of low-carbon modern agricultural machinery.
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