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ABSTRACT We propose an element selection method for high-dimensional data that is applicable to a wide
range of optimization criteria in a unifyingmanner. Element selection is a fundamental technique for reducing
dimensionality of high-dimensional data by simple operations without the use of scalar multiplication.
Restorability is one of the commonly used criteria in element selection, and the element selection problem
based on restorability is formulated as a minimization problem of a loss function representing the restoration
error between the original data and the restored data. However, conventional methods are applicable only
to a limited class of loss functions such as ℓ2 norm loss. To enable the use of a wide variety of criteria,
we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the
optimization algorithm based on Douglas–Rachford splitting method. The proposed algorithm is applicable
to any loss function as long as its proximal operator is available, e.g., ℓ1 norm loss and ℓ∞ norm loss as well
as ℓ2 norm loss. We conducted numerical experiments using artificial and real data, and their results indicate
that the above loss functions are successfully minimized by the proposed algorithm.

INDEX TERMS Dimensionality reduction, element selection, sparse optimization, proximal operator,
Douglas–Rachford splitting method.

I. INTRODUCTION
The recent development of machine learning technology has
led to an increasing number of situations where we deal
with data having not only a large number of samples but
also a large number of dimensions (elements) per sample.
Even though high-dimensional data are preferred in that
they have rich information, they often cause increased
computational costs in signal processing applications or
a lack of interpretability. Dimensionality reduction is one
promising technique for solving such problems [1], [2]. This
technique aims to reduce the dimension of the target data
with as little loss of information as possible. Among a wide
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variety of dimensionality reduction techniques proposed in
the literature, including the well-known principal component
analysis (PCA) [3], [4], [5], we focus on the element
selection method in this paper as one of the most simple
approaches. Unlike other methods such as the PCA, element
selection does not require scalar multiplications. Therefore,
this method is effective for signal processing applications
in devices with limited computational resources, such as
hearing aids [6]. In addition, the element selection method is
useful in extracting a small number of representative elements
having critical information of the whole data. The optimal
placement problems of multiple sensors [7], [8], [9] are also
often formulated as element selection problems.

The element selection method requires an optimization
criterion that defines how to determine which elements to
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FIGURE 1. Outline of the proposed method.

select. Restorability is a commonly used criterion, based on
which the elements are selected so that the original data
can be restored well from the selected elements. We also
refer to information-theoretic frameworks [10], [11] as other
versatile approaches, which are however beyond the scope
of this study. The element selection problem based on
restorability is generally formulated as a combinatorial opti-
mization problem that minimizes a loss function representing
the restoration error between original and restored data.
Since this optimization problem is computationally difficult,
or almost impossible, to solve by a full-search algorithm
in cases of high-dimensional data, it is commonly solved
approximately by the greedy method [7], [9] or the convex
relaxation method [9], [11]. These methods require the
optimal restoration obtained in closed form for any given
selected subset of elements and are therefore applicable only
to specific loss functions such as the ℓ2 norm loss function.
However, there are many situations where other norms are
preferable to the ℓ2 norm for the loss function, as well as
in other problems of machine learning or signal processing.
For example, the ℓ1 norm loss and Huber loss [12] are used
to induce robustness against outliers [13], [14], [15]. On the
other hand, the ℓ∞ norm loss is used to decrease the worst-
case error [16], [17], [18]. Therefore, there is a need for a
flexible formulation of the element selection problem that is
applicable to various loss functions in accordance with the
purpose of applications and the structure of the target data.

To achieve this goal, we propose an element selection
algorithm based on nonconvex sparse optimization that can be
applied to a wide class of loss functions in a unified manner.
The outline of the proposed element selection method is
shown in Fig. 1. The restorability-based element selection
problem is formulated as a minimization problem with
respect to two matrices representing the operations of the
selection and restoration of the data. Then, this minimization
problem is reformulated equivalently as a minimization
problem with respect to a single matrix corresponding to
the product of the above two matrices, instead of dealing

with them separately. Because this matrix has nonzero entries
only in the specific columns corresponding to the selected
elements, the reformulated optimization problem can be
regarded as a nonconvex sparse optimization problem [19],
[20], [21], [22], [23], [24]. Therefore, well-established
algorithms using proximal operators are available in the
proposed formulation. We derive an iterative algorithm based
on the Douglas–Rachford splitting method [25], [26]. The
proposed algorithm is applicable to a wide class of loss
functions including ℓ1, ℓ2, and ℓ∞ norm loss functions,
as long as their proximal operators are available in closed
form. In other words, the proposed method extends the scope
of applicable loss functions in the element selection problem,
as compared with the conventional methods. We also
evaluated the proposed method and compared it with the
conventional greedy method (only available for ℓ2 norm loss)
by numerical experiments using artificial and real data [27],
[28]. The results show that the proposed algorithm improved
the restorability of the data with respect to the corresponding
optimization criterion.

Part of this paper is based on our previous conference
paper [29], but this paper extends the previous work in
several ways. First, we introduce the data normalization in
the proposed algorithm to guarantee the invariance under
uniform scaling of data, which contributes significantly to
the robustness to variations in parameter values and the
scaling of the data. In addition, we extend the variety of
loss functions and target data in the experiments to evaluate
the general validity of the proposed method, whereas only
limited conditions were investigated in our previous work.
We also modify slightly the experimental conditions to
improve fairness in the comparison of these methods, which
is described in Section IV in detail.

The rest of this paper is organized as follows. In Section II,
the formulation of the element selection problem based
on restorability is presented, and the difficulty in applying
conventional methods to various loss functions other than the
ℓ2 norm loss is discussed. In Section III, the proposed method
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FIGURE 2. Example of selection matrix, restoration matrix, and their
product.

is described with examples for several commonly used loss
functions. In Section IV, results of numerical experiments are
reported. Finally, Section V concludes this paper.

II. PROBLEM STATEMENT
Element selection is the operation of extracting specific
elements from a given high-dimensional data, which can be
expressed as

y = Px, (1)

where x ∈ RN is the original data having N -dimensional
features, y ∈ RK (K < N ) is the selected data,
and P ∈ {0, 1}K×N is a row-selection matrix (hereafter
referred to simply as a selection matrix). It should be
noted that the element selection process requires no scalar
multiplications, unlike other linear dimensionality reduction
methods including the PCA,where a dense real-valuedmatrix
P ∈ RK×N is used in (1).
The objective of the element selection problem is to obtain

the optimal selection matrix P on the basis of some criterion.
In this study, we focus on the restorability, one of the widely
used criteria. Let X ∈ RN×M denote the collection of the
data used to determine the optimal selection matrix, each of
whose column vector denotes a single N -dimensional data
with M being a number of samples. Then, the collection of
the selected data Y ∈ RK×M is given by

Y = PX. (2)

The restorability of Y is evaluated by the loss function
D(X̂,X) representing the restoration error between the
original data X and the restored data X̂ ∈ RN×M from
Y. Here, the restored data X̂ are assumed to be obtained
by a linear transformation of Y as X̂ = Q̂Y, where Q̂ ∈
RN×K is a restoration matrix defined as the optimal solution
of

min
Q∈RN×K

D(QY,X). (3)

By summarizing (2) and (3), we can formulate the
element selection problem as the following optimization
problem:

min
P∈S,Q∈RN×K

D(QPX,X), (4)

where S denotes the set of K × N selection matrices.
The element selection problem (4) is a combinatorial

optimization, and the full search is computationally difficult

for high-dimensional data because S has
(N
K

)
=

N !
K !(N−K )!

elements. Therefore, the greedy method and the convex
relaxation method have been widely studied as efficient
approaches to obtain an approximate solution. The greedy
method solves the subproblem K times, where the elements
are selected one by one, resulting in an approximate
solution of (4). The convex relaxation method obtains
an approximate solution of (4) by constraining P ∈

[0, 1]K×N s.t.
∑N

n=1 pk,n = 1 instead of constraining
P ∈ S . However, these conventional methods require that
D(·, ·) in (4) be a specific loss function for which (3) can be
solved in closed form. For example, when the loss function
is the ℓ2 norm loss, i.e., D(X̂,X) = 1

M ∥X̂ − X∥22, where
∥ ·∥2 denotes the ℓ2 norm (Frobenius norm) of the matrix, (3)
can be solved in closed form for any fixed selection matrix P
as

Q̂ = XYT
(
YYT

)−1
= XXTPT

(
PXXTPT

)−1
, (5)

where (·)T and (·)−1 denote the transpose and inverse of the
matrix, respectively. However, for most other loss functions,
e.g., the ℓ1 and ℓ∞ norm loss functions, (3) cannot be solved
in closed form as in (5). In such cases, the greedy method
requires the optimization of (3) for as many times as the
number of candidate elements to add one element, and the
convex relaxation method is even not applicable because its
formulation is essentially based on the substitution of (5)
to (4). Therefore, a more flexible framework is needed for
a wider application range of loss functions.

III. PROPOSED METHOD
To overcome the limitations of the conventional methods
described in Section II, we propose a comprehensive
framework of element selection that is applicable to a wide
class of loss functions, including those other than the ℓ2 norm
loss.

A. REFORMULATION OF ELEMENT SELECTION PROBLEM
The key idea is to regard (4) as an optimization problem of a
single matrix U ∈ RN×N defined as

U = QP. (6)

An example of the selection matrix P, the restoration matrix
Q, and the matrix U when N = 3 and K = 2 is shown
in Fig. 2. As seen in Fig. 2, U has nonzero elements only
for K columns corresponding to the indices of the selected
elements, i.e., U is a sparse matrix with respect to the
column vectors. Note that U and (P,Q) have a one-to-one
correspondence except for the permutation of the selected
elements. Taking these properties of U into account, the
optimization problem in (4) can be reformulated equivalently
as

min
U∈RN×N

D(UX,X) s.t. 8(U) ≤ K , (7)
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Algorithm 1 Proposed Algorithm
Input: X, ρ,K , J
Output: P,Q
1: Initialize V,Z
2: X← 1

∥X∥2
X

3: for k = 1, 2, · · · ,K do
4: repeat J times
5: U← Hk (V)
6: W← proxρf (Z)
7: [V Z]← [V Z]+5X(2[U W]− [V Z])− [U W]
8: end repeat
9: end for

10: Calculate P from the nonzero column indices of U
11: Q← UPT

where8(·) denotes the number of nonzero column vectors in
the matrix.

B. OPTIMIZATION ALGORITHM
The optimization problem of (7) is nonconvex due to the
constraint 8(U) ≤ K . Although there have been many
studies [30], [31], [32], [33], [34] dealing with algorithms
for nonconvex problem with guaranteed convergence, several
conditions on the constraint (or the regularizing function) are
required therein, and it is still difficult to directly apply these
theories to the constraint8(U) ≤ K in (7) without relaxation.
For a similar (but slightly different) optimization problem
to (7), on the other hand, an efficient algorithm [21], [22],
[23], also known as the SPADE algorithm, is proposed as
a state-of-the-art audio declipping method and showed high
performances although the convergence is not guaranteed
from a theoretical perspective. Motivated by the algorithms
in these studies, we propose the optimization algorithm
for solving (7) based on the Douglas–Rachford splitting
method and the SPADE algorithm. The proposed algorithm
is summarized in Algorithm 1, and its derivation is provided
in Appendix A. Here, proxρf (·) is the proximal operator [35]
of f (·) given by

proxρf (Z) = argmin
A

f (A)+
1
2ρ
∥A− Z∥22, (8)

where f is defined as

f (Z) = D(Z,X), (9)

and ρ ∈ (0,∞) is a step size parameter. Several examples
of loss functions D(·, ·) and their corresponding proximal
operators proxρf (·) are given in Section III-C. On the other
hand, Hk (·) and 5X(·) are given independently of the loss
functions D(·, ·), and correspond to the projection onto
the sets {U ∈ RN×N

|8(U) ≤ k} and {[U W] ∈
RN×(N+M )

|UX = W}, respectively. In particular, Hk (·) is
an operation that sets all but the k largest column vectors in

the ℓ2 norm of the input matrix to zero, and5X(·) is given by

5X([UW])= [UW]−[UW]
[
X
−I

] ([
X
−I

])†
= [UW]−[UW]

[
X
−I

]
(XTX+I)−1

[
X
−I

]T
,

(10)

where I is the M × M identity matrix and (·)† denotes the
pseudo-inverse matrix.
The fourth to eighth lines in Algorithm 1 correspond to the

optimization of the problem

min
U∈RN×N ,W∈RN×M

D(W,X) s.t. 8(U) ≤ k, UX =W,

(11)

i.e., the optimization problem (7) with K replaced by k .
These lines are iterated for increasing k = 1, . . . ,K instead
of setting the desired number of selected elements, K ,
from the beginning. This strategy is incorporated for better
convergence and is motivated by the SPADE algorithm [21],
[22], [23]. The performance improvement by the use
of increasing k was also demonstrated in our previous
study [29]. Although convergence of the algorithm is not
guaranteed in a strict sense due to the fifth line (i.e., projection
to a nonconvex set), we did not observe divergence when
the parameter ρ is appropriately set in the experiments in
Section IV; further theoretical analysis remains as future
work.
The normalization in the second line in Algorithm 1

is introduced to guarantee the invariance of the algorithm
against the scalar multiple of X and to facilitate the tuning
of the parameter ρ. As seen from (8), the proximal operator
is generally not a homogeneous function. Therefore, even
if we have found the good parameter ρ for X, it does not
necessarily work well for aX with general a ∈ R. To avoid
such dependence of the optimal parameter ρ on the scale of
the data, X is first normalized by its ℓ2 norm in the proposed
algorithm. This is the main difference between the proposed
algorithm and the algorithm in our previous work [29], and
its validity is demonstrated by the preliminary experiments
in Section IV-B.

C. LOSS FUNCTIONS AND PROXIMAL OPERATORS
As long as proxρf (·) corresponding toD(·, ·) can be calculated
in closed form, various loss functions can be used for
element selection in a unified manner in Algorithm 1.
By comparing (8) and (3), we find that (8) includes no linear
terms with respect to the optimization variable, although
it has an additional quadratic term. Thus, a wide class
of useful loss functions, including the ℓ1, ℓ2, and ℓ∞
norm loss functions, have a closed-form solution for (8),
even though many of them do not have a closed-form
solution for (3), e.g., the ℓ1 and ℓ∞ norm loss functions.
This means that the proposed framework allows a flexible
formulation of the element selection problem that cannot be
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TABLE 1. Examples of loss functions D(·, ·) and corresponding proximal operators proxρf .

FIGURE 3. Box plot of restoration error (optimization criterion) Jp=1 obtained using Proposed ℓ1 (a) with and (b) without normalization in the
preliminary experiment.

FIGURE 4. Box plot of restoration error (optimization criterion) Jp=2 obtained using Proposed ℓ2 (a) with and (b) without normalization in the
preliminary experiment.

dealt with in conventional methods. Various useful functions
and their proximal operators are reviewed in [35], [36],
and [37].
Three examples of the loss functions, i.e., ℓ1, ℓ2, and ℓ∞

norm loss functions, and their proximal operators are listed in
Table 1. Here, ∥ · ∥1 denotes the ℓ1 norm of the matrix given
by

∥X∥1 =
N∑
n=1

M∑
m=1

|xn,m|, (12)

where xn,m (and also [X]n,m in Table 1) denote the (n,m)th
entry of X and | · | is the absolute value, and ∥ · ∥∞ denotes
the ℓ∞ norm of the matrix given by

∥X∥∞ = max
1≤n≤N ,1≤m≤M

|xn,m|. (13)

All loss functions in Table 1 are scaled so that they are
invariant against the repetition of data, i.e., D(Z,X) =
D([Z Z], [X X]).

IV. NUMERICAL EXPERIMENTS
We conducted numerical experiments to evaluate the pro-
posed method. First, preliminary experiments were con-
ducted using artificially generated data to evaluate the
sensitivity for the parameters in the proposed method and
demonstrate validity of the normalization process. Then,
experiments using real data of sea surface temperature and
clothing images were conducted for more practical evaluation
and compared with the conventional greedy method.

A. CONDITIONS
The proposed methods for three different criteria shown in
Table 1 were evaluated, which are denoted by Proposed ℓ1,
Proposed ℓ2, and Proposed ℓ∞ in the order from above in
Table 1. In addition, the greedy method (Greedy) and the
random method (Random) were evaluated for comparison.
In the proposed methods, the number of iterations J was set
to 500 for Proposed ℓ1, 100 for Proposed ℓ2, and 1000 for
Proposed ℓ∞. The step size parameter ρ was set on the
basis of the preliminary experiment in Section IV-B. The
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FIGURE 5. Box plot of restoration error (optimization criterion) Jp=∞ obtained using Proposed ℓ∞ (a) with and (b) without normalization in the
preliminary experiment.

initializations for the first line in Algorithm 1were all set to 0.
In Greedy, K elements were selected one by one to minimize
the ℓ2 norm loss, starting from an empty set. Here,XXT in (5)
were replaced by XXT

+λ for numerical stability, where λ is
the largest eigenvalue of X multiplied by 10−8. In Random,
all elements were selected uniformly at random.

As the evaluation criteria, we used the restoration error
(optimization criterion) Jp defined as

Jp(P,Q) =


∥QPX− X∥pp
∥X∥pp

(p = 1, 2)

∥QPX− X∥p
∥X∥p

(p = ∞)
(14)

to evaluate the behavior of the optimization algorithms and
the restoration error (evaluation criterion) Ep defined as

Ep(P) =


∥Q̂PX− X∥pp
∥X∥pp

(p = 1, 2)

∥Q̂PX− X∥p
∥X∥p

(p = ∞)

(15)

to evaluate the restorability of the selected elements. The
restoration error (optimization criterion) Jp was calculated
using P and Q optimized on the basis of the optimization
criteria in the iterative algorithm, i.e., the output variables in
Algorithm 1 for Proposed and P and Q obtained by (5) for
Greedy. On the other hand, Ep was calculated for the selection
matrix P using the Q̂ optimized on the basis of the evaluation
criteria, which minimizes the right-hand side of (15) with
fixed P. When calculating Ep=2, Q̂ was obtained in closed
form given by (5). For Ep=1 and Ep=∞, Q̂was optimized using
Algorithm 2 described in Appendix B. To mitigate bias, the
average of the restoration errors (evaluation criterion) Ep over
50 runs was used in Random.

B. PRELIMINARY EXPERIMENT
The preliminary experiment was conducted using the artifi-
cially generated data to confirm the behavior with respect to
the variation of ρ and the effectiveness of the normalization
in Algorithm 1. The artificially generated data X was given
by X = a(C + N), where C ∈ RN×M is a K -rank matrix
and N ∈ RN×M is the random noise, each of whose elements
independently follows the normal distributionN (0, 0.1), and

FIGURE 6. Restoration errors (optimization criteria) (a) Jp=1, (b) Jp=2,
and (c) Jp=∞ for each K when training using sea surface temperature
data.

a ∈ [1, 10] is a parameter that controls the scale of X, which
follows the uniform distribution U (1, 10). The matrix C was
defined as the product ofA ∈ RK×M , each of whose elements
independently follows the Laplace distribution Laplace(0, 1)
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FIGURE 7. Restoration errors (evaluation criteria) (a) Ep=1, (b) Ep=2, and
(c) Ep=∞ at K = 15, 25, 35, and 50 using sea surface temperature data.

and B ∈ RN×K , each of whose elements independently
follows N (0, 1), i.e., C = BA. Here, we set N = 50,
M = 4000, and K = 10.
Each of the three proposed methods (Proposed ℓ1, Pro-

posed ℓ2 and Proposed ℓ∞) was evaluated for five different
values of ρ with and without the normalization in the second
line of Algorithm 1. The results of Proposed ℓ1, Proposed
ℓ2 and Proposed ℓ∞ are shown in Figs. 3, 4 and 5 as box plots
of the restoration error (optimization criterion) Jp=1,2 and∞
for 50 generated X, respectively. By comparing (a) without
normalization and (b) with normalization in these figures,
we found that the normalization results in smaller restoration
errors (optimization criteria) for many ρ and less variation
within a single ρ. These results indicate that the normalization
eliminates the need for detailed tuning of ρ depending on
each data set. From these results, the following experiments
were conducted using ρ = 10 for Proposed ℓ1, ρ = 10000 for
Proposed ℓ2, and ρ = 100 for Proposed ℓ∞.

FIGURE 8. Virtual observation points selected at K = 15 using sea surface
temperature data.

C. EXPERIMENTS USING SEA SURFACE TEMPERATURE
DATA
One application of element selection, that is, improvement
of interpretability by extracting representative data, was
evaluated by experiments using sea surface temperature
data. The data consists of weekly mean temperatures for
1500 weeks from December 31, 1989 to September 29,
2018 on a grid of 1 degree across the globe, with 360 ×
180 virtual observation points. Among them, we used
10 degrees each for 36×18 observation points with excluding
223 observation points located on land. Therefore, the
number of elements, N , was 425, and the number of samples,
M , was 1500. Different numbers of selected elements were
evaluated up to K = 50.
First, a line graph of the restoration error (optimization

criterion) Jp at each K for the three proposed methods and
Greedy is shown in Fig. 6. The subplots show the restoration
errors (optimization criteria) Jp=1 in Fig. 6(a), Jp=2 in
Fig. 6(b), and Jp=∞ in Fig. 6(c). In Fig. 6(a) and Fig. 6(b),
the difference between Proposed ℓ1, Proposed ℓ2, and Greedy
was small. In Fig. 6(c), however, Proposed ℓ∞ achieved the
smallest restoration error (optimization criterion), indicating
that the proposed method can select elements that reduce
the value of the corresponding loss function. Next, Fig. 7
shows the restoration error (evaluation criterion) Ep for the
selection matrix P obtained with each method at K = 15,
25, 35, and 50. The subplots show the restoration errors
(evaluation criteria) Ep=1 in Fig. 7(a), Ep=2 in Fig. 7(b),
and Ep=∞ in Fig. 7(c). By comparing Figs. 6 and 7, one
can see that the differences between each method for Ep
were smaller than that for Jp. This is because the restoration
matrix was optimized on the basis of the evaluation criteria
in Ep. Nevertheless, Proposed ℓ∞ still achieved the smallest
restoration errors (evaluation criterion) for Ep=∞. Conversely,
Proposed ℓ∞ showed larger restoration errors (evaluation
criteria) than Proposed ℓ1, Proposed ℓ2, and Greedy for
Ep=1 and Ep=2, although these three methods did not show
significant differences. These results indicate that the choice
of different optimization criteria indeed contributes to the
improvement of the corresponding restorability. Finally,
Fig. 8 shows the virtual observation points selected for each
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TABLE 2. Restoration error (evaluation criterion) Ep (left, ℓ1 norm; middle, ℓ2 norm; right, ℓ∞ norm) in training data.

TABLE 3. Restoration error (evaluation criterion) Ep (left, ℓ1 norm; middle, ℓ2 norm; right, ℓ∞ norm) in test data.

FIGURE 9. Original clothing image.

method. Some of the selected observation points were located
at similar positions in each method, but others were located
at distinct positions.

D. EXPERIMENTS USING IMAGE DATA
We also conducted experiments using clothing images from
Fashion-MNIST dataset [27] to evaluate the restoration
performance for unknown test data. This data consists of
10000 images of 28 × 28 pixels, and we divided them into
5000 training data used for optimization of selected elements
and 5000 test data for evaluation. Therefore, in element
selection, the number of elements, N , corresponded to
784 pixels, the number of samples, M , corresponded to
5000 images, and the size of the training data, denoted
by Xtrain, was 784 × 5000. For evaluation, the size of the
test data, denoted by Xtest, was also 784 × 5000. Four
different values of K , i.e., K = 25, 50, 75, and 100 were
evaluated. Restoration performance was evaluated by Ep for
Xtrain and Xtest, but in both cases P and Q were optimized
using Xtrain.

First, the restoration errors (evaluation criteria) Ep obtained
using train and test data are shown in Tables 2 and 3,
respectively. In Table 2, Proposed ℓ∞ performed best with
Ep=∞, whereas the performance of the other methods, except
Random, remained flat, similar to the results in Section IV-C.
On the other hand, the results on the test data in Table 3
show that Ep=∞ was higher than 1. This is due to Ep=∞
evaluating the restoration error (evaluation criterion) of the

FIGURE 10. Restored clothing images at K = 100. Below each image is
the name of the corresponding method, and the left of each image in the
first to third lines is the loss function used to optimize Q̂ and the
restoration error (evaluation criterion) for that image.

single worst pixel in the test data. Proposed ℓ1, Proposed
ℓ2, and Greedy show the same trend as in Table 2 and
achieved lower restoration errors (evaluation criteria) than
Random. Next, one sample of the training data and the
restored images of that sample atK = 100 are shown in Fig. 9
and Fig. 10, respectively. Fig. 10 shows the results obtained
using Proposed ℓ1, Proposed ℓ2, Proposed ℓ∞, and Greedy,
starting from the right column, and using the ℓ1, ℓ2, and ℓ∞
norms as criteria for optimization of Q̂ in calculation of Ep,
starting from the top row, with the fourth row showing the
selected elements. By comparing row by row, we confirmed
significant differences in the behavior of restored images
depending on the optimization criteria of the restoration
matrix Q̂. Although differences for columns were not as
significant as those for rows, the amount of blur around the
object was different for the four methods; Proposed ℓ1 shows
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Algorithm 2 Algorithm for Optimization of Q
Input: Y, σ, I
Output: Q
1: Initialize:W,D
2: repeat I times
3: Q← (W− D)YT(YYT)−1

4: W← proxσψ (QY+ D)
5: D← D+QY−W
6: end repeat

the least amount of blur. One possible reason is that pixels that
rarely take large values, that is, marginal pixels in this data set,
were relatively ignored in the ℓ1 norm criterion. In addition,
from the fourth row, we confirmed that Proposed ℓ∞ differs
significantly from the other three methods in selected pixels.
These results demonstrated the effect of the use of different
optimization criteria in element selection, which are enabled
by the proposed method.

V. CONCLUSION
We proposed an element selection method that can apply
a wide range of loss functions in a unified manner based
on nonconvex optimization. The proposed method enables
element selection with loss functions that are not applicable
to conventional methods, which was also confirmed by
numerical experiments. Future works include the theoretical
extension of our framework to criteria other than restorability
and the application of the proposed element selection method
to signal processing in devices with limited computational
resources.

APPENDIX A
DERIVATION OF THE PROPOSED ALGORITHM
First, (11) is equivalently reformulated as

min
U∈RN×N ,W∈RN×M

f (W)+ gk (U)+ h(U,W), (16)

where f (·), gK (·), and h(·) are defined as

f (W) = D(W,X), (17)

gk (U) =

{
0 (8(U) ≤ k)
∞ (8(U) > k)

, (18)

and

h(U,W) =

{
0 (W = UX)
∞ (W ̸= UX)

, (19)

respectively. Then, the objective function of (16) can be
regarded as the sum of two functions f (W) + gk (U)
and h(U,W), each of which is a function with respect
to (U,W) whose proximal operator is available in closed
form. In particular, Hk (·) and 5X(·) are the proximal
operators of gk (·) and h(·, ·), respectively. Therefore, the
Douglas–Rachford splitting method can be applied to (11),
which results in the fourth to eighth lines of Algorithm 1.

These update rules are applied to increasing k = 1, 2, . . . ,K
to finally solve the optimization problem (7).

APPENDIX B
CALCULATION OF THE OPTIMAL RESTORATION MATRIX
We have to solve (3) with Y = PX to obtain Q̂ in (15). Since,
Q̂ cannot be obtained in closed form for p = 1 and p = ∞,
we used Algorithm 2 with

ψ(Z) =


1
M
∥Z− X∥1 (p = 1)

∥Z− X∥∞ (p = ∞)
. (20)

This algorithm is derived by applying the alternating direction
method ofmultipliers (ADMM) to the following optimization
problem:

min
Q∈RN×K ,W∈RN×M

ψ(W) s.t. W = QY. (21)

Throughout the experiment, the parameters I and σ were set
to 100 and 10 for p = 1 and 1000 and 100 for p = ∞,
respectively.
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