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ABSTRACT As photovoltaic (PV) systems have been successfully adopted worldwide, accurate power
generation forecasting becomes increasingly essential to stable power grid operation and smart grid appli-
cations to cope with the variability of PV systems. Several data-driven models have recently been proposed
for the more accurate prediction of PV power generation and have shown good performance. In particular,
hybrid models that combine the characteristics of single-structure deep learning-based models have achieved
better accuracies. To this end, a novel ultra-short term PV power generation forecasting model with a
hybrid structure is proposed for instantaneous response to PV fluctuations. For higher forecasting accuracy,
the proposed model decomposes the input feature data into trend and residual components and employs
customized sub-models such as the linear, Transformer, and long short-term memory (LSTM). Furthermore,
the proposedmodel is trainedwith data from the self-built PV site to implement amodel suitable to real-world
applications. Finally, the experimental results demonstrate that the proposed model has the best forecasting
performance compared to conventional and state-of-the-art deep learning-based forecasting models with
reasonable computational complexity.

INDEX TERMS Deep learning, renewable energy, photovoltaic, solar, microgrid, ultra-short term forecast-
ing, energy AI.

I. INTRODUCTION
Renewable energy generation technologies have rapidly
advanced as environmental protection policies such as carbon
neutrality become increasingly emphasized worldwide [1].
Accordingly, renewable energy power plants have replaced
traditional ones, such as thermal power plants, that emit
carbon and pollute the environment [2]. The importance of
distributed energy resources (DERs) is also emphasized in
South Korea, and DERs are expected to account for 25–40%
of the total power generation by 2040 [3]. One of the most
popular DERs today is the photovoltaic (PV) system, owing
to its relatively easy installation and high power generation
efficiency. However, there are several challenges to stable
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power grid operation with a PV system because it is sensitive
and highly volatile to weather conditions and electrical faults
[4]. For reliable power grid operation, accurate forecasting of
future PV power generation is essential.

PV power generation forecasting can be categorized into
several types based on prediction time [5], [6], [7]. Among
these, ultra-short term forecasting, which predicts power gen-
eration for the next hour or several hours, is important for
responding to the variability of PV power generation in real
time. Whereas traditional power plants capable of controlling
output power operate based on load data, future power plants,
including DERs, should consider irregular power genera-
tion. In other words, power plants with many DERs suffer
from overvoltage problems and commonly known power
shortage issues [8]. In this regard, most countries, including
South Korea, use 15-minute load data profiles for power grid
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operations [9], [10]. Previous studies have also demonstrated
that at least a 15-minute power generation forecast is required
for microgrid backup systems [11].

Additionally, ultra-short term PV forecasting is crucial for
smart grid applications that require real-time control. For
example, when using a PV-linked energy storage system
(ESS), ultra-short term PV forecasting is employed to control
the ESS charging in response to PV volatility [12]. Further-
more, for a distributed conservation voltage reduction (CVR)
[13] with continuous voltage regulation [14], [15], power
generation data predicted in short time units can be used as
key information for energy optimization. These applications
make ultra-short term PV generation forecasting an essential
area in PV systems research.

However, as explained earlier, PV power generation varies
in different patterns depending on environmental conditions,
making it difficult to forecast future power generation accu-
rately [16]. Power generation can fluctuate almost randomly
withinminutes owing to the influence of irregular clouds [17].
Many studies have, therefore, worked on solving this problem
through statistical and machine learning approaches using
measured data. Among these statistical methods, Sheng et al.
proposed weighted Gaussian process regression (WGPR) to
predict PV generation after 5 minutes and confirmed perfor-
mance gains compared to support vector machine (SVM),
artificial neural network (ANN), and normal GPR method
[18]. Additionally, fuzzy logic was proposed in [19] to fore-
cast future 15-minute power generation by finding statistical
relationships between feature data.

To improve forecasting performance, proven deep learning
models have been adopted for ultra-short term forecasting.
For example, the authors of [20] presented a self-developed
optimizationmethod for theANN to predict power generation
for the next 1 hour. Subsequently, prediction models employ-
ing long short-termmemory (LSTM) [21] and gated recurrent
unit (GRU) structures of the recurrent neural network (RNN)
family, which have good performance in time series predic-
tion, have been proposed and exhibited high prediction accu-
racies [17], [22]. Furthermore, to overcome the limitations of
traditional RNN models that use compressed historical infor-
mation, the attention-based sequence-to-sequence (Seq2seq)
model, which considers all the associations between data at
each time point, was adopted in [23]. Recently, the Trans-
former model [24], which maximizes the benefits of the
attention approach, has shown good performance in language
models and was also used in PV generation forecasting [25].
Many hybrid models combining proven deep learning

models have also been proposed to enhance forecasting accu-
racy. In order to consider both the spatial characteristics
between features and the temporal characteristics, hybrid
models that combine RNN and convolutional neural network
(CNN) models were proposed in [26], [27], and [28], lead-
ing to better performance than conventional single-structure
models. Recently, hybrid models that decompose input data
and apply individual models have been proposed to improve

TABLE 1. Key nomenclature for the symbols and abbreviations.

prediction accuracy further. For example, Yan et al. achieved
performance gains compared to conventional deep learning
algorithms by separating data through fast Fourier trans-
form (FFT) and applying individual CNNs to low- and
high-frequency components [29]. Similarly, a data decompo-
sition method using a wavelet transform (WT) was employed
in [30] and [31], and it led to good forecasting performance.
As the performance contribution of the data decomposition
approach is continuously proven in general multi-point time
series forecasting applications, most high-performance state-
of-the-art (SOTA) models, such as the frequency enhanced
decomposed Transformer (FEDformer) [32], sample convo-
lution and interaction network (SCINet) [33], and N/Dlinear
[34], have adopted this approach. For these SOTA models,
methods such as mixed transform, auto correlation-based
attention, tree-structured sampling, iterative convolution, and
multi-wise linear processing are also applied to capture short-
to mid-term input feature data patterns and predict future
targets accurately.

In this brief, a novel hybrid model architecture is proposed
for intra-hour ultra-short term PV power generation fore-
casting. The proposed model decomposes PV-related feature
data in simple but appropriate ways and employs customized
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FIGURE 1. PV site for study: (a) biaxial solar tracking panel, (b) uniaxial
solar tracking panel, (c) fixed panel, (d) inverter, and sensor network.

sub-models. The key points of this study can be summarized
as follows.
1. An average pooling is applied to decompose the input

feature data into trend and residual components.
2. The linear sub-model is employed for the trend compo-

nent, which is characterized by relatively slight variation,
and the Transformer and LSTM-based sub-models are
used to process the residual components, which are irreg-
ular and highly fluctuating.

3. The proposed model is trained and validated using feature
data collected from the self-built PV site for a practical
evaluation in real-world applications.

4. Performance gains of the proposed model relative to
proven RNN-based single models, a CNN-RNN-based
hybrid model, and SOTA hybrid models are presented to
prove novelty in forecasting performance.

The rest of this paper is organized as follows. First, the details
of data used to implement forecasting models are described
in Section II. Section III provides the detailed structure of the
proposed model. The experiments’ setup and results to eval-
uate the performance of the proposed model are described in
Section IV. Finally, the conclusion of this study is presented
in Section V.

II. DATA COLLECTION
This section presents an overview of the data for the study.
Instead of relying on benchmark datasets, a PV site is built
to implement an ultra-short term PV forecasting model. This
makes it possible to develop a model that is more suitable for
real-world applications and to evaluate the performance of the
proposed model more practically.

As shown in Fig. 1, the PV site, located in Ansan,
South Korea, consists of several types of solar panels, invert-
ers, and a sensor network. To account for the characteris-
tics of different PV panel types, data from three different

TABLE 2. Input features for proposed model.

types of 3 kW solar panels are obtained: biaxial solar track-
ing, uniaxial solar tracking, and fixed panels. Electrical and
panel-related environmental data are acquired from the panels
and connected inverters, and other site-wide meteorologi-
cal data are measured through additional sensors. All data
obtained from the devices are transmitted to remote terminal
units (RTUs), and the RTUs send the data to the database
server.

The detailed feature data used to implement the proposed
model are summarized in Table 2. Because the proposed
model targets ultra-short term forecasting within an hour,
it uses only local measurement data, not weather forecast
data that provide information after an hour. In order to iden-
tify the association between each feature and the PV power
generation numerically, the correlation coefficients are calcu-
lated and presented in the table. The correlation coefficient ρ
between data x and y is calculated as follows.

ρ =
Cov (x, y)

σxσy
(−1 ≤ ρ ≤ 1) (1)

Cov (x, y) = E[(x − E(x)) (y− E(y))] (2)

where Cov(x,y) is the covariance of x and y; E(x) and E(y)
are the means of x and y, respectively; and σx and σy are the
standard deviations of x and y, respectively. The higher the
correlation, the larger the absolute value of the coefficient ρ.
Table 2 shows that solar irradiance data correlate most

with PV power generation. Accordingly, they are used as
the primary input for the proposed model, along with the
historical PV power generation patterns. The other data in the
table are also employed as supplementary inputs to the model
to predict detailed variations in the target. Furthermore, since
solar irradiance and PV power generation data have an annual
cycle and daily patterns, each data measurement’s month,
hour, and minute values are also used as timestamp data.
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FIGURE 2. Overall architecture of proposed PV power generation forecasting model.

FIGURE 3. Linear sub-model for trend component.

In conclusion, the proposed model utilizes the historical pat-
terns of the feature data listed in Table 2 as input data to
forecast future PV power generation patterns.

III. MODEL ARCHITECTURE
This section describes the overall architecture and details of
the proposed model. As summarized in Fig. 2, the proposed
model consists of the linear sub-model, and the Transformer
and LSTM-based sub-models. In general, the PV-related fea-
ture data have approximately linear trend curves in short time
intervals and irregular residual variations that depend on the
positions of the sun and clouds. In this respect, each feature
data can be processed separately to achieve better forecasting
accuracy. To this end, the proposed model decomposes the
original input data into trend and residual components by
average pooling kernel and employs customized sub-models
for each data component. The final PV power generation
output is calculated as the weighted sum of the trend and
residual components through the linear sub-layers included
in the last stages of the sub-models and the addition operator.

A. SUB-MODEL FOR TREND
As previously summarized, the linear sub-model produces
the trend component of the final output, and the detailed
structure is depicted in Fig. 3. It is a multivariate to univariate
ANN model that produces 1-dimensional output data with
df -dimensional input data. It is also a multi-horizon fore-
casting model that generates m future output points with n

historical input points. In other words, the sub-model consists
of sequence- and dimension-wise linear sub-layers to obtain
the final output. This approach of processing the trend com-
ponent with an ANN model is common in SOTA models and
works successfully for the regression of the trend component
[33], [34].

First, the df -dimensional input feature data vector X with
sequence length n is processed in the first linear sub-layer in
a sequential direction to produce df -dimensional m-horizon
intermediate output Y ′. The sub-layer can be configured with
a single linear layer for all features or individual linear layers
for each feature, and the final structure should be determined
considering the performance advantages and computational
complexity. Furthermore, the sub-layer may have multiple
hidden layers and dropout layers to achieve better results.
Finally, the operation of the first sub-layer is mathematically
expressed as follows.

Y ′(k) = W(k)X(k) + B(k) (3)

where X(k) and Y′(k) are the input and output matrices of the
k-th linear layer, respectively, andW andB are the weight and
bias matrices of the layer.

Finally, to produce the trend component output for future
PV power generation, the transposed intermediate output of
the first sub-layer Y′ is used as an input vector for the second
sub-layer. For the final univariate output, the second sub-layer
processes the input data in the dimensional direction. The
second sub-layer may also have multiple hidden layers and
dropout layers, and the basic calculation is the same as for the
first sub-layer, expressed in (3). In summary, the final output y
of the first sub-model is the trend component of them-horizon
future PV power generation data.

B. SUB-MODEL FOR RESIDUAL
As depicted in Fig. 2, the model for the residual component,
after the trend part is removed from the original input data,
consists of the Transformer and LSTM-based sub-models.
These two types of sub-models have complementary advan-
tages in terms of forecasting accuracy and computational
complexity and can be activated selectively depending on
the system requirements. Although SOTA models for time
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FIGURE 4. Transformer-based sub-model for residual component: (a) Encoder and (b, c) decoder structures.

FIGURE 5. Components of transformer: (a) MHA, (b) scaled dot product,
and (c) position-wise FFNN.

series forecasting have focused on finding additional period-
icity (seasonality) in the residual region, it is observed that
the residual part of the PV data usually fluctuates according
to the random distribution of clouds; therefore, the sub-model
structure to capture the attention between all the residual
points and the compressed context vector is finally adopted.

The detailed structure of the Transformer-based sub-model
is shown in Fig. 4. The Transformer model focuses on
computing attention values, which represent the associations
between data at each time point and are further processed
in the fully connected ANN layer. As described earlier,
this approach makes it possible to model residual com-
ponents with fluctuations at each time point. The conven-
tional Transformer model is an encoder-decoder model in
which the decoder utilizes compressed information from the
encoder to produce the final output. Several variations of the

conventional Transformer model are available for the fore-
casting application, which will be presented further in the
paper.

As shown in Fig. 4, the Transformer encoder and decoder
consist of positional encoding, multi-head attention (MHA),
and position-wise feedforward neural network (FFNN) com-
ponents. First, positional encoding is applied to retain the
temporal order information of the input data sequence, like
the RNN. The positional information for the data at time t is
computed as follows [24].

PE(t,ieven) = sin(t/100002i/dinput) (4)

PE(t,iodd) = cos(t/100002i/dinput ) (5)

where i is the position in dimension, and dinput is the dimen-
sion of the input vector. Through the addition of the calculated
positional vector to the original input vector, the input data,
including the temporal-order information, are prepared for
processing.

Subsequently, the Transformer computes the MHA to
determine the temporal relationships of the data sequence.
As shown in Fig. 4, the Transformer encoder calculates only
its self MHA, which determines the temporal dependencies
of the input data sequence. By contrast, the decoder also
evaluates the MHA that identifies the relationship between
the encoder output and decoder input. The detailed process-
ing flow for the MHA is shown in Fig. 5. First, raw input
data are projected through multiple linear layers to derive
the query, key, and value required to calculate the attention.
Subsequently, the query, key, and value are divided into
several heads in the dimensional direction, and a scaled dot
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FIGURE 6. LSTM-based sub-model for residual component.

product attention vector between each point of the sequence
is computed for each head. As shown in Fig. 5 (b), the scaled
dot product attention vector is calculated through matrix
multiplication, scaling, and softmax and summarized by the
following formula [24].

Attention (Q,K,V) = softmax(QKT/
√
dk)V (6)

whereQ,K, andV refer to the projected query, key, and value,
respectively, and dk is the dimension of the key. Finally, the
attention vector is obtained through the linear layer for the
concatenated attention values of all the heads as follows [24].

MHA (Q,K,V) = Concat
(
Ah0 ,Ah1 , . . . ,Ahk

)
×Wo (7)

where Ahi is the attention matrix of the i-th head, and Wo is
the weight matrix of the last linear layer.

Finally, the poison-wise FFNN layer produces the final
output data. The FFNN layer comprises two linear layers,
a rectified linear unit (ReLU) activation function, and a
dropout layer, as shown in Fig. 5 (c). The corresponding layer
output is summarized as follows [24].

FFNN (X) = max (0,XW1 + B1)W2 + B2 (8)

where X is the input vector of the FFNN layer, andWi and Bi
are the weight and bias vectors of the i-th linear layer.
To summarize, the Transformer model has an encoder

and a decoder composed of these sub-functions. The added
and normalized output vector from the previous sub-function
layer is used as an input to improve the training performance
of every sub-function. Finally, the Transformer model can
be configured with sequentially connected multiple encoders
and decoders depending on the data size to obtain better
results.

As mentioned, the conventional Transformer model should
be modified for PV power generation forecasting. The
encoder-only model shown in Fig. 4 (a) can be used for
the residual part with the optional layer. The model first
applies the Transformer encoding to a multivariate input data
vector X of length n and produces an intermediate output
vector with the same shape as the input vector. Then, the
intermediate output vector is processed through sequence-
and dimension-wise linear layers to produce the final output
with the optional layer. In other words, it is a forecasting
model utilizing only the temporal relationship of historical

FIGURE 7. Overall flow of experiment.

feature data and simultaneously producing target data for m
future points.

Meanwhile, two types of encoder-decoder models with
Fig. 4 (b) and (c) structures can be implemented. Unlike
the encoder-only model, these models consider the temporal
associations, including future target data to be produced in the
decoder, and thus, better performance is expected. Whereas
the encoder-only model computes the future output simul-
taneously, these encoder-decoder models generate the future
data iteratively through the decoder. In other words, m-times
decoding is required to produce the PV power generation
output for m future points, expressed as dynamic decoding
in the following.

For the encoder-decoder models, a Transformer encoder
excluding the optional layer is used, and two types of
decoders can be employed. If only the univariate data, i.e., the
historical PV power generation data, are used as the decoder
input, the decoder is configured as Fig. 4 (b). This decoder
considers only the attention for the final target y with the
encoder output. Accordingly, it obtains the i-th output yi
through dynamic decoding and uses an intermediate decoder
output as an input for the next decoding. Since the decoder
has amulti-dimensional output, a dimension-wise linear layer
is required for every decoding step to obtain the univariate
output y. Meanwhile, the most recent historical PV power
generation value is used as an initial input of the decoder.
Thus, this encoder-decoder model requires one encoding, m-
times dynamic decoding, and m-times dimension-wise linear
layer computations to generate m future points.

Next, the decoder structure presented in Fig. 4 (c), which
directly uses the Transformer decoder output vector for the
next decoding, can also be employed. Because a multivariate
vector Y is used for dynamic decoding, a dimension-wise
linear layer is required only after the last decoding to obtain
the final univariate output y. Thus, this structure requires one
encoding step, m-times decoding, and one dimension-wise
linear layer computation to obtain m points of the future
target. This structure allows for better performance because
the information generated by the Transformer decoder is not
compressed and is fully utilized for dynamic decoding.
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FIGURE 8. Histograms of average hourly PV power generation per day (kW): (a) Biaxial, (b) uniaxial solar tracking, (c) fixed panels and (d) total.

Depending on the system requirements, the LSTM-based
sub-model can be used as an alternative for the residual
component processing. The corresponding structure, which
has two LSTM layers and one linear layer, is shown in
Fig. 6. The multivariate residual component X is used as an
input for the first LSTM layer, and the output hidden state
vector of the first layer is further processed in the second
LSTM layer. Each LSTM layer may have multiple cells, and
in general, the number of cells should be larger than the
dimension of the input vector for better performance. For a
multiple-cell structure, the final residual component output is
obtained through the dimension-wise linear layer.

The basic structure of a single LSTM cell is shown in
Fig. 6 (b). It consists of multiple gates that operate according
to the following formulas at time t [21].

Forget gate: ft = σ (Wf xt + Uf ht−1 + bf ) (9)

Input gate-1: it = σ (Wixt + Uiht−1 + bi) (10)

Input gate-2: c′t = tanh(Wcxt + Ucht−1 + bc) (11)

Output gate-1: ot = σ (Woxt + Uoht−1 + bo) (12)

Output gate-2: ht = ot × tanh(ct ) (13)

Cell state: ct = ft × ct−1 + it × c′t (14)

where σ is a sigmoid operator, xt is an input, ct is a cell
state output, and ht is a hidden state output. For the trainable
model parameters, W and U are the weight values for xt
and ht−1, respectively, and b is a bias term. For a multiple-
cell LSTM model, each cell has individual parameters and is
trained independently.

IV. EXPERIMENTAL RESULTS
This section covers the experimental setup, results, and anal-
ysis to evaluate the performance of the proposed model. First,
the experimental setup, including the dataset and details of the
models, is described. Then, numerical and visual results of the
models in the proposed and comparison groups are presented,
followed by detailed discussions.

A. EXPERIMENT SETUP
The overall experimental process is illustrated in Fig. 7. First,
18 months of data from April 2022 to September 2023 were
utilized. The data were collected from three types of 3 kW
solar panels in the self-built PV site. All the local measure-
ment data presented in Table 2were utilized as historical input

features for the models, and the data resolution is 5 min-
utes to account for forecasting accuracy and computational
efficiency.

The data for the experiment were measured under four
distinct seasons of climatic conditions in South Korea. To
numerically verify whether the data cover various weather
conditions, histograms of the average hourly PV power gen-
eration per day in kilowatts are presented with 20 bins in
Fig. 8. In the figure, the clearer the weather, the higher the
average daily power generation, and the generation of the
biaxial solar tracking panel is relatively greater than that of
the other types. The overall distribution shows that days with
average power generation in the middle to upper range are
relatively dominant, but the data also include many weather
conditions with average power generation in the low range.

For data cleansing, data acquired on days when the PV
system was not normally operating are removed. Then, out-
liers are eliminated by considering the measurement range
of the devices, and the corresponding abnormal data points
and missing points are interpolated. Subsequently, time data
embedding is applied to the timestamp data, allowing the
timestamps to express periodicity and continuity through the
Euler formula with trigonometric functions.

After data preprocessing, the datasets are finally created
by the sliding window method with a stride size of one.
Then, the dataset is normalized for effective training and is
allocated 60%, 20%, and 20% for training, validation, and
testing. K-fold cross-validation is used to evaluate perfor-
mance across all seasons and weather conditions in the data.
In addition, all the models are trained with different random
seeds for each fold, and the average is obtained.

For the training process, the mean squared error (MSE) is
used as the criterion. A validation loss is calculated for the
validation dataset at each learning epoch; if the loss does not
decrease for the predefined patience counts, the training is
terminated early. Finally, the trained models are evaluated
using the test dataset based on several metrics. Details on the
evaluation criteria are provided further in the paper.

The detailed structures of the models in the proposed and
comparison groups are described in Table 3. For the pro-
posed group, the performances of the four configurations
are observed. First, the sub-model for the trend compo-
nent is classified into the structure using a single linear
layer for all features and the structure with individual linear
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TABLE 3. Detailed structures of models in proposed and comparison groups.

FIGURE 9. MSE heatmaps for sub-models in proposed model with
respect to hyperparameters: (a) Transformer and (b) LSTM.

layers for each feature. In the table, the former and latter
cases are denoted with ‘_S’ and ‘_I’, respectively. Second,
the sub-model for the residual component is divided into
the Transformer and LSTM-based types. In the prelimi-
nary experiment, the encoder-decoder structure configured as
Fig. 4 (c) outperformed the structures of Fig. 4 (a) and (b) by
more than 12% and 3%, respectively, and was finally adopted
for the Transformer-based proposed model.

For the comparison group, conventional single and hybrid
models whose performances have already been proven in

previous studies are considered. First, the LSTM, Seq2seq
with attention, and Transformer (without data decomposi-
tion) models are selected for the single-structure comparative
models. Additionally, the CNN_LSTM model is chosen for
the CNN-RNN-based hybrid model, and the FEDformer,
SCINet (data decomposition enabled), and Dlinear models
are also compared as the SOTA hybrid models with data
decomposition. Because the models target multi-point fore-
casting, a persistent model that produces the last measured
value as a straightforward future prediction is not considered.

The hyperparameters of all models were configured
through preliminary grid search experiments, considering the
model’s complexity and performance gain. In order to explain
the preliminary experiments in more detail, an example of
the grid search to determine the hyperparameters of the
sub-models in the proposed model is presented in Fig. 9. The
MSE losses of the sub-models are presented with respect to
the hyperparameters; the smaller the value, the better the fore-
casting accuracy. For the Transformer-based sub-model, the
numbers of encoder and decoder layers, the dimension of the
FFNN, and the number of heads in theMHA are hyperparam-
eters. This sub-model performs better when it is configured
with one or two layers, 128 dimensions, and two heads. In
this case, it is reasonable to choose the one-layer structure
because the two-layer structure has twice the computational
complexity, but the performance gain is only 0.02%. For
the LSTM-based sub-model, the results show that the most
reasonable score is achievedwith the configuration of 16 cells
and two layers.

VOLUME 12, 2024 20847



J. Lee et al.: Ultra-Short Term Photovoltaic Generation Forecasting

TABLE 4. (a) Forecasting performance comparison: MSE (Normalized scale). (b) Forecasting performance comparison: MAE (Normalized scale).
(c) Forecasting performance comparison: EMAPE (%).

To evaluate the performance of the models from various
perspectives, MSE, mean absolute error (MAE), and effective
mean absolute percentage error (EMAPE) are used as the
metrics, which are calculated as follows.

MSE =
1
N

N∑
i=1

(
yi − ŷi

)2
,MAE =

1
N

N∑
i=1

∣∣yi − ŷi
∣∣
(15)

EMAPE =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣

C
× 100 (%) ,yi > 0.1C (16)

whereN is the number of samples,C is the solar panel capac-
ity, yi is the i-th ground truth value, and ŷi is the i-th predicted
value. As shown in the formulas, MSE penalizes larger errors
more for all the samples, while MAE penalizes them equally.
On the other hand, the EMAPE represents the percentage
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TABLE 4. (Continued.) (a)-Forecasting performance comparison: MSE (Normalized scale). (b) Forecasting performance comparison: MAE (Normalized
scale). (c) Forecasting performance comparison: EMAPE (%).

FIGURE 10. Forecasting performance comparison (Average loss): (a) MSE (Normalized scale), (b) MAE (Normalized scale), and (c) EMAPE (%).

error considering the capacity and utilization of the facility.
More specifically, the EMAPE is theMAPE over the capacity
calculated in the region in which a panel generates more than
10% of its capacity. In other words, the EMAPE is a valuable
metric when considering the range of PV power generation
that substantially impacts the power grid. Therefore, it is used
as a criterion for compensation policies for renewable energy
generation in South Korea. Since the solar panels at the PV
site have a capacity of 3 kW, the EMAPE is calculated for the
region of power generation above 0.3 kW in the experiment.

All experiments are performed on a system with an AMD
EPIC 7313 CPU @ 3 GHz, 512 GB data memory, and
an NVIDIA A40 48 GB GPU, and all models are imple-
mented with the PyTorch framework. Conventional models,
including the linear, LSTM, Seq2seq, attention, CNN, and

Transformer, are implemented based on the models provided
by the framework. In contrast, SOTA models are imple-
mented with source codes provided by the original authors.

B. EXPERIMENTAL RESULTS AND DISCUSSION
The detailed experimental results for each metric are shown
in Table 4. For the sake of brevity, the average of the results
for the three types of solar panels is presented. To observe
the performance deviations according to the input and output
length conditions, detailed results are provided for different
historical input lengths and target output horizons within
an hour. For a clear comparison, the minimum loss among
the models for each length condition is bolded, and each
table includes the average loss for all conditions and the
loss relative to the best model. For the SCINet, the results
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FIGURE 11. Examples of PV power generation forecasting for 1 day (kW).

for infeasible input length conditions due to its structural
limitations are excluded, and its average loss is calculated by
replacing the missing losses with the values from the same
output length conditions.

To illustrate the performance differences more clearly, the
average losses of the models are shown in Fig. 10. The order
of the conditions on the horizontal axis of the graphs is the
same as that in Table 4. The loss generally increases with the
output length, and for the same output length, longer input
sequences usually yield better results.

The experimental results demonstrate that the proposed
model has the lowest loss for all metrics, i.e., the best
forecasting accuracy. In particular, the proposed model con-
figured with the Transformer achieves the best performance.
As shown in Table 4 (a), the proposed models configured
as DC_TF_I and DC_TF_S have the lowest MSE for all
length conditions, and the performance difference becomes
more pronounced as the output length increases. Based on
the average loss, the SCINet and CNN_LSTM are the best
performers in the comparison group, and the proposed model
DC_TF_S achieves a 5.96% and 14% performance improve-
ment over those best comparative models, respectively. The
proposed models configured with the LSTM also show the
second-best performance up to an output length of 40 min-
utes and an input length of 80 minutes, after which they
perform slightly worse than the SCINet but better than the
other competitors. Based on the average loss, the proposed

model DC_LSTM_S has 2.77% and 10.56% performance
gains compared to the two best models in the comparison
group.

Regarding the MAE, the proposed model has the lowest
loss for all length conditions except when the output length is
5 minutes (next 1-point prediction). Similar to the previous
evaluation with the MSE, the proposed model DC_TF_S
has the highest forecasting accuracy, and the SCINet and
CNN_LSTM also have the best scores among the compari-
son group. However, in this case, the CNN_LSTM performs
slightly better than the SCINet. The LSTM-based proposed
models also perform the second-best up to input and output
lengths of 80 and 40 minutes, respectively, after which they
fall behind the SCINet. In terms of the average MAE loss,
the proposed model DC_TF_S exhibits performance gains of
5.64% and 7.13% compared to the CNN_LSTM and SCINet
models, respectively, and the proposed model DC_LSTM_S
also has a higher score than those best comparative models.

As indicated in Table 4 (c), the proposed model also
achieves the best results based on the EMAPE metric. As
a reminder, the EMAPE score is evaluated over the range
of effective power generation, which makes the perfor-
mance dominance of the comparison group models differ-
ent from previous evaluations. In other words, the SOTA
hybrid models that use the data decomposition structure
rank relatively better. More specifically, the proposed model
based on the Transformer performs the best under all length
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conditions, and the SCINet and Dlinear models are the two
top performers in the comparison group. Numerically, the
proposed model DC_TF_I achieves slightly better accuracy
than DC_TF_S this time, with performance gains of 3.75%
and 10.46% over the SCINet and Dlinear, respectively. The
proposedmodels with LSTM compete with the FEDformer in
forecasting within 10 minutes and, similar to before, are the
second-best performers until the input and output lengths are
120 and 40 minutes, respectively, after which they compete
with the SCINet. To summarize, the evaluation results for
all metrics demonstrate that the proposed model is the best
regarding the simple average error and the error in the range
considering the impact on the power grid.

In order to provide a visual representation of the per-
formance of the models, examples of PV power generation
forecasting under different weather conditions are shown in
Fig. 11. The graphs show the next 20 minutes of power gener-
ation predicted from the past 40 minutes of the data at a time
resolution of 5 minutes, accumulated for a day. For the sake
of clarity, the results of the models that performed well in the
numerical comparison are presented. In order to distinguish
the weather conditions numerically, the average daily power
generation and average variation of the ground truth are also
attached in the figure. The average daily power generation
value indicates whether the day is overall sunny or cloudy. In
contrast, the average variation shows how frequently weather
conditions change due to the distribution of clouds. Overcast
and rainy weather conditions are excluded from the visual
results because the power generation is negligible, and the
performance comparison between the models is meaningless.

First, the result for the clear weather is shown in Fig. 11
(a), and the proposed model DC_TF_S best follows the
ground truth. In clear weather conditions, most of the mod-
els produce patterns similar to the ground truth because of
lower variability. However, the figure shows that the proposed
model simulates the original most closely with the smallest
overshoot and undershoot. As described in Section III, the
proposed model produces the final output as a weighted
sum of the outputs from the sub-models, and the dominant
operation of the linear sub-model achieves this result. By
similar logic, the Dlinear also accurately simulates the ground
truth graph.

Then, Fig. 11 (b) shows the forecasting result in cloudy
weather, where both the average daily power generation and
average variation are relatively small. Even in this case,
the dominance of the linear sub-model is the same as in
the previous weather condition, except for the difference in
scale; thus, the proposed model shows the most valid result
again.

Finally, the forecasting results for the highly variable
weather conditions are given in Fig. 11 (c) and (d). Because
power generation frequently fluctuates, it is hard to simulate
the original graph perfectly. However, the proposed model
still produces outputs in the region relatively close to the
ground truth. In Fig. 11 (c), the proposed model follows

the original most steadily in the forenoon when the weather
is relatively clear and then also forecasts the pattern in the
region closer to the ground truth than the others in the after-
noon, when the weather is more volatile. In other words, the
proposed model can simulate PV power generation patterns
that are close to the top or bottom of the original, even when
the original oscillates up and down. It is also observed under
the weather fluctuations throughout the day, as shown in
Fig. 11 (d). To summarize, the proposed model that scores
better on numerical criteria also produces more accurate
results visually.

In conclusion, the experimental results demonstrate that
the proposed model provides optimal ultra-short term PV
power generation forecasting under different weather condi-
tions. The results clearly show that the data decomposition
structure works successfully and produces better results, par-
ticularly in the range of valid power generation. For clear
weather conditions, the sub-model for the trend component
dominates, and the linear sub-model in the proposed model
is most effective. Meanwhile, due to frequent cloud changes,
the residual component is highly irregular in 5-minute power
generation patterns, making it hard to capture additional
inherent periodicity (seasonality). In this regard, FEDformer,
which attempts to find multiple levels of periodicity through
iterative data decompositions, shows relatively poor results
compared to the other SOTA models. In other words, it is
preferable to determine the best processing scheme for
the residual component after the initial decomposition. The
experimental results prove that the Transformer and LSTM-
based sub-models in the proposed model are more suitable
for PV data than those of the SOTA hybrid models.

Finally, the inference time of the proposed model is mea-
sured to verify its feasibility for real-time applications. For
the experiment, the sub-model for the trend is fixed with
a single linear layer structure, and the processing times are
measured for both cases using the Transformer and LSTM
for the residual. For the longest input and output sequence
length condition, i.e., forecast of future 60 minutes with past
240 minutes of data, the proposed models configured with
Transformer and LSTM have average processing times of
578 us and 80 us, respectively. Even considering the spec-
ifications of the experimental system, the proposed model
has reasonable computational complexity for ultra-short term
forecasting at a 5-minute time resolution. Therefore, the
Transformer-based proposed model can be used in most sys-
tems that require high forecasting accuracy, and the LSTM-
based proposed model can be an alternative for embedded
systems.

V. CONCLUSION
A novel data-driven model was proposed for intra-hour ultra-
short term PV power generation forecasting. The proposed
model has a hybrid structure based on the data decomposition
method to achieve high prediction accuracy. The proposed
model decomposes the input feature data into trend and
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residual components and employs the sub-models consist-
ing of the linear, Transformer, and LSTM to process the
components.

In order to implement the proposed model, the PV site
was built with three types of solar panels, and data were
collected. For the experiment, environmental and electrical
data were measured for 18 months, which covered different
weather conditions. The proposed and comparative models
were trained to predict future power generation from the
historical information. Finally, their forecasting accuracies
were evaluated under different input and output sequence
length conditions to compare the performances of the models.

As a result, the proposed model performed best on all
the evaluation criteria. The proposed model achieved 5.96%,
5.64%, and 3.75% performance improvements over the best
comparison models regarding the MSE, MAE, and EMAPE,
respectively. The proposed model also produced future PV
power generation patterns visually closest to the ground truth
under different weather conditions. In conclusion, the pro-
posed model is the best ultra-short term forecasting model
for practical PV applications and can contribute to the stable
operation of power grid systems.

REFERENCES
[1] F. Wang, J. D. Harindintwali, Z. Yuan, M. Wang, F. Wang, S. Li, Z. Yin,

L. Huang, Y. Fu, L. Li, and S. X. Chang, ‘‘Technologies and perspectives
for achieving carbon neutrality,’’ Innovation, vol. 2, pp. 1–22, Nov. 2021.

[2] R. M. Elavarasan, G. M. Shafiullah, S. Padmanaban, N. M. Kumar,
A. Annam, A. M. Vetrichelvan, L. Mihet-Popa, and J. B. Holm-Nielsen,
‘‘A comprehensive review on renewable energy development, challenges,
and policies of leading Indian states with an international perspective,’’
IEEE Access, vol. 8, pp. 74432–74457, 2020.

[3] C. Kim, ‘‘A review of the deployment programs, impact, and barriers
of renewable energy policies in Korea,’’ Renew. Sustain. Energy Rev.,
vol. 144, Jul. 2021, Art. no. 110870.

[4] T. Selvaraj, R. Rengaraj, G. Venkatakrishnan, S. Soundararajan,
K. Natarajan, P. Balachandran, P. David, and S. Selvarajan,
‘‘Environmental fault diagnosis of solar panels using solar thermal
images in multiple convolutional neural networks,’’ Int. Trans. Electr.
Energy Syst., vol. 2022, pp. 1–16, Sep. 2022.

[5] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison,
and F. Antonanzas-Torres, ‘‘Review of photovoltaic power forecasting,’’
Sol. Energy, vol. 136, pp. 78–111, Oct. 2016.

[6] F. Wang, Z. Mi, S. Su, and H. Zhao, ‘‘Short-term solar irradiance fore-
casting model based on artificial neural network using statistical feature
parameters,’’ Energies, vol. 5, no. 5, pp. 1355–1370, May 2012.

[7] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, ‘‘A review and eval-
uation of the state-of-the-art in PV solar power forecasting: Techniques
and optimization,’’ Renew. Sustain. Energy Rev., vol. 124, May 2020,
Art. no. 109792.

[8] Q. Shi, W. Feng, Q. Zhang, X. Wang, and F. Li, ‘‘Overvoltage mitigation
through volt-VAR control of distributed PV systems,’’ in Proc. IEEE/PES
Transmiss. Distribution Conf. Expo. (TD), Oct. 2020, pp. 1–5.

[9] H. Y. Yang, H. Ye, G.Wang, J. Khan, and T. Hu, ‘‘Fuzzy neural very-short-
term load forecasting based on chaotic dynamics reconstruction,’’ Chaos,
Solitons Fractals, vol. 29, no. 2, pp. 462–469, Jul. 2006.

[10] K. B. Han, J. Jung, and B. O. Kang, ‘‘Real-time load variability con-
trol using energy storage system for demand-side management in South
Korea,’’ Energies, vol. 14, no. 19, p. 6292, Oct. 2021.

[11] E. Rikos, S. Tselepis, C. Hoyer-Klick, and M. Schroedter-Homscheidt,
‘‘Stability and power quality issues in microgrids under weather distur-
bances,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 1,
no. 3, pp. 170–179, Sep. 2008.

[12] S. U. Jeon, J. Noh, S. Kang, and J.-W. Park, ‘‘Practical power
management of PV/ESS integrated system,’’ IEEE Access, vol. 8,
pp. 189775–189785, 2020.

[13] Q. Zhang, K. Dehghanpour, and Z. Wang, ‘‘Distributed CVR in unbal-
anced distribution systems with PV penetration,’’ IEEE Trans. Smart Grid,
vol. 10, no. 5, pp. 5308–5319, Sep. 2019.

[14] G. R. Chandra Mouli, P. Bauer, T. Wijekoon, A. Panosyan, and
E.-M. Bärthlein, ‘‘Design of a power-electronic-assisted OLTC for
grid voltage regulation,’’ IEEE Trans. Power Del., vol. 30, no. 3,
pp. 1086–1095, Jun. 2015.

[15] E. O. Hasan, A. Y. Hatata, E. A. Badran, and F. H. Yossef, ‘‘Voltage control
of distribution systems using electronic OLTC,’’ in Proc. 20th Int. Middle
East Power Syst. Conf. (MEPCON), Dec. 2018, pp. 845–849.

[16] Z. Zhen, S. Pang, F. Wang, K. Li, Z. Li, H. Ren, M. Shafie-Khah, and
J. P. S. Catal ao, ‘‘Pattern classification and PSO optimal weights based
sky images cloud motion speed calculation method for solar PV power
forecasting,’’ IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3331–3342,
Jul. 2019, doi: 10.1109/TIA.2019.2904927.

[17] J. Kang, J. Lee, and S. Lee, ‘‘Data-driven minute-ahead forecast of PV
generation with adjacent PV sector information,’’ Energies, vol. 16, no. 13,
p. 4905, Jun. 2023.

[18] H. Sheng, J. Xiao, Y. Cheng, Q. Ni, and S. Wang, ‘‘Short-term solar power
forecasting based on weighted Gaussian process regression,’’ IEEE Trans.
Ind. Electron., vol. 65, no. 1, pp. 300–308, Jan. 2018.

[19] M. Monfared, M. Fazeli, R. Lewis, and J. Searle, ‘‘Fuzzy predictor with
additive learning for very short-term PV power generation,’’ IEEE Access,
vol. 7, pp. 91183–91192, 2019.

[20] A. Asrari, T. X. Wu, and B. Ramos, ‘‘A hybrid algorithm for short-term
solar power prediction—Sunshine state case study,’’ IEEE Trans. Sustain.
Energy, vol. 8, no. 2, pp. 582–591, Apr. 2017.

[21] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[22] Y. Wang, W. Liao, and Y. Chang, ‘‘Gated recurrent unit network-based
short-term photovoltaic forecasting,’’ Energies, vol. 11, no. 8, p. 2163,
Aug. 2018.

[23] H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan, and Y. Du, ‘‘Short-term pho-
tovoltaic power forecasting based on long short term memory neural net-
work and attention mechanism,’’ IEEE Access, vol. 7, pp. 78063–78074,
2019.

[24] A. Vaswani, N. Shazeer, N. Parma, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. NIPS,
2017, pp. 1–11.

[25] F. Tian, X. Fan, R. Wang, H. Qin, and Y. Fan, ‘‘A power fore-
casting method for ultra-short-term photovoltaic power generation
using transformer model,’’ Math. Problems Eng., vol. 2022, pp. 1–15,
Oct. 2022.

[26] M. Sabri and M. El Hassouni, ‘‘A novel deep learning approach for short
term photovoltaic power forecasting based on GRU-CNNmodel,’’ in Proc.
ES Web Conf., vol. 336, 2021, p. 00064.

[27] A. Agga, A. Abbou, M. Labbadi, and Y. El Houm, ‘‘Short-term self
consumption PV plant power production forecasts based on hybrid CNN-
LSTM, ConvLSTM models,’’ Renew. Energy, vol. 177, pp. 101–112,
Nov. 2021.

[28] C. Huang and M. Yang, ‘‘Memory long and short term time series network
for ultra-short-term photovoltaic power forecasting,’’ Energy, vol. 279,
Sep. 2023, Art. no. 127961.

[29] J. Yan, L. Hu, Z. Zhen, F. Wang, G. Qiu, Y. Li, L. Yao, M. Shafie-Khah,
and J. P. S. Catal ao, ‘‘Frequency-domain decomposition and deep learning
based solar PV power ultra-short-term forecasting model,’’ IEEE Trans.
Ind. Appl., vol. 57, no. 4, pp. 3282–3295, Jul. 2021.

[30] H. H. Goh, Q. Luo, D. Zhang, H. Liu, W. Dai, C. S. Lim, T. A. Kurniawan,
andK. C. Goh, ‘‘Hybrid SDS andWPT-IBBO-DNMbasedmodel for ultra-
short term photovoltaic prediction,’’ CSEE J. Power Energy Syst., vol. 9,
no. 1, pp. 66–76, Jan. 2023.

[31] P. Li, K. Zhou, X. Lu, and S. Yang, ‘‘A hybrid deep learning model for
short-term PV power forecasting,’’ Appl. Energy, vol. 259, Feb. 2020,
Art. no. 114216.

[32] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, ‘‘FED-
former: Frequency enhanced decomposed transformer for long-term
series forecasting autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting,’’ in Proc. ICML, 2022,
pp. 27268–27286.

[33] M. Liu, A. Zeng,M. Chen, Z. Xu, Q. Lai, L.Ma, andQ. Xu, ‘‘SCINet: Time
series modeling and forecasting with sample convolution and interaction,’’
in Proc. NIPS, 2022, pp. 5816–5828.

[34] A. Zeng, M. Chen, L. Zhang, and Q. Xu, ‘‘Are transformers effective for
time series forecasting?’’ in Proc. AAAI, 2023, pp. 11121–11128.

20852 VOLUME 12, 2024

http://dx.doi.org/10.1109/TIA.2019.2904927


J. Lee et al.: Ultra-Short Term Photovoltaic Generation Forecasting

JOOSEUNG LEE received the B.S. degree in
electronics engineering from Sogang University,
Seoul, South Korea, in 2014, and the M.S. degree
in electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2016. Since 2019,
he has been with the Power Grid Research Divi-
sion, Korea Electrotechnology Research Institute
(KERI). Prior to joining KERI, he was with Sam-
sung Electronics, Hwaseong, South Korea, where

he was involved in the research of NAND flash controllers. His current
research interests include algorithms and implementations for smart grid
applications and electric vehicle charging systems.

JIMYUNG KANG received the B.S. and M.S.
degrees in computer science from Seoul National
University, Seoul, South Korea, in 2004 and
2006, respectively, and the Ph.D. degree in com-
puter science from Sungkyunkwan University,
South Korea, in 2018. Since 2006, he has been
with the Power Grid Research Division, Korea
Electrotechnology Research Institute (KERI). His
current research interest includesmachine learning
in smart grids.

SOONWOO LEE received the Ph.D. degree in
mechatronics engineering from Korea University,
Seoul, South Korea, in 2018. He has been with
the Korea Electrotechnology Research Institute
(KERI), since 2005. He is currently a Princi-
pal Researcher with the Power ICT Center. His
research interests include signal processing, digital
control, and digital circuit design for power utility
and smart grid applications.

HUI-MYOUNG OH received the B.S. degree in
electrical engineering and the M.S. and Ph.D.
degrees in electrical and electronic engineer-
ing from Yonsei University, Seoul, South Korea,
in 1998, 2000, and 2009, respectively. He was
a Researcher with the Korea Electrotechnology
Research Institute (KERI), from 2001 to 2005, and
a Senior Researcher, from 2006 to 2015, where he
has been a Principal Researcher, since 2016. His
research interests include digital communication

systems, digital twin systems, EV communication protocols, and smart grids
based on renewable energy.

VOLUME 12, 2024 20853


