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ABSTRACT This paper presented an optimal design of a grid-independent hybrid renewable energy system
(HRES) that comprises Photovoltaic, Biomass, Hydrogen Fuel Cell, and battery storage. Renewable energy-
based system have been endorsed for remote off-grid communities electrification. However, it is difficult
to design an optimal hybrid energy system due to the stochastic resource nature, load variation, and high
cost of renewable components. The sizing of components for the proposed HRES is determined through
the application of an innovative metaheuristic optimization technique called salp swarm algorithm (SSA).
Addressing the limitations of the salp swarm algorithm, which include low precision, optimization dimension
and convergence rate, a modified version of the salp swarm algorithm (SSA), known as the Levy and sine
cosine operator-based (LSC-SSA), was introduced. The proposed algorithm is compared with standard SSA
and Genetic Algorithm (GA). The primary goal of the research is to reduce the annualized cost of the
hybrid system, whilst taking into account the reliability constraint. The novelty of this research lies in its
approach to enhance the performance of a HRES by optimizing its size and energy management strategy
(EMS). It is achieved by employing a combined framework that integrate the proposed LSC-SSA into
the supervisory EMS. The potential benefits of this approach include reducing the cost of energy and the
annualized system cost. The comparative results validate that the LSC-SSA surpasses the standard SSA,
and GA algorithms examined, by realizing significant cost reductions amounting to $82,023, and $202,127
respectively. Additionally, the outcome indicates that, the LSC-SSA offers the least cost of energy (COE) of
$0.927/kWh, in comparison with the COE values of $0.931/kWh for SSA and $0.949/kWh for GA, which
are higher. Furthermore, the results indicate that the applied supervisory EMS has effectively assisted the
establishing an eco-friendly and economical energy system.

INDEX TERMS Solar PV, biomass, fuel cell, rule-based, energy management strategy.
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CO2 Carbon dioxide.
Bio Biomass.

CS Cuckoo search.

EL Electrolyzer.

GA Genetic algorithm.

GAMS General algebraic modeling system.

HRES Hybrid renewable energy system.

LSC-SSA Levy sine cosine-salp swarm algorithm.

MILP Mix integer linear programming.

MNLP Mix non-linear programming.

ηinv Inverter efficiency.

NSGA-II Non-dominated sorting GA.

NHT Number of hydrogen tank.

Pbmg Biomass gasifier power.

Pinv−out Inverter output power.

Pmaxbat Maximum battery power.

Pelr Electrolyzer rating.

Pfcr Fuel cell rating.

Phtr Hydrogen tank rating.

Ppvr Photovoltaic rating.

Ppv Photovoltaic power.

PSO Particle swarm optimization.

Pstorage Power storage.

PV Photovoltaic.

SoC State of charge.

SoCmax Maximum state of charge.

SoCmin Minimum state of charge.

T noct Operating cell temperature.

I. INTRODUCTION
Presently, a substantial barrier impedes the quest for
addressing the ever-escalating energy requirements and the
associated dilemmas linked with fossil fuel utilization [1].
The call for energy is on an upward trajectory owing
to burgeoning economies and a global population surge,
consequently driving up the reliance on fossil fuels() [2].
Microgrid has been identified as a sustainable solution for
meeting the energy demand [3]. A microgrid is designed
to meet the energy demand of a specific area, like a
community, campus, or industrial facility, and can function
independently or grid-connected [4]. A microgrid powered
by renewable energy sources are seen as the most fitting and
economical approach for providing an electricity. However,
creating the most effective and cost-efficient design for
such systems, considering both technical and economic
aspects, is a complex task due to various challenges [5].
One of these challenges stems from the unreliability of
renewable energy sources, which heavily rely on weather

conditions. Frequently, microgrid systems end up being
either too large, incurring high costs and producing excess
energy, or too small, leading to insufficient power supply
for their intended purposes [6]. To address these issues and
fully capitalize on the advantages of renewable energy-based
microgrids, It is crucial to meticulously establish the optimal
size of the microgrid and couple it with a robust energy
management strategy [7]. Renewable Energy Resources
(RESs) heavily depend on weather conditions, yet they
inherently provide advantageous synergies across various
times (day and night, as well as different seasons) and spaces
[8]. Studies have demonstrated that integrating multiple
hybrid RESs offers improved cost-efficiency and depend-
ability compared to a solitary energy system [9]. Recently,
there has been a substantial upsurge in the development
of environmentally conscious energy technology utilizing
fuel cells (FCs). FCs bring forth distinct benefits compared
to conventional batteries, attributed to their capacity to
produce energy through fuel combustion, a contrast to the
simple energy storage mechanism of batteries. This unique
attribute positions FC as a remarkably efficient fuel option for
generating electricity, owing to their impressive efficiency,
considerable power density, and absence of emissions.
Operating within an efficiency range of 40% to 60%, fuel
cells outshine combustion engines (25%) and power plants
by a significant margin [10]. In an effort to enhance the
cost efficiency of FC systems, researchers have directed their
attention towards diminishing the expense associated with
power generation through FCs. Consequently, the cost of
power produced by FCs has witnessed substantial reduction
over time, declining from $110 per kilowatt (kW) in 2004 to
$56.6 per kW in 2012, with anticipations of continued
decreases in the future [11]. Identifying an eco-friendly and
efficient electricity generation has been a main spotlight for
lots of scholars. As one prospective solution, biomass stands
out as a promising option due to its ability to generate power
without emitting carbon dioxide, making it an efficient and
renewable energy source. As a result, the use of biomass
for power generation has been gaining more and more
interest.

A. PROBLEM STATEMENT
The global energy demand is on the constant statement due
to the factors such as population growth, economic growth,
urbanization, change in lifestyle etc. This rise in demand is
made traditional energy sources such as coal, natural gas,
and oil. However, the use of traditional energy sources comes
along with a range of challenges like environmental ham, reli-
ability, energy loss in transmission and aging infrastructure.
Hybrid renewable energy based microgrid has been endorsed
for remote off-grid communities. But designing an optimal
microgrid system due to the stochastic resource nature, load
variation, and high cost of renewable component. In that line,
several optimization algorithms are proposed to optimally
design a microgrid system, but the algorithms are prone to
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issues like premature convergence, solution trapping in local
optima, slow convergence, and low accuracy. Therefore, this
paper proposed an improved SSA for the design of optimal
HRES. This is motivated by the understanding that even
a small improvement in metaheuristic algorithm can lead
to a considerable positive influence on the performance of
the HRES.

B. LITERATURE REVIEW AND GAPS
Numerous prior investigations have delved into the optimal
control and sizing of microgrid that integrate hydrogen fuel
cells and battery storage. These studies have employed a
diverse array of methodologies and viewpoints. Achieving
the most effective arrangement for renewable energy systems
usually hinges on leveraging established commercial frame-
works and robust meta-heuristic intelligent optimization
algorithms. These elements play a pivotal role in attaining
optimal outcomes. The ensuing paragraphs delve into a few
of these studies.

Table 1 offers a concise overview of a range of research
investigations centred around enhancing the design and func-
tioning of microgrid through the integration of hydrogen FC.
In reference [12], an examination was carried out involving
PV combined with hybrid battery and pump hydro storage.
This study harnessed the potential of rainfall under various
reliability. The research explored two distinct test bed system:
Case-1, which featured a PV integrated with only battery
storage, and Case-2, which integrated PV, battery, and pump
hydro storage. The investigation encompassed a range of
LPSP values, ranging from 0.00 to 0.10 in increments of 0.02.
To determine the ideal system size, the optimization process
utilized the particle swarm optimization technique, with a
primary focus on reducing the LCOE. In [13], researchers
introduced an innovative power flow control approach aimed
at boosting the efficiency of an energy system. The investiga-
tion validated that the interval of start and stop cycles for both
an EL and FC is extended by 65% and contracted by 59%,
correspondingly. This modification resulted in a significant
improvement in the system’s ability to produce hydrogen.
In [14], researchers employed an improved grey wolf
algorithm to derive the optimum size of microgrid system.
The study demonstrates that incorporatingmore than one type
of storage as primary backup can mitigates the fluctuations in
RES. In reference [15], a grid-connected PV system has been
implemented to satisfy the requirements for electrical power,
heating, and production of hydrogen. This comprehensive
system incorporates electric heaters for centralized solutions
in heating and energy storage. The primary objective is to
develop and analyze a grid tied system in its initial design
phase, conducting an assessment encompassing economic,
energy, and environmental aspects. This assessment takes into
account critical factors such as the cost of energy (COE),
energy rates (ER), and proportion of renewable energy.
In [16], an efficient methodology for controlling energy in
both isolated and grid-coupled nodes is presented. The study

attains a drop in regular operational costs by 1.21%, 0.88%
for unrestricted grid operation, and 1.08% for grid operation
based on the findings. The system comprises PV,WT, Battery,
and an EL. Subsequently, the researchers devised a multi-
faceted EMS to control the power consumption of the diverse
decentralized energy elements. The EMS’s purpose was
designed to ensure that both battery storage and the EL
operate with a balance of low cost and extended longevity.
Reference [17] presents a cost-focused approach designed
to discover the most efficient configurations and EMS for
an isolated microgrid, leveraging machine learning methods.
This framework is built upon two pivotal stages. Firstly,
it involves determining the optimum size for of Photovoltaic-
Battery Energy Storage system using an analytical and
economically oriented sizing model, with a primary objective
of minimizing the LCOE. Following this, microgrid’s EMS
is optimize using machine learning, ultimately leading to the
achievement of optimal cost reductions. The research cited
as [18] undertook a comparative analysis in the realm of
energy storage, comparing hydrogen-based and battery-based
solutions. The researchers formulated diverse operational
approaches and determined that hydrogen energy storage
exhibited superior performance to battery energy storage.
This superiority was particularly evident in metrics like finan-
cial evaluation, self-reliance metric, and grid performance
indicator, especially when faced with instances of grid power
fluctuations. In studies [19], researchers examined how the
wind power factor and the cost of energy influenced the
Cost of Hydrogen (COH). Through the consideration of
diverse approaches regarding transportation and hydrogen
storage, the results demonstrated that the COH attained its
most economical figures, attaining a cost of 7.2 $/kg for
production in Argentina and 9.4 $/kg for production in Italy.
The research referenced as [20] delved into the advantages
of employing combine storage arrangement that integrates
hydrogen and battery. The researchers highlighted that
battery storage hold a cost advantage, and the incorporation of
hydrogen and battery storage offers a promising approach to
aaddress the uncertainties associated with renewable energy
generation and load variations. As such, hydrogen emerges
as a reliable and environmentally pleasant storage solution
that harmonizes effectively with battery for energy supply
objectives. The research referenced in [21] examined the
economics of supplying hydrogen through electrolysis while
also reducing the price of supplying hydrogen. The study’s
model successfully established an optimal configuration for
a hybrid system, effectively harnessing resources like wind,
solar, and geothermal energy to achieve this ideal setup.
The study referenced in [22] utilizes both HOMER and the
Performing Platform, an advanced system that integrates
optimal dispatch strategies for evaluating plant performance.
The investigation encompasses a range of factors, including
sensitivity analysis and market circumstances, operational
constraints, and the influence of capacity-based incentives.
The research outcomes indicate that, under the assumptions
they’ve set, photovoltaic systems combined with battery
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TABLE 1. Overview of the literature review.

storage configurations generally result in greater profitabil-
ity. Nevertheless, it’s important to highlight that designs

TABLE 1. (Continued.) Overview of the literature review.

incorporating concentrated PV power systems generate
substantially higher yearly energy output. Furthermore,
concentrated PV power systems equipped with thermal
storage, optimized to maximize the ratio of benefits to
costs, exhibit a linear relationship that relies on input
parameters.

Drawing from the recent works mentioned above, several
renewable energy sources were used for the hybrid renewable
energy system optimisation. However, the optimal energy
management and sizing of photovoltaic-biomass design with
hybrid battery-hydrogen energy storage system using LSC-
SSA is not reported.
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C. CONTRIBUTION AND PAPER ORGANIZATION
The paper proposed an improved SSA for deterministic EMS
and capacity optimization that can efficiently control the
supply of energy amongst various components of a hybrid
system that comprises solar PV, biomass, FC, and battery.
Particularly, this approach marks a notable advancement
in the field, as it stands as the pioneering method of its
kind in the existing literature. The approach considers the
limitations and performance characteristics of each element
of the system to deliver an effective, dependable, and
environmentally friendly power provision.

The contribution of this paper can be summarized as
follows:

• The incorporation of rule-based supervisory EMS and
LSC-SSA to enhance the efficiency and effectiveness of
the EMS and sizing of the proposed microgrid.

• To demonstrate the superior performance of EMS-LSC-
SSA by comparing its results with those obtained from
EMS-SSA and EMS-GA.

• Assess the optimum values of the decision variables
relating to the system components, which comprise the
solar PV, Biomass, number of hydrogen tank (NHT ), and
battery.

This paper is organized in the following manner. Section II
provides the system testbed and mathematical model of
the proposed HRES components. Section III presents the
objective function. Section IV discusses the levy sine cosine-
salp swarm algorithm. Section V presents the results and
discussion. Finally, the extracted conclusions are summarized
in Section VI.

II. MATERIALS AND METHOD
This section presents the methodology of the research. The
main goal of the research is to design a grid independent
HRES and integrates solar, biomass, FC, and battery that
will supply the energy requirement of an isolated households.
Figure 1 depict the representation of the microgrid. To bal-
ance the unstable energy production from the intermittent
resources such as solar, a hydrogen FC and battery are
integrated to the microgrid. The FC comprises of an EL,
and H2 storage. The following section provides an overview
of the mathematical models for each component and the
supervisory EMS for the hybrid RES.

A. SOLAR PHOTOVOLTAIC MODEL
Solar power generation is determined by temperature and
sunlight intensity. The energy produced per solar PV panel
unit can be computed using (1) [39], expressed as:

Ppv_out

= PN_PV ×
G
Gref

[
1 + Kt

(
(Tamb + (0.0256 × G)) − Tref

)]
(1)

where, Ppv_out is the PV output power, PN_PV refers to power
under reference condition Gref , G is the insolation (W/m2),

FIGURE 1. Schematic diagram of the proposed hybrid system.

TABLE 2. Technical parameters of the renewable components [39].

Kt is −3.7 ∗ 10−3(1/0C), Tref is 250C and Tamb represent
temperature. The nominal description of the solar PV is
specified in Table 2.

B. BIOMASS MODEL
The annual energy production (Ebm) from biomass can be
determined by applying (2) [40], expressed as:

Ebm = Pbm × (8760 × CUF) (2)

where Pbm stand for the rating of the biomass system and
CUF refers to capacity utilization factor. The efficiency of
bio-based system relies on various variables, encompassing
the energy content of the biomass, the annual biomass quan-
tity accessible (measured in tons), and duration of biomass
utilization. Despite biomass being bulky devices prone to
operational interruptions, these difficulties can be tackled
by incorporating storage systems like hydrogen and battery.
These storage solutions aid in mitigating disruptions to the
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system and counteracting energy imbalances arising from
gasifier interruptions. Additionally, ensuring uninterrupted
operation during outages can be achieved by setting up
duplicate biomass gasifiers or incorporating backup energy
sources. By employing (3) [9], one can calculate the highest
capacity of a biomass suitable for a given location:

Pbm = TBA(Ton
/
yr) × 1000 × CV bm × ηbm

/
365 × 860 × hr

/
day (3)

The conversion efficiency is denoted by ηbm, CV bm denote
the calorific value of the given biomass being used and
TBA stands for total biomass available [39]. The nominal
description of the biomass is presented in Table 2.

C. EL, H2 AND FC MODEL
The transfer of energy from the EL to theH2 tanks is denoted
by the expression in (4) [41].

Pel−ht = Pren−el × ηel (4)

where Pel−ht represent the ultimate power from the EL,
Pren−el is the power supplied to the EL using renewable
energy, and ηel is the of the efficiency EL.
The effectiveness of an EL is estimated by taking the ratio

of the output power (Pel−ht ) to the input power (Pren−el).
The subsequent equations represent the stored energy level

of the H2 storage at each time point t , as H2 is electrolyzed
from the EL and stored under pressure [38].

Eht (t)=Eht (t − 1)+Pren−el(t)× 1t − Pht−fc(t)× 1t × ηht

(5)

Mht (t) = Eht (t)
/
HHVH2 (6)

where Eht (t) and Eht (t − 1) stand for the energy contained
within theH2 tank at both time t and time t−1, Pht−fc denotes
the power supplied into the FC from theH2 tank at the time t ,
ηht represents the efficiency of the H2 tank, and 1t denotes
the time interval, set at 1 hour. In addition, Mht (t) signifies
the quantity of hydrogen introduced into the H2 tank, while
HHVH2 denotes the high heating value of H2, standing at
39.72 kWh/kg.

Proton exchange membrane FCs are commonly utilized
for power generation in various applications, including
automobiles and portable electricity generation units [42].
FC exhibit a power generation efficiency typically ranging
between 40-60%, which surpasses many alternative methods
of energy conversion. The energy generated by FCs is
considered to be around 40%, which is characterized by (7)
[9] as:

Pfc−inv = Pht−fc × ηfc (7)

where ηfc represent the FC efficiency.
The parameters of the EL, H2 storage and FC are provided

in Table 2.

D. MODEL FOR BATTERY STORAGE
A lithium battery is used in this research because of its greater
effectiveness and the major drop in price, as mentioned
in [43]. The Crate, which represents the maximum charge and
discharge capability of a battery, is a crucial factor in battery
modeling as it governs the flow of energy between renewable
sources, the battery, and the energy demand, principally when
it comes to charging and discharging the battery. The solar PV
are erratic and may possibly produce more or less power than
required. Equation (8) [44] illustrates whether the battery is
receiving or supplying power based on the surplus or deficit
in power generation.

PB(t) = (PPV (t) + PWT (t)) − PL(t)
/
ηinv (8)

The symbol ninv represents the efficiency of an inverter.
If PB(t) > 0, it signifies that the solar PV generates
excess power than needed, whereas PB(t) < 0 indicates
an insufficient power generation. The battery can only be
charged when there is surplus power generation or when
the State of Charge (SoC) falls below the maximum SoC
(SoCmax), Similarly, (9) represents the SoC of the battery
during charging at time t [45].

SoC(t) = SoC(t − 1)(1 − σ ) + ((PPV (t)

+ PWT (t)) − PL(t)
/
ηinv) × nB (9)

where σ stand for hourly self-discharge rate of the battery and
nB denotes the efficiency of the battery.
When PV generation is inadequate and the battery is

beyond the acceptable limit, SoC (i.e., SoC(t) < SoCmin),
the battery discharges to meet requirement according to (10).

SoC (t) = SoC (t − 1) (1 − σ) − (PL(t)
/
ηinv

− (PPV (t) + PWT (t))) × nB (10)

The subsequent formulation estimates the storage capacity
of the battery according to the chosen self-sufficiency day and
the requirement as in (11) [46].

Bcap = AD.EL
/
ηinv × ηB × DoD× VS (11)

E. INVERTER MODEL
The modeling of an inverter connecting the loads to the
microgrid system relies on its efficiency (ηinv). The selected
inverter must have the capability to handle the maximum
anticipated loads and any potential power surges when
appliances are initially powered on. The study takes into
account an inverter with an efficiency rating of 92%. The
output power of the inverter is given by (12) [39]:

Pinv,out =
(
Ppv + Pwt + Pbmg + Pstorage

)
× ηinv (12)

F. SUPERVISORY ENERGY MANAGEMENT STRATEGY
An effective EMS is essential for ensuring a reliable
microgrid system. In this study, biomass is regarded as the
least preferred option, utilized only when the PV, FC, and
battery systems are unable to fulfill the energy demand. The
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operational approach of the system can be summarized in the
following sequence.

• When the PV power output matches the load demand,
that is Ppv(t) = PL(t), In this case, the PV power is
sufficient to fulfill the load demand.

• If the PV power generation exceeds the load demand,
indicated by Ppv(t) > PL(t), any surplus power from
both solar and wind sources can be stored in the
battery bank, as long as the SoC is below its maximum
capacity SoC(t) < SoCmax .

The symbol ’PL’ represents the instantaneous demand
requirement.

• If the stored energy in the battery Pbat (t) surpasses the
upper limit Pmaxbat (t) in the aforementioned situation, the
excess energy is supplied to the EL.

• If the PV is not producing sufficient power, that is
Ppv(t) < PL(t), the deficit can be offset by the battery.

• When the power produced by the PV cannot meet the
load demand, and the energy stored in the battery is
also inadequate to supply the load requirement, then the
combined energy from the battery and FC can be utilized
to supply the deficit demand.

• If PV supply cannot meet the load demand, and the
combined batteries and FC are unable to supply adequate
power to fulfil the load requirement, the load can be met
through the utilization of a biomass.

Fig. 2 represents a streamlined flow chart that explains the
operating scheme of the proposed EMS of the microgrid.

III. CASE STUDY
Nigeria, a vast nation covering 923,768 square kilometres,
shares borders with Chad and Cameroon to the east, Benin
to the west, and Niger to the north. While cities and towns
are linked to either the national or isolated power grid,
villages and settlements located in remote areas rely on
diesel generators to power their electricity needs. However,
it is challenging to ensure a consistent supply of fuel and
electricity due to factors such as difficult road conditions
during the rainy season, periodic maintenance shutdowns
of gas plants, and the high cost of fuel. This research
considered a rural village in Borno State, situated in the
northeast region of Nigeria to test the practicality and
efficiency of a microgrid concept and capacity planning
strategy. The precise location of the village being studied
can be found in Figure 3.5. The study site encompasses
an expanse of 2572.345 square kilometres and is situated
at latitude 12.508837 N and longitude 13.104142 E. This
region is abundant in natural resources, particularly solar
energy. Furthermore, the potential of biomass energy is high
as farmers predominate in the chosen location, so agricultural
waste products (such as rice husk, maize stover, etc.) can
be use as the gasifier’s feedstock. These materials are
abundant and comprise of the inedible portions of plants
that are typically discarded and left to decompose on
farmlands.

FIGURE 2. Simplified flow chart of the proposed hybrid energy system.

IV. OBJECTIVE FUNCTION
The primary goal of the study is to reduce the overall ASC
of the hybrid system under consideration, all while ensuring
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FIGURE 3. Flow chart of the proposed method.

an efficient distribution of energy. To achieve the best
possible setup, four key factors were identified for decision-
making: sizing of PV panels, batteries, and hydrogen FC.
The evaluation of the cost of system over a year is employed
for economic assessment. Among solutions that meet all
limitations and variables, the one with the lowest ASC
is determined as the most favourable. The objectives to
minimize encompass the annualized system cost, reflecting
the financial angle, and the loss of power supply probability
(LPSP), reflecting the technical perspective.

A. ECONOMIC ANALYSIS
The ASC stands out as a prominent indicator utilized to
assess the financial viability of a standalone microgrid. The
equation denoted as number (13) represents the central goal

FIGURE 4. (a) Annual Solar radiation (kW/m2), (b) Ambient temperature
(AoC), and (c) Load profile (kWh).

FIGURE 5. Breakdown of the total ASC for the optimal HRES
configuration.

that needs to beminimized, all while taking into consideration
the various limitations.

ASC($
/
kWh) = F(NsolCsol + NbatCbat + NelCel + NhtCht

+ PfcCfc + PbmCbm + PinvCinv) (13)
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where the costs for PV panels, biomass, EL, H2 tank, FC,
batteries, and inverters are given as Csol , Cbm, Cel , Cht , Cfc,
Cbat , and Cinv respectively. Nsol , Nbat , Nel , and Nht denote
the number of PV, battery, EL, andH2 tank. The capacities of
biomass system, FC and inverter are denoted as Pbm, Pfc, and
Pinv in that order.
The ASC for the installed system comprises various

elements, such as the initial capital and installation cost Ccap,
replacement cost Crep, annual maintenance cost Co&m, and
salvage cost Cs. The total ASC for each component can be
expressed as follows:

Csol = Ccap
sol + Crep

sol + Co&m
sol − Csal

sol (14)

Cbat = Ccap
bat + Crep

bat + Co&m
bat − Csal

bat (15)

Cel = Ccap
el + Crep

el + Co&m
el − Csal

el (16)

Cht = Ccap
ht + Crep

ht + Co&m
ht − Csal

ht (17)

Cfc = Ccap
fc + Crep

fc + Co&m
fc − Csal

fc (18)

Cbm = Ccap
bm + Crep

bm + Co&m
bm − Csal

bm (19)

Cinv = Ccap
inv + Crep

inv + Co&m
inv − Csal

inv (20)

The annualized cost of any system can be determined using
the Capital Recovery Factor (CRF), which is employed
to calculate the present value of money and can be
mathematically represented as follows:

CRF(i,N ) = i(i+ 1)N
/
(i+ 1)N − 1 (21)

Here, N represents the total number of years in the system’s
lifetime, and i denotes the annual interest rate. The assess-
ment of LCOE and reliability aids in determining the optimal
configuration. The LCOE of the system, which is a measure
of the average cost per kWh of the energy generated by the
system, can be mathematically expressed as:

LCOE

=ASC($
/
year)

/
Total useful energy served(kWh

/
year)

(22)

B. RELIABILITY ASSESSMENT
In the process of developing a HRES, ensuring reliability
becomes an essential consideration. Within the existing
literature, numerous measures of reliability are introduced.
Some of the most commonly utilized metrics for evaluating
the dependability of any given system comprise the loss
of power supply probability (LPSP), projected energy loss,
loss of load hours (LOLH), and the comparable loss factor.
In this research, the reliability of the standalone microgrid
is measured by LPSP. The name ‘Loss of Power Supply
Probability’ refers to the likelihood of not being able to
meet the total load demand because of insufficient electricity
production capability. This probability is determined by the
ratio of total Loss of Power Supply (LPS) to the overall
load demand in a given time. LPS is calculated based on
the difference between power generation, capacity of storage,

and the real energy demand, using the following formula:

LPSP =

∑
LPS

/ ∑
PLoad (23)

V. LEVY SINE COSINE-SALP SWARM ALGORITHM
The Salp Swarm Algorithm (SSA) is a form of swarm
intelligence optimization strategy designed to replicate the
collective movement of salp organisms in an interconnected
manner within oceanic environments. Acknowledging the
limitations inherent in SSA, such as suboptimal precision,
constrained optimization when dealing with lower dimen-
sions, and gradual convergence, an improved iteration named
the Enhanced Salp Swarm Algorithm has been introduced.
This enhanced version, referred to as (LSC-SSA), integrates
the characteristics of Levy flight and the sine cosine operator.
The Levy flight element encompasses a blend of short steps
and long leaps to navigate the solution space, significantly
boosting the algorithm’s capability to explore a wide global
spectrum. Meanwhile, the sine cosine operator employs a
sine-based search for extensive global exploration, while the
cosine-based search is employed to exploit local regionsmore
effectively.
The mathematical equation representing the Levy operator

for updating the salp swarm’s position is detailed as follows.

X ij = X ij + a.S8X ij (24)

Within the context of the salp swarm algorithm, the leader’s
role involves directing the followers, enabling the entire
population to adjust its movement based on the food’s
location. To put it differently, modifying the leader’s position
alone facilitates a cascading movement throughout the salp
swarm. The approach for updating the leader’s position in
the SSA algorithm employs the population update mecha-
nism outlined in the sine cosine algorithm. The equations
governing the adjustment of the leader’s position using the
sine cosine operator are outlined as follows.

X1
j = X1

j + c1. sin (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1 (25)

X1
j = X1

j + c1. cos (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1 (26)

The method for updating the position as presented in
Equation (25) can utilize the sine function to facilitate
global exploration, while (26) can employ the cosine function
to enhance local exploitation. The parameter c1 allows
the search agent to dynamically switch between the two
search modes during optimization, facilitating a smooth
transition between exploration and exploitation. In its role
as a global convergence factor, parameter c1 contributes
to the algorithm’s convergence as the number of iterations
increases. Upon introducing the global convergence factor
c1 and parameter r4, a hybrid approach combining both
search methods can be employed. The equation is detailed
as follows:

X1
j = X1

j + c1. sin (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1ifr4 < 0.5 (27)

X1
j = X1

j + c1. cos (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1ifr4 ≥ 0.5 (28)
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TABLE 3. Statistic result for benchmark methods.

Optimization algorithms are commonly evaluated using
benchmark test functions to assess their accuracy, time
efficiency, and optimality. In this study, the performance
of the proposed LSC-SSA algorithm, as well as two other
algorithms (SSA and GA), is analysed and compared.
The results, including mean and standard deviation values,
are presented in Table 3, which serves as a reference
for benchmarked outcomes. These algorithms were chosen
due to their widespread applicability for various purposes.
Four popular benchmark test functions (Sphere, Schwefel,
Ackley, andWeierstrass) weremathematically defined. These
functions were implemented to quantitatively measure the
performance of the nature-inspired metaheuristic algorithms
used in this study. The simulation was performed over
100 iterations, and the results were collected for each
algorithm, running each 30 times. The best solution’s mean
and standard deviation values were computed to facilitate a
comprehensive comparison of the overall performance of the
utilized algorithms, as detailed in Table 3.

The methodology for employing the LSC-SSA to solve the
given problem is given as follows:

Step 1: Input Data:
) Meteorological data, including solar irradiation and

ambient temperature, from the designated database.
) Load requirements from the load requirement database.
) Techno-economic specifications of the microgrid com-

ponents, as outlined in Table 2.
) Economic statistics data, encompassing project lifecy-

cle, interest rate, and inflation, as described in Table 2.
Step 2: Initialize the parameters for the LSC-SSA algorithm
as follows:

) Population size (n) is set to 40.
) The number of iterations (T ) is set to 100.
) The step size control factor (a) is set to 0.01.

a) Set constraints:
) LPSP as; 0.001 ≤ LPSP ≤ 0.1

b) Set the search space:
1 ≤ Npv ≤ Nmax

pv ; 1000 ≤ Npv ≤ 3000

1 ≤ Nbat ≤ Nmax
bat ; 200 ≤ Nbat ≤ 1000

1 ≤ Nht ≤ Nmax
ht ; 100 ≤ Nht ≤ 250

Step 3: Evaluate Search Solutions:
) Calculate the fitness value for each search agent and

identify the one with the best fitness value in the current
population as the ‘food’ Fj.

Step 4: Adjust the value of c1 using (29) and generate random
numbers r2 and r4.

c1 = 2e−(4t/T )2 (29)

When i = 1, update the leader’s position using (30) and (31).
If i ≥ 1, update the follower’s position according to (32).
t = t + 1.

X1
j = X1

j + c1. sin (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1ifr4 < 0.5 (30)

X1
j = X1

j + c1. cos (r2) .

∣∣∣Fj − X1
j

∣∣∣ .e1ifr4 ≥ 0.5 (31)

X ij = 0.5(X ij + X i−1
j ) (32)

Step 6: Modify the position of the salp swarm using a Levy
flight approach, as defined in (33). t = t + 1

X ij = X ij + a.S8X ij (33)

Step 7: Check if the algorithm has reached either
the maximum permissible iterations or has discovered
the optimal solution. If the algorithm’s termination
criteria are satisfied, provide the best possible value,
and conclude the process. If not, move forward to
Step 3. Figure 3 depicts the flowchart of the rule-based
levy-sine-cosine salp swarm algorithm (RSC-LSC-SSA),
utilized for solving standalone HRES planning problem.
The LSC-SSA algorithm adheres to the following steps as
indicated.

VI. RESULTS AND DISCUSSION
The research introduced an approach employed to design a
Renewable Energy Microgrid (REM) that incorporates solar
power, biomass, FC, and battery, as shown in Figure 1.
The REM is proposed to meet the load demand of an off-
grid community located in northeastern Nigeria. The chosen
location benefits from abundant and reliable solar resources
throughout the year. Figure 4 gives insights into the load
models, solar radiation, and ambient temperature data that
were considered for this study. The site also had an abundant
supply of biomass material, making it suitable for the setting
up of a biomass. The cost of biomass, which includes
expenses related to transportation, storage, and labor, was
stated to be $25 per ton [39]. In this study, a project
duration of 20 years and an assumed interest rate of 6% were
employed.

The configurations for the SSA and GA algorithms used
in this study is given in Table 4. The implementation of
the proposed algorithm and its counterparts is conducted
using MATLAB R2021a on an Intel® Core™i5-8250U
Processor with 6MB cache, capable of reaching speeds
up to 3.40 GHz.

A. OPTIMAL SIZING AND OPERATIONAL STRATEGY
RESULTS
The research aims to identify the best configuration for
a hybrid energy system incorporating solar PV, biomass,
FC, and battery storage. The optimization aimed to achieve
minimum levelized cost of electricity (LCOE) while ensuring
a reliable and resilient power supply. The three optimization
algorithms used in this study were: LSC-SSA, SSA, and
GA. The optimization process considered several parameters,
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TABLE 4. The parameters settings of ssa and ga algorithms.

TABLE 5. Results of the optimization algorithms.

including the capacity of the PV array, biomass, battery
storage, number of H2 tank, loss of power supply probability
(LPSP), and annual system cost (ASC). Table 5 represent the
optimization result of study. The three algorithms provide
similar results in terms of PV array, biomass, and battery
capacities. GA suggests a slightly higher PV array capacity,
while SSA suggests a slightly larger battery capacity.
However, the differences in capacities among the algorithms
are relatively small. NHT values are also quite similar among
the algorithms, with GA suggesting a slightly higher value.
This indicates that the algorithms agree on the required NHT
level for the system.

The LCOE values for LSC-SSA, SSA, and GA are close,
but LSC-SSA offers the lowest LCOE, indicating that it
provides the most cost-effective solution among the three
algorithms. LSC-SSA and GA both suggest a 0.04% LPSP,
while SSA suggests a slightly higher value of 0.05%. The
ASC is the highest for GA and the lowest for LSC-SSA. This
aligns with the LCOE results, as a lower LCOE generally
leads to ASC. LSC-SSA produces the most cost-efficient
design in terms of annual cost.

Figure 5 provides a detailed breakdown of the total ASC
attributed to various components of the HRES. As depicted in
the figure, the solar PV, Bio, FC, INV, and Bat components
contribute 23%, negligible, 38%, 37%, negligible, and 2%,
respectively, to the overall ASC. It’s worth highlighting
that the FC and Bio elements, serving as the primary
and secondary backup power sources, represent the most
substantial portions of the total ASC.

B. ANALYSIS OF POWER GENERATION
Figures 6 and 7 depict themonthly outputs of each component
within the optimized REM, and the percentage of energy
generated by each source, as determined through the LSC-
SSA optimization. As demonstrated in Figure 6, the monthly
mean solar PV generation put on display of a different
recurring pattern that aligns with the solar radiation, with

FIGURE 6. Energy output of each component in the HRES.

FIGURE 7. The proportion of energy generated by the energy source
within the proposed HRES.

the maximum generation observed in the month of July
and a gradual decline from August to December. Power
generation from biomass follows solar PV power generation,
with its peak output occurring in January. FC generation
mirrors the trend of solar PV power generation, responding
to seasonal variations. Biomass generation is the next source
in line after PV generation. It serves as a backup option
whenever the primary supply, consisting of PV and the two
backups, FC, and battery, falls short of meeting the load
demand. As illustrated in Figure 7, the energy generation
distribution within the REM showcases the significant
contribution of the solar PV, accounting for 80% of the
total energy generated. In contrast, the Bio, FC, and Bat
systems individually make up smaller proportions of the
generated energy, with shares of less than 7%, 7%, and 6%
respectively.

C. ANALYSIS OF SUPERVISORY EMS
Figures 8 provide graphical interpretations of the energy
balance between energy supply and demand across
the Winter, Spring, Summer, and Autumn seasons,
respectively.

In Winter season, as depicted in Figure 8, it becomes
evident that the renewable energy generated falls short of
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FIGURE 8. Monthly energy balance average over a year.

meeting the energy demand. Furthermore, the energy of the
FC and battery storage system is insufficient to cover the
load requirements. To compensate for the energy shortfall,
biomass is strategically employed in accordance with the
operational plan.

Transitioning to the Spring season, refer to Fig 8, a signifi-
cant increase in power generation from solar PV is witnessed
due to good solar radiation, implying constant climatic
conditions without significant cloud coverage. Notwithstand-
ing this boost in solar generation, the energy generated
remains insufficient to satisfy the load demand. Additionally,
the energy supplied by the FC and battery cannot bridge
the energy gap, even with the augmented FC output.
To take care of the energy shortfall, biomass comes into
play to ensure load requirements are met during the Spring
season. In the Summer season, solar PV generate the highest
amount of energy, mainly due to abundant solar radiation.
Particularly from June to August, the energy generation
is more than adequate to meet the load demand. The
surplus energy generated is utilized for charging the battery
storage system and powering the electrolyzer for hydrogen
production. Consequently, there is no need for biomass
power generation during the Summer season. As for
the Autumn season, refer to Figure 8, a decline in power
generation from September to November is witnessed. This
decrease is primarily attributed to reduced solar radiation
and increased fog experience in the season. Subsequently,
energy from biomass, FC, and battery storage progres-
sively raises as the season advances from its onset to its
conclusion.

Figure 9 illustrates a detailed representation of how
power is distributed among the various sources throughout
a one-week span. Its primary aim is to offer a lucid
comprehension of how power flows between these energy
source. As previously discussed in the operational approach,
when the solar PV fail to produce adequate electricity, and
the combined capacity of the FC and battery falls short of
meeting the required load, the system turns to a biomass for
support. The diagram highlights instances when solar PV
energy output is notably low, prompting the activation of

FIGURE 9. Hourly generation for a week of the year caption.

FIGURE 10. Hourly generation within the first 48 hours of the week.

the biomass gasifier to supply power during those specific
hours.

Figure 10 offers a thorough hour-by-hour examination of
energy generation and the sources during the first 48 hours
of the week considered in Figure 8. It underscores the
fluctuations in energy generation and the corresponding
operational methods for different time periods. In Figure 9,
during the time frame spanning from 00:00 h to 04:00 h,
the solar PV is inactive in generating power. This is
primarily attributed to overcast weather conditions during
the winter months. To compensate for the absence of power
generation from solar PV sources, the energy requirement
is satisfied by FC from 00:00 h to 02:00 h, and biomass
from 02:00 h to 04:00 h. Furthermore, between 04:00 h
and 17:30 h, the power generated by the solar PV is
more than the load demand. The surplus is used to charge
battery and supply EL for hydrogen production. From
17:30 h to 26:00 h, the solar PV is once again inactive,
and the load requirement is exclusively met by the FC.
The same pattern of power generation is repeated for the
remaining hours.

Figures 11 and 12 demonstrates the dynamic integration
of energy sources and the resulting electrolyzer output over
a week in the summer season. The abundant presence of
solar PV eliminates the need for biomass energy during
this period. For a more detailed breakdown of the initial
48 hours of the summer season, refer to Figure 12. Between
0h and 5h, the load is supplied with a diverse mix of energy
sources, including solar PV, combined with fuel cell and
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FIGURE 11. Weekly output generation with corresponding EL production.

FIGURE 12. Hourly generation in first 48 hours with corresponding EL
production.

battery power. Subsequently, from 5h to 15h, the load is
predominantly supported by solar PV power. Any surplus
solar energy generated during this time is efficiently directed
to the electrolyzer for hydrogen production in accordance
with the operational strategy. The electrolyzer commences its
operation at 6h and continues until 12h, coinciding with the
period of peak solar generation. Between 17h to 28h, the load
is met with a combination of FC and battery power. From 28h
to 41h, the load is fulfilled by the joint resources of solar
with combined FC and battery. Notably, the electrolyzer’s
production output initiates at 30h and concludes at 36h,
aligning with the period of high PV output. From 41h to 48h,
the load demand is met using FC and battery as the primary
energy sources.

FIGURE 13. Energy generation mix versus combined FC and battery
output for a week.

Figure 13 presents a comprehensive depiction of the
entire power generation by solar PV and biomass versus the
combine power from FC and battery storage taking place over
the course of a seven-day duration. On the left-hand side of
the chart, a vertical axis displaying solar PV power, biomass
power, combined FC, and battery power. The corresponding
state of charge (SoC) for the battery is also indicated on the
right side of the diagram.

FIGURE 14. Annual energy input and output for (a) Hydrogen
(b) Battery.

In setups where hydrogen and batteries are employed for
storage, it is crucial to consider the energy inflow and outflow
of these elements. Figure 14 offers a graphical depiction
of the energy dynamics for both hydrogen and battery
storage over the course of a year. The figure illustrates that,
in general, both components receive and supply an adequate
amount of energy. Nevertheless, it is of utmost importance to
consistently monitor the charging and discharging rates of the
battery.

VII. CONCLUSION
This paper suggests incorporating a hybrid approach, which
combines the LSC-SSA with rule-based supervisory EMS
and sizing. Integrating multiple renewable energy sources
into a unified energy system enhances reliability, cost-
effectiveness, and adaptability, particularly in off-grid or
remote areas. The main objective is to secure a continuous
and dependable annual power supply to an isolated rural
site situated in North-eastern Nigeria, covering the expected
20-year operational span of the system. To strengthen
energy source management, the REM integrates conventional
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battery energy storage. This integration aims to enhance the
system’s design, reducing the overall ASC over its lifespan.
Furthermore, a key aim is to guarantee a high level of
reliability, with a maximum allowable limit of 0.001 to
0.1 LPSP. To attain this goal, the LSC-SSA Algorithm is
employed to identify the most optimal configuration for
the REM. The optimization performance of the algorithm
is evaluated against two other algorithms to showcase the
efficiency of the proposed method.

The findings yield the following conclusions: The com-
bination of solar PV, biomass, and fuel cell (FC) energy
sources demonstrates substantial potential as an alternative
design for a Renewable Energy Microgrid (REM). This
hybrid approach allows for diversified and sustainable energy
generation.

The LSC-SSA method exhibits superior convergence
and resilience in achieving optimal sizing for the REM
compared to two other algorithms, namely, SSA and GA.
This suggests that the LSC-SSA algorithm is well-suited for
the specific challenges of sizing a microgrid incorporating
various renewable energy sources.

The suggested REM configuration results in a total
Annualized System Cost (ASC) of 1685672 million dollars
(M$) and a Levelized Cost of Electricity (LCOE) of
0.927 dollars per kilowatt-hour ($/kWh). These economic
indicators highlight the cost-effectiveness of the proposed
hybrid REM design.

The overall finding from the conclusion underscores that
the hybrid approach, integrating the LSC-SSA algorithmwith
rule-based supervisory EMS and sizing, leads to improved
reliability and cost-effectiveness. This integration positions
the proposed REM design as a promising alternative, offering
enhanced performance and economic viability in comparison
to traditional approaches.

Please note that emission analysis has not been incor-
porated into the study. This decision stems from the
classification of biomass gasification, a key component of
our proposed Hybrid Renewable Energy System (HRES),
as a widely recognized renewable energy source. This clas-
sification is justified by the reliance of biomass gasification
on organic materials and the carbon-neutral nature of the
biomass carbon cycle.

Expanding the horizons of the study, the integration of
electric vehicles (EVs) could also be a valuable addition. EVs
could play a dual role in the system, acting as both a load
and an additional storage unit. This dynamic inclusion adds
complexity to the analysis, considering the interplay between
the energy demand of the household, the energy storage
capacity of EVs, and the potential benefits of bidirectional
energy flow.
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