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ABSTRACT In bioinformatics, medical diagnosis models might be significantly impacted by
high-dimensional data generated by high-throughput technologies. This data includes redundant or irrelevant
genes, making it challenging to identify the relevant genes from such high-dimensional data. Therefore,
an effective feature selection (FS) technique is crucial to mitigate dimensionality, thereby enhancing the
performance and accuracy of medical diagnosis. The Cuckoo Search Algorithm (CSA) has proven effective
in gene selection, demonstrating prowess in exploitation, exploration, and convergence. However, most of the
current CSA-based FS techniques deal with gene selection problems as a single objective rather than adopting
a multi-objective mechanism. This article proposes the Multi-Objective Binary Cuckoo Search Algorithm
(MOBCSA) for gene selection. MOBCSA extends the standard CSA by incorporating multiple objectives,
including accuracy of classification and number of selected genes. MOBCSA utilizes an S-shaped transfer
function for transforming the algorithm’s search space from a continuous to a binary search space.MOBCSA
integrates two components: an external archive to save the pareto optimal solutions attained during the search
process, and an adaptive crowding distance updating mechanism integrated into the archive to maintain
diversity and increase the coverage of optimal solutions. To assess MOBCSA’s performance, evaluation
experiments were conducted on six benchmark biomedical datasets using three different classifiers. Then, the
obtained experimental results were compared against four multi-objective-based state-of-the art FS methods.
The findings prove that MOBCSA surpasses the other methods in both accuracy of classification and number
of selected genes, where it has obtained an average accuracy ranging from 92.79% to 98.42% and an average
number of selected genes ranging from 15.67 to 27.88 for different classifiers and datasets.

INDEX TERMS Features selection, multi-objective optimization, cuckoo search algorithm, machine learn-
ing, data mining, bioinformatics.

I. INTRODUCTION
Bioinformatics has emerged as a significant research field
dedicated to the analysis and interpretation of biological
data, particularly in genetics and genomics [1]. It utilizes
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computer technology to gather, store, and analyze biological
information such as DNA and amino acid sequences, as well
as annotations related to these sequences. The ultimate goal
of bioinformatics is to understand the complex biological pro-
cesses at the molecular level and discover knowledge that can
be harnessed to enhance human healthcare. Cancer remains
the leading cause of death globally for both women and men,
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with an estimated 19.3 million newly diagnosed cases and a
total of 10 million deaths recorded in 2020 only. Projections
indicate that cancer will persist as a significant contribu-
tor to the mortality rate, accounting for approximately one
out of every six fatalities worldwide [2]. Nonetheless, early
diagnosis and treatment of cancer have the potential to mit-
igate the mortality rate linked to the ailment. The early
detection of such a disease is crucial to increase survival
rates. Machine learning (ML) techniques have demonstrated
a significant role in the realm of medical diagnosis, partic-
ularly in improving cancer prediction by leveraging DNA
microarray data analysis, diagnosing diverse diseases, and
enabling the extraction of valuable insights from biological
data. These techniques empower healthcare professionals to
make informed decisions, achieve quick diagnoses, and make
precise predictions [3].

Microarray data poses challenges due to its high dimen-
sionality, the presence of high levels of noise and complexity,
and the existence of irrelevant or redundant features within
the data, making it arduous to extract meaningful insights and
draw precise conclusions. ML techniques are not well-suited
for handling such high-dimensional biomedical data [4].
To tackle this issue, FS emerges as an effective approach for
selecting the most informative genes that play a pivotal role
in the cancer prognosis process and mitigating the challenges
posed by high-dimensional biomedical data. Features selec-
tion, also known as gene selection refers to the process of
choosing a concise subset of genes that are highly relevant to
a specific disease from a vast pool of genes. Hence, FS meth-
ods have a significant influence on enhancing classification
accuracy, reducing learning time, and improving the overall
performance of medical data analytics models [5]. Therefore,
developing efficient gene selection methods is essential for
accurate and reliable gene analysis.

Recently, several FS methods have been presented in the
literature. These methods are categorized into filter, wrapper,
and embedded-based methods [6]. Filter methods operate
independently of any learning algorithm in evaluating the
importance of features. In this approach, features are assessed
and ranked based on statistical techniques and information-
theoretic measures, and then the features with the largest
scores are selected. Some of the notable recently proposed
filter-based FS methods are [7], [8], [9], and [10]. On the
other hand, wrapper-based techniques employ learning algo-
rithms and the search method to identify the best solutions;
some examples of the recently proposed wrapper-based FS
methods are [11], [12], [13], and [14]. However, filter-based
methods are fast but less accurate compared to the wrap-
per method. In contrast, wrapper-based methods are more
accurate than filter-based methods but lead to higher compu-
tational costs. Whereas embedded methods consider the FS
procedure as an integral part of the training model, in com-
parison to wrapper methods, embedded methods have a
lower overhead. Hence, they are more conceptually complex
than other methods; some examples of embedded methods
are [15], [16], and [17]. The aforementioned approaches often

suffer from high computational complexity, overfitting, get-
ting trapped in local optimums, and a lack of interpretability
when dealing with high-dimensional datasets.

Meta-heuristic algorithms have emerged as a powerful
technique to solve complex optimization problems such as
gene selection. These algorithms offer numerous advantages
when dealing with the problem of gene selection, such
as their effectiveness in exploring large solution spaces of
gene expression data, their powerful exploration capabilities,
and their ability to prevent falling into local optima. Meta-
heuristic algorithms can either consider a single or multiple
objective functions. The single-objective function is gener-
ally considered for optimizing a single objective, which can
typically be a measure of performance or feature size. In con-
trast, a multi-objective-based function is considered for opti-
mizing multiple objectives simultaneously, where trade-offs
between these objectives need to be balanced. Some exam-
ples of single objective-based meta-heuristic algorithms are
the dynamic salp swarm algorithm [18], monarch butter-
fly optimization algorithm [19], grasshopper optimization
algorithm [20], binary butterfly optimization [21], binary
grey wolf optimizer [22], binary whale optimization [23],
binary artificial bee colony [24], and binary coyote opti-
mization algorithm [25]. These algorithms are limited to
a single objective problem (SOP). The structural nature of
gene selection involves at least two contradictory objectives:
reduce the size of the gene subset and increase the classifi-
cation accuracy, which can be considered a multi-objective
optimization problem (MOP). However, most current related
studies consider only a single objective, while only a limited
number of studies consider the problem of gene selection as
a multi-objective [26], [27], [28].

A newly introduced nature-inspired optimization algorithm
called CSA has gotten more attention due to its ability to deal
with various optimization problems [29]. The basic version of
CSA has proven effective in addressing several optimization
problems, including gene selection. The CSA possesses sev-
eral appealing features that contribute to its effectiveness as
an optimization algorithm. These include its simplicity, ease
of implementation, limited number of adjustable parameters,
flexibility, robustness, and the ability to find optimal solutions
even in high-dimensional spaces. Although the CSA has
proven to be successful in handling a single objective for FS.
Previous research has not extensively explored the adaptation
of this algorithm for binary multi-objectives in wrapper mode
for addressing the FS problem in bioinformatics. Conse-
quently, this noticeable gap in the existing literature and the
limitations of current studies to investigate such adaptations.
Moreover, the inspection of the success, promising results,
and attractive features of the single-objective CSA algorithm
are the key motivations behind doing this research.

This article aims to propose a binary multi-objective FS
method based on the CSA in wrapper mode for gene selec-
tion. This method extends the standard CSA by applying
a multi-objective fitness function to optimize two con-
flicting objectives simultaneously: increase the accuracy of
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classification and select an optimal number of genes. It uti-
lizes an S-shaped transfer function for transforming the
algorithm’s search space from a continuous to a binary
search space. The proposed method integrates two compo-
nents: an external archive to save the pareto-optimal solutions
attained during the search process. Furthermore, an adaptive
crowding distance updating mechanism is integrated into
the archive to maintain diversity and increase the coverage
of optimal solutions. The proposed method is evaluated on
several benchmark gene expression datasets in comparison
to various state-of-the-art, multi-objective-based FS meth-
ods. The findings show that MOBCSA outperforms other
methods in terms of both accuracy of classification and
number of selected genes. To the best of our knowledge,
this study is the first attempt to investigate the application
of the binary multi-objective CSA for gene selection. The
proposedmethod aims to optimize conflicting objectives such
as improving classification accuracy and selecting an optimal
number of genes in wrapper mode within the context of
bioinformatics.

A. CONTRIBUTION
The following are the main contributions of this paper:

• A multi-objective binary CS algorithm (MOBCSA) for
optimal gen selection in wrapper mode.
• Optimizing two conflicting objectives: accuracy and
number of genes.
• Incorporating a non-dominated ranking and external
archive into the CSA to save non-dominated Pareto
optimal solutions
• Integrating an adaptive crowding distance to enhance the
archive updating mechanism.
• Evaluating the performance of MOBCSA based accu-
racy and number of genes over three different classifiers,
trained on six benchmark microarray datasets, and com-
pared with four recent multi-objective approaches for
gene selection from the literature.

B. PAPER ORGANIZATION
The structure of the article is organized as follows: Section II
delivers a review of related work covering both single and
multi-objective algorithms for FS. In Section III, the prelim-
inary concepts are outlined and the problem is formulated.
Section IV provides an in-depth detailed explanation of
the proposed method. Section IV presents the experimental
outcomes and conducts a performance evaluation. Finally,
Section V concludes the article by summarizing the findings
and exploring potential future research work.

II. RELATED WORK
Machine learning (ML) methods are experiencing a grow-
ing presence in the healthcare sector for the classifica-
tion and diagnosis of various diseases. However, the high
dimensionality of datasets poses a challenge to these meth-
ods. Therefore, gene selection becomes a crucial step in

reducing data dimensionality, decreasing computational com-
plexity, and enhancing classification accuracy. Over the
last decades, several approaches have been introduced to
address the challenge of selecting the most suitable sub-
set of genes from high-dimensional microarray datasets.
This section provides an overview of the literature on var-
ious current FS approaches. FS methods can be broadly
categorized into three major groups: filter, wrapper, and
embedded techniques [6]. Filter and wrapper approaches
differ in how they evaluate a subset of features. Filter
methods independently assess feature relevance without
involving any learning algorithm. In this method, statistical
and information-theoretic measures are used to assess and
rank features, and then the highest-ranked ones are selected.
Recent studies on filter-based FS methods can be discovered
in the references [7], [8], [9], [10]. In contrast, wrapper-
based approaches utilize learning algorithms and apply a
search method to discover an optimal solution from a set of
potential solutions. The wrapper interacts with the predeter-
mined classifier to assess the quality of the features. However,
wrapper-based methods offer more accurate outcomes com-
pared to filter-based methods because they incorporate a
learning model into the search process. Although wrap-
per methods come with greater computational costs, some
recently proposed wrapper-based FSmethods can be found in
references [11], [12], [13], and [14]. Furthermore, embedded
methods aim to combine the FS phase and classification
model into a single process. Embedded techniques boast a
lower computation cost compared to wrapper-based methods.
However, embedded methods are inherently more intricate
in their conceptual framework when compared to alternative
methods. Furthermore, they demand modifications to clas-
sification models, thereby posing significant challenges to
achieving higher performance. It is important to note that
the aforementioned methods often face issues such as prema-
ture convergence, substantial complexity, high computational
costs, and the inherent risk of becoming stuck in local optima.

Meta-heuristic algorithms have proven to be optimal for
addressing the aforesaid limitations, as they have exhibited
their effectiveness in tackling complex optimization prob-
lems such as gene selection. Meta-heuristic algorithms offer
several advantages when tackling gene selection problems,
such as their ability to efficiently explore vast solution
spaces within gene expression data, their robust exploration
capabilities, and the ability to avoid becoming trapped in
local optima. These optimization techniques simulate the
behavior of natural systems like evolution, swarm intelli-
gence, or animal behavior. This article mainly focuses on
meta-heuristic algorithms, especially those based on swarm
intelligence methods. To this extent, many swarm intelli-
gence FS methods have been proposed in the literature. For
instance, the Grasshopper Optimization Algorithm (GOA)
was developed by Aljarah et al. [20] to choose features
and improve the parameters of the SVM classifier simul-
taneously. Later, Mafarja et al. [30] integrated the binary
GOA with evolutionary population dynamics (EPD), and
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Mafarja et al. [20] presented a binary version of GOA based
on two binary transfer functions along with mutation oper-
ators to improve the exploration capabilities of the BGOA.
Similarly, Hichem et al. [31] introduced a new binary GOA
utilizing the Hamming distance transfer function, turned
continuous variables into a binary vector of grasshoppers,
and updated the positions using simple operators. GOA was
enhanced to balance its exploitation and exploration abilities,
as in [32], [33], and [34].

The Butterfly Optimization Algorithm (BOA) was also
adapted to solve the FS problem and has shown promising
results. One such adaptation is the binary version of BOA
(bBOA) proposed by Arora et al. [21], which focuses on
selecting the optimum feature subset for classification tasks.
Later, Zhang et al. [35] improved bBOA by employing four
strategies, including the differential evolution strategy (DES)
and a novel initialization approach, both of which were used
to reduce the randomness of bBOAs during the initializa-
tion and local search processes. Moreover, Awad et al. [36]
integrated BOA with chaotic maps to enhance diversity and
prevent BOA from getting stuck in the local optimal solu-
tion. Furthermore, Tubishat et al. [37] proposed the dynamic
variant of BOA for FS based on the Mutation Operator for
local search to mitigate the risk of becoming stuck in local
optima and LSAM to enhance the solution diversity of the
BOA. Some other authors modified BOA to improve its
exploitation ability and prevent premature convergence [38],
[39], [40]. The Gray Wolf Optimization (GWO) algorithm
mimics the hunting behavior of gray wolves in nature [41].
Recently, several GWO-based methods have been adapted
for solving the FS problem, including a binary version of
the GWO developed by Emary et al. [42] to identify the
best feature subset for classification. Multi-Strategy Ensem-
ble GWO (MEGWO) was proposed by Tu et al. [43], and
a wrapper-based GWO approach combined with a mutation
operator was suggested by Abdel-Basset et al. [44]. Addition-
ally, Hu et al. [22] presented an updated equation for GWO
parameters and new transfer functions to balance exploitation
and exploration capabilities for binary GWO.

Another meta-heuristic method within the realm of the
principles of bio-inspired optimization is the Whale Opti-
mization Algorithm (WOA), which draws inspiration from
the intricate social behavior exhibited by humpback whales
during the captivating phenomenon of bubble-net hunt-
ing [45]. The WOA has been effectively applied to the FS
problem, with various approaches developed by researchers
to tackle this problem. For instance, Sharawi et al. [45]
proposed a wrapper-based WOA approach to select the
most pertinent features for classification tasks, while
Mafarja et al. [23] extended WOA by introducing two binary
variations of the wrapper-based FS technique. These methods
leverage the inherent capabilities ofWOA to identify relevant
feature subsets for improved classification performance. In a
similar vein, Hussien et al. [46] took a different approach
by incorporating S and V-shaped transfer functions into the
conventional WOA algorithm. By doing so, they aimed to

improve the algorithm’s ability to solve the FS problem
effectively and strike a balance between exploitation and
exploration. Furthermore, Sayed et al. [47] proposed a chaotic
WOA for FS, which integrated chaotic maps into the search
process. This addition introduced randomness and diversity to
the algorithm, enabling it to explore the solution space more
effectively. Agrawal et al. [48] proposed a quantum-inspired
version of WOA. This algorithm utilized quantum bit rep-
resentation to enhance exploration and exploitation of the
classical WOA, enabling it to effectively search for optimal
feature subsets [49], [50], [51], [52], [53], [54]. Although
thesemeta-heuristic methods have showcased their efficiency
in addressing the FS problem, it is crucial to note that
they have primarily focused on single-objective optimiza-
tion, prioritizing either the accuracy of the classification or
the reduction of the selected subset of features. However,
FS is a complex problem that involves balancing at least
two conflicting objectives: minimizing the number of feature
subsets while maximizing the performance of the classifi-
cation. To tackle this complexity, meta-heuristic algorithms
offer substantial potential for tackling the complexity of the
FS problem. Their ability to leverage population-based search
and generate diverse solutions makes them well-suited for
addressing multi-objective FS problems. By simultaneously
considering multiple objectives, these algorithms can provide
valuable insights into the trade-offs between classification
performance and feature subset size.

In recent years, some multi-objective methods for gene
selection have been introduced in the literature. One such
approach is the forest optimization algorithm (FOA)-based
multi-objective FS method introduced by Nouri et al. [26].
This method incorporates the concepts of grid, archive, and
region-based selection to enhance gene selection perfor-
mance. The authors devised two variants of the algorithm:
one with a continuous representation called CMOFOA, and
the other with a binary representation named BMOFOA.
Another method is the binary-based version of the Harris
Hawks optimization (HHO) algorithm known as MOHHO,
proposed by Dabba et al. [27]. The primary aim of this
method is to select the most suitable gene subset by consider-
ing multiple objectives simultaneously. Chaudhuri et al. [28]
suggested a FS technique named QOMOJaya, which adopts
a quasi-oppositional approach to optimize two objectives:
the accuracy of the classification and the size of selected
genes for microarray datasets. Dashtban et al. [55] introduced
a novel binary multi-objective algorithm for gene selection
in microarray data classification. Their approach extends
the traditional Bat algorithm by incorporating improved for-
mulations, innovative local search strategies, and efficient
multi-objective operators. Rostami et al. [56] developed
an enhanced multi-objective PSO-based FS method called
MPSONC to choose an optimal feature subset. TheMPSONC
method consists of three primary phases: in the first phase,
the original features are modeled as a graph representa-
tion. In the subsequent phase, the centralities of features are
computed for all nodes in the graph. Finally, an upgraded
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PSO-based search process is implemented to finalize the
FS. Hancer et al. [57] presented a FS approach that uti-
lizes a multi-objective-based artificial bee colony algorithm
(MOABC) combined with a non-dominated sorting proce-
dure and genetic operators. This method aims to achieve
a set of non-dominated solutions for enhanced FS perfor-
mance. Amoozegar et al. [58] proposed a multi-objective
PSO algorithm for FS that incorporates a feature prioritiza-
tion mechanism based on the frequency of features in the
archive set. By leveraging this information, the algorithm
improves the quality of the archive set and enhances the
effectiveness of particle movement during the optimization
process. Han et al. [59] developed a multi-objective PSOwith
adaptive strategies for FS that integrates the penalty boundary
interaction (PBI) decomposition approach to choose opti-
mal solutions. Furthermore, the multi-objective optimization
approach is employed in various domains, such as [60],
with the aim of addressing large-scale MOPs through the
introduction of the M2O-CSA algorithm. This algorithm uti-
lizes a multi-orthogonal opposition approach to improve both
solution distribution and convergence. Additionally, Rizk-
Allah et al. [61] introduced a framework inspired by the
behavior of fruit flies to enhance the shapes of tubular linear
synchronous motors. Meanwhile, Rizk-Allah et al. [62] intro-
duced a multi-objective algorithm that leverages chaos theory
to enhance the optimization process for economic-emission
load dispatch. It is worth noting that the number of research
efforts on multi-objective FS is comparatively lower than
that in the single-objective state, as indicated by previous
studies. However, these recent advancements highlight the
increasing interest in developing effective multi-objective FS
techniques to tackle the challenges associated with FS in
complex optimization problems.

Among the various meta-heuristic algorithms, CSA has
recently emerged as a promising method for solving FS
problems. It was first introduced by Yang and Deb [29] to
solve optimization problems, including gene selection. CSA
draws inspiration from the behavior of cuckoo birds in the
reproductive process. The algorithm mimics the concept of
obligatory brood parasitism, wherein cuckoo birds lay their
eggs in the nests of other similar species, known as host birds,
and rely on the host birds to raise their chicks. Compared to
other meta-heuristic algorithms, CSA offers several advan-
tages, including superior exploration and exploitation, rapid
convergence, fewer parameters, avoidance of local optima,
computational efficiency, and ease of implementation.

Over the years, numerous researchers have proposed
approaches to address the FS problem using different vari-
ants of CSA. For instance, Rodrigues et al. [63] proposed
a binary CSA, which transforms continuous variables into
binary form for FS. Gunavathi et al. [64] introduced a CSA
specifically for FS in a microarray dataset for cancer clas-
sification, using both T and F statistics for feature ranking
and a KNN algorithm for the fitness function. Aziz et al. [65]
presented a modified CSA that incorporates rough sets to
handle high-dimensional data through FS. Their fitness func-

tion considers the number of features in the reduced set and
the quality of the classification. Similarly, Alia et al. [66]
developed an enhanced version of Binary CSA, which intro-
duced a novel objective function based on frequent values and
Rough Set Theory (RST). Additionally, they made improve-
ments to the initialization and update mechanisms, resulting
in enhanced convergence efficiency. Kumar et al. [67] intro-
duced a binary version of CSA that aims to select an
optimum subset of features for online textual content senti-
ment analysis, while Sudha et al. [68] developed an enhanced
CSA to determine the optimal features for the classifica-
tion of breast cancer. Salesi et al. [69] extended the binary
CSA by embedding a pseudo-binary mutation neighborhood
search. This enhancement aimed to improve the effective-
ness of the binary CSA in handling FS problems within the
biomedical domain. Pandey et al. [70] introduced a binary
binomial CSA specifically designed to identify the optimal
subset of features by leveraging the binomial distribution
and CSA principles. Alzaqebah et al. [71] proposed a CSA
based on adaptive memory to enhance the FS procedure
and keep the history of previous solutions. Wang et al. [72]
developed the FS method based on the CSA by applying
three approaches: Lévy flight, chaotic maps, and the elite
preservation approach with uniform mutation to enhance the
FS process. Hamidzadeh et al. [73] specifically created a
chaotic cuckoo optimization algorithm with levy flight for
the purpose of selecting the best feature subspace for the
classification task. Rabia et al. [74] developed a deep-learning
model designed for the classification of fish images. To bol-
ster the exploratory prowess of the CS algorithm, the authors
integrated it with the genetic algorithm and enhanced the
overall performance of their deep-learning model. Khur-
ram et al. [75] proposed a particle-swarm CS optimization
algorithm for training deep neural networks for depression
detection tasks. Rabia et al. [76] introduced a hybrid method
using CS and the artificial bee colony (ABC) algorithm for
FS in cancer classification using microarray data. Further-
more, other versions of CSA [77], [78] have been presented
within hybrid models as effective solutions for solving FS
problems.

Although CSA has demonstrated its effectiveness in
solving various optimization problems, including gene selec-
tion. Typically, gene selection involves multiple conflicting
objectives, such as enhancing classification accuracy and
minimizing the number of genes. However, current related
works based on CSA for gene selection mainly focus on
optimizing a single objective, such as increasing the accuracy
of classification or decreasing the number of genes. There
is a tradeoff between these two conflicting objectives that
needs to be considered simultaneously. To effectively handle
this issue, this study extends the standard CSA, consider-
ing multiple objectives for gene selection to simultaneously
enhance the classification accuracy and minimize the number
of genes. The primary objective of this article is to propose a
binary multi-objective gene selection algorithm reformed on
the original CSA in wrapper mode.
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FIGURE 1. Representation of a dataset.

III. PRELIMINARIES AND PROBLEM FORMULATION
This section initially presents the basic concepts and mathe-
matical formulation of FS. Moreover, the basics of the CSA
are highlighted. Finally, the basic concepts of multi-objective
optimization are presented and the mathematical formulation
is introduced.

A. FEATURE SELECTION
Feature selection involves the meticulous process of selecting
and identifying the most pertinent features within a high-
dimensional dataset. This is accomplished by eliminating
redundant, irrelevant, or noisy features without signifi-
cantly losing information or affecting learning performance.
In building an ML model, only a few subsets of features
within the dataset are useful for creating an effective model,
while the remaining features are often redundant or irrele-
vant. Neglecting to remove these unnecessary features may
adversely affect the model’s overall performance and accu-
racy. As a result, it is essential to recognize and select the
most suitable features from the data and remove any irrelevant
features. This can be accomplished through FS and machine
learning methods.

To get a clear idea on FS problem, let us consider X which
represents the dataset as a matrix of dimensions N ∗D, where
N signifies the number of samples each having a set of D
features Fet = [f1, f2, . . . , fD] ∈ RD. Xij represents the value
of jth feature in the ith sample, where j ranges from 1 to D
and i range from 1 to N . The dataset also includes a subset
of classes C which comprises m distinct class labels. Let
C = [c1, c2, . . . , cm] ∈ Rm, where m represents the number
of distinct class labels. The samples are then distributed
among a set of classes, where k = 1, 2 . . . ,m. So, samples
within the same class exhibit similar attributes, while those
in different classes possess dissimilar attributes. Figure 1
provides a visual representation of a dataset.

The main task of FS method is to identify a subset of d
features, where (d < D) in the global feature space Fet . The
subset of selected features from the original features space
denoted by S ∈ Rd , which aims to optimize a given criterion

by deriving an effective mapping function from the input
dataset X to the target class labels C . In the context of data
classification, the objective of FS method is to select a subset
S ⊆ Fet of features that result in the highest classification
accuracy. To represent solutions to the FS problem, binary
coding is used with each feature represented by a binary
digit indicating its inclusion or exclusion in the subset. The
following expression describes the binary coding used to
solve the FS problem:

XI = (XI1,XI2, . . . ,XId )Xij ∈ {0, 1} (1)

where Xij = 1 indicates that the jth the feature has been
chosen for inclusion in the selected subset; otherwise, if Xij =
0 indicates that it is not included.

B. BASIC CUCKOO SEARCH ALGORITHM (CSA)
The CSA is a swarm intelligence-based optimization method
that draws its inspiration from nature. First introduced by
Yang and Deb [29], it was meant to tackle a wide range
of optimization problems in different fields. The algorithm
emulates the concept of obligatory brood parasitism in the
behavior of certain cuckoo birds. In this behavior, cuckoos
lay their eggs in nests of similar species known as host
birds and rely on them to care for their offspring. In CSA,
the candidate solutions are represented as nests, and their
quality is assessed using an objective function. The algorithm
maintains a population of candidate solutions and generates
new solutions through a process called Lévy flight. It makes
random jumps within the search space depending on the
information from the current best solution. The Lévy flight is
a stochastic walk model that simulates the movement patterns
observed in certain animals during their search for food. In the
context of the CSA algorithm, this concept is leveraged to
generate new candidate solutions by randomly adjusting the
current best solution using a step size determined by a heavy-
tailed Lévy distribution. By replacing the poorest solution in
the population with a modified version of the current best
solution.

Additionally, the CSA includes a mechanism for nest
abandonment, which simulates the behavior of some cuckoo
birds abandoning their nests and creating new ones. In the
algorithm, a solution may be replaced with a new random
solution with a certain probability. This helps CSA foster
diversity within the solution set and mitigates the risk of
becoming trapped in local optima. By iteratively applying
thesemechanisms, the CSA can effectively explore the search
space and converge on the best solution for the optimization
problem. CSA is effective for solving a diversity of optimiza-
tion problems, including global optimization, engineering
design optimization, and ML optimization. The CSA offers
several advantages, such as ease of implementation, minimal
parameter tuning requirements, and fast convergence rates.
It achieves superior performance when compared to other
existing algorithms. The following are the basic components
of the CSA:
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TABLE 1. Meaning of the symbols used.

1) OBJECTIVE FUNCTION
The superiority of the solution is relational to the objective
function’s value, which represents both classification accu-
racy and size of chosen features. It can be formulated as a
multi-objective function, as represented by Eq. (2):

F (x) = [F1 (x) ,F2 (x)] (2)

where x represents the feature subset, F1(x) represents the
accuracy of the classification, and F2(x) denotes the size of
chosen features.

2) THE NEST
The population size in the FS problem is determined by a
specific number of nests that correspond to the size of solu-
tion population. Each host nest defines as a sample (solution),
where each sample has egg f (feature), or a set of Fet features
Fet = [f1, f2, . . . , fD] . The CSA begins with N solutions
where each of them represents a nest, by randomly placing
the population of nests in the search space.

In FS problem, a nest represents a possible solution and is
characterized as a binary vector with a length of N , where
N corresponds to the number of features in the dataset. Each
element of the vector signifies the selection status of a feature,
with a binary value of ‘‘1’’ indicating that the feature is
selected, while ‘‘0’’ denotes its non-selection.

3) THE EGG
In context of the FS problem, the eggs in a nest represent
a feature fi and a solution may contain f eggs i.e., Fet =
[f1, f2, . . . ,fD].

FIGURE 2. Search space.

4) CUCKOO
The cuckoo represents the current solution for the FS problem
and also can be described as a nest with a random feature
subset.

5) LEVY FLIGHT PROBABILITY
The levy flight probability is employed to control the explo-
ration and exploitation of the search space. Cuckoo birds
perform Lévy flights, which are random walks with step
sizes that follow a heavy-tailed distribution. This allows the
birds to search a large space efficiently. The mathematical
formulation of Lévy flights is discussed in Section IV-G.

6) SEARCH SPACE
In CSA, the search space is visualized as a binary array
where each element represents the selection status of a fea-
ture. When a feature is selected, its corresponding element
is assigned a value of 1, while a value of 0 indicates that the
feature is not chosen. The search space encompasses a total of
2n elements, where n denotes the number of features available
in the dataset. Figure 2 illustrates a graphical representation
of the search space, where Zi denotes a solution in each row.
Each entry in the matrix xij holds a continuous value, which
is then converted into a binary value.

7) STOPPING CRITERIA
The stopping criteria play a pivotal role in establishing
the conditions that determine the precise moment when the
search process should come to an end. These criteria serve
as essential indicators to guide the termination of the search
process at the appropriate time.

C. THE MATHEMATICAL FORMULATION OF
MULTI-OBJECTIVE OPTIMIZATION PROBLEM (MOP)
Multi-objective optimization problems (MOPs) arise when
there is a necessity to strike a balance between two competing
objectives that typically contradict one another, necessitat-
ing the identification of the optimal solution. MOP involves
multiple objective functions that aim to simultaneously either
maximize or minimize multiple conflicting objectives.

In general, a multi-objective minimization problem can be
mathematically formulated as follows:

If there are a set of k objectives, then the minimizing of the
objectives is expressed as:

minimize F(x) = [F1(x),F2(x), . . . ,Fk (x)]

Subject to gi (x) ≤ 0, i = 1, 2, . . . k

hi (x) = 0, i = 1, 2, . . . l (3)
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where F1(x),F2(x), . . . ,Fk (x) are K conflicting objective
functions associated with vector x, while x represents a set
of decision variables, K denotes the number of objective
functions to be minimized, and gK (x) and hK (x) correspond
to constraint functions. As a result, the problem of FS can be
formulated as an optimization problem, aiming to discover
the subset of features that maximizes a specific criterion
while simultaneously minimizing another.

The FS problem is encoded as aMOP that needs to balance
two conflicting objectives: maximize the accuracy of the clas-
sification and minimize the size of features. To achieve this,
we define a multi-objective function F(x) to optimize multi-
ple criteria. The primary criterion is classification accuracy,
which assesses the ability of the selected features to predict
the class labels of the data accurately. Another important
criterion is the size of the feature subset, which quantifies the
number of selected features.

The FS problem can be represented mathematically as Eq.
(4):

maxF (x) = criterion1 (x)− criterion2(x) (4)

subject to S ⊆ Fet , where S is the selected subset of features
and Fet represents the set of all features available.
This can be further extended to a MOP in Eq. (5), where

multiple criteria need to be simultaneously optimized. The
multi-objective formulation:

maxF (x) = (criterion1 (x) , criterion2(x), . . .) (5)

subject to S ⊆ Fet , where S is the selected subset of features
and Fet is the original features.
In the aforementioned multi-objective formulation, the

objective is to identify a trade-off solution that strikes a
balance between multiple criteria. These criteria encompass
maximizing the accuracy of the classification while simulta-
neously minimizing size of feature subset.

In MOP, the goodness of a solution is clarified by the
trade-offs between the conflicting objectives namely pareto
optimal solutions. For instance, let u and v two candidate
solutions of the aforesaid K -objective minimization problem.
If the following conditions are met, it can be said that u
dominates v or u is better than v (denoted by u ≺ v):

∀i : fi (u) ≤ or is not worse than fi (v) and

∃j : fi (u) < or is strictly better than f i (v) ,

where i, j ∈ {1, 2, . . . ,K } .

where k represent the number of objective functions. The
solution u is referred to as the pareto-optimal solution for a
given problem if it is not dominated by any other possible
solution. In other words, there is no other solution that out-
performs u in all objective functions.

IV. PROPOSED METHOD
The problem of FS is often viewed as a MOP with two
primary objectives: maximizing accuracy of classification

FIGURE 3. Model representation.

and minimizing size of features. CSA has been applied suc-
cessfully to address the FS problem; however, the majority
of current CSA-based FS techniques treat FS as a single
objective. The binary version of the multi-objective CSA for
FS in wrapper mode remains a research challenge. To tackle
this problem, we have extended the standard CSA, consid-
ering binary multi-objectives for FS in bioinformatics. The
proposed methodology includes four phases, as illustrated
in Figure 4: (a) model representation; (b) binarization and
encoding methods; (c) multi-objective binary CSA for FS in
wrapper mode; and (d) classification and validation. In the
subsequent subsection, a detailed presentation is given for
each component.

A. MODEL REPRESENTATION
The proposed MOBCSA technique represents the dataset
a two-dimensional matrix with a size of N ∗ D. Here, N
represents number of samples or nests (rows), each associ-
ated with a set of D features. The primary set of features is
represented by Fet = [f1, f2, . . . , fD]. Hence, the problem of
FS can be defined as the selection of d features, where d is
either less than or equal to D, from the Fet set. The selection
process is guided by the quality of objective function F(x)
with respect to the k th objectives. A schematic diagram of
how the population is represented is illustrated in Figure 3.

B. BINARIZATION METHODS AND ENCODING FUNCTION
The original CSA was initially designed to tackle optimiza-
tion problems within continuous search spaces where each
individual is represented by a floating-point position vec-
tor. However, the FS problem is a binary one and requires
modeling as a D-dimensional binary representation, where D
represents the number of features. Thus, a conversion from
the continuous search space to the corresponding binary bit
string [1, 0] is necessary, and continuous values must be
transformed. This transformation is accomplished by apply-
ing the Sigmoidal (S-shaped) transfer function, which maps
vectors from the continuous search space into the corre-
sponding binary search space. This research mainly employs
the S-shaped function calculated as given in Eq. (6) [79].
The resulting binary vector is then evaluated by the fitness
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function, as described in Section IV. The binary encoding
mechanism is expected to outperform the continuous method
since a search space is limited to only two values (0, 1),
and binary operators are easier to handle than continuous
operators and enable the algorithm to effectively manage and
manipulate the FS process.

T
(
x ji (t)

)
=

1

1+ e−x
j
i (t)

(6)

where x ji represents i
th solution in dimension jth at iteration

t . Additionally, the notation T
(
x ji (t)

)
define the value of

the probability obtained by applying the S-shaped transfer
function. Then, the probability value result from Eq.2 is then
compared with a threshold value to determine the binary
value as mentioned in Eq. (7).

x ji (t + 1) =

{
1, ifrand ≤ T

(
x ji (t)

)
0, , otherwise

(7)

The notation x ji (t + 1) represents new ith solution (nest) in jth

dimension (feature) at iteration (t + 1). Here, i ranges from
1 to N , representing the index of the solution, and j ranges
from 1 to D, denoting the index of the feature. The func-
tion T

(
x ji (t)

)
represents the corresponding value calculated

using Eq. (6). Additionally, the variable rand represents a
random number between [1, 0], where each 1 denotes a
selected feature, while the value of 0 signifies that it is not
selected.

To represent the solution for the problem X a binary
bit-string is utilized that is computed by using as given in Eq.
(8). This bit-string acts as a symbolic representation for sets
of feature subsets.

X = x1, x2, . . . , xD, xj ∈ 0, 1} (8)

Figure 5 visually depicts a graphical representation of the
encoding procedure of the binary CSA, specifically designed
to tackle the FS problem. During the initialization of each
nest, a distinct binary string is generated where each bit
corresponds to a different feature. In this representation, a bit
with a value of 1 implies the selection of the corresponding
feature, while the value of 0 indicates that the feature is not
selected.

C. THE MULTI-OBJECTIVE BINARY CSA FOR FS IN
WRAPPER MODE
This section delves into the detailed description of our
adapted multi-objective binary CSA for FS problem that
considers multiple conflicting objectives.

The standard CSA follows three key rules, which are sum-
marized as follows:

1. Each cuckoo employs random selection process to choose
a nest and deposits a single egg into it.

2. The quality of the eggs in each nest is evaluated by
objective function F(x), then the nests with the highest

quality eggs are chosen to be carried forward to the next
generation.

3. The number of available nests remains constant through-
out the process. A host bird may discover an alien egg in
its nest with a probability pa ∈ [0, 1]. In this case, the host
bird has two options: it can either discard the foreign egg
or abandon its current nest and construct a new one.

In this article, the standard CSA is adapted to handle the
binary multi-objectives for FS. The basic CSA is reformu-
lated for FS and extended its functionality to deal with
different objectives. The following adaptations are added:

1. The first and third rules of the standard CSAwere the only
ones modified to tackle the multi-objective FS problem.
The modifications are outlined as follows:

• Each cuckoo lays a set of m eggs simultaneously,
which are randomly placed in a selected nest. Each
egg i, where i ∈ (1, 2, 3, . . . ,K ), corresponds to the
solution for the K th objective.

• The nests with the highest quality eggs are selected to
be continued to the next generation.

• The possibility of a nest being detected by the host
is determined by pa ∈ [0, 1]. If a nest is detected,
a fresh nest is constructed with m eggs according to
the similarities or differences of the eggs.

2. The S-shaped transfer function was utilized to convert
the algorithm’s search space from continuous to discrete
binary.

3. The fitness function has been modified to assess the qual-
ity of solutions based on multiple objectives, such as
Acuraccy and Numberoffeatures.

4. The Pareto dominance concept is utilized to identify
non-dominated solutions, ensuring that no other feasible
solution dominates them with respect to all objectives.

5. To maintain a record of all non-dominated solution sets
obtained so far during the search process, a pareto archive
is used.

6. To increase the coverage of optimal solutions across all
objectives and preserve diversity in the archive an adaptive
crowding distance has been incorporated.

Based on the above rules and integrated components, the
basic steps of the MOBCSA are described as follows:

D. DEFINITION OF INPUT PARAMETERS
The MOBCSA algorithm initially starts with defining input
parameters. These parameters typically include size of popu-
lation (N), which specifies number of nests in the algorithm’s
population. A fraction pα representing the discovery rate of
solutions (i.e., the worst nests that are identified for rejection
and replacement). The maximum number of iterations Imax ,
sets an upper limit on the algorithm’s execution. Probability
of abandonment Pb, controls the likelihood of nests being
abandoned and replaced. Finally, the objective functions
F1(x) and F2(X ), and set of original features Fet . One advan-
tage of the MOBCSA compared to other population-based
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FIGURE 4. Proposed architecture of MOBCSA.

metaheuristics is its requirement for fewer parameters during
configuration, making it simpler to implement and operate.

E. INITIALIZATION OF POPULATION
In the initialization phase, the proposed algorithm begins
by randomly generating a set of solutions in order to form
the initial population. Each solution in a population repre-
sents a subset of features. To facilitate the representation of
these feature subsets, the positions of individual features are
encoded as binary values. This encoding strategy, as outlined
in Section IV-B, transforms the feature positions into binary

feature vectors, where every element can take on a value
of either 0 or 1. The resulting binary feature vectors are
organized into a two-dimensional matrix with dimensions
N ∗ D. Here, N refers to the number of samples or nests,
which can be viewed as the rows of the matrix. Each sample
or nest is associated with a set of D features, represented by
the columns of the matrix. This matrix-based representation
allows for efficient handling and manipulation of feature
subsets throughout the optimization process. By adopting this
initialization scheme, the algorithm establishes an initial pop-
ulation encompassing diverse subsets of features, paving the
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FIGURE 5. Binary representation.

way for subsequent exploration and refinement, enabling the
algorithm to find optimum solutions for the multi-objective
problem at hand.

F. FITNESS FUNCTION
In the multi-objective FS problem, the primary objective is to
identify an optimal set of features that ensures high accuracy
of the classification. To achieve this goal, we define two con-
flicting objectives: maximizing the accuracy of classification
represented by the first fitness function F1 (x) and minimiz-
ing number of features represented by the second fitness
function F2 (x). The classification accuracy is calculated by
the following formula:

Acuraccy = (
1
n

∑n

l=1

Ncor
NAll

)× 100 (9)

The notation NCor signifies number of correctly predicted
test samples, while NAll denotes a total number of instances
in datasets and n symbolizes the total number of runs. By
summing the accuracy over multiple runs, we obtain a more
stable and reliable estimate of the algorithm’s true perfor-
mance.

The second fitness function minimizing number of fea-
tures. It can be calculated using the following formula:

Number of features =
∑D

i=1
xi (10)

where xi represents the value of the ith value in individual X ,
and D denotes a total number of original features.

G. GENERATE NEW SOLUTIONS WITH LEVY FLIGHT
To further enhance the MOBCSA algorithm’s capability
to discover optimal solutions in subsequent generations,
an improvement called Lévy flights is incorporated. By uti-
lizing Lévy flights, the algorithm gains an increased capacity

for exploration and a heightened ability to perform global
searches. Given a current solution X ti representing the host
nest i at iteration t , a new solution X t+1i can be generated by
updating the previous solution using the idea of Levy flights
according to Eq. (11). This operation introduces a stochastic
component to the algorithm, allowing for long-range jumps
within the search space. By incorporating this technique,
the algorithm exhibits an enhanced capability to effectively
explore uncharted regions within the solution space, thereby
increasing the likelihood of uncovering superior solutions
that were previously unknown. This mechanism strikes a deli-
cate balance between exploitation and exploration, enhancing
the algorithm’s ability to navigate the search landscape and
find high-quality solutions.

X t+1i = X ti + α ⊕ Levy
(
λ

)
(11)

The α > 0 represents the step size which is calculated accord-
ing to the scale size of the problem at hand. The symbol⊕ is
a mathematical notation that denotes the element-wise mul-
tiplication operation. The Lévy(λ ) distribution is employed
to introduce random walks via Lévy flights, with the step
sizes calculated using Eq. (13). To handle the diversity in
solution quality, an additional equation such as Eq. (12) can
be incorporated into the algorithm.

α = α0(x tj − x
t
i )

(
λ

)
(12)

The constant αo is a predetermined value and (x tj − x ti )
represents the difference between two random solutions. The
Lévy flights enable the algorithm to perform random walks,
with the step sizes being drawn from a Lévy distribution. The
calculation of the step size is as follows:

Lévy ∼ u = t−1−λ , (0 < λ ≤ 2)
(
λ

)
(13)

The Lévy distribution is employed as a statistical distribution
that describes the step lengths in a randomwalk process. This
mechanism plays a pivotal role in augmenting the exploration
capabilities of the algorithm. It is renowned for its distinc-
tive characteristics, including an infinite variance and means,
as well as a power-law step-length distribution with a heavy
tail probability. This heavy-tailed characteristic of the Lévy
distribution enables the algorithm to escape local optima and
facilitate the discovery of novel and potentially optimal solu-
tions. By incorporating this distribution into the algorithm,
it becomes more capable of taking large and infrequent steps,
allowing for the exploration of distant and potentially promis-
ing regions in the search space. Overall, the utilization of
the Lévy distribution increases the algorithm’s capabilities to
effectively explore the search space and improves its overall
search performance.

H. NON-DOMINATED SORTING
Fast Non-Dominated Sorting (FNS) [80] is an efficient tech-
nique designed specifically for sorting solutions in MOP
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Algorithm 1MOBCSA
1 Input dataset (X, C), where X is the dataset and C Set of classes for the dataset and control parameters pa← probability

pa ∈ [0, 1], Max itr ← maximum number of iterations and P← population size.
2 Output fbest optimal features set
3 Initialization
4 t← 0, counter initialization
5 For i = 1: i ≤ N do
6 Pt ← generate population of N candidate solutions x ti (i = 1, 2, . . . , n) .

7 Calculate Fitness_valueti ← f (x ti ) (the objectives functions i.e., accuracy and number of features for
each solution xi based on equations (9) and (10)).

8 End for
9 Perform non-dominated sorting and crowding distance calculation on the population to identify the best solutions.
10 At ← initial pareto archive set, then add the non-dominated solutions to the external archive
11 while (t < Max itr ) or (stop criterion)
12 Pt+1← {}
14 For each solutionX it i ≤ n inPt do
15 generate a new solution x t+1i by Lévy flights Eq. (11) and Eq. (13)
16 Convert to binary using equations (6) and (7)
17 Evaluate fitness function Fitness_valueti ← f (x ti ) Equations (9) and (10)
18 if (new solutionX t+1i dominates X ti ) in the objective space Then
19 Add the new solution X t+1i to Pt+1
20 Else
21 previous solution X ti is added
22 End if
33 At ← update the Pareto archive concerning non-dominated solutions and crowding distance
24 End for
25 For each solution Xi in Pt+1
26 If newi dominates Xi
27 Xi = newi // select the worse solution with pa ∈ [0, 1] and replaced them for the best solution.
28 End if
29 End for
30 Find the non-dominated solutions
31 At ← update the Pareto archive concerning the non-dominated solution
32 t = t + 1
33 End while
34 return the best-selected features from At−1

depending on their dominance levels. In a multi-objective
optimization scenario where multiple conflicting objectives
are considered, the solution is considered non-dominated
if no other solution outperforms it. The FNS algorithm is
specifically designed to quickly identify these non-dominated
solutions within a population without comparing every solu-
tion. The algorithm begins by assigning a rank to each
solution according to its level of dominance. In this case,
solutions that are not dominated by any other solution are
assigned to level one. While solutions exclusively dominated
by level one solutions are assigned to the second level, this
iterative procedure continues until every solution is assigned
a level of dominance. The result of this non-dominated sorting
is a collection of levels where the solutions within each level
are mutually non-dominated, and solutions in higher levels
dominate those in lower levels. This collection of levels is

commonly known as the Pareto front or Pareto set, represent-
ing the best compromise solutions that achieve the optimal
balance among the conflicting objectives in the MOP.

Assuming that a total of K objective functions are consid-
ered in a given MOP. Let Fk (xi) denote the objective function
value of ith features forK th objectives function. In the context
of single-objective optimization or a simple representation
of a CSA with only one egg existing per nest, it is easy
to compare the superiority of different nests based on their
objective function values. However, in the case of MOP,
where nests contain multiple eggs, comparing and ranking
solutions according to objective function values becomes
a complex task and may give a false ranking, especially
when objectives are conflicting. In such cases, the solutions
are categorized into two groups using the Pareto dominance
condition, instead of being ranked to determine the best and

VOLUME 12, 2024 21851



H. M. Abdulwahab et al.: MOBCSA for Features Selection in Bioinformatics

worst solutions. Pareto optimal solutions allow us to compare
two solutions in a multi-objective space and show the best
equilibrium state connecting the given objectives.

I. EXTERNAL ARCHIVE AND CROWDING DISTANCE
UPDATING MECHANISM
The proposed method incorporates an external pareto archive
as a key component to store the non-dominated solutions
discovered during the search process. An external archive is
a repository that stores the best solutions found during the
optimization process. It serves as a reference for the optimiza-
tion algorithm to guide its search toward better solutions. The
external archive contains a set of non-dominated solutions,
also known as Pareto front or Pareto set, which represents
the optimal trade-off between the conflicting objectives in
the problem. The solutions contained in the external archive
are non-dominated, indicating that no other solutions within
the archive can achieve better performance in one objective
without sacrificing the performance of at least one other
objective.

A crowding distance-based method is adopted for the
external archive to update it during the optimization process
and ensure that it always has the best solutions found so far.
Crowding distance is defined as a measure used in MOP to
preserve diversity within the solution population. It serves
as a metric to quantify the proximity between neighboring
solutions in the objective space, providing valued insights
into their proximity and distribution [80]. The crowding dis-
tance of a solution is evaluated by calculating the difference
between the values of its neighboring solutions in each objec-
tive dimension.

The solution exhibiting the highest crowding distance is
selected as the next solution to be added to the popula-
tion. This strategy helps to ensure that the external archive
encompasses areas of the objective space that may be under-
represented by the existing solutions, ultimately facilitating
a comprehensive exploration of a solution landscape. The
crowding distance is computed using the following formula:

CDij =
F i+1j − F i−1j

Fmaxj − Fminj

(14)

where, Fmaxj and Fminj define maximum and minimum val-
ues of the jth objective function. More details can be found
in [80]. The general pseudocode of the MOBCSA is given in
Algorithm 1.

J. EVALUATION
The proposed algorithm operates as a wrapper approach,
where it relies on a learning algorithm in the evaluation stage
to evaluate the classification performance of the selected fea-
ture subset. So, in the evaluation process, we employed three
distinct classifiers, including Naïve Bayes (NB), K-Nearest
Neighbors (KNN), and Support Vector Machine (SVM),
to assess the efficiency of the proposed method.

V. EXPERIMENTAL RESULTS
This section aims to evaluate the efficiency of the proposed
MOBCSA for FS. The subsequent subsections present vari-
ous aspects: the utilized datasets, the employed classifiers, the
experimental setup, the comparison methods, the parameter
settings, the evaluationmetrics, and the experimental findings
and discussions.

A. DATASETS
In this section, experiments are carried out on six distinct
microarray datasets with diverse characteristics to exhibit the
efficiency and robustness of the proposed MOBCSA. These
microarray datasets are related to various diseases, including:

1) SRBCT
Small Round Blue Cell Tumors (SRBCT) is a microarray
dataset comprises of 83 samples with 2,308 features or genes
related to four distinct types of pediatric cancers, namely
Burkitt’s lymphoma (BL), rhabdomyosarcoma (RMS), neu-
roblastoma (NB), and Ewing’s sarcoma (EWS). The gene
expression data is used to classify the tumor type.

2) PROSTATE TUMOR
It is a gene expression dataset consisting of 10,509 gene
expression features and 102 samples, including 52 cancer
samples and 50 non-cancer samples. The expression levels of
genes are analyzed to discover features that can differentiate
between tumor and non-tumor samples.

3) LUNG CANCER
Defined as a gene expression dataset including genes related
to lung cancer consisting of 203 samples with 12600 features
of lung cancer tumors and non-tumors. The data from this
dataset is employed to differentiate between five distinct
types of lung tumors, namely normal lung (NL), squamous
cell carcinoma (SQ), adenocarcinoma (AD), small cell lung
cancer (SMCL), and pulmonary carcinoid (COID).

4) LEUKEMIA
It is a gene expression dataset that comprises 72 samples
taken from leukemia patients, which includes 47 samples
of acute lymphoblastic leukemia (ALL) and 25 samples of
acute myeloid leukemia (AML). This dataset is employed
to differentiate between ALL and AML based on their gene
expression profiles.

5) COLON TUMOR
It is a gene expression dataset consisting of 62 samples of
colon tumors and normal colon tissues. This dataset is utilized
to categorize the samples as either tumor or normal tissue
based on their gene expression profiles.

6) DLBCL
Diffuse Large B-Cell Lymphoma (DLBCL) is a gene expres-
sion dataset consisting of 77 samples of DLBCL tumors and
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normal tissues. The task is to figure out whether the sample
of tissue is from a tumor or normal tissue, according to the
gene expression data.

These datasets are available at the Bioinformatics Lab-
oratory, Faculty of Computer and Information Science,
University of Ljubljana [81]. Table 2 provides a summary of
each dataset’s characteristics, such as the number of samples,
genes, and classes. As illustrated in Table 2, the prostate
tumor dataset is an example of a dataset that has a high
dimensionality of features with a small number of samples.
The Leukemia, DLBCL, Colon, and Prostate Tumor datasets
are designed for the tasks of binary classification that involve
detecting cancer types. In contrast, the lung cancer and
SRBCT datasets are used for multi-class tumor classification
problems. The selected datasets have varying numbers of
genes ranging from 2000 to 12600 utilized to demonstrate
the proposed technique’s ability to handle different levels of
dimensionality.

B. COMPARISON ALGORITHMS AND EXPERIMENTAL
SETUP
In this section, the performance and effectiveness of the
proposed MOBCSA are assessed in comparison to four other
state-of-the-art multi-objective optimization-based methods
for gene selection from the literature. These methods
are MPSONC [56], MOBHHO [27], MOABC [57], and
MOPS [58]. In these experiments, the proposed method and
other compared methods were implemented on a computer
configuration with an Intel CoreTM i5 CPU, 8 GB of RAM,
andWindows 10 using the Python 3.9 programming language
and Sklearn libraries. Each method is executed over ten sep-
arate runs in every experiment, and an average of ten runs is
calculated to gain more accurate results assessments for the
comparison between methods.

Additionally, the dataset is normalized and divided ran-
domly into a training and testing set in every run, where
80% of the initial data were used in the training phase and
20% of the initial data were used for testing purposes. The
FS process is carried out on the training dataset, and the
proposed method is tested on the test dataset. A ten-fold
cross-validation technique is used on each dataset, and all
examinedmethods are evaluated on the same dataset to ensure
fairness. The findings are reported with respect to both the
average number of features that were selected and the average
accuracy of the classification.

C. APPLED CLASSIFIERS
Three different classifiers, including NB, KNN, and SVM,
were applied to evaluate the proposed MOBCSA and other
methods. The selection of these classifiers was based on
their extensive utilization and proven effectiveness across a
range of machine-learning applications. The SVM classifier
is a common ML algorithm utilized for both regression and
classification purposes. It operates by identifying the optimal
hyperplane that separates data points into distinct classes.

Furthermore, the KNN classifier is a non-parametric classi-
fication algorithm commonly employed in ML for regression
and classification tasks. It operates on the principle that data
points with similar features tend to belong to the same class or
exhibit similar values. In KNN, a new data point is classified
by considering the class labels of its K nearest neighbors in
the training dataset. The value of K is determined by the user
and determines the number of neighbors taken into account.
The algorithm calculates the distances between the new data
point and all other data points in the training set, selecting
the K nearest data points. The new data point is then assigned
the most common class among these K nearest data points.
Lastly, the NB classifier is a probabilistic method that utilizes
Bayes’ theorem to determine the probability of a data point
belonging to a specific class based on its features. It assumes
that all features are conditionally independent.

D. PARAMETERS TUNING AND SETTINGS
Table 3 shows the general parameters for all algorithms.
Moreover, Table 4 shows the parameter settings of the devel-
oped MOBCSA method and all other algorithms used for
comparison. The parameters for each method are initialized
depending on the recommendations from their respective
original papers.

To ensure optimal performance of the proposed algorithm,
it is recommended to set the number of iterations Max itr
and the size of population P. To tune these two parameters,
initial experiments were carried out on several datasets. The
different values of the number of iterations are used in exper-
iments, such as 10, 15, 20, 25, 30, 40, 50, 60, and 70. Table 5
indicates that the proposed algorithm attains convergence in
approximately 50 iterations for all datasets, with no signif-
icant improvement in accuracy or the number of selected
genes observed after iteration number 50. Hence, we have set
the number of iterations to 50 in this study. Moreover, to tune
the value of the size of population, the value of the parameter
number of iterations was maintained at 100 while exploring
different population sizes ranging from 10 to 100.

The results attained for each population size have been
presented in Table 6. As per the observations, the proposed
algorithm demonstrates the most favorable outcome at a pop-
ulation size of 30. It is noteworthy that the accuracy and
numbers of genes do not register any improvement when the
value of P is increased beyond this point. Thus, based on
the findings, it has been firmly decided that the population
size will be fixed at 30. This decision has been taken after
a meticulous analysis of the data and considering all possi-
ble scenarios that could present themselves. This step will
ensure the optimal performance of the algorithm. In light of
this, we conclude that the proposed algorithm can be further
improved by setting these two parameters accordingly.

E. EVALUATION METRICS
This section highlights the evaluation metrics utilized in each
experiment to assess the efficiency of each optimization-
based algorithm. The methods are compared based on two
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TABLE 2. A brief description of each dataset’s characteristics.

TABLE 3. General parameters for all algorithms.

metrics: AvgClassAcc. and AvgSelFeat. The outcomes of
these two metrics are averaged across N number of runs. The
following equations describe all of these metrics:

1) AVGCLASSACC
This metric evaluates the correctness of classification, mea-
suring how correctly the classifier matches the chosen feature
subset to the samples. In this work, the AvgClassAcc is
calculated using Eq. (15):

AvgClassAcc =
1
n

n∑
i=1

1
N

N∑
j=1

match(Cj,Lj) (15)

where Cj denotes class label outcome of a single sample j,
Lj is the class label corresponding to j, n symbolizes the
number of times method has been run, N represents number
of all instances in datasets, andmatch denotes the comparator
function, which returns 1 if two labels are the same and
0 otherwise.

2) AVGSELFEAT
Reflects the ratio of the overall average of the selected fea-
tures to the whole number of features, the AvgSelFeat is
calculated as given in Eq. (16).

AvgSelFeat =
1
N

N∑
i=1

di
D

(16)

where D signifies the total number of data sets, N represents
number of runs and di stands for number of selected features.

TABLE 4. Parameter setup of each method.

F. EXPERIMENTAL FINDINGS AND DISCUSSIONS
This section presented and discussed the experimental find-
ings of the suggested MOBCSA method, in addition to
comparisons with four other multi-objective gene selec-
tion methods, including MOBHHO [27], MPSONC [56],
MOABC [57], and MOPS [58], on six benchmark datasets:
SRBCT, prostate tumor, lung cancer, leukemia, colon tumor,
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TABLE 5. Tuning the parameter number of iterations.

TABLE 6. Tuning the parameter size of populations.

and DLBCL. The methods were assessed utilizing three dif-
ferent classifiers: Naïve Bayes (NB), K-Nearest Neighbors
(KNN), and Support Vector Machine (SVM). The results
were plotted in three figures and tables, each representing the
classifiers’ performance with all techniques and datasets. The
comparison was based on two primary criteria: AvgClassAcc
and AvgSelFeat.

Tables 7, 8, and 9 summarize the AvgClassAcc of the pro-
posedMOBCSAmethod and other methods over ten separate
runs on different microarray datasets employing SVM, KNN,
and NB, respectively. The highest value of the AvgClassAcc
is highlighted in boldface. Moreover, those tables show the
AvgClassAcc of each method across all microarray datasets.
Then the AvgClassAcc plots in Figures 6, 7, and 8 for SVM,
KNN, and NB classifiers, respectively, across all datasets and

methods. Table 7 specifically demonstrates the AvgClassAcc
for all methods across all datasets using SVM as the clas-
sifier. It can be seen that MOBCSA outperformed all other
methods on all datasets. Specifically, MOBCSA achieved an
AvgClassAcc of 94.50% across all datasets, whereas the other
methods achieved anAvgClassAcc of 85.34% to 88.96%. The
next-best method achieved an AvgClassAcc of 88.96%. For
instance, in the Leukemia dataset, MOBCSAFS achieved the
highest AvgClassAcc of 93.91%, while the next-best method,
MOABC, got an AvgClassAcc of 89.43%. Similarly, in the
Colon dataset, MOBCSA obtained the highest AvgClassAcc
of 96.92%, and so on.

As depicted in Figure 6, in all datasets, the developed
MOBCSA method excels when compared to other methods
over the SVM classifier. For example, SRBCT, lung cancer,
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FIGURE 6. Average classification accuracy on SVM classifier.

TABLE 7. Average classification accuracy on SVM classifier.

TABLE 8. Average classification accuracy on KNN classifier.

prostate tumor, leukemia, colon, and DLBCL achieved the
highest AvgClassAcc of 95.16%, 92.79%, 93.37%, 93.91%,
96.92%, and 94.89%, respectively. In the SRBCT dataset, the
MOBCSA method achieved the highest AvgClassAcc rate of
95.16%, whereas the other methods achieved an AvgClas-
sAcc rate between 82.10% and 90.43%, with a difference of

4.73% with respect to the second-best method, MOBHHO,
which has an AvgClassAcc rate of 90.43%.

Table 8 demonstrates the AvgClassAcc of all methods
on all datasets utilizing KNN as the classifier. Similar to
the results with the SVM classifier, MOBCSA achieved the
highest AvgClassAcc rate for all datasets, with an AvgClas-
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TABLE 9. Average classification accuracy on NB classifier.

sAcc of 95.52%, which was particularly higher than the
accuracy achieved by the other methods (MPSONC: 88.63%,
MPSONC: 86.67%, MOABC: 86.26%, MOPS: 85.69%).
Moreover, Figure 7 shows that the proposed method scored
the highest classification accuracy in all microarray datasets
over the KNN classifier, demonstrating the superior perfor-
mance of theMOBCSA compared to the other methods on all
the datasets. For instance, in the Colon dataset, the proposed
method scored 96.92%, which is the highest value with a dif-
ference of 6.31% compared to the MOBHHOmethod, which
obtained the second-highest value. In the SRBCT dataset,
MOBCSA achieved a classification accuracy of 97.56%,
while the next-best method, MPSONC, achieved an accu-
racy of 89.10%. The outcomes in Figure 7 also show that
MOBCSA achieved higher AvgClassAcc than other methods
in all cases.

Table 9 displays the AvgClassAcc for all methods on
all datasets while using NB as the classifier. Once again,
MOBCSA achieved the highest AvgClassAcc rate for
all datasets, achieving an AvgClassAcc of 95.19% com-
pared to the other methods, which achieved an average
accuracy between 83.19% and 89.07%. Furthermore, the
reported results in Figure 8 demonstrate that the MOBCSA
method is consistently more accurate than the other meth-
ods across all datasets. Overall, the obtained findings
prove that the MOBCSA surpasses the other methods with
respect to classification accuracy across all datasets and
classifiers.

Table 10 reports the findings concerning the average num-
ber of selected genes by both MOBCSA and the other
methods across all datasets, followed by the corresponding
outcome plots in Figure 8. From Table 10, it is evident that
most methods effectively reduced dimensionality by choos-
ing only a small proportion of the original datasets.

The proposed method MOBCSA demonstrated superior
performance by selecting the lowest number of genes, with
only an average of 19.28 chosen genes when compared to
other methods. The experimental finding of an average num-

ber of selected genes by the proposed MOBCSA and the
other methods across all datasets is plotted in Figure 8, which
proves that the proposedMOBCSAmethod outperformed the
other methods by selecting only 20.87%, 16.47%, 27.66%,
15.67%, 18.52%, and 16.53% of features across the prostate
tumor, SRBCT, lung cancer, leukemia, colon, and DLBCL
datasets, respectively. For instance, in the leukemia dataset,
MOBCSA selected only 15.67%, while the next best method,
MPSONC, selected an average of 22.87%. Similarly, in the
Colon dataset, MOBCSA identified the smallest number of
features. These results demonstrate the proposed method’s
ability to identify the most useful genes for cancer classifi-
cation tasks, outperforming all other methods in terms of the
average number of selected genes across all datasets.

In conclusion, the proposed MOBCSA method consis-
tently outperformed the other four multi-objective gene
selection methods (MOBHHO, MPSONC, MOABC, and
MOPS) in terms of the AvgClassAcc across all six datasets
(SRBCT, prostate tumor, lung cancer, leukemia, colon tumor,
and DLBCL) and three classifiers (KNN, NB, and SVM).
MOBCSA achieved the highest AvgClassAcc rates for all
datasets, ranging from 94.50% to 95.52%, depending on
the classifier used. This performance was noticeably better
than the other methods, which achieved average accuracy
rates between 85.34% and 88.96%. The proposed MOBCSA
method also exhibited exceptional performance in terms
of the AvgSelFeat, selecting the lowest number of genes
across all datasets with an average of 19.28 chosen genes.
This indicates that MOBCSA is more effective at identi-
fying the most useful genes for cancer classification tasks
compared to the other methods. Across all three classifiers
(SVM, KNN, and NB), MOBCSA consistently demonstrated
superior performance by achieving the highest classification
accuracy and selecting the fewest number of genes in every
scenario. This demonstrates the success of MOBCSA in han-
dling high-dimensional biological data and its potential to
be applied practically in big data bioinformatics analytics.
Furthermore, the MOBCSA’s performance is attributed to its
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FIGURE 7. Average classification accuracy on KNN classifier.

FIGURE 8. Average classification accuracy on NB classifier.

ability to balance the trade-off between classification accu-
racy and the number of chosen genes, efficiently discover the
search space, and choose the optimum solution.

G. STATISTICAL VALIDATION OF THE RESULTS
This subsection examined the statistical validation of the
reported results using various classifiers such as SVM, NB,
and KNN for both the proposed method and other meth-
ods. These validations were conducted on different datasets,
namely SRBCT, prostate tumor, lung cancer, leukemia,
colon, and DLBCL. Our analysis focused on several criteria,
including standard deviation (Std), maximum value (Max),
minimum value (Min), and median (Med), for each method

and dataset. Table 11 and Figure 10a showcase a statistical
analysis of the accuracy using the SVM classifier for both
the proposed method and other methods across the different
datasets. The criteria considered for this analysis were Std,
Max, Min, and Med for each method and dataset.

For the SRBCT dataset, it was observed that theMOBHHO
method exhibited a lower standard deviation (0.85) compared
to the other methods. Additionally, the proposed method
demonstrated the highest maximum value (96.87) for the
SRBCT dataset. Furthermore, the proposedmethod displayed
competitive performance by achieving high maximum values
(93.87, 94.98, 94.89, 97.93, and 96.80) for the prostate tumor,
lung cancer, leukemia, colon, and DLBCL datasets, respec-
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TABLE 10. Average number of selected genes.

FIGURE 9. The average number of selected genes.

tively. Moreover, the proposed method consistently achieved
competitive results by attaining lower standard deviations
across multiple datasets, including prostate tumors, lung can-
cer, leukemia, and colon cancer. In conclusion, theMOBCSA
method consistently performed well across various datasets,
exhibiting a lower standard deviation and higher maximum
values, minimum values, and medians compared to other
methods.

Table 12 and Figure 10b present a statistical result of accu-
racy using the KNN classifier for all methods across different
datasets. The analysis involved assessing the criteria of Std,
Max, Min, and Med for each method and dataset. It is evident
that the proposed method demonstrated competitive perfor-
mance by attaining high maximum values (98.89, 96.007,
93.89, 94.21, 98.99, and 97.84) and minimum values (95.91,
93.01, 91.97, 92.18, 96.89, and 95.232) for the SRBCT,

prostate tumor, lung cancer, leukemia, colon, and DLBCL
datasets, respectively. For the prostate tumor dataset, it was
observed that the MOBHHO and MOBCSA methods exhib-
ited a lower standard deviation (0.64 and 0.85), respectively,
compared to the other methods. Moreover, the MOBHHO
method achieved lower standard deviations across multi-
ple datasets, including SRBCT, lung cancer, and DLBCL.
Whereas, the proposed method has the second-best lower
standard deviations across multiple datasets. In conclusion,
the MOBCSA method consistently performs well across var-
ious datasets, exhibiting lower standard deviations, minimum
values, medians, and higher maximum values compared to
other methods.

Table 13 and Figure 11a report a statistical result of
accuracy using the NB classifier for all methods across dif-
ferent datasets. The MOBCSA method achieves the highest
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FIGURE 10. Statistical analysis for all methods over all data sets on different classifiers.

maximum value of 98.65 for the SRBCT dataset. In terms
of the prostate tumor dataset, the MOBCSA method has
the highest maximum value of 94.68, the minimum value
of 95.87, and the median value of 97.07. The MOBCSA
method achieves the highest maximum value of 93.95 for the
lung cancer dataset. For the Leukemia, Colon, and DLBCL
datasets, the MOBCSA method has the highest maximum,
median, and minimum values. Therefore, the MOBCSA
method shows competitive performance, achieving highmax-
imum, median, and minimum values for all datasets. For
the SRBCT dataset, it can be observed that the MOBHHO
method has a lower standard deviation of 0.64 compared
to the other methods. Whereas the proposed method has a
lower standard deviation across lung cancer, leukemia, and
colon data sets (0.66, 0.74, and 0.73), respectively. In conclu-
sion, theMOBCSAmethod consistently performswell across
various datasets and classifiers, exhibiting a lower standard
deviation, minimum value, median, and higher maximum
values compared to other methods.

Table 14 and Figure 11b present a statistical analysis of
the number of selected genes for different methods across
various datasets. The table provides Std, Max, Min, and
Med values for each method and dataset. These results
offer valuable insights into the performance and variabil-
ity of different methods for selecting genes across diverse
datasets.

The MOBCSA method demonstrates exceptional consis-
tency, as evidenced by its lower standard deviation, ranging

from 0.16 to 0.29 across different datasets, surpassing the
second-best method, MOABC, which exhibits a wider range
from 0.23 to 0.32. This indicates that the MOBCSA method
consistently maintains a more stable gene selection pattern
across varied datasets. Furthermore, the MOBCSA method
excels in achieving the best maximum values, which range
from 23.03 to 34.9 when compared to the other methods.
This underscores its capability to identify a higher number
of relevant genes in different dataset contexts.

H. CONVERGENCE RATE ANALYSIS
This subsection analyzes the convergence rate of the proposed
method by conducting additional experiments to validate the
convergence rate of the proposed MOBCSA method in com-
parison to other existing methods. The convergence rates of
MOBCSA and the other methods across all datasets spanning
a total of 100 iterations are depicted in Figures 12a, b, c,
d, e, and f. The experimentation process is carried out at
10 intervals (a total of 100 iterations). In each interval, there
are 10 iterations, and then the average convergence rate of
each interval (10 iterations) was calculated. As can be seen in
Figure 12(a), in the case of the SRBCT dataset, theMOBCSA
method reaches its optimum value in the 30th iteration. Sim-
ilarly, for the colon dataset, depicted in Figure 12(b), the
MOBCSAmethod achieves an optimal value of 98.91 at itera-
tion 30.Moving on to the leukemia dataset in Figure 12(c), the
MOBCSA method exhibited exceptionally fast convergence,
achieving the optimal value in just 20 iterations. In the case
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TABLE 11. Statistical analysis using SVM classifier.

TABLE 12. Statistical analysis using KNN classifier.

of the lung cancer dataset, as shown in Figure 12(d), the
MOBCSA method achieved rapid convergence, reaching the
optimal value much earlier in just 30 iterations compared to

other methods. In the prostate tumor dataset, the MOBCSA
method attains its optimum value by the 40th iteration. Fur-
thermore, in the DLBCL dataset, the MOBCSA method
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FIGURE 11. Statistical analysis for all methods over all data sets.

TABLE 13. Statistical analysis using NB classifier.

demonstrates swift convergence, reaching the optimal value
notably early, in just 20 iterations, outperforming other
methods.

The results indicate that MOBCSA can rapidly reach
optimal or near-optimal solutions by the 30th iteration
while consistently maintaining the highest accuracy values
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FIGURE 12. Convergence rate of MOBCSA and other methods across all datasets.

compared to other methods in most cases, except in the
prostate tumor dataset. It can be concluded that MOBCSA
excels at finding excellent solutions within a reasonable num-
ber of iterations, reflecting the rapid convergence speed of the
proposed method.

Based on the findings and our observations, the proposed
method has proven its efficiency in handling multiple con-
flicting objectives and achieving good results. Researchers
can apply this method to solve some multi-objective opti-
mization problems and also investigate its applications in
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TABLE 14. Statistical analysis of number of selected genes for all methods over all data sets.

some other domains. It can also be utilized with other FS
methods to extend its potential impact in various domains.

VI. CONCLUSION AND FUTURE WORK
This article presents aMulti-Objective Binary Cuckoo Search
Algorithm (MOBCSA) for gene selection in bioinformat-
ics. MOBCSA aims to choose the relevant genes from a
high-dimensional microarray dataset to enhance the effec-
tiveness of medical diagnosis models. MOBCSA extends the
standard CSA, considering multiple conflicting objectives,
specifically increasing accuracy of classification and reduc-
ing number of genes in a wrapper mode. MOBCSA employs
an S-shaped transfer function to convert the algorithm’s
search space from continuous search space to binary search
space. Additionally, it integrates an external archive to store
non-dominated optimal solutions obtained during the search
process and an adaptive crowding distance updating mecha-
nism to preserve diversity and expand the coverage of optimal
solutions. To assess MOBCSA’s performance, we conducted
experiments on six benchmark biomedical datasets using
three distinct classifiers. Then, we compared the results with
four state-of-the-art multi-objective gene selection methods
from the existing literature. The final findings indicate that
MOBCSA surpasses the other methods in terms of accuracy
and number of selected genes, where it has obtained an
average accuracy ranging from 92.79% to 98.42% and an
average number of selected features ranging from 15.67 to

27.88 across all classifiers and datasets. Overall, the proposed
MOBCSA algorithm reported good results and was found to
be efficient in gene selection from high-dimensional biomed-
ical datasets for effective and accurate classification and
medical diagnosis. It proved to be robust and efficient in han-
dling multiple conflicting objectives simultaneously, leading
to improved accuracy of classification and a minimum num-
ber of selected genes. The potential limitations associated
with our method are limited to two fitness functions and
the importance of domain-specific knowledge for effective
feature interpretation. We have provided insights into how
these limitations can be addressed in future enhancements.
Future research could explore the applicability of MOBCSA
to real-world bioinformatics problems and collaborate with
domain experts. Moreover, we plan to incorporate additional
fitness functions, such as computational complexity, into
our analysis. By doing so, we aim to further enhance the
algorithm’s performance and extend its potential impact.
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