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ABSTRACT Diabetic retinopathy (DR) is a microvascular disease that is associated with diabetes mellitus.
DR can cause irreversible vision loss and low vision. DR classification, that is, early DR diagnosis
and accurate DR grading, is critical for vision protection and immediate treatment. Deep learning-based
automated systems led to significant expectations for DR classification based on fundus images with several
advantages. In the past several years, many outstanding studies in this area have been conducted and several
review articles have been published. However, the new trends and the future directions are need to furtherly
analyzed. Thus, we carefully included and read 94 related articles published from 2018 to 2023 through
Web of Science, PubMed, Scopus, and IEEE Xplore. From this review, we found that transfer learning has
been used as an outstanding strategy for overcoming the issue of the limited data resources to support DR
analysis. CNN models of ResNet and VGGNet with layers of tens or even hundreds are the most popular
frameworks used for DR classification. TheAPTOS 2019 and EyePACS are themost widely used datasets for
DR classification. In addition, some lightweight DL architectures like SqueezeNet andMobileNet have been
proposed for DR classification tasks, especially for limited data resources and computational capabilities.
Although deep learning has achieved or surpassed human-level accuracy in DR classification, there is still
a long way to go in real clinical workflows. Further improvements in model interpretability, trustworthiness
from ophthalmologists, cost-effective and reliable DR screening systems are needed.

INDEX TERMS Classification, diabetic retinopathy, deep learning, fundus images.

I. INTRODUCTION
Diabetic retinopathy (DR), one of the most feared microvas-
cular complications of diabetes mellitus (DM), is a major
cause of irreversible vision impairment and low vision among
working adults. Approximately 30% of people with DM have
signs of DR, of which 30% have vision-threatening DR [1].
According to the reports by the International Diabetes Fed-
eration [2], there are approximately 537 million diabetes in
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2021 worldwide. This number will exceed 700 million by
2045 and nearly 30% of them, that is, more than 200 million
people will suffer from DR. It is known that DR is a pro-
gressive disease with the resulting from long-term diabetes,
the risk of incurable vision loss and low vision can be largely
reduced by early DR diagnosis and accurate DR grading [3],
[4], as shown in Figure 1.
A fundus image is a projection of the fundus captured by

a monocular camera on a 2D plane. Unlike optical coher-
ence tomography images and angiographs, fundus images
can be acquired in a rapid, non-invasive and cost-effective
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FIGURE 1. DR classification tasks using deep learning.

way, making them more suitable for large-scale screening.
Besides, many important biomarkers can be seen in the fun-
dus image, such as optic disc, macula, fovea, blood vessel,
and some DR related lesions. Traditionally, DR classifica-
tion is mainly performed by analyzing lesion features in
fundus images obtained from digital fundus photography.
However, the interpretation of fundus images requires spe-
cialized knowledge and experienced ophthalmologists, and
it is time-consuming, labor-intensive, and prone to human
errors [5]. Thus, the increased global prevalence of DR and
limited availability of professional ophthalmologists have
motivated an urgent need to develop fast, cost-effective, and
accurate automated systems to assist DR classification.

With the increase in computing power and availability
of large amounts of labeled data, the deep learning (DL)
technique shows excellent performance in automatic analysis
and evaluation of image-related data through the combina-
tion of large amounts of data with intelligent algorithms [6].
DL is designed using a multilayer data representation archi-
tecture that can automatically extract low-level and high-level
features without human interference [7]. Many DL-based
algorithms (such as convolution neural networks (CNNs) [8],
[9], autoencoders (AE) [10], [11], recurrent neural networks
(RNNs) [12], [13], deep belief networks (DBN) [14], [15],
and transfer learning [16], [17]) have been designed and
applied to fundus images.

It is obvious that the number of papers on fundus images
and DL for DR classification are increasing year by year.
Recently, several review articles have been published in this
topic. In 2019, Asiri et al. [18] published a review of DL tech-
niques applied to DR detection and classification of lesions
in fundus images. In 2020, Alyoubi et al. [19] reviewed and
analyzed the significant research on DL for DR detection.
In 2023, Sebastian et al. [20] presented a review of DL
developments in the domain of DR classification including
detection and grading based on fundus images. Although
these comments cover a lot of work regarding DR lesion
detection and classification, a detailed account of the prepro-
cessing methods and the specific DL methods or structures
in recent studies has not been included. Image preprocess-
ing is necessary to reduce the heterogeneity resulting from
various imaging conditions. Identifying the specificDL struc-
tures in recent research can provide new advances on this
topic. Therefore, the objective of this paper is to provide a
more comprehensive review that analyzes the new trends and

FIGURE 2. The flow diagram of the articles searching and selection.

highlights the future directions for the DR classification of
deep learning in fundus images.

In contrast to previous works, the major contributions of
this work be summarized as follows. First, a novel holistic
overview is provided by presenting the detailed data prepro-
cessing pipelines and more latest studies within the past three
years in the field of DR classification using DL approaches.
Second, the databases, DL models and the performance of
reported techniques in two classification tasks, i.e., binary
classification for DR diagnosis and multi-classification for
DR grading are discussed. Third, the limitation and future
evolution of the application of DL for DR classification is
addressed. Thus, we believe that a more detailed and inte-
grated review is more comprehensive to provide inspiring
ideas for researchers in this active area.

The review adopts the PRISMA approach for articles
searching and selection [21]. We searched for 345 related
papers published from 2018 to 2023 throughWeb of Science,
PubMed, Scopus, and IEEE Xplore using the terms ‘‘artifi-
cial intelligence’’, ‘‘deep learning’’, ‘‘diabetic retinopathy’’,
‘‘classification’’, ‘‘detection’’, and ‘‘grading’’. After remov-
ing and determining the specific DL tasks for DR, final
94 articles were carefully included. The flow diagram of the
articles searching and selection is shown in Figure 2.
This paper is organized as follows. In Section II, a back-

ground of DR and related biomarkers on fundus images
for DR classification are provided. In Section III, the pub-
licly available DR datasets are described. In Section IV,
data preprocessing methods and pipelines are introduced.
In Section V, commonly used DL architectures for DR classi-
fication are discussed. In Section VI, recent research for DR
classification by DL techniques is reviewed and discussed.
In Section VII and Section VIII, some of challenges and
potential future directions are provided. In Section IX, the
conclusion is summarized.

II. DR AND RELATED BIOMARKES
In this section, an overview of DR and the related biomark-
ers on a fundus image as shown in Figure 3 are provided,
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FIGURE 3. Normal retina and diabetic retinopathy on a fundus image.

including blood vessels, optic disc, DR lesions, stages and
severity grading of DR.

A. BLOOD VESSELS AND OPTIC DISC
Blood vessel assessments, including assessments of vascular
thickness, diameter, length, arteriovenous ratio, bifurcations,
and curvature have been proven to be closely related to DR
occurrence and its severity [22], [23], [24], [25], especially in
the proliferative stage of DR (PDR). The growth of new tiny
pathogenic blood vessels in PDR makes accurate segmen-
tation and evaluation of the retinal vasculature much more
important [26].

The optic disc (OD), that is, the optic nerve head (ONH),
is the brightest region in fundus images, which is oval-shaped
with clear boundaries and located exactly 3 mm nasally
(medially) to the macula lutea [27]. The optic disc is also
called a ‘‘low vision spot’’ of the eye, because it is the only
area on the retina without any photoreceptors [27]. During
fundus image analysis, the optic disc needs to be removed
to avoid the misclassification of OD, because the OD has
a similar appearance of pixels to the bright exudates in the
fundus image [28].

B. DR LESIONS
In diabetes, large amounts of glucose in the blood can damage
retinal blood vessels, resulting in vascular swelling, leakage,
and even abnormal growth of new vessels [29]. Various patho-
logical changes in the retina have been observed. Microa-
neurysms are the earliest symptoms of DR [30]. Possible
reasons for microaneurysm formation include vasoprolifer-
ative factor release, capillary wall weakness, and increased
intraluminal pressure [30]. Microaneurysms present slight
widening of the capillary walls and are defined as deep
red dots (25 - 100 µm) with sharp margins on the fun-
dus images. Hemorrhages occur when the weak capillaries
break. Hemorrhages are identified as red spots similar to
microaneurysms. Unlike microaneurysms, hemorrhages are
usually larger than 125 µm and have irregular edges [31].
Hard exudates are mainly lipoproteins that leak from the
damaged capillaries. They often appear as small white or
white-yellow individual dots or continuous flaky spots with
sharp margins [32]. Soft exudates or cotton wool spots are
lesions of the retinal nerve fiber layer caused by small-artery
occlusion [33]. Small-artery occlusion reduces blood flow
to the retina, which causes ischemia of the retinal nerve
fiber layer and accumulation of axoplasmic debris in retinal

FIGURE 4. The DR grading according to ICDRSS (NPDR: Non-proliferative
diabetic retinopathy; PDR: Proliferative diabetic retinopathy).

ganglion cell axons [34]. This accumulated debris appears
slightly raised, with small gray-white cloud-like shapes in the
superficial layer of the retina [33]. Neovascularization refers
to the abnormal formation of new blood vessels on the retinal
inner surface, which is a hallmark of PDR [35]. The release of
vasoactive factors in ischemic retina can provoke the growth
of new vessel, which may lead to vitreous hemorrhages that
block vision [36]. Macular edema occurs when vascular per-
meability increases and abnormal blood vessels leak into the
surroundings of the macula, which causes macular swelling
and retinal thickening, and even threatens central vision [37].

C. DR GRADING
DR grading evaluates vascular changes and identifies DR
severity levels. At present, there are various DR grading
protocols, including the Early Treatment Diabetic Retinopa-
thy Study (ETDRS) classification [31], International Clinical
Diabetic Retinopathy Severity Scale (ICDRSS) [38], Inter-
national Clinical Diabetic Macular Edema Severity Scale
(ICDMESS) [38], and Scottish DR grading protocol [39].
Although the ETDRS grading scheme is the gold standard,
its multiple levels and complex implementation make daily
clinical and large-scale grading difficult. Owing to its con-
venience and ease of adoption, the ICDRSS proposed by
the Global Diabetic Retinopathy Project Group has attracted
much more attention in clinical practice and computer-aided
diagnosis (CAD) settings worldwide. According to ICDRSS,
DR can be classified into five severity levels [38], that is,
No DR, mild NPDR, moderate NPDR, severe NPDR, and
PDR as shown in Figure 4; the corresponding lesions at each
level are briefly described in Table 1.

III. PUBLIC DATASETS
Datasets are collections of data that can be used to train and
test DL models, which is one of the key reasons for the suc-
cess of DL research. However, in the field of fundus images,
high-quality, accurate labeling, and sufficient dataset collec-
tion are challenging. One reason is that privacy protection of
personal data makes it difficult to acquire and share medical
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TABLE 1. The severity level and corresponding lesions of DR according to
ICDRSS protocol.

data. In addition, different fundus imaging equipment and
settings, imaging characteristics, and operators lead to poor
consistency in the image quality and standards. In addi-
tion, image labeling is commonly performed by professional
ophthalmologists, but labeling standards are significantly
inconsistent among different labelers. These drawbacks can
be avoided by using public datasets. Herein, we briefly review
several publicly available datasets of fundus images for DR
classification, as listed in Table 2. Much more detailed infor-
mation could be obtained in the previous review articles
of [40].

Among the above public datasets, MESSIDOR [41], Kag-
gle EyePACS [42], Kaggle APTOS [43] and MESSIDOR-2
[44] are the most popular for DR classification. The largest
one is the Kaggle EyePACS dataset with 88702 fundus
images graded according to the ICDRSS [42]. In this
dataset, different cameras were used to collect images under
various imaging conditions, leading to a good variety of
real-world settings. Several fundus image datasets, includ-
ing DIARETDB1 [45], HEI-MED [46], E-Ophtha [47],
DRiDB [48], IDRID [49], and DDR [50], were created for
both DR lesion detection and grading tasks. The DRiDB
dataset contains 50 fundus images in which the optic disc,
vessels, DR lesions, and grading are annotated by several pro-
fessionals. Although it is small, it provides the largest amount
of information and can be used for lesions detection and DR
grading. The DDR dataset consists of 12522 images anno-
tated by multiple experts according to ICDRSS. Although it
is the second largest dataset for DR classification, there is a
significant imbalance in different DR severities; thus, it has
not yet been widely used. Because most of these datasets are
small, many studies have used different or combinations of
them to train and validate DL algorithms [51], [52], [53].

IV. DATA PREPROCESSING
In deep-learning research, preprocessing is a common first
step in prepare formatted raw data that the network can
accept, which can increase the training performance of DL

models. Capturing fundus images using various cameras
and settings results in different quality issues (such as size,
noise, artifacts, contrast, illumination, and sharpened regions)
within the image. These heterogeneities may hide some spe-
cial details of the DR features during the training process
of the DL models. Thus, in this section, we provide a brief
review of the preprocessing pipelines for DR classification
based on fundus images. The primary operations performed
on the fundus images consist of image enhancement, denois-
ing, normalization, and augmentation, as shown in Table 3.

A. IMAGE ENHANCEMENT
Inhomogeneities of contrast or luminosity usually appear
in the same image or between different images. Image
enhancement techniques, such as contrast enhancement, illu-
mination correction, and color space-based enhancement can
address the issues effectively. Contrast enhancement is nor-
mally applied to enhance foreground information (such as
optic disc, blood vessels, and lesions) in fundus images
from the background, so that it is more visible to seg-
ment and detect [54], [55], [56]. Histogram-based approaches
include histogram equalization, adaptive histogram equaliza-
tion (AHE) and contrast limited adaptive histogram equaliza-
tion (CLAHE) [57]. Of these, CLAHE is found to be the most
effective, which can not only improve the local contrast to
obtain more image details, but also suppress the excessive
amplification of noise in near-constant areas of the image.
This technique is normally performed by combining color
space transformations, such as transforming color images
to grayscale, splitting and enhancing individual channels,
or enhancing the color space directly. Zhang and Chutat-
ape [58] used CLAHE for local contrast enhancement on
sub-images by applying the local mean and standard devia-
tion of intensities to detect hard and soft exudates in fundus
images. Yamuna and Maheswari [59] applied CLAHE to
gray scale retinal images to detect microaneurysms. Because
blood vessels appear more contrast than the background in
the green channels, Setiawan et al. [60] split the color fundus
image into three individual channels, and performed CLAHE
on the green channel, and then merged these three channels
to improve the color retinal image quality. Chandni et al.
[61] proposed a modified CLAHE using a Laplacian oper-
ator and HSV color model to obtain better information on
the luminance of the color fundus image and preserve its
edges. In addition to contrast enhancement, illumination
correction is another way to enhance image contrast by reduc-
ing the illumination uniformity error of the retinal images.
Gamma correction and logarithmic correction are effective
and widely adopted methods for illumination correction [62],
[63], [64], [65]. In recent years, DL-based methods have
received increasing attention and have been developed for
retinal image enhancement [66], [67], [68], [69]. Among
these, generative adversarial networks (GAN) and their vari-
ations are the most promising. You et al. [66] developed a
CycleGAN model for fundus image enhancement that can
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TABLE 2. Commonly used public datasets for DR classification.

generate an output image for each input image without paired
training samples. They furtherly used a convolutional block
attention module (CBAM) [67] to improve the baseline of
CycleGAN. Because CBAM can re-weight the high-level
features extracted by the convolutional neural network in
the channel attention module and spatial attention module,
the color and texture of the generated image can be kept
consistent with the input images. Quantitative and qualitative
analyses prove that the enhanced results by Cycle-CBAM are
superior to those by CycleGAN for DR classification tasks.
Based on unpaired training settings, Zhao et al. [68] proposed
a dynamic retinal image feature constraint to improve the
generator in GAN and avoid over-enhancing the exceeding
blurry regions, which can effectively reduce the artifacts in
the generated images and achieve enhanced results.

B. DENOISING AND NORMALIZATION
Another main challenge in processing is that fundus images
suffer from significant noise, such as Gaussian noise and
salt and pepper noise. Filtering-based methods [69], [70]

are widely used to address this problem. Compared to lin-
ear filtering methods (mean filtering, Gaussian filtering, and
Wiener filtering), the median filter, as a non-linear filtering
technique, is more robust and excellent for removing salt and
pepper noise, as well as reducing edge blurring [71], [72].
In addition, to reduce the feature bias during the training
process, image intensity normalization is usually conducted.

C. IMAGE AUGMENTATION
It is well known that deep learning models typically depend
on high-volume training data to avoid overfitting. However,
owing to the lack of rich labeled data and class imbalance,
data augmentation is adopted to improve the data size and
diversity, which can enhance the robustness and accuracy
of the models. Traditional data augmentation approaches
for fundus images include geometric and color transforma-
tions. Geometric transformation [73], [74], such as rotation,
flipping, and cropping, aims to alter the geometry of the
image while keeping the CNN invariant to changes in ori-
entation and position. These techniques can be easily and
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TABLE 3. Data preprocessing for DR classification.

directly performed based on basic image manipulations, but
tend to suffer from the padding effect and lose some inter-
esting areas. Another effective strategy, that is, performing
augmentation in the color channel space, can generate new
fundus images with the aim of keeping the CNN invariant to
changes in color and lighting. The major advantage of color
transformation is the removal of illumination bias of images;
however, this method may lose important color informa-
tion, and the drawbacks of increased memory, transformation
costs, and training time need to be considered. Recently,
GANs have become popular for data augmentation, which
develop artificial samples with characteristics similar to those
of the original dataset. Costa et al. [75] performed fundus
image synthesis by combining training with an adversarial
autoencoder and GAN. The former was used to generate the
vascular tree and the latter was used to generate non-vascular
features. Mahapatra and Bozorgtabar [76] proposed an image
super resolution (ISR) method based on GANs in which
each pixel’s importance was defined as a loss in the cost
function to generate a high-resolution super-resolved (SR)
image. The experimental results showed that the SR images
outperformed the methods without weighing pixels. In DR
classification, alleviating the severe imbalance of fundus
images in different classes is a major challenge. Zheng et al.
[77] applied a conditional generative adversarial network
(cGAN) to increase the amount of training data and generate
synthetic images of label-preserving minority class data. The
following results demonstrate that cGAN with a modified

U-net (MU-Net) has better performance in exudate detection
and generalization properties than cGAN using only MU-
Net. Chen et al. [78] proposed dubbed retinal fundus image
generative adversarial networks (RF-GANs), which consist
of two generation models, that is, RF-GAN1 and RF-GAN2.
The images in the source domain were translated into the tar-
get domain using RF-GAN1.The translated images were then
used to train the semantic segmentation models to extract the
structural and lesion masks. Finally, RF-GAN2 was applied
to synthesize fundus images using the above masks and DR
grading labels.

V. DEEP LEARNING METHODS
For DR classification, commonly used DL architectures
include convolutional neural networks (CNNs), autoencoders
(AEs), recurrent neural networks (RNNs), and deep belief
networks (DBNs). In this section, an overview of these archi-
tectures is presented in Table 4.

A. CNN AND RELATED MODELS
CNN is the most popular algorithm for DR classification.
A commonly used type of CNN includes convolutional, pool-
ing, and fully connected (FC) layers. Several kernels in each
convolutional layer are used to generate feature maps; each
feature map is down-sampled in the pooling layers to reduce
the network parameters to accelerate the training process and
avoid overfitting. Feature maps after flattening are used as
input of FC layers, and the final CNN output result is obtained
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TABLE 4. Commonly used DL architectures in DR classification.
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by passing the outputs of the last FC layer through the
activation function. The primary CNN architectures include
AlexNet, VGGNet, GoogLeNet, and ResNet.

The initial CNN model of AlexNet only contains eight
layers, but it achieves outstanding results in image classi-
fication tasks by applying techniques such as ReLU and
Dropout [79], [80], [81], [82]. Subsequently, a deeper CNN
model called VGGNet [83] is explored, which has two vari-
ants, that is, VGG16 and VGG19, according to the depth of
the layers. Although this model contains deep weight layers,
it adopts plentiful small-sized kernels in the convolutional
layer instead of large ones to decrease the number of parame-
ters and computational complication. Since then, small filters
have been widely used in CNN architectures. In general,
VGG obtains significant results for image classification;
however, the extremely high computational cost remains a
significant challenge. GoogLeNet (also called Inception V1)
is established to address this issue [84]. GoogLeNet uti-
lizes an inception module to enable the network to choose
between multiple convolutional filter sizes for each block.
In addition, a 1 × 1 convolutional filter is usually inserted
before large kernels to decrease the channel of the fea-
ture maps. In GoogLeNet, a global average pooling layer
instead of FC layers is used to neglect irrelevant chan-
nels, which can greatly decrease the density of connections
and the number of parameters. The upgraded Inception V2,
Inception V3, and Inception V4 present optimized structures
and outperform each other. However, the main shortcoming
of GoogLeNet is the heterogeneous topology between the
inception blocks and the possibility of valuable information
loss in the decreased feature space. With increasing depth,
gradient diminishing has become a major issue for CNN.
In 2015, He et al. [85] proposed ResNet (Residual Net-
work) by introducing the concept of a bypass pathway to
address this issue. ResNet includes a residual block through
a shortcut connection inside layers to allow connections of
cross-layers, which are parameter-free and data-independent.
Furthermore, these shortcut connections can accelerate deep
network convergence. Compared with VGG and GoogLeNet,
ResNet has better performance in terms of computational
speed and model accuracy. Many variants of ResNet with
different layers (i.e., ResNet34, ResNet50, ResNet101, and
ResNet152) and the variant combining inception and residual
blocks, that is, Inception ResNet [86], have been proposed.

Shaban et al. [87] developed a modified version of the
VGG19 for DR classification and staging. Five consecutive
stages of convolutional layers were designed in which two
convolutional layers were added to the first two stages, five
convolutional layers were added to the middle two stages,
and four convolutional layers were added to the last stage.
The last fully connected layer was designed with a three-
neuron layer for non-linear classification. Zhang et al. [88]
designed an Inception V3 model for automated detection of
severe DR based on fundus images. In the preprocessing
stage, data augmentation and weighted random sampling
were performed to balance the cases of the different classes in

the training dataset. Because relevant lesion marks in fundus
images usually vary in size, some studies [89], [90] have
also applied inception modules to extract features at different
resolutions. Cao et al. [91] used ResNet as the backbone net-
work for DR severity classification. The attentionmodulewas
applied in this architecture to improve the feature extraction
and enhance the model performance. CNN models are data-
hungry, but it is difficult to obtain large amounts of medical
data. The transfer learning technique attempts to solve this
issue, in which a CNN that has been well-trained with a
large amount of data from a related domain is applied to a
new task by fine-tuning it using a relatively small dataset
from the target domain. Suedumrong et al. [92] created a
new CNN architecture for DR classification using transfer
learning from GoogLeNet and VGG16 models, in which the
fully connected layer was cut off, and the dense class was
added. The experimental results showed that the accuracy
of the VGG16 model with fine-tuning outperformed that of
GoogLeNet with fine-tuning.

B. AE AND RELATED MODELS
An autoencoder (AE) [93], [94] is a single-hidden layer
network that consists of two parts: an encoding part and a
decoding part. In the encoding part, a reduced dimensional
feature representation is generated from the initial input,
and in the decoding part, the initial input is reframed
from the information provided by the encoder by mini-
mizing the loss function. Normally, autoencoders include
two subtypes: sparse autoencoder [95], [96] and denoising
autoencoder [97]. Sparse autoencoders are typically used
to extract sparse features from raw data for classification,
in which more neurons are in the middle of the network
than in the input layer, i.e., ‘‘sparsity penalty’’ to penalize
neuron activations to fight off overfitting [96]. Denoising
autoencoders usually add noise to the input to prevent the
output from entering the input without learning features.
A stacked Autoencoder (SAE) [98], [99] is a variation of
autoencoders that is built with stacks of multiple AEs to
form a deep structure. First, an SAE is trained layer-by-layer
in an unsupervised manner, then the pre-trained model is
fine-tuned using the backpropagation and gradient descent
method.

A semi-supervised auto-encoder graph network (SAGN)
was proposed for DR grading using limited labeled
data [100]. Three major modules, that is, autoencoder feature
learning, neighbor correlation mining, and graph representa-
tion, were included in this architecture. First, representations
were extracted using an encoder-decoder architecture from
a small number of labeled fundus images and large number
of unlabeled images, and then these representations were
reconstructed. Then, neighbor correlations between both
the labeled and unlabeled images were explored according
to their similarities obtained from the radial basis func-
tion. Subsequently, a Graph Convolutional Neural Network
(GCN) was used to grade the fundus images according
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to the extracted features and corresponding correlations.
Atteia et al. [101] combined the power of feature extrac-
tion from a pre-trained CNN with feature selection and
classification from a stacked autoencoder deep neural net-
work (DFTSA-Net) for DME diagnosis. Four pre-trained
networks including ResNet50, SqueezeNet, Inception V3,
and GoogLeNet were used to extract features from a small
input dataset. Subsequently, a stacked autoencoder neural
network was used to select the most informative features
through unsupervised learning and trained for classification.

C. DBN AND RELATED MODELS
A deep belief network (DBN) [102] is a generative
deep architecture stacked by units of restricted Boltzmann
machines (RBMs). An RBM is a probabilistic model that can
generate a probability distribution from its input datasets by
maximizing the similarity between the input and its projec-
tion [103]. Similar to SAEs, the training process of DBNs
includes two steps, that is, layer-by-layer pre-trained in an
unsupervised manner by the greedy method, and weight
fine-tuning using backpropagation algorithms and gradient
descent. DBNs have recently demonstrate impressive per-
formance in a broad range of applications, including feature
extraction and classification tasks.

A Gannet-optimized DBN-based wavelet kernel extreme
learning machine (GO-DBN-WKELM) technique [104] was
proposed for DR detection and grading. The DBN was used
to extract the reduced-dimensional features from the original
datasets, and the extracted images were analyzed using the
proposed GO-DBN-WKELM classification model. Because
the GO algorithm can optimize the DBM and KELM kernel
parameters, the convergence and accuracy of the classifier can
be enhanced. A new DR detection model was proposed by
Basha and Ramanaiah [105]. Four phases were included in
this model: preprocessing, blood vessel segmentation, feature
extraction, and classification. For classification purposes, the
DBN classifier was used, in which the hidden neurons were
optimized using a modified MBO (Monarch butterfly opti-
mization) called Distance-based MBO (D-MBO) algorithm.
The introduced D-MBO algorithm divided the subpopula-
tion according to the distance between the current solution
and best solution, which can offer improved convergence
to increase the accuracy rate. Although abundant types of
inputs can provide more useful prior information for learn-
ing, standard DBN and its traditional variations, such as
multi-resolution DBN, Gaussian DBN, DBN-Softmax and
convolutional DBN (CDBN), failed to process such complex
types of inputs in parallel. Tehrani et al. [106] presented a
two-dimensional DBN based on a Mixed-restricted Boltz-
mann Machine for DR diagnosis and severity evaluation.
This model can receive multiple two-dimensional inputs
to adjust the parameters of the network well and pro-
vide more information for learning. To remove noise and
decrease dimensionality, Rajavel et al. [107] proposed a sys-
tem with a stochastic neighbor embedding (SNE) feature

extraction module followed by an optimized deep belief net-
work (O-DBN) classifier to identify DR severity levels. The
SNE-O-DBN approach demonstrated superior performance
compared with existing online systems.

D. RNN AND RELATED MODELS
Recurrent neural networks (RNNs) [108] are a type of feed-
forward neural network trained to generate an output by
combining the current input with the information of the pre-
vious iterations. An RNN model usually contains numerous
successive recurrent layers that are sequentially modeled to
map a sequence with others. Owing to the addition of loops,
RNNs have a strong capability to capture contextual data
from the sequence, and these data are effectively used in
classification process. However, RNN suffers from the prob-
lem of a vanishing gradient, which may hinder the learning
curve of the model, especially in long sequences. Long short-
term memory (LSTM) model [109], [110] is a popular RNNs
variation for tackling this problem by introducing memory
cells and gating mechanisms. These gates enable cells to
record information over any time interval by controlling the
flow of information into and out of the cell. After jointly
connecting the previous state, available memory, and current
input, the LSTM network can selectively activate and update
the cells, and each recurrent unit can adaptively capture
information at different time scales. LSTM has proven to
be successful in capturing order dependencies in non-linear
sequence classification problems.

Özçelik and Altan [111] proposed a model that combined
chaotic swarm intelligence optimization with recurrent long
short-term memory, which can avoid non-linear dynamics,
especially chaoticity in fundus images when determining
the severity of DR. There were four stages in the proposed
model. First, two-dimensional stationary wavelet transform
(2D-SWT) was used to reveal the characteristic features of
the images. Then, the statistical- and entropy-based feature
functions were applied to different matrices of the 2D-SWT
to extract 96 features. Subsequently, a chaotic-based wrapper
approach was used to select the features that maintained
high classification performance. At last, the recurrent neural
network-long short-term memory (RNN-LSTM) architecture
was created by selecting optimum feature vectors to achieve
the high classification performance. In addition, Spoorthi and
Rekha [112] designed a deep learning approach by combining
a DCNN and RNN-LSTM to classify DR into four stages,
inwhich aDCNNwas used as the feature extractor and LSTM
was used as the classifier. The output from the max-pooling
layer in the DCNN was passed to the next LSTM layer.

VI. DR CLASSIFICATION
Themain aims of DR classification can be divided into binary
classification for DR diagnosis and multi-class classification
for DR grading. In this section, we provide a short review
of recent literature on published DL models used in DR
classification tasks. And three standardmetrics, i.e., accuracy,
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TABLE 5. A summary of the major DL models for binary DR classification.

sensitivity, and specificity are used to evaluate the perfor-
mance of DL models in these studies.

A. BINARY CLASSIFICATION FOR DIAGNOSIS
Binary classification is primarily used to differentiate
between healthy and diseased individuals. Any DR is defined
as the presence of NPDR, PDR, DME, or a combination
thereof. Most models have been trained for binary classi-
fication tasks, such as the presence or absence of any DR,
referable DR (RDR) or non-referable cases, and severe DR
or non-severe DR. Table 5 summarizes the major DL models
for binary DR classification.

Many significant studies present from 2018 to 2020 [126],
[127], [128], [129], [130]. In [126], VGG16 was proposed
for DR identification using the loss function of binary cross
entropy. They compared two experiments, that is, the VGG16

combined with a linear SVM and VGG16 combined with
a softmax function as an output fully-connected layer, and
a higher sensitivity of 93% and specificity of 85% were
achieved by the former. Using the same EyePACS dataset,
Liu et al. [127] designed a CNN model by applying multiple
weighted paths into a convolutional neural network, named
WP-CNN (weighted paths-CNN), for referable and non-
referable DR identification. This binary classification exper-
iment finally obtained an accuracy of 91.05%, sensitivity
of 89.3%, and specificity of 90.89%. Chalakkal et al. [129]
developed a simplified approach for screening clinically
significant macular edema (CSME) using a combination
of pre-trained DCNNs and a meta-heuristic feature selec-
tion approach. The results indicate that Inception-ResNet-v2
yielded the best performance. Gangwar and Ravi [130] used
transfer learning on pre-trained Inception-ResNet-v2, and a
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custom block of CNN layers was added on top to design a
hybrid model to detect DR. The performance of this model
was evaluated on theMESSIDOR-1 andATOS 2019 datasets,
and a high accuracy of 82.18%was achieved for the latter one.

In 2022, a large number of related research in DR clas-
sification using DL method has emerged [88], [131], [132],
[133], [134]. In [88], Inception V3 was adopted to identify
severe DR and non-severe cases based on the recognition
of DR lesions. Owing to the large imbalance between cases
of severe DR and non-severe DR, a weighted random sam-
pling strategy was used to balance the positive and negative
cases in the training set. The Kaggle public dataset for DR
grading was used, and a sensitivity of 92.5% and specificity
of 90.7% were achieved. Padmanayana and Anoop [132]
designed a CNN architecture to classify images of DR or non-
DR, and different optimizers, such as Adagrad, Adam, and
RMSPROP with momentum, were used to compare the per-
formance of the model. Testing on the APTOS 2019 dataset,
the highest accuracy of 94.6%, the sensitivity of 86%, and the
specificity of 96% were respectively obtained. An additional
private hospital dataset was also used for testing, an accuracy
of 94.6%, sensitivity of 88% and specificity of 97% were
obtained. Macsik et al. [133] proposed a new local binary
convolutional neural network (LBCNN) deterministic filter
generation approach, in which fewer learnable parameters
and less memory were useful for enhancing the performance
of the standard CNN. These experiments were evaluated on
the EyePACS and APTOS datasets, and the performance of
the LBCNN with 24 fixed filters outperformed that of all the
other DL models in this study. Farag et al. [134] proposed
a model by combing DenseNet169’s encoder to construct a
visual embedding and convolutional block attention module
(CBAM) to enhance its discriminative power. They applied
their algorithm to APTOS dataset for binary and multi-class
classification tasks. On the binary classification for DR or No
DR, accuracy of 97%, sensitivity of 97% and specificity of
98.3% were achieved. Moreover, this network also showed
high accuracy of 82% for severity grading.

B. MULTI-CLASS CLASSIFICATION FOR GRADING
Multi-class classification is commonly defined as assigning
a fundus image to different disease stages according to the
most severe grade in both eyes of each patient. As described in
Section II, DR is graded according to a five-level protocol: no
DR, mild NPDR, moderate NPDR, severe NPDR, and PDR.
In this section, we present research regarding published DL
models for multi-class classification of DR. Table 6 summa-
rizes the major DL models for multi-class DR classification.

In 2018, Wan et al. [135] adopted transfer learning and
hyper parameter tuning on the pre-trainedmodels of AlexNet,
VGGNet, GoogleNet, and ResNet for DR classification. The
models were fine-tuned using the EyePACS dataset. The best
results, with an accuracy of 95.68%, sensitivity of 86.47%,
and specificity of 97.43% were obtained from the pre-trained
VGGNet.

In 2019, Hagos and Kant [89] used a small subset of
the EyePACS dataset to train Inception V3 for 5-class clas-
sification. The inception modules in this model enabled
different-sized feature extraction from the input images in
one of the convolution layers. A high accuracy of 90.9%
was achieved. Qummar et al. [117] trained an ensemble
architecture of five deep CNN models (ResNet50, Incep-
tion V3, Xception, Dense121, and Dense169) to classify
the DR stages. This ensemble architecture can encode rich
features to improve classification performance. The experi-
mental results show that the proposed model can effectively
identify five stages of DR, and its performance outperforms
that of other common models trained on the same Kaggle
dataset. Zhang et al. [120] built an automatic grading system
to evaluate the DR severity using two strategies. The first
strategy consisted of two phases. In the first phase, a binary
classification was performed to identify abnormal and normal
images via Xception, and in the second phase, a ternary clas-
sificationwas used to evaluateDR severity based on the above
abnormal images using ResNet50. The other strategy was a
four-class model based on all fundus images using ResNet50
and DenseNet. A high sensitivity of 98.1% and specificity of
98.9% were achieved by the DenseNet. Harangi et al. [136]
graded DR stages by combining hand-crafted features with
AlexNet. The Kaggle dataset was used for training and the
IDRiD dataset was used for testing. Classification accuracies
of 90.07% and 96.85% were achieved for the 5-class DR and
the 3-class DME tasks, respectively.

In 2020, Tymchenko et al. [137] applied a multistage
approach to transfer learning to detect the stages of DR.
They built a deep ensemble CNN architecture by combin-
ing 3 CNN architectures (EfficientNet-B4, EfficientNet-B5,
and SE-ResNeXt50) and transfer learning. To train the
encoder based on a small amount of training data, ImageNet-
pre-trained CNNs were used for the initialization. The
training process was performed on the APTOS 2019, IDRiD,
and MESSIDOR datasets and the model was tested on the
EyePACS dataset with a sensitivity of 99.3% and speci-
ficity of 99.3% too. Mishra et al. [138] used a pre-trained
DenseNet with quadratic weighted kappa (QWK) on the
APTOS 2019 dataset to automatically detect the DR stage and
finally got an accuracy of 96.1%. Comparing the accuracy of
73.26% fromVGG16 architectures trained without QWK and
ImageNet, the QWK can significantly enhance the accuracy
of DenseNet architecture. Tu et al. [139] proposed a fea-
ture separation and union network (SUNet) for simultaneous
DR and DME grading. SUNet contained a feature-blending
block with two parts: feature separation and feature union.
In the feature-separation part, task-specific features for lesion
detection and DR/DME grading can be learned, whereas
in the feature-union part, these features can be aggregated.
Thus, irrelevant features can be extracted and used for related
tasks to improve the performance of each task. Experiments
on the IDRiD dataset demonstrate that SUNet significantly
outperformed some existing models, such as VGG19 and
ResNet34, for both DR and DME grading.
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TABLE 6. A summary of the major DL models for multi-class DR classification.
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TABLE 6. (Continued.) A summary of the major DL models for multi-class DR classification.

FIGURE 5. General DL models and datasets used in DR classification between 2018-2023.

In 2021, Islam et al. [140] developed a customized CNN
model based on a pre-trained VGG19 combined with a
channel-wise attention-like module to detect DR severity.
The features extracted from VGG19 were passed into this
module to obtain detailed semantic features of different DR
severities. The fundus images were preprocessed and down-
sampled to overcome the problem of dataset imbalance before
feature extraction and classification. The results show that
proposed model achieved the best evaluation accuracy of

95.4%. Sugeno et al. [141] developed a DR severity grading
system using a pre-trained EfficientNet-B3 on the APTOS
2019 dataset. In this model, the blurred and duplicated images
were removed from the input dataset by a numerical thresh-
old, which made a classification accuracy of 98% for severity
grading. Tariq et al. [142] applied transfer learning and
AlexNet, GoogleNet, Inception V4, Inception-ResNet-v2,
and ResNeXt50 for a five-level classification of DR. Because
ResNeXt50 adopted a squeeze and excitation (SE) block for
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each non-identity branch of a residual block, the best classi-
fication accuracy of 97.53% was achieved by the pre-trained
Se-ResNeXt50. Alyoubi et al. [143] built a deep CNN512
model for DR grading, in which the entire image was used as
an input to identify its stages. The accuracies of 88.6% and
84.1%were achieved for the DDR andAPTOS 2019 datasets,
respectively.

In 2022, Cao et al. [91] proposed a ResNet-based network-
workable scheme for DR classification. In this model, the
feature information of the hidden layer can be enhanced by
modifying the structure of the residual blocks and by adding
an attention mechanism. A higher accuracy of 91.3% was
achieved, which outperformed those of the original models.
Suedumrong et al. [92] used transfer learning combined
with GoogLeNet and VGG16 to identify five stages of
DR. The experimental results show that VGG16 with fine-
tuning can achieve a higher accuracy of 71.65% than that
of GoogLeNet. Albahli and Yar [144] adopted three pre-
trained models, that is, ResNet50, VGG16, and VGG19,
to identify both DR severity and the risk of ME. The best
accuracy of 82.5% was achieved by ResNet50 performed
on original images. Bilal et al. [145] designed a novel two-
stage framework for DR grading based on lesions with no
signs (normal), microaneurysms (mild), hemorrhages (mod-
erate), and exudates (severe). First, the optic disc and blood
vessels were segmented and extracted using two distinct
U-Net models. The preprocessed fundus images were then
used as inputs for the pre-trained VGGNet. The proposed
model was evaluated on the EyePACS-1, MESSIDOR-2,
and DIARETDB0 datasets, and the corresponding accuracies
were 96.60%, 93.95%, and 92.25%, respectively. Islam et al.
[146] proposed a supervised contrastive learning (SCL)
method, that is, a two-stage trainingmethodwith a supervised
contrastive loss function to identify DR and its severity.
The APTOS 2019 and MESSIDOR-2 datasets were used
to validate the performance of the model. Finally, a better
accuracy of 84.36% for grading fiveDR stages on the APTOS
2019 dataset was achieved. Kale and Sharma [147] designed
an ensemble model by stacking two convolutional models
that were trained on a DR dataset. The first model was
trained using transfer learning on VGG19 and the second
model was trained using transfer learning on VGG16. This
ensemble model demonstrated better results, with accu-
racy of 87% in identifying DR stages. Priya et al. [148]
proposed a deep long short-term memory (LSTM) in a
neural network with Red Fox optimization (deep LSTM-
RFO) algorithm for classifying normal, mild, moderate, and
severe NPDR stages. The proposed method was tested on
three datasets such as MESSIDOR, STARE, and DRIVE.
The MESSIDOR dataset showed 97.59% accuracy, 97.61%
sensitivity, and 97.03% specificity. Likewise, the STARE
provided 97.89% accuracy, 98.47% sensitivity, and 97.43%
specificity. Finally, 94.03% accuracy, 94.26% sensitivity
and 94.74% specificity were obtained by using the DRIVE
dataset. In addition, this approach showed less execution

time and lower computational cost than some existing
methods.

In 2023, Nahiduzzaman et al. [149] proposed a paral-
lel CNN (PCNN) for feature extraction, in which the time
required to extract distinctive features can be reduced using
fewer parameters and layers. These features were used for DR
severity classification using the extreme learning machine
(ELM) technique. The model was validated on the Kag-
gle DR 2015 and APTOS 2019 datasets with accuracies of
91.78% and 97.27%, respectively. Lin and Wu [150] com-
pared the performance of the revised ResNet50, Xception,
AlexNet, VGGNet, VGG16, and ResNet50 for DR grading.
In the revised ResNet50, the standard operation procedure
(SOP) was used for fundus image processing, and an adap-
tive learning rating was adopted to adjust the weight of
the layers. These techniques effectively enhanced the accu-
racy of the revised ResNet50. Jian et al. [151] proposed the
triple-cascade network model (Triple-DRNet) for DR grad-
ing. This model consisted of three individual subnetworks:
DR-Net, PDR-Net, and NPDR-Net. The first network was
designed to distinguish between DR and No DR, the sec-
ond network was designed to distinguish between PDR and
NPDR, and the third network was designed to distinguish
mild, moderate, and severe NPDR. Finally, Triple-DRNet
was evaluated on the APTOS 2019 dataset, and its accu-
racy reached 92.08%. Alwakid et al. [152] used CLAHE
and the enhanced super resolution generative adversarial net-
works (ESRGAN) to generate high-quality images for the
APTOS and DDR datasets. And a pre-trained DensNet-121
was used for DR stages classification. Finally, an impressive
98.7% accuracy for APTOS dataset and 79.6% accuracy for
DDR dataset were achieved when using these preprocess-
ing approaches. Beevi [153] used SqueezeNet and DCNN
to provide a two-level classification strategies of DR. First,
Squeezenet was used to classified the fundus image into
the normal or abnormal class of DR, in which Fractional
War Strategy Optimization (FrWSO), i.e., War Strategy Opti-
mization (WSO) combined with Fractional Calculus (FC)
tuned the SqueezeNet. Second, DCNNwas used to determine
the severity level for the abnormal images, in which the
Fractional War Royale Optimization (FrWRO) algorithm by
combing Battle Royale Optimization (BRO) with FrWSO
can adjust the weight of the DCNN. The results show that
the accuracy, sensitivity, and specificity of the proposed
approach were 91.1%, 89.8%, and 91.3% for categorizing
the severity level of DR. Due to dataset imbalances or lim-
ited computational resources in some DR detection system,
Wahab Sait [154] developed a lightweight deep-learning
(DL)-based DR-severity grading system named MobileNet
V3-Small model. You Only Look Once (Yolo) V7 tech-
nique was used for feature extraction process and a tailored
quantum marine predator algorithm (QMPA) was used for
selecting appropriate features. The proposed model was
evaluated on the APTOS and EyePacs datasets. The out-
comes reveal that the proposed model achieved an accuracy
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of 98% and 98.4% in the APTOS and EyePacs datasets,
respectively.

VII. CHALLENGES
Despite striking advances, many challenges remain for deep
learning in DR classifications. First, lack of high-quality
labeled data. Currently, the data currently used for DR clas-
sification are mostly public datasets and most of the data
only include the target disease or only one single race, which
means that it cannot reflect the real clinical status and obvi-
ous ethnic differences among people. Insufficient data or
imbalances between different classes are common problems
in some public datasets. Consistency of labeling and grading
in clinical practice is difficult to achieve. Second, interpre-
tation of DL models and clinical understanding is difficult.
As DL models perform recognition and classification based
on the features of images extracted by multi-layer non-linear
structures, DL systems are often criticized for being non-
transparent. The detailed mechanisms within the architecture
and their clinical significance are not well understood. Third,
DL applications in clinical practice have ethical limitations.
It is unclear who is responsible for the erroneous diagnostic
results when using DL methods.

VIII. FUTURES DIRECTIONS
In this section, we provide some directions for future
research. First, building a more sophisticated dataset is one
of the main directions. Enhancing the variety of fundus
images regarding image capture devices, ethnic groups, and
multiple categorical retinal diseases as well as the balance
between different classes during data collection can improve
the generalization ability of DL models. Ophthalmologists
need to work together to develop a disease specific consen-
sus and subsequently provide a comprehensive standard for
labeling fundus image in diagnosis and grading. Second, the
successful adoption of deep learning in DR classification
requires medical professionals to understand its underlying
principles and techniques. Thus, closer collaboration between
AI experts and ophthalmologists could make DL techniques
more transparent and easier to understand. Third, there is
also a trend to develop cost-effective DR detection sys-
tems by designing more lightweight architectures and using
micro portable devices, such as Raspberry Pi or smartphones,
to assist large-scale DR screening at primary health centers
with a lower cost.

IX. CONCLUSION
In this study, we provide a comprehensive review of recent
advances in deep learning-based research on DR classifi-
cation based on fundus images. Some key findings can be
obtained. First, there is an obvious trend that transfer learning
is an outstanding strategy for overcoming the issue of the
limited data samples available during model training. With
the help of transfer learning techniques, a number of pre-
trained networks are accessible to support DR analysis. Both
the training time and robustness of themodel can be improved

by training with parameters from the pre-trained model. Sec-
ond, CNN models of ResNet and VGGNet are the most
popular frameworks used for DR classification. The depth
of the ResNet- and VGGNet-based networks can reach tens
or even hundreds of layers, which can provide outstanding
classification results. The APTOS 2019 and EyePACS are the
most widely used datasets for DR classification. Third, some
lightweight DL architectures like SqueezeNet andMobileNet
have been proposed for DR classification tasks, especially for
limited data resources and computational capabilities. These
architectures can greatly reduce parameters while ensure
model accuracy in the complicated image analysis. Although
deep learning has achieved or surpassed human-level accu-
racy in DR diagnosis and grading, there is still a long way to
go in real clinical workflows. Further improvements in model
interpretability, trustworthiness from ophthalmologists, and
cost-effective and reliable DR screening systems are needed.
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