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ABSTRACT Automation improves the quality of fruits through quick and accurate detection of pest and
disease infections, thus contributing to the country’s economic growth and productivity. Although humans
can identify the fruit damage caused by pests and diseases, the methods used are inconsistent, time-
consuming, and variable. The surface features of fruits typically observed by consumers who seek their health
benefits affect their market value. The issue of pest and disease infections further deteriorates fruits’ quality,
becoming a mounting stressor on farmers since they reduce the potential revenue from fruit production,
processing, and export. This article reviews various studies on detecting and classifying damages in fruits.
Specifically, we review articles where state-of-the-art approaches under segmentation, image processing,
machine learning, and deep learning have proved effective in developing automated systems that address
hurdles associated with manual methods of assessing damage using visual experiences. This survey reviews
thirty-two journal and conference papers from the past thirteen years that were found electronically through
Google Scholar, Scopus, IEEE, ScienceDirect, and standard online searches. This survey further presents a
detailed discussion of previous research done in the past while emphasizing their strengths and limitations as
well as outlining potential future research topics. It also reveals that much as the use of automated detection
and classification of fruit damage has yielded promising results in the horticulture industry, more research
is still needed with systems required to fully automate the detection and classification processes, especially
those that are mobile phone-based towards addressing occlusion challenges.

INDEX TERMS Fruit damage detection, classification, deep learning, image analysis, segmentation.

I. INTRODUCTION However, pests have intensified over time, becoming a

A. BACKGROUND OF CITRUS FRUIT DAMAGE DETECTION
The horticulture industry plays a vital role in the economic
growth of a nation [1]. Like other African nations, the
horticulture industry remains the backbone of Uganda’s
economy to achieve inclusive development, with more than
60% of the population engaged in the sector providing
approximately 24% of gross domestic product (GDP) [2].
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mounting stressor on farmers due to damages caused to plants
grown [3].

The potential revenue from fruit production, processing,
and export for farmers has been impacted by fruit loss caused
by pests and diseases [4]. Fruit analysis for a variety of
aspects is essential to increasing quality and reducing waste.
Automated computer vision and image processing techniques
have been applied to pre- and post-harvesting procedures to
enable prompt analysis of damage inflicted on fruits. Fruits
have great relevance for humans because of their nutritional
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value, such as being a source of vitamins A, C, Bl, and
B-9 [5], [6]. This has greatly improved research in the
analysis and processing of fruits, as it feeds into horticulture
industries, thus improving the economic sectors of different
nations. Various studies have attempted to develop methods
that automate fruit processes such as detection, classification,
and estimation of quality yields, among others [7]. Usually,
the damage inflicted on fruits is due to pests and disease
infections, affecting their quality for use in the production
and marketing sectors. The fruit industry depends on early
identification of fruit damages and the causing conditions
to prevent them from spreading from one fruit to another,
which results in extreme fruit yield declines and substantial
economic losses [6], [8].

Annually, a large proportion of export fruit is rejected due
to signs of damage caused by pests and disease infections.
This causes losses to farmers as quarantine restrictions are
imposed by fruit-importing countries that, in turn, hamper
horticulture trade, especially between African and developed
nations [9]. These pests have become a significant constraint
in production and marketing, with their management cited
as a challenging issue worldwide [6], [9]. For instance,
an ICIPE-led African Fruit Fly Programme assessment
revealed that out of 1.9 million tonnes of mangoes produced
in Africa annually, about 40% are wasted due to fruit fly
damage [9]. As aresult of such damages to fruits, diseases and
pests have imposed substantial danger to farming, causing
deterioration of the quality of fruits and sometimes even
endangering the orchards [10]. This has called for the need
to alleviate challenges associated with manual methods of
assessing and investigating fruit quality, which is based on the
visual experiences of trained professionals. These methods
are inconsistent, time-consuming, labour-intensive, tedious,
cost-intensive, and subjective [11], [12], [13] yielding low
efficiency and unstable accuracy, thus the need for timely and
automated identification systems to quickly and accurately
detect and diagnose fruit damage infections and reduce such
losses and associated costs [14]. Research done on the use
of non-destructive techniques (NDTs) in evaluating damage
to fruits has led to better accuracy from rich information
collected at different wavelengths. NDTs detect the internal
state of objects without destroying them [15]. However, these
techniques rely on costly equipment, making them unsuitable
for field use [12], [16] when capturing fruit images and
identifying associated damages. These techniques are based
on physical properties that correlate well with certain quality
factors of fruits without rupturing the tissue [17]. This has
led to the need to use low-cost tools for detecting surface
defects such as black spots, cankers, scabs, greening, rot,
discolouration, and bruising [ 18] using conventional machine
learning techniques that use shallow learning. Machine
learning is a preferred and efficient technique to perform
various tasks such as segmentation and classification [19].
However, state-of-the-art deep learning techniques have also
been recently used [20], [21] due to their ability to extract
features directly from datasets [22].
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Generally, fruit damage detection is considered a vital area
of research. Several authors are researching ways to improve
the quality of fruits and further reduce waste from pests and
disease infections.

B. OVERVIEW OF AUTOMATED APPROACHES FOR FRUIT
DAMAGE DETECTION

The automated inspection of quality in fruits using computer
vision and machine learning is becoming of paramount
importance to address challenges associated with a visual
inspection that is inconsistent, destructive, and involves
tiresome processes that require skilled labour for orchard
management [23] when assessing damages [24]. Due to these
challenges, automated systems have been developed [14]
using image processing, machine learning, and state-of-the-
art deep learning-based approaches with precise technologies
in some cases used to avoid damage aggravation that could
further result in fatal losses [14], [24].

The automated approaches that use conventional machine
learning techniques use hand engineering of features to
extract features, which are fed as inputs to models [25] such
as SVM [26] and Fuzzy learning [27] among others. The
performance of these models depends on extracted features
such as textural, colour, and shape, a task that is challenging
when identifying those features since they are invariant
due to different imaging conditions that are found in fields
such as rotation, scale, and translation. Recent research is
directed towards using state-of-the-art deep learning-based
approaches due to their ability to extract features within
different semantic levels that give good adaptability to
various working scenes [22] learning features directly from
bigger datasets where models such as CNN [28], YOLO-V4,
EfficientNet, MobileNet-V2, ResNet-50, DenseNet-169 [23]
have been developed for damage detection of fruits in
orchards and at post-harvest levels. The concept of automated
feature extraction exhibited by deep learning models has
improved the performance of models when performing tasks
such as detection and classification to improve accuracy
while developing robust models [23].

Machine learning has also been integrated with other
cutting-edge technologies, like the Internet of Things (IoT),
to enrich agricultural production across the entire ecosystem.

C. IOT (INTERNET OF THINGS) FOR FRUIT DETECTION
AND STATUS MONITORING OF FIELDS

The use of IoT in agriculture, also referred to as Agri-
cultural IoT applies IoT technology in the agricultural
production chain, which brings together sensing, computing,
and implementing devices to aid in automating specific
farming operations [29]. The use of machine learning-based
approaches and the Internet of Things (IoT) in horticulture
during orchard management has the prospect of revolution-
izing agriculture by fostering decision-making through the
analysis of data collected by IoT sensors used to transmit
data from an aground point to a destination point where
farmers acquire alert notifications about the status of their
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fields [30]. IoT in horticulture has helped in realising the
success of automation of processes such as communication
of one orchard to another to aid in managing big farms [31].

IoT, one of the emerging technologies in agriculture, has
been applied in many areas, such as intelligent agricultural
machinery, growth monitoring, and plant life information
monitoring. This information relates to air temperature,
air humidity, CO2 concentration, light intensity, soil tem-
perature, humidity, and soil PH as collected by various
sensors to obtain real-time environmental information about
the field [32]. Thanks to developments in the domains
of hardware and algorithm optimization, real-time fruit
identification and damage evaluation are now achievable.
This is particularly important in industrial settings where
rapid processing is crucial for efficiency. Recent research has
indicated several developments that indicate the impact of
integrating image processing, machine learning, deep learn-
ing, and IoT-based technologies in the areas of fruit detection
and assessing associated damages for the best utilization of
sensor datasets collected. For instance, Behera et al. [33]
developed a framework that uses both image processing
and IoT system with components including a camera,
amobile phone IoT gateway, and an image processing system
for on-tree fruit monitoring, including counting and size
estimation, with a coefficient correlation of 0.994 and 0.997,
respectively. Onishi et al. [34] also designed an apple-picking
robot that uses a single-lens multi-box detection approach
to detect fruits on the tree and then a stereo camera for
detection of the position of the fruits. Kang and Chen [35] also
developed a framework for detecting apples to be harvested in
orchards using a harvesting robot vision sensing system that
detects and localises fruits to be detached from trees. An auto-
label generation module was used, and a deep-learning-based
fruit detector (LedNet) which adopts feature pyramid network
and atrous spatial pyramid pooling for enhanced detection
performance of the model with LedNet attaining 0.821 and
0.853 on recall and accuracy respectively on apple detection
in orchards. Furthermore, Wang et al [36] developed an
apple growth monitoring system in an orchard for apple
size remote estimation throughout the entire growth period
using image datasets acquired regularly with a remote apple
growth monitoring hardware system built with a spherical
video camera. Segmentation of images was done using an
edge detection network with fused convolutional features.
The system attained an F1 score of 53.1% and a mean average
absolute error of the apples’ horizontal diameters of 0.90 mm.

D. NON-DESTRUCTIVE METHODS IN EVALUATING FRUIT
DAMAGE

Non-destructive methods have been explored in the detection
of pest and disease infections in fruits, despite their costly
nature [37]. For instance, hyperspectral imaging (HSI)
has been seen as a promising technology to detect fruit
fly infestations when they are still in small numbers.
Saranwong et al. [38], developed an approach that uses
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partial least squares discriminant analysis models to detect
fruit fly eggs and larvae in intact mangoes using different
wavelengths and obtained an error rate of 4.2%. Haff et al. [4]
further applied HSI using hyperspectral data to assess fruit
fly larvae infestation in mangoes using Bayesian discriminant
analysis for classification obtaining classification rate for
infested and healthy fruits as 99.1% and 94.3%, respectively.
Jamshidi et al. [39] investigated the use of visible / near-
infrared spectroscopy in conjunction with pattern recogni-
tion methods (PCA-DA) to detect internal infestation in
pomegranate fruits caused by Carob Moth larvae. The method
attained a classification rate of 90.6%. Vélez Rivera et al. [13]
also developed an HSI system to detect mechanical damage
induced in mango fruit at an early stage. Naive Bayes,
Decision Trees, Linear Discriminant Analysis, and K-Nearest
Neighbor classifiers categorized mangoes as damaged or
sound obtaining accuracy of 67.46, 84.63, 89.27, 89.76 and
94.87 respectively on the first day and the scores increased
over seven days after damage induction. K-NN and LDA
were the best at performance obtaining 97.5% and 95.54%
by day 3.
The commonly used Non-destructive techniques in evalu-
ating fruit damage are discussed below:-
1) Biospeckle technique
This technique is a relatively new non-invasive, non-
destructive, low-cost, and simple optical method that
works based on optical properties to study biological
materials. It has various biological or non-biological
processes when laser light is incident on a substance.
Biospeckle is a situation that occurs when a biological
material is illuminated by coherent light, causing light
to be backscattered from an optically coarse surface.
From the observation plane, bright and dark areas
are displayed. Using laser light when the objects are
illuminated, the optical intervention effect is observed,
which is granular in appearance, with light and dark
speckles formed due to constructive and destructive
interference, discretely of scattered laser light [40]. This
technique has been used in fruit damage assessment to
examine the quality properties of plants such as damage,
ageing, or disease infections [41].
2) X-ray imaging
This is a non-invasive machine vision technology
that detects internal defects of fruits during food
inspection using electromagnetic radiation that works
with wavelengths that range from 0.01 to 10nm with
a powerful ability to penetrate through fruit products
with the potential to inspect internal disorders of fruits
in high-resolution [42]. This imaging technology has a
competitive edge since it can penetrate through most
objects with a frequency and energy range of 30-30000
Peta Hz and 0.12-120 keV, respectively. It computes
the levels of fruit damage through defect volume
calculation though it’s quite an expensive imaging
technique hindering its use in agricultural products. It is
further associated with the risk of X-ray leakage, posing
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a health hazard to operators with difficulties acquiring
fruit images from many angles in real-world applications
making it difficult to compute for volumes [43].

3) Hyperspectral imaging
This is used in analysing a wide spectrum of light instead
of just assigning primary colours (red, green, blue) to
each pixel, with the light that strikes each pixel broken
down into many different spectral bands to provide
more information on what is imaged. It captures spectral
information from an object at a high spatial resolution.
In HSI, the unique colour signature of an object can
be detected. Unlike other optical technologies that can
only scan for a single colour, HSI can distinguish the
full-colour spectrum in each pixel. Therefore, it provides
spectral information in addition to 2D spatial images.
In fruits, it captures images across a wide range of
wavelengths, providing a spectrum for each image pixel.
Analysis of the spectral information using hyperspectral
imaging provides detailed information about the chemi-
cal composition, structural properties, and quality of the
fruit [44]. However, it is a time-consuming technique
requiring complex data processing with low flexibility
of multivariate models [18].

4) Spectroscopy
Spectroscopy is an imaging technique that studies
the interaction of light and matter. Various types of
spectroscopy exist that rely on the ability of atoms and
molecules to absorb or emit electromagnetic radiation.
This interaction is according to a certain wavelength
and associated with radiation energy with the spectral
wavelength normally denoted by a spectrum series
representing wavelength or frequency. Classifications of
spectroscopy are according to:- the type of radiation
energy, type of material, nature of interaction and so
on. As a non-destructive method, it evaluates fruit
damage without causing any physical harm to the fruit
by analysing the interaction of light with the fruit and
providing information about the chemical composition,
structural properties, and quality of the fruit [44]. It has
been used in several applications such as the detection
of hollow-heart in citrus fruit, and assessing the quality
parameters such as colour, sugar content, and acidity.
Some of the commonly used spectroscopy techniques
include visible and infrared spectroscopy, visible and
ultraviolet spectroscopy, and near-infrared spectroscopy
(NIRS). These techniques are based on the principle
that different wavelengths of light interact differently
with the fruit, depending on the chemical and physical
properties of the fruit.

5) Thermal Sensing
This is one of the non-destructive techniques that have
emerged as powerful tools in analysing agriculture and
food industries through monitoring temperatures. Ther-
mal imaging analysis works by converting the radiation
pattern of a sample based on the temperature differences
in the objects being studied [45]. Thermal imaging
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creates a bit-map called a thermogram by detecting
infrared radiation emitted from an object. It has been
used in many areas including post-harvest quality,
crop yield, temperature monitoring, pathogen detection,
chilling damage to the fruits, crop maturity estimation
and crop yield estimation among others [46]. Defects
such as chilling injuries do not change fruit colour yet
most of the current algorithms for traditional computer
vision systems are based on manually designed features
that involve colour or texture and thus are not suitable for
detecting such defects hence the need for other imaging
systems such as thermal imaging which obtains up to 4X
speed in training time compared to RGB images [22].

This study aims to identify, analyze, classify, and discuss
the current state-of-the-art techniques for detecting fruits in
orchards and assessing associated damages as reported in
scientific literature indexed in databases such as Scopus or
Web of Science. In summary, this article, therefore, focuses
on the following specific contributions:

1) Systematic collection and analysis of research works
about automated fruit damage detection through the
application of machine learning, deep learning, and
image processing approaches.

2) Identifying and delineating the integration of IoT
components with deep learning-based techniques in hor-
ticulture while addressing privacy concerns for farmers
stemming from the management of large datasets.

3) Lastly, we then give recommendations for diverse
avenues aimed at enhancing automated assessment and
monitoring in orchards.

The remainder of this work is structured as follows:
Section II discusses the research methods, where the search
strategy, inclusion, and exclusion criteria to obtain relevant
studies are specified. Section III introduces the literature
review. The different sub-sections are created, indicating the
reviews under each of them. Section IV then discusses the
challenges and privacy issues inherent to the automation of
fruit detection and associated damages. Section V briefly
illustrates standard databases with data sets that can be
used by researchers to study the automation of fruit
detection. A comparison is also done, specifying the different
parameters under each of the databases. VI then shows the
metrics commonly used in evaluating model performance.
Section VII then discusses the main findings, current
challenges, and recommendations. Section VIII presents the
conclusions of this review and IX the future work researchers
can explore.

Il. RESEARCH METHODS

This section serves to introduce the strategy and methods
utilized to find pertinent research for this review article.
The articles reviewed have been analyzed to identify current
research trends and directions by detecting the unexplored
research areas, and those areas that have not been extensively
explored.
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A. SEARCH STRATEGY

This survey reviewed articles related to the application of
image processing and analysis, machine learning and deep
learning in the automated detection of fruits and assessment
of damages inflicted on them. Many articles were obtained
electronically through scientific databases including Google
Scholar, IEEE, Scopus, and ScienceDirect. General internet
searches were also conducted to obtain datasets that hadn’t
been put into specific repositories. Such information is hard
to find, and yet searching more broadly helps in retrieving
it if using previous strategies that search from specific
databases has failed. This is because people sometimes make
information available through sources such as sites that are
related to subjects, including research groups or projects.
Such information is best retrieved using general internet
searches done across the internet.

From the sources searched, several articles were retrieved,
and the most relevant were filtered, leaving 32 of them as
guided by the inclusion and exclusion criteria. The automated
identification of damages and defects in fruits starts with
detecting fruits being analyzed. As such, literature about the
techniques that have been used in the past to detect fruits,
especially while still on trees, has been reviewed, as indicated
in Table 4. More literature about the use of conventional
machine learning and deep learning for automated damage
detection in fruits has been explored, as seen in Tables 2 and 3
respectively.

The keywords used in the search criteria of articles
extracted from different databases selected include a set
combination of the following keywords:

1) Deep learning, quality assessment and fruit damage

2) Fruit damage detection, machine learning, image

processing.

3) Fruits defect detection, image analysis, machine

learning.

B. INCLUSION AND EXCLUSION CRITERIA

The inclusion/exclusion criteria are used in this work to help
strengthen the search process towards attaining quality and
relevant information for the study being researched. The
inclusion/exclusion criteria were mainly focused on literature
about automated fruit and damage detection in fruits using
machine learning-based approaches. This was done in studies
that used techniques that analysed the features of fruits at both
pre- and post-harvest stages. However, because such damage
detection first originates from detecting the fruits themselves,
studies about automated detection of fruits, especially when
still in the orchards, are further reviewed. Hence, articles
that did not meet these criteria were excluded. Poster papers
were also excluded from the review to avoid duplicating
the information obtained, especially in the full-text articles
retrieved. The search spanned 2010 to date, with all articles
outside the range left out. This search looked at articles only
authored in the English language. An overview of a full
description of the inclusion and exclusion criteria used in this
work is described in Table 1.
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C. DATA EXTRACTION, AND ITS ANALYSIS

After attaining relevant information from articles that met
the inclusion criteria, different data elements were extracted
and populated in a tabular structure with columns repre-
senting authors & year research was done, research goal,
dataset, features used, techniques/models, and performance
evaluation metrics. This is illustrated in Table 2 and Table 3
enumerating those studies done under machine learning and
deep learning respectively that have looked at automated
detection of fruits and associated defects/damages on them.
Furthermore, a general survey is done to identify past reviews
on automated fruit detection, and associated damages, fruit
classification, and quality classification.

Ill. LITERATURE REVIEW
The literature under this survey has been organised into
different sub-sections:
1) III-A Existing surveys on automated detection of fruits
and damages
2) III-C:- Application of image analysis techniques for fruit
damage detection
3) II-D:- Classical machine learning for fruit damage
detection
4) II-E4:- Application of CNN architectures and tech-
niques for fruit detection and associated damages

A. EXISTING SURVEYS ON AUTOMATED DETECTION OF
FRUITS AND DAMAGES

Numerous reviews have been done in the past aiming at
in-field fruit detection, damage assessment, grading quality
of fruits [7], [11], [56], and fruit yield estimation [57]
using image processing machine learning, deep learning-
based approaches, and non-destructive techniques [42]. For
instance, Naik and Patel [58] presented a review of the pro-
cess of fruit classification and grading using machine vision
and classification techniques. Feature extraction methods:-
Speeded Up Robust Features, Histogram of Oriented Gra-
dient and Local Binary Pattern were also discussed, with
features:- color, size, shape and texture being the commonly
extracted ones to be fed into classifiers like K-nearest
neighbour (KNN), Support Vector Machine (SVM), Artificial
Neural Networks (ANN) for specifying quality of fruits.
Gongal et al. [59] also reviewed machine learning techniques
ANN, KNN, SVM, Bayesian classifier, and K-means cluster-
ing for detecting fruits on trees. The study further summarizes
sensors and systems developed to localize fruits, with major
challenges in the application of computer vision for robotic
fruit harvesting and crop-load estimation discussed. Dubey
and Jalal [60] then surveyed various approaches used in fruit
and vegetable segmentation and classification using image
processing machine learning approaches in the identification
of fruit disease. The review considered a single type of fruit
and one type of disease. Bhargava and Bansal et al. [5] also
presented a review of various preprocessing, segmentation,
feature extraction, and classification techniques with the
use of machine learning and image processing approaches
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TABLE 1. Inclusion and Exclusion Criteria.

No Inclusion

Exclusion

1 The paper should be written and
published in English language

Papers authored that are written in
other languages other than English

should be included in the paper.

2 Papers published in peer-reviewed journals or conference pro- | Papers published in non-peer review journals or conferences
ceedings

3 Papers published from 2010 to date Papers published before 2010

4 The paper shows work carried out on fruit damage and defect | Articles using machine learning for non-invasive detection of

detection. The machine learning approaches and systems used

damages in fruits.

for determining fruits and vegetable quality using colour,
texture, size, shape, and defect features. A comparison of the
performance of various algorithms by different researchers
in the evaluation of fruit and vegetable quality was also done
with a recommendation to consider capturing images from
different directions. Dhiman et al. [11] further reviewed fruit
quality evaluation, emphasizing popular machine learning
techniques. The review revealed that shape, size, color,
or texture features are commonly extracted and then fed
into classification techniques including a k-nearest neighbor,
support vector machine, and neural network for fruit quality
assessment. Syal et al. [61] also stress the procedure of fruit
detection as the extraction of handcrafted features such as
colour, texture, and shape that are fed into machine learning
models. Generally, the use of traditional machine learning
approaches for fruit detection and damage assessment follows
steps including image preprocessing, feature extraction, and
training of the models, with color and texture features being
the common inputs to the models built. However, since deep
learning models outperform traditional machine learning
due to their ability to autonomously learn hierarchical
features from raw data and the automatic extraction of
features, they have superior performance in complex tasks
such as managing unstructured and large datasets. Because
it has provided state-of-the-art results in smart farming
applications [57], several researchers have embraced its use.
Specifically, here we discuss reviews in fruit detection and
their assessment for quality. A review by Kamilaris et al. [62]
on the application of deep learning approaches in the
agricultural field indicated improved detection accuracy than
other image processing techniques in the field of agriculture.
Studies have indicated great use of CNN in various areas
of the agriculture sector, such as disease detection [57].
Naranjo-Torres et al. [7] reviewed the application of state-
of-the-art CNN models, including AlexNet, VGG16, and
GoogLeNet to various tasks in fruit image processing, includ-
ing fruit detection, their classification, grading, and quality
assessment. Results indicated an observation in the great
use of CNN for fruit recognition with the recommendation
that for complex tasks, the number of layers is increased
for improved feature extraction when working with both
pre-trained and new models using datasets with different
types of images. Authors in [63] also reviewed approaches
used in automated feature detection and classification of
fruits, with a focus on watermelon. They gave an overview
of the methods for the automatic recognition of fruits and
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their classification using machine learning and evolutionary
computational techniques in the analysis of sensed data in
the agro-industry. The study further developed an automated
watermelon recognition system using images, acoustic, and
spectroscopy methodologies. Wang et al. [64] reviewed
CNN-based detection methods applied to the entire produc-
tion process of fresh fruit including fruit flower detection,
fruit detection, fruit harvesting, and fruit grading. The CNN
architecture’s object detection was elaborated from the data
acquisition process to model training while comparing the
different detection methods at each phase of fruit production.
The findings here suggest that detection customized to
specific characteristics of each production stage may address
environmental challenges and optimise multitask operations
in fresh fruit production. Maheswari et al. [57] reviewed fruit
yield estimation approaches using deep learning semantic
segmentation architectures. The various steps such as fruit
detection, counting, sampling, capturing annotation, augmen-
tation, performance evaluation of models, and challenges
associated with these approaches involved in fruit yield
estimation are discussed. Findings suggest that transfer
learning and optimizing weights to train the architecture
in fruit detection and related tasks improve performance.
Kumar and Mohan [65] also reviewed the application of
deep learning models for fruit detection and localization
to aid in tree crop load estimation. This work looked at
approaches ranging from extrapolating tree image counts to
orchard yield estimation while dealing with occlusion. The
study recommended the use of standard metrics and publicly
available image datasets to enable comparison of models and
make transfer learning possible.

This review emphasizes the use of machine learning and
deep learning in fruit detection and damage assessment.
It encapsulates the progress achieved so far in automated
fruit damage detection and damage assessment. It further
incorporates a novel dimension that explores the latest
developments, including the integration of IoT and machine
learning. It then examines challenges and privacy issues,
components that limited reviews have attempted to explore
in the past.

B. AUTOMATED DETECTION OF DAMAGE IN FRUITS

Automated detection of fruit pests and disease infections
is necessary to determine their quality. This is done by
detecting various features that represent such infections and
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TABLE 2. Conventional machine learning for fruits damage detection.

Author Goal of study Dataset Feature Technique Performance measure
Bakar Detecting external skin | 500 mango images colour and texture Support Vector Ma- | Accuracy - 90.4%
etal. [20] defects of mangoes chine
Wang Detecting orange skin | 650 orange images Colour Linear SVM, RGB | Precision - 96.70%
etal.. [47] defects colour Space,
Fisher LDA
Nandi Classifying mangoes | 2184 images Colour Support Vector | Accuracy - 90%
etal.. [27] using surface defects Regression, Multi-
Attribute Decision
Making & Fuzzy
incremental
learning,
Thresholding
Golzarian Grouping mangoes | 60 images Texture K-means clustering | ROC curve - 93.3%
et al. [48] based on the size of
dark spots on the skin
surface
Truong Using machine learn- | 4983 of images Texture Random forest Accuracy - 98.1%
et al. [49] ing to grade the quality
of mangoes based on
external features
Behera Identity disease | 230 images Colour, texture, | Multi-class Accuracy - 92.17%
et al. [50] on apple, mango, shape and | SVM, K-means
orange, tomato and appearance clustering,
pomegranate fruits Gray-Level Co-
occurrence Matrix
Sahuetal [51] | Identify surface | 28 images Shape, size and | Image analysis al- | N/A
defects and detect colour gorithms developed
maturity of mango using MATLAB
fruits
Nadarajan Detecting bacterial | 100 image frames | Colour Watershed N/A
etal. [52] canker disease in | from a video algorithm, template
mangoes matching
Ahmed Segmentation of | 500 images Colour, texture and | K-means, Accuracy - 98%
etal. [53] lesions in mango fruits edge thresholding, edge-
based, Texture
and Colour-based
segmentation
Dubey Apple fruit disease | 431 images colour and texture K-means clustering | Accuracy - 93%
etal. [54] recognition
Habib Identifying papaya dis- | 128 images colour and texture K-means Accuracy - 90%
etal. [55] ease clustering, SVM
classifier

recognizing symptoms of pests and diseases as soon as they
appear on the growing fruits. These infections can develop on
fruits in the field and after harvest, leading to major losses in
yield and quality [60].

The edible and economic values of horticulture products
are affected when the damage affects fruits. This has made
quality detection in the horticulture industry a hot field to
research [15]. The growing demand for high-quality fruits
during the inspection process has led to many developments
in the use of automated computer vision approaches since
they are cost-effective and non-destructive [60] using image
processing techniques. Image preprocessing applies a series
of techniques to the raw input image to enhance its quality
and suppress undesirable features for better processing and
accurate feature detection [28]. In the fruit industry, this
would enhance the visual quality of image datasets that
are input into the model. Preprocessing is applied to image
datasets to deal with problems such as distortion, noise,
brightness effects, illumination, and poor contrast that affect
the accuracy of models [66]. Images used in building
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models are first preprocessed using several techniques. This
allows the training of models with consistent and uniform
datasets. Such techniques include those listed below under
the following categories:

1) IMAGE PREPROCESSING

(a) Image resizing
Resizing the images helps reduce computational costs
and achieve better generalisation of the model. All
images are resized to the same scale before they are fed
into the designed model for detection and classification
tasks [67]. The sizes of the acquired images are normally
different, so it is necessary to have them normalised first.
Techniques such as OpenCV BICUBIC interpolation are
used for this task using the OpenCV framework to attain
higher processing time and better output quality for the
models built.

(b) Normalisation
The image datasets collected are normalised by subtract-
ing the mean and dividing by the standard deviation
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to improve contrast and reduce the impact of lighting
variations. Using RGB images, the mean and standard
deviation of the training dataset computed are used to
normalise image datasets so that the resulting data has
a zero mean and unit variance [67].

(c) Image enhancement
Enhancing the image improves the visibility of image
features and reduces noise using techniques includ-
ing contrast stretching, histogram equalisation, and
sharpening.
Histogram Equalization
This improves the contrast of the collected images
by assigning pixel intensity values to the input image
so that the output images contain a uniform intensity
distribution. This is achieved by effectively spreading out
the most frequent intensity values.
Contrast stretching
This is an image enhancement technique that improves
contrast in images by stretching the range of pixel
intensity values it contains to span a desired range of
values.
Sharpening
This enhances the edge and fine details of an image, thus
making it appear sharper and clearer.

2) IMAGE ANALYSIS

Image analysis uses preprocessed image datasets for the
extraction of useful information from the data. Some of the
techniques used here include:

(a) Image segmentation
Segmentation is an approach that splits an image into
several parts to detect regions of interest by combining
similar pixels together [68]. This technique is used in
the horticulture industry to extract regions of interest
by separating diseased regions from healthy ones. Seg-
mentation techniques include handcrafted feature-based
methods such as threshold-based ones, including edge-
based, region-based, cluster-based, and Watershed [69].
Intelligence-based ones include artificial neural networks
and deep learning methods.
(b) Feature extraction

This is the process where the features are automatically
or manually selected that contribute most to the desired
output of a model. Redundant features in the acquired
image datasets decrease the performance of models since
they learn based on irrelevant features. Extracting fea-
tures uses approaches such as texture, colour, and shape.
Colour descriptors include approaches such as the RGB
colour histogram, opposition histogram, hue histogram,
transform colour distribution, colour moment, and colour
moment invariants, among others, whereas convexity,
compactness, width, length, roundness, border encoding,
elongation, length or width ratio, Fourier descriptor,
and invariant moments are used for shape. Qualitative
and quantitative analysis are common approaches to
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(d)

assessing texture. Statistical texture gives great accuracy
and is commonly used.

Feature Selection

This is the process of selecting a subset of extracted
features that result in the best performance of the model.
Sometimes, these features come with noise, and others
might not be utilised by models. Thus an optimum
set of features must be determined, possibly by trying
all combinations, especially when using conventional
machine learning. However, when they become many,
they increase the computational complexity of the
models. They are classified into the filter, wrapper, and
embedded [70]. However, state-of-the-art deep learning
models do not require manual selection of the features.
Data Augmentation

This technique is used to increase the number of training
images to prevent overfitting:- a condition that occurs
when a small number of samples are used as training data
in model development. Augmentation also makes model
generalisation better. Data augmentation techniques
include rotation, translation, zooming, shearing, flipping
horizontally or vertically, brightness, and contrast are
commonly used [28], [67], [71]. Because huge datasets
are normally needed in building deep neural networks,
augmentation solves this problem and further prevents
overfitting by generating large datasets to achieve
sufficient generalizability to obtain generalised models.

C. APPLICATION OF IMAGE ANALYSIS TECHNIQUES FOR

FRUIT DAMAGE DETECTION

Various studies have used different image analysis techniques
in processing image datasets into fundamental components to
extract meaningful information.

1) Using segmentation

Ahmed et al. [72] developed an approach to segment
lesions in mango fruits using various segmentation
techniques, and then computed the lesion area. Using the
K-means algorithm, higher accuracy was attained com-
pared to thresholding, edge-based, Texture and colour-
based segmentation. Nadarajan and Thamizharasi [52]
also proposed a method that detects bacterial canker
disease in mangoes using a watershed algorithm for
segmentation, template matching for finding diseased
areas, and cross-correlation to identify segmented areas.
This template-matching approach does not work well
with large datasets. Dubey and Jalal [54] further pro-
posed a system for apple fruit disease recognition using a
local binary pattern approach using image segmentation
with K-means clustering. Texture and colour features
were extracted from normal and diseased apple fruits
with 104 Apple Blotch, 107 Apple rot, 100 Apple scabs
and 120 Normal Apple images using CCV, LBP and
GCH feature extraction techniques attaining the highest
accuracy of 93.14% using CLBP feature. Habib et al.
[55] attempted a study to recognise papaya disease
using k-means clustering to segment the diseased region
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from the healthy sections using a dataset comprised of
128 images, both faulty and fault-free. Statistical and
grey-level co-occurrence matrix features were extracted
and fed into the SVM classifier, attaining more than 90%
classification accuracy. Figure 1 illustrates the effect of
the segmentation technique on infected fruit images.

(®)

FIGURE 1. Results of image segmentation task. (a) before segmentation
and (b) after segmentation with the K-means technique. [60].

(© (d)

FIGURE 2. Results of segmentation using K-Means clustering with images
showing (a) infected apple fruit, (b) first cluster, (c) second cluster,
(d) third cluster respectively. [60].

2) Using Feature extraction
Features that are colour-based on the RGB and HSV
spaces, texture, and shape are extracted to develop
efficient models and systems. These features have
been used in fruits and vegetables to perform various
tasks, such as classification and detection, and to
identify diseased and healthy parts. For instance, in a
study by Dubey et al. [54] for apple fruit disease

21366

recognition, several methods, including local binary
patterns, global colour histogram, colour coherence
vector, border/interior classification, completed local
binary patterns (CLBP), and improved sum difference
histogram (ISDH) were used, with the CLBP attaining
more accurate results for the classification of apple fruit
diseases.

3) Augmentation for automated detection of fruit damages
Augmentation techniques have been observed to have
several positive effects on building models and how
they perform. They introduce variations in datasets,
address class imbalance issues, and make the model
robust to noise. For instance, in a study by [28] using
a deep neural network model to classify citrus fruits into
healthy and diseased ones, augmentation resulted in a
higher performance of the model compared to where
no augmentation was applied. Nithya et al. [73] also
demonstrated the effects of augmentation in a study
where CNN was being employed to identify defects
in mangoes. Higher accuracy was attained in the case
where augmented datasets were applied. Figure 9 further
depicts the effects of augmentation.

D. CLASSICAL MACHINE LEARNING FOR FRUIT DAMAGE
DETECTION

Whereas deep learning-based approaches have attained
substantial attention and gained notable success in the field
of computer vision, classical machine learning techniques
continue to be valuable and effective in fruit damage detection
and thus cannot be overlooked. Machine learning-based mod-
els do not need a large annotated dataset or resource-intensive
requirements such as GPUs and thus can attain satisfactory
performance using smaller training datasets. On the other
hand, deep learning models require complex architectures
with many parameters, requiring significant computational
resources and time-consuming training procedures. Further-
more, optimization tasks are quite complicated using deep
learning [74].

As such, several researchers still embrace the detection
of damage to fruits using machine learning. For instance,
Sharif et al. [66] proposed an approach for detecting and
classifying anthracnose, black spot, canker, scab, greening,
and melanose diseases in citrus plants using 670 images
collected from Citrus Diseases Image Gallery Dataset. The
images were first preprocessed to deal with brightness effects,
illumination, and poor contrast issues using the top-hat
filter and Gaussian function. The weighted segmentation
technique was then used to detect lesion spots in the infected
images. A feature selection method consisting of a PCA
score, entropy, and skewness-based covariance vector was
employed to extract colour, texture, and geometric features
stored in a codebook. The features were then fed into
a multi-class support vector machine (M-SVM) for citrus
disease classification, attaining a classification accuracy of
97%. Bakar et al. [26] proposed a method that detects
external skin defects (stem end rots, black spots, the presence
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of scales, and resin canal discolouration in mangoes using
colour features from 500 digital camera images. Steps
including image preprocessing for background removal and
segmentation for recognition of defected areas are performed
to obtain features fed into an SVM classifier, obtaining an
accuracy of 90%. Textural features were not exploited to
increase the accuracy of the system. Color systems other than
RGB were also not explored [75].

Wang et al. [47] proposed a system that detects orange
fruit skin defects. A colour histogram was extracted from
the image dataset, and Fisher-Linear Discriminant Analysis
(LDA) was then applied for vector dimension reduction and
linear SVM to identify defects in the fruit. 650 images of
orange were used, with 300 of them being defective. The
evaluation of 61 images achieved a recall rate of 96.70%. This
system is not able to distinguish between different kinds of
defects.

Sambrani et al. [76] developed an image processing
algorithm that classifies infestation of mango by the weevil
as very lightly, lightly, moderately, severely, and uninfected
using X-ray images by computing the percentage of the
affected area on the surface of the fruit. Bakar et al. [26]
then evaluated the severity of the detected skin defects (stem
end rots, black spots, presence of scales, and resin canal
discolouration on the mango by computing the pixel area in
percentage rates of the segmented boundary region and using
SVM to grade them using rates of the severity of damages
inflicted on the mango. The authors in [48] used k-means
clustering to group mangoes based on the size of dark spots
on the skin surface. An image dataset taken with a digital
camera was obtained, and segmentation was performed to
extract regions of interest. The classification was then done to
categorise mangoes as grade 1: a defect size of less than 5%
of the total area; grade 2:- a defect region with a size between
5 and 15%; and grade 3: a defect area with a size greater than
15% but less than 25%. The ROC curve was then used to
assess the accuracy measure, obtaining a score of 93.33%.
Truong Minh Long and Truong Thinh [49] developed an
approach to evaluate the internal quality of a mango using
external features combined with weight, length, width, and
defects to predict the volume and density. The internal quality
of mango was evaluated as high if its density was higher
than the average level. Grading was then done using various
classifiers, with random forest achieving the highest accuracy
of 98.1%.

Sahu and Manohar Potdar [51] developed an automated
approach to identify surface defects, including scars and
dark spots, and further detect the maturity of mango fruits
based on shape, size and colour features. Digital images
were preprocessed for conversion into grayscale, background
removal, and filtering before defect identification using the
developed image analysis algorithm. A small dataset of
28 images was used, with half of it defective and the
others healthy. Nandi et al. [27] graded mangoes based on
maturity in terms of actual days to rot and quality using
surface defects. Image frames from a video of mangoes
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on a conveyor belt were preprocessed for noise removal,
followed by feature extraction. Pixel identification was used
for defect identification using the thresholding method.
In defective pixels, the blue value is very high compared to
healthy ones. The number of defective pixels is computed
to establish the percentage of defect area when assessing
damage. Support Vector Regression was used to predict
maturity, and Multi-Attribute Decision Making was adopted
for quality. Fuzzy incremental learning was then used to grade
based on both maturity and quality. An accuracy of 90% is
obtained for surface defects. However, only one side of the
image was considered without the rotational view.

The above studies indeed indicate the potential of
automated damage detection in fruits using conventional
machine learning. They have exhibited good performance,
as realized by the accuracy measures obtained, among other
metrics used. However, these techniques are criticised for
hand-engineering features and not being robust enough to
handle huge datasets, calling for the need to explore state-of-
the-art deep learning-based approaches in the identification
of fruits [77] and detection of damages inflicted on them.

E. DEEP LEARNING FOR FRUIT DAMAGE DETECTION

1) DEEP NEURAL NETWORKS

A deep neural network (DNN) is an artificial neural
network with multiple layers between the input and output
layers. It consists of various layers of neurons that perform
automated hierarchical learning of the data representation
via non-linear transformations, unlike in traditional neural
networks. Data is passed cumulatively across a long chain of
layers, which brings about the term “‘deep,” with each layer
fully or partially connected to the preceding one. DNNs are
characterized by no need for hand engineering of features
with the learning of features done automatically, where DNN
model performance improves with properties including the
amount of input data, model size, and several computations
that have made DNN attain state-of-the-art performance on
supervised learning tasks.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)

A convolutional neural network, or ConvNet, is just a neural
network that uses convolution. CNN is a class of deep neural
networks commonly applied in the analysis of visual imagery.
It is a set of deep neural networks (ANNs) with numerous
layers between the input and output layers that learn feature
representation from datasets. CNNs are created as a function
with images as input and thus have a contrasting architecture
from classic ANNs. The model takes images as inputs on
the input layer, applies a convolution operation, and then
extracts features. This process reduces the input dimension,
which affects the model’s accuracy during feature extraction.
CNN is divided into feature extraction and classification.
Feature extraction has two sections: the pooling layer and the
convolutional layer. The classification consists of flattening
and fully connected layers. CNN works in a hierarchical
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manner, whereby the first Convolutional layer is reused in the
next convolution [78]. It has various components, including
the following:

Fully
Convolution Connected
Pooling O
Input O'{
oY o
O
(o

\ )\

Feature Extraction

Classification

FIGURE 3. Convolutional Neural Networks.

1) CNN Layers.

The CNN architecture consists of many layers, also

known as building blocks. These are described below:

a) Convolutional Layer
A convolutional layer is the main building block
of a CNN. It consists of a set of convolutional
filters/feature detectors, also known as kernels, whose
parameters are to be learned throughout the training of
datasets. The size of the filters is usually smaller than
the actual image. This layer applies convolutional
operations to the input data (images expressed
as N-dimensional metrics) to extract features by
applying a set of filters to the input data, which
slides over the data and computes dot products to
produce a feature map. These filters are learned
during the training process and help the network
identify important features such as edges, corners, and
shapes in the input data [79].

i) The Kernel Description
This is a grid of discrete numbers. Each number
is called the kernel weight. Random numbers are
assigned to act as the weights of the kernel at
the beginning of the CNN training process. The
weights are then adjusted at each training era thus
the kernel learns to extract significant features.

ii) Convolutional Operation
Convolution is performed by the kernel going over
the input image, working out matrix multiplica-
tion element after element, with the result for each
receptive field (the area where convolution takes
place) written down in the feature mAP which
in turn contributes to the input of the next layer.
The convolution operation is to extract high-level
features, such as edges, from the input image.

b) Pooling Layers

These layers reduce the dimensionality of feature

maps by shrinking large ones (feature maps) to

create smaller ones. This maintains the majority of

the dominant information/features at every step of

the pooling stage. Several pooling methods exist
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for utilisation in various pooling layers, including
tree pooling, gated pooling, average pooling, min
pooling, max pooling, global average pooling (GAP),
and global max pooling. The most common is max
pooling, which selects the maximum value from a
group of features. This also makes the network more
robust to variations in the input data
¢) Fully Connected Layers
This layer is located at the end of each CNN
architecture. These layers connect every neuron in
one layer to every neuron in the next layer. They are
typically used at the end of the network to produce
the final output. The fully connected layers take the
flattened output of the previous layers and apply a set
of weights to produce a final output, which can be
used for classification or regression tasks.
2) Activation function
This is a transformation function that maps the input
signals into output signals that are required for the
neural network to function. Popular types of activation
functions include linear activation, sigmoid functions
(logistic and hyperbolic tangent functions), rectified
linear units (ReLU) also known as piecewise linear
functions, exponential linear unit and softmax.
3) Hyperparameters
These include filter kernel, batch size, padding, learning
rate, and optimizers.
- Optimizers. These are used to produce maximum
performance from a network model. Examples include
Adam, rmsprop, Nesterov and Sobolev gradient-based
optimizers
- Padding. This is the number of pixels added to an
image when the kernel of a CNN is processing it.
- Striding. Stride is how far the filter moves in every
step in one direction. Striding skips some areas when the
kernel slides over, such as skipping every 2 or 3 pixels
to reduce spatial resolution and make the network more
computationally efficient.
4) Loss Functions
These are used in the output layer to compute the
predicted error created across training samples in the
CNN model. This error reveals the difference between
the actual output and the predicted one.

3) CNN DEEP LEARNING ARCHITECTURES

CNN architectures are key factors used in building deep
learning algorithms, with model architecture considered an
important factor for enhancing the performance of different
applications that implement them. Several variants exist
for the different architectures due to the modifications that
have been made from 1989 until today. These modifica-
tions include structural reformulation, regularisation, and
parameter optimizations. An understanding of the features
of the various architectures, including input size, depth, and
robustness, is critical in helping researchers identify the
most suitable ones for application development [79]. The
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most popular architectures used in fruits and their damage

detection are presented below:
1) AlexNet

posed by Google researchers in 2014 to attain high-level
accuracy with decreased computational cost using the

This is the very first successful deep CNN architecture
on ImageNet, consisting of eight layers:5 convolutional
layers and 3 fully connected layers with dropout,
ReLU nonlinearity, and max-pooling. AlexNet was first
proposed by Krizhevesky et al. [80] with CNNs by then
restricted to handwritten digit recognition tasks, an issue
that was addressed by increasing the number of feature
extraction stages from five to seven to enable its use
in different image categories. Its learning ability was
limited due to hardware restrictions, an issue that was

inception block (module) concept in the CNN context by
combining multiple-scale convolutional transformations
while employing merge, transform, and split functions
for feature extraction [79]. It has a deeper and wider
architecture than AlexNet and its model weight is lighter
than VGG-16 and VGG19 [83]. It uses “‘global average
pooling” instead of “fully connected’ layers, reducing
its weight size. It is a tiny architecture when compared
to AlexNet and VGGNet, which reduces the number
of parameters in the network and helps to prevent
overfitting.

further overcome using two GPUs used in parallel in
training AlexNet [67].
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FIGURE 4. The AlexNet Architecture. Previous layer

2) VGG Net
VGG (Visual Geometry Group) Net is a deep convo-
lutional neural network architecture that was proposed

——

FIGURE 6. The inception module in GoogLeNet [83].

4) YOLO Architecture

in 2014 by researchers from the University of Oxford.
It improved AlexNet by replacing the large-sized con-
volutional kernels with multiple 3 x 3 and 1 x 1 kernels
and further increasing the depth of the network [81].
The 1 x 1 convolutions inserted in the middle of
the convolutional layers enabled VGG to regulate the
network complexity. VGG then achieved significant
outcomes for localization and image -classification
tasks with enlarged depth, homogeneous topology, and
simplicity attained though the computational cost was
excessive due to its utilisation of many parameters
approximated to 140 [79]. Generally, a VGG consists
of 5 “VGG blocks™, that are composed of a sequence
of convolutional layers, each followed by ReLU non-
linearity, and a max-pooling layer. It has variants,
including VGG11, VGG16, and VGG19, among others,
that are named according to the number of convolutional
and fully connected layers used in the model [67].
For instance, VGGNet-16 consists of 16 layers, while
VGGNet-19 has 19 hidden layers [82].
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YOLO algorithm identifies objects and their positioning
using the bounding box approach by looking at the
image only once, hence the name You Only Look
Once (YOLO). YOLO architecture is inspired by
GoogLeNet. It has 24 convolution layers, followed
by 2 fully connected layers. Of the 24 convolutional
layers, only four convolutional layers are followed by
max-pooling layers. The YOLO-based algorithm uses a
1 x 1 convolutional and global average pooling [84].

It has several variants, such as YOLOvl, YOLOv2,
YOLOvV3, YOLOv4, YOLOvS, YOLOV7, and YOLOVS,
the latest [85]. YOLO-based models are best used for
object detection and image segmentation. They are
preferred for being fast, accurate detectors compared to
many similar models.

FIGURE 7. YOLO Architecture for object detection and segmentation [84].
FIGURE 5. The VGG Architecture.

3) GoogleNet

5) ResNet
This architecture was created to enhance the perfor-

GoogleNet, also known as Inception vl, is a deep
convolutional neural network architecture that was pro-
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mance of CNN architectures like VGGNet, GoogleNet,
and AlexNet [86]. It was first introduced by Microsoft
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Research in 2015 using skip connections to design
an ultra-deep network free of the vanishing gradient
problem often encountered when training deep neural
networks [86]. This architecture has residual blocks
containing multiple convolutional layers and shortcut
connections. The residual connections allow the output
of one layer to be added to the input of another layer,
effectively creating a “‘skip connection,” which allows
information to bypass layers, which could be causing
the vanishing gradient problem. ResNet is deeper than
the VGG network but with a smaller model size due
to the use of “‘global average pooling” in place of the
“fully connected” layers found in VGGNet.

0] blocks ‘ 11 blocks 3 ofl2]blocks 7 Gl blocks

FIGURE 8. An illustration for ResNet Architecture.

Several variants of ResNet exist [79] based on the number
of layers, starting with 34 layers up to 1202 layers, with
ResNet50 being the most prominent with 49 convolutional
layers plus a single FC layer.

4) APPLICATION OF CNN ARCHITECTURES AND
TECHNIQUES FOR FRUIT DETECTION AND ASSOCIATED
DAMAGES

Deep learning techniques have been used effectively in
conjunction with imaging techniques and non-invasive
approaches in the field of horticulture to address problems
including post-harvest grading, classification, and maturity
detection, and damage detection. These methods have been
seen to yield better performance compared to traditional
machine-learning approaches in analyzing and processing
image data, spectral data, or sound data [15]. Hadipour et al.
[87] proposed a study to detect citrus fruit damage due to
Mediterranean fruit fly larvae using convolutional neural
networks through transfer learning. Techniques including
ResNet-50, GoogleNet, VGG-16 and AlexNet as well as
optimization algorithms: SGDm, RMSProp and Adam were
used to classify healthy and damaged fruits, with the VGG-16
model in conjunction with SGDm attaining the highest
accuracy of 98.33% in the early outbreak of infestation class.
However, the AlexNet model in conjunction with SGDm had
the best result with the highest detection accuracy of 99.33%
in the third class. A dataset of 1519 images of three classes,
including before pest infestation, at the beginning of fruit
infestation, and eight days after the second stage, is used.
Zhang et al. [23] proposed a deep learning algorithm for
the identification of five common types of citrus diseases:-
canker, anthracnose, sunscald, greening, and melanose in
orchards using detection networks YOLO-V3, YOLO-V4,
and optimised YOLO-V4 to locate citrus fruits and classifi-
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cation networks MobileNet-V2, ResNet-50, DenseNet-169,
and EfficietNet-B4 for classifying fruits into corresponding
types of diseases. These were evaluated on a dataset of
1524 images taken in diverse orchard conditions, including
distinct time intervals, scales, angles, and lighting conditions.
The algorithm adopted an optimised YOLO-V4 model for
detection, and then the EfficientNet model for classification
attained a higher performance in terms of accuracy and
F1 score of 0.890 and 0.872, respectively. Kukreja and
Dhiman [28] then proposed a deep neural network model
that classifies citrus fruits into healthy and diseased ones.
Dense CNN was used to detect defects in citrus fruit using
a dataset of 150 images. Using a dense CNN model with
augmentation techniques such as rotation, width shift, height
shift, rescaling, shear, zoom, horizontal shift, vertical shift,
and brightness resulted in 1200 images attaining a higher
performance of 89.1%.

(£) (8) (h) (i) (O]

FIGURE 9. Results of image augmentation techniques (a) original image,
(b) clockwise rotation of 90A°, (c) clockwise rotation of 180A°, (d) 270A°
clockwise rotation, (e) horizontal mirror, (f) colour balance processing,
(g-i) brightness transformation, and (j) blur processing [88].

Pathmanaban et al. [18] proposed an approach to classify
damaged and diseased Guava fruit from healthy ones
using CNN to assess fruit quality. The study used both
thermal and digital images. 4129 images were collected in
total. These included depth-damaged, chilling injuries and
diseased images. Thermal images were obtained using a
thermal imaging system to record the surface temperatures
of maturity-indexed and damaged fruits. The prediction
accuracy of the developed CNN model was approximately
99.92%. Tian et al. [89] attempted a study to detect
and classify bruised strawberries from healthy ones using
2903 thermal images obtained using an active thermal imag-
ing system. 2903 thermal images obtained over 5 consecutive
days were used, with temperature differences between the
bruised area and the unbruised area analyzed. Optimized
CNN, Pre-trained Inception V3, Resnet 50 and VGG19
models were evaluated for the classification of unbruised and
bruised strawberries, with an accuracy of 0.98 for optimized
CNN being higher than the accuracy of the pre-trained
models.

Guo et al. [90] proposed an approach for early seg-
mentation of healthy and anthracnose-diseased areas of the
mango using 108 images. The red, green, and blue colour
information of the pixels under two types of illumination
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(RGB and UV) is analyzed. A combination of four different
methods: RGB-threshold, RGB-linear discriminant analysis,
ultraviolet-A illumination (UV)-LDA, and UV-threshold are
then used to assess sugar mango images using R, G, and
B features whose pixels are extracted from the area of
interest. Accuracy and precision values of 0.97 and 0.95,
respectively, using UV-LDA and 0.86 and 0.82 for RGB-LDA
are obtained.

Authors in [91] proposed a deep learning model for the
detection of severity levels of citrus fruit diseases using
3309 public images for lemons, oranges, grapefruit, and
limes, collected and preprocessed by rescaling and annota-
tion. Graph-based segmentation was used to extract regions
of interest, and then a deep neural network model was trained
to detect targeted areas of the disease with severity levels
as high, medium, low, and healthy. Transfer learning using
the VGGNet architecture was used as a multi-classification
framework for each class of severity, achieving an accuracy
of 98%. Several other deep architectures can be explored on
a dataset in a real environment.

Dhiman et al. [92] proposed a CNN-based model to
differentiate healthy fruits and leaves from damaged ones
with citrus diseases including black spots, canker, scab,
greening, and Melanose. The proposed CNN model extracts
texture based on colour and shape from 2293 images from
the citrus dataset in [93], with normalisation, pixel scaling,
and data normalisation pre-processing procedures applied
using Keras ImageDataGenerator class and API. The CNN
model then classified diseased from healthy fruits attaining
an accuracy of 94.55%. The authors in [94] then developed
an intelligent system using a densely connected convolutional
networks (DenseNet) model for the diagnosis of HLB,
Anthracnose, Canker, Black spot, Sandpaper rust, and Scab
diseases of citrus plants using fruit and leaf citrus diseases.
Colour, texture, edge and shape features were extracted
for use in the model. The developed system is realized
using the WeChat applet in the mobile device that enables
end-users to upload images of citrus fruits and receives
results and comments about diagnosis attaining accuracy
exceeding 88%. Liu et al. [68] further developed ResNet50,
DenseNet201, InceptionV3, and MobileNetV2-based deep
learning models for recognition of citrus diseases including
Huanglong, Anthracnose, Canker, Black spot, Sandpaper rust
and Scab with MobileNetV2 attaining highest accuracy of
87.28%.

Khan et al. [8] proposed a study to detect and classify
apple and banana leaf diseases. Procedures including contrast
stretching to increase the visibility of diseased regions
identified by the segmentation process using the correlation
coefficient method (using a combination of colour &
texture features), and then extraction of Deep features using
VGG-VD-16 and CaffeAlexNet models, and a multiclass
SVM classifier for classification of the six types of apple
and banana diseases studied: (1) apple scab, (2) apple rot,
(3) banana sigota, (4) banana cordial leaf spot, (5) banana
diamond leaf spot, and (6) fruit spot, were performed.
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6309 images of bananas and apples were used for testing.
Classification accuracy of 98.60% and 96.00% precision
rate was obtained. Behera et al. [5S0] proposed an approach
that identifies disease in Apple, Mango, Orange, Tomato
and Pomegranate fruits using the Multi-class Support Vector
Machine (MSVM) classifier. The grey-level co-occurrence
matrix technique extracts features from the colour, texture,
shape and appearance of defects and K-means clustering
for segmentation of images captured with a mobile phone.
Anthracnose and Fruit Rot identification achieved an accu-
racy of 92.17% with the severity predicted as a percentage of
the affected area and differentiated by level of risk:- low risk,
moderate risk and high risk as per the percentage of infection
using the Fuzzy Logic approach. A small dataset of around
230 for health and defective groups was used in this study.

Costa et al. [22] developed a system that detects the quality
of tomato fruit using colour, size and defect features using
38,884 healthy & 4959 defective tomato images. Damages
detected include; longitudinal cuts, dark spots, rain bruises,
punctures, bruises, and rain spots. Deep residual neural
network (ResNet) classifiers were trained to detect external
defects using feature extraction and fine-tuning from JPEG
images. Fine-tuning outperformed feature extraction. The
best model was ResNet50 with a precision of 94.6% and
recall of 86:6% obtained. In [95], an approach is developed
that assesses the severity stages of diseases of the leaf from
PlantVillage, a database of more than 50,000 RGB images of
healthy and diseased crops, using deep convolutional neural
networks with deep VGG16 model-trained with transfer
learning obtaining best accuracy of 90.4%. The number of
spots using their diameters is used for assessment of the
severity of the damage. Imaging systems that use infrared
were not explored.

Kumar et al. [96] developed a CNN model to detect
and classify fresh and damaged fruits using 8400 images
of apples, oranges and bananas attaining 97.14% accuracy.
Nithya et al. [73] also developed an automated system to
identify defects in mangoes using a CNN model containing
50 good and 50 defective Kent mangoes augmented using
scaling and rotation techniques which resulted in 800 images.
An accuracy of 98.5% was obtained. Chen et al. [97]
developed a system that uses a detecting drone to recognize
T. papillosa pests in the orchard using the YOLOv3 model
and Tiny-YOLOvV3 neural network models built using
5473 images on an embedded system NVIDIA Jetson TX2
in real-time and determine pests’ positions used to plan the
optimal pesticide spraying route for the agricultural drone
attaining accuracy of 95%.

F. AUTOMATED DETECTION OF FRUITS USING CNN
ARCHITECTURES

Normally, fruits are first localized using several techniques
before damage identification. Several studies have been
attempted in the detection of fruits and the estimation of their
yields. For instance, in [99] a method is proposed for the
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TABLE 3. Table showing Deep learning approaches for automated damage detection in fruits.

Author Goal of Study Dataset Feature Technique Performance Measure
Zhang Automated identifica- | 1524 images Colour and texture YOLO-V3,YOLO- | Accuracy 0.890,
etal..[23] tion of citrus diseases V4, optimized | Flscore 0.872
in orchards using deep YOLO-V4,
learning MobileNet-V2,
ResNet-50,
DenseNet-169,
and EfficientNet-
B4
Khan et al. [8] | Detection and classifi- | 6309 Apple and | Colour and texture SVM and Deep | Accuracy- 98.60%,
cation of apple and ba- | Banana images CNN Precision- 96.00%
nana diseases Contrast
Stretching, Genetic
Algorithm for
feature selection
Costa Detection of external | 38,884 healthy | Size and colour ResNets DNN Precision- 94.6%
etal. [22] defects on tomatoes us- | and 4959 defective
ing deep learning tomato images
Hadipour Intelligent detection of | 1519 images colour and texture ResNet-50, Accuracy 98.33%
etal. [87] citrus fruit pests using GoogleNet, [VGG-16 + SGDm
a machine vision sys- VGG-16 and | ] [AlexNet model +
tem and CNN through AlexNet, as well | SGDm] - Accuracy
transfer learning tech- as  Optimization | 99.33%
nique algorithms: -
SGDm, RMSProp
and Adam
Vinay A Deep Neural Net- | 1200 images Texture and shape Dense CNN With | Accuracy- 89.1%
etal [28] work based disease de- augmentation
tection scheme for Cit- (using rotation,
rus fruits width shift, height
shift, Re-scaling,
shear, zoom,
horizontal shift,
vertical shift, and
brightness)
Dhiman Detection of severity | 3309 public images | Diameter, colour, | Deep neural net- | Accuracy- 98%
etal. [91] levels of citrus fruit | of lemons, oranges, | and shape and the | work and VGGNet
diseases grapefruit and | surface area of | architecture
limes diseased portion
Wang Automatic image- | 50,000 RGB im- | Diameter of spots Deep CNN Accuracy- 90.4%
et al. [95] based plant disease | ages of healthy and
severity estimation | diseased crops
using deep learning
Ahmad Jahan- | Classification of sour | 341 sour lemon Shape HOG, LBP,, KNN, 100% with CNN
bakhshia [98] lemons based on ap- ANN, Fuzzy,
parent defects using SVM, DT, CNN
deep CNN
Chen Detecting T. papillosa | 5473 images Shape YOLOV3 Accuracy 95%
etal. [97] pests in the orchard

detection and counting of mangoes in RGB images. Semantic
segmentation is carried out followed by object detection
for counting mangoes using MangoNet, a deep CNN-based
architecture. 11,096 image patches obtained from 40 images
are used to train MangoNet. The analysis is carried out using
the accuracy and Fl-score evaluations attaining results of
73.6% and 84.4% respectively.

Hu [100] proposed a model for fruit yield assessment using
video frames captured in an apple orchard. Yolov7 was used
with an attention module to detect and count apple fruits
using a cascaded multi-object tracking technique with SURF
extraction of appearance descriptions. The model uses two
attention mechanisms namely; convolutional block attention
module and coordinate attention, trained and tested on a
dataset of 4246 apple images using tracking methods based
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on Kalman filtering and motion trajectory prediction. The
yolov7-CA model achieved a 91.3% mAP and 0.85 F1 score.

Pichhika and Subudhi. [101] developed a model named
MangoYOLOS to detect seven varieties of on-tree mangoes
using 20,429 images captured using UAVs and achieved an
average accuracy of 92% which is 3.4% better than the
YOLOVS5s.

Chen et al. [88] proposed an improved YOLO-V3 model
by incorporating the DenseNet method to detect apples
at different growth stages while in the orchards. The
stages are:- young, expanding, and ripe with each stage
having 1600 images. The proposed model attained better
performance with an F-score of 0.817 which was higher than
that of the original YOLO-V3 and the Faster R-CNN with
VGG-16 net models, with detection in videos recommended.
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Shi et al. [102] proposed an attribution-based pruning
method for pruning detection networks that can be fine-tuned
to detect mangoes accurately in real time. Designing channel
and spatial masks to generalize the attribution method, the
convolutional kernels that are firmly correlated with a specific
target output in the original YOLOvV3-tiny network can be
detected. The pruning method can compute the convolutional
kernel attributions and fine-tune the network by retaining the
important pre-trained parameters to extract special mango
features. Compared to the YOLO-based network without
pruning, the computational cost of the proposed network was
reduced by 83.4%, with only 2.4% loss in accuracy

Xiong et al. [103] further proposed a method that uses
UAV images to detect green mangoes on the tree to estimate
their count on the tree. ROIs of images were labelled and
then the YOLOv2 model was used for detection. A precision
of 96.1% and a recall rate of 89.0% were achieved. UAV
image acquisition in this study was manual, and thus
semi-automation or full-automation of image acquisition can
be considered for different mango cultivars.

Yijing et al. [104] further developed a method for fig
fruit recognition and localization based on a comparison of
YOLOV4, Faster R-CNN and YOLOvV3 algorithms achieving
92.35%, 86.09% and 79.50% accuracies respectively using
a dataset of 913 images differing in terms of fruit ripeness,
and degree of shading. These algorithms can be used in the
detection of other fruits since they succeeded in fig fruits that
have more dense branches and leaves.

Stein et al. [105] then proposed an approach for detecting
mango fruits in an orchard using Faster R-CNN with a dataset
obtained from 522 trees using 71,609 images obtained from
an unmanned ground vehicle (Shrimp) achieving an F1 score
of 0.881. Naranjo-Torres et al. [7] then used improved faster
R-CNN to detect 820, 822 and 799 apple, mango, and orange
fruit images obtaining precision values of 92.51, 88.94, and
90.73% respectively.

Chen et al. [106] developed an approach that uses YOLOv4
to detect citrus fruits - Kumquats, Nanfeng tangerines,
fertile oranges, and tangerines. The study used the canopy
algorithm and K-Means++ algorithm to automatically select
the number and size of the prior frames from RGB
images collected. An improved YOLOv4 achieved higher
performance compared to YOLOv4, YOLOV3, and Faster
R-CNN. Images of occlusion less than 50% and more than
50% were considered with better performance attained where
occlusion is less.

Ganesh et al. [57] developed an approach for detecting
and segmenting oranges in an orchard. Image datasets using
different colour spaces - RGB, HSV, and combined RGB and
HSYV, were used as input to the Mask R-CNN model. The
best performance was obtained with an F1 score of 0.88,
a precision of 0.97, and a recall value of 0.60 using combined
RGB and HSV colour space.

Bargoti and Underwood [53] proposed an approach that
uses Faster R-CNN to detect fruits including mangoes,
almonds and apples in their orchards using a tiling approach
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that overcomes the GPU memory bottleneck by performing
detections using smaller sliding windows over the larger
images. The approach attained F1 scores of 0.904, 0.775 &
0.908 for Apple, Almond and mango using 729, 385 & 1,154
images respectively for training the model. Images were
obtained using a Hand-held DSLR camera and a Research
ground vehicle Shrimp. Detection output from the R-CNN
model can be integrated with yield mapping in future studies.

Kang and Chen [35] then developed a deep-learning-
based framework for apple fruit detection and segmentation
of the fruits and branches in orchards using various neural
network frameworks using an auto label generation module
that utilised the multi-level pyramid and clustering-based
classifier to enable fast labelling data and a deep-learning-
based fruit detector “LedNet” that utilised FPN and ASPP
techniques for improved performance of feature extrac-
tion and detection. Using LedNet with resnet-101, higher
performance of 0.841 & 0.864 and 0.821 & 0.853 using
LedNet with light-weight backbone on recall and accuracy
respectively for orchard fruit detection. More automatic
labelling generation techniques are needed to reduce human
interventions in model training.

Apolo-Apolo et al. [107] developed a model for citrus fruit
detection using faster R-CNN architecture. UAV was used
to capture images from 20 sample trees. Features extracted
from the images using CNN were given as input to the
region proposal network. The proposed model achieved more
than 90% precision and an F1 score of more than 89%.
Detection in real-time from UAV videos should be explored to
reduce the processing time required to obtain accurate results.
Table 4 illustrates an overview of previous studies done in the
automated detection of fruits in orchards.

IV. CHALLENGES AND PRIVACY ISSUES IN AUTOMATION
OF FRUIT DETECTION TASKS

The automation of fruit detection and damage assessment
is data-driven. Therefore, several challenges that have faced
this sub-domain are data-centered. Ensuring that there are
sufficient high-quality datasets is crucial for the effective
building of machine learning models. However, this data
is not available in most cases [26]. Preprocessing and
annotation to obtain a high-quality dataset also require
extensive labour as well as financial and time inputs, making
it difficult or even impossible to construct robust datasets
that can be used in automating agricultural tasks [108]. The
annotation task should thus be automated to address the
said challenge [109]. Recently, large amounts of agricultural
data related to farms have been collected. With advances
in digital devices such as drones, robots, smartphones, and
satellites that are connected through technologies such as
the Internet of Things and combined with big data analytics,
it is now possible to collect massive agricultural datasets and
analyse them [110]. Nevertheless, these big datasets collected
raise privacy risks for farmers ranging from identification,
reputation loss, unauthorized access, and sharing of their
data with third parties, among others [111], [112]. This has

21373



IEEE Access

Y. Safari et al.: Review on Automated Detection and Assessment of Fruit Damage

TABLE 4. Deep learning approaches for automated detection of fruits.

Author Goal of Study Dataset Feature Technique Performance Measure
Yijing Fig fruit recognition | 913 images Shape, colour, Tex- | YOLO v4, Faster | Accuracies of 92.35%,
etal. [104] and localization ture R-CNN and YOLO | 86.09% and 79.50%
v3 respectively
Xiong Detect green mangoes | 360 UAV images Colour, Edge YOLOv2 Precision- 96.1%,
etal. [103] on the tree to estimate Recall- 89.0%
their count on the tree
Ganesh Orange fruit detection | 150 images RGB | Colour Faster mask R- | Fl score and
etal. [57] using faster mask R- | and HSV. CNN precision:- 0.88
CNN and 0.97
Bargoti Detecting mango, Ap- | 729, 385 and 1,154 | Colour Faster R-CNN F1 score -. 0.904,
etal. [53] ple and almond fruits | Tree images of 0.775 and 0.908 for
in orchards Apple, almond and Apple, Almond and
mangoes obtained Mango respectively
using: a hand-held
DSLR camera and
a ground vehicle
Kestur Detecting and counting | 40 images Shape Semantic segmen- | Fl-score - 73.6% and
et al. [99] mangoes in orchards tation, CNN 84.4% using 11096 im-
age patches from the
40 images.
Stein Detecting mango fruits | 71,609 images Shape Faster R-CNN F1 score of 0.881
etal. [105] in an orchard
Wenkang Detecting citrus fruits | 1750 images Shape YOLOV4, Accuracy of 93.58%
etal [106] - Kumquats, Nanfeng Improved with improved YOLO
tangerines, fertile or- YOLOV4, under occlusion of <
anges, and tangerine YOLOvV3, Faster | 50%, 90.82% where
R-CNN occlusion is > 50%
Apolo-Apolo Citrus fruit detection UAV images from | Shape Faster R-CNN Precision - 90%
etal. [107] 20 sample trees

caused a lack of trust in the way data is being managed
in a wide range of industries, causing great concern for
societal biases in the farming sector. There is a worry
that the “willingness to share agricultural data,” a vital
concept and a timely contribution to smart farming, will
be affected. As such, the issue of consent by farmers to
share their data is needed. Currently, data transactions are
governed by contracts and licensing agreements, although
they are complex [113] for farmers to understand. They
should thus seek clarification in case of ambiguity before
consent, as determining data ownership in automated systems
can be a challenging legal and ethical issue. These licence
agreements are being introduced to govern the way farmers’
datasets are collected and managed using smart farming
technologies [114]. More so, most of the data licences are
non-negotiable as they involve the use of a “clickwrap”
agreement whereby clicking of an “I agree” symbol implies
farmers consent to the terms of the software or data licence
with agricultural technology. These software licences are
being embedded into farming equipment, and farmers rarely
understand them as they are not often discussed at the
time of purchase. In most cases, turning on machinery or
downloading the technology means agreeing to terms of
data usage. Due to limited standardized data protection
practices in the farming industry, there have been inconsistent
legal data and use agreements that need to be normalized.
Furthermore, there is complexity in data-driven technologies
that makes it hard for most farmers to understand how
to leverage them [112]. As such, farmers should strive to
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advance their digital skills to know their rights and have
control over their data.

Besides challenges around obtaining high-quality anno-
tated datasets, machine learning models further require
complex architectures with various hyperparameters, making
the process of building these models computationally inten-
sive. More so, having access to high-performance computing
resources is a limiting factor for building deep learning-based
applications [74], [115].

V. STANDARD FRUIT IMAGE DATASETS

1) CitGVD
This is a comprehensive database of citrus genomic
variations. It was developed as the first citrus-specific
comprehensive database dedicated to genome-wide
variations, including single nucleotide polymorphisms
(SNPs) and insertions/deletions (INDELSs). The current
version (V1.0.0) of CitGVD is an open-access resource
centred on 1,493,258,964 high-quality genomic varia-
tions and 84 phenotypes of 346 organisms curated from
in-house projects and public resources [116].

2) MinneApple
MinneApple provides a set of image datasets obtained
in orchards with annotations of the fruit on trees,
labelled using polygonal masks for each object instance,
to advance the state-of-the-art in fruit detection,
localization, segmentation, and counting in orchard
environments. Additionally, it also provides data
for patch-based counting of clustered fruits. The
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3)

4)

5)

6)

Minneapple dataset contains over 41,000 annotated
object instances in 1000 images, and a detailed
overview of the dataset is presented together with the
baseline analysis for tasks of bounding box detection,
segmentation, fruit counting, and yield estimation [117].
On-tree mango instance segmentation dataset

This is an image dataset created for on-tree mango
detection and segmentation tasks. The images are
annotated using the VGG Image Annotation (VIA) tool
with polygon region annotation. The image and JSON
annotation files in COCO annotation format for train and
text image sets are also provided in two directories, with
the first directory (Folder 1) described as tiled-images:
Total 542 (train + test) tiled images of 640 x 540 pixels
(Honey Gold and Keitt cultivars), and Folder 2 as
individual-mango-snips: Total 1200 (train + test) snips
(Honey Gold and Keitt cultivar) [118].

Fruits-360

Fruits-360 is an image dataset with a collection
of 120 different types of fruits, including oranges,
lemons, limes, and grapefruits, taken in a controlled
environment with different angles and variations in
lighting. The dataset has over 90,000 images for fruit
recognition tasks, with each fruit having multiple images
taken under different conditions, including light and
angles. The images are of various sizes, ranging from
100 x 100 pixels to 512 x 512 pixels, and are in the RGB
colour format. With a training set of 67,000 images and
23,000 test sets, the metadata for each image, such as
fruit type, weight, size, and quality. The dataset has been
used for benchmarking by different research studies and
competitions [119].

A Citrus Fruits and Leaves Dataset

This is an image dataset of citrus fruits, leaves, and stems
with images of healthy and infected plants. Diseases
include Black spots, Cankers, scabs, Greening, and
Melanose. These images were taken in December from
the Orchards. This is the period when fruits were about
to ripen and maximum diseases were found in the
plants. The dataset contains 759 images, each containing
256*25 dimensions with 72 dpi resolution. Citrus fruits
were 150 and 609 Citrus Leaves images. This dataset
is especially helpful to researchers who use machine
learning and computer vision for studies in the early
detection of plant diseases [93].

ACFR Orchard Fruit Dataset

This data set contains images and annotations of
mangoes, almonds, and apples for detection tasks. The
images were acquired in the daytime in an orchard
using a Shrimp (an unmanned ground vehicle) with the
sensor mounted on an all-round research ground vehicle.
The images were obtained from different farms across
Australia, with the vehicle moving through numerous
lines of the orchards, capturing image data from the
trees. A total dataset of 3232 images was collected with
the mango class having 1154, 270, and 270 images for
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the training, testing, and validation sets while the almond
class had 385, 100, and 100 images, respectively. The
Apple class had 729, 112, and 112 images for training,
testing, and validation, respectively.

InterFruit

This is an image dataset containing 3,139 images of
common fruits in 40 different classes. This image dataset
is used for tasks such as classification. These fruits
are collected from sources including:- Baidu, JD.com,
Google, and Taobao. The images were cropped to
300 x 300 pixels. 70% of each class were randomly set
aside for training and 30% for testing [120].

A. OVERVIEW OF COMPARISON OF THE DATASETS
Among the datasets cited in this study, CitGVD
is the only web-based bioinformatics platform for
citrus-related studies that has been curated for
genome-wide variations and related gene annotations.
Other datasets have mainly been curated for the tasks of
detection, localisation and classification of fruits using
image data, which are vital steps that improve yield
estimation [121]. Table 5 provides a comparison of the
datasets based on different parameters such as the size
of the datasets, type of fruit, and annotation done on the
images among other tasks.

Fruits-360 has the largest dataset with over 90,000
RGB images of different sizes of 100 x 100 pixels to
512 x 512 pixels [119].

VI. METRICS FOR ASSESSING PERFORMANCE
EVALUATION

The major metrics used for performance evaluation of the
machine learning segmentation, classification and deep learn-
ing models in the detection and evaluation of fruit damages
include Accuracy, Precision, Recall and Specificity [87],
[96]. The mentioned metrics are cited to have been used in
most studies reviewed. Their description is included below:-

1y

2)

3)

Accuracy
This is the measure of the number of correctly classified
classes over the total number of classes for classification
results. It is computed as:-

tp+1n

—_———— (nH
w+fp+m+fn

Accuracy =

Precision

This measures the total number of positively predicted
classes that belong to the number of positive classes.
To evaluate the precision value, the total number of
TP cases successfully classified is divided by the total
number of TP and FP examples.

tp
ip+fp

@

Precision =

Sensitivity / Recall
This is an indicator that shows the number of correct
predictions made out of all the optimistic predictions
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TABLE 5. A comparison of MinneApple, On-tree mango instance segmentation, Fruits-360, Citrus Fruits and Leaves, ACFR Orchard Fruit, and interFruit

datasets.
Dataset Size Annotation used Fruit Category Diversity Ares for use
MinneApple 1000 images with over | Bounding box, | Apples on trees in | Different Apple va- | Detection,

41,000 annotations Segmentation the orchard rieties segmentation, fruit
counting and yield
estimation of Apple
fruits

On-tree mango | 1742 images Polygon region an- | Mangoes Mangoes of differ- | on-tree Mango fruit in-
instance notation ent stages captured | stance detection and
segmentation at different condi- | segmentation
dataset tions
Fruits-360 90,000 images Bounding box Several-fruits with | 120 Different | Detection and classifi-
over 80 classes varieties of | cation
the same fruit
including oranges,
lemons, limes,
grapefruits among
others
ACFR Orchard | 1120 Apple images, | Pixel-wise annota- | Apple, almond and | Various fruit types | Fruit detection, classi-
Fruit 1964 mango images | tion and Bounding | mangoes from different | fication and segmenta-
and 620 Almond im- | Box farms at different | tion in an orchard
ages environmental
conditions
interFruit 3,139 images Bounding box Various fruits Different fruit | Identification and clas-
types sification
Citrus  Fruits 150 Citrus fruits and | Bounding box Citrus fruits Citrus fruits, | Detection and classifi-

609 Citrus Leaves im-
ages

and Leaves

leaves, and stems | cation tasks
of healthy and

infected plants

that could be made. The recall is obtained by taking the
total amount of TP and FN and dividing it by the number
of TP.

ip
tp+ fn

Recall =

3

4) Specificity
This measure is used to calculate the fraction of negative
patterns that are correctly classified.
tn

Ip+in

Specificity = )

5) F1 score
The F1 score is a metric that symmetrically represents
precision and recall in one metric. It measures the har-
monic mean of precision and recall scores. The highest
possible value that can be achieved for the F-score is
1.0, which indicates perfect precision and recall, and the
lowest value can be 0.

2 x Precision * Recall
Fl= — )
Precision 4+ Recall
From the above-represented metrics, TP, TN, FN, and FP
are defined as:
1) TP: The number of infected images that the system has
correctly detected.
2) TN: The number of healthy images that the system has
correctly detected.
3) FN: The number of healthy images identified by the
system as infected fruit.
4) FP: The number of infected images that the system has
detected as healthy.

21376

VII. DISCUSSION

From this review, it is observed that research in the field
of automated fruit detection and assessment has grown over
the years. There is a remarkable shift in research directions
within the domain of fruit monitoring. This is being driven
by integrating deep learning techniques with IoT to process
big datasets generated by sensors in use towards real-time
monitoring of the status of orchards. Generally, there is
a big growth in the use of deep learning models (pre-
trained or developed from scratch) for fruit detection and
quality monitoring as compared to the use of traditional
machine learning approaches. Several variants of these
models exist, and their choice depends on the nature of the
task being addressed, the suitability of the architecture, and
the availability of resources, among other factors. However,
despite these advancements, it should be noted that traditional
machine learning is still relevant due to constraints such as
limitations in accessing computing resources needed by deep
learning models, which still makes machine learning methods
relevant in addressing resource-related challenges.

In this review, it has been revealed that colour, texture,
shape, and size are the most commonly extracted features,
with deep learning models being the most efficient in
assessing fruit damage. Out of the 32 articles surveyed in
this study, 36.36% of these were on automated detection
of fruits, 33.33% on automated damage detection using
traditional machine learning, and 30.30% using deep learning
for damage detection, with deep-learning CNN models
being most prevalent [122]. From Table 3, deep-learning
approaches have shown notable advantages in processing
large datasets [15]. For instance, Khan et al. [8] attained
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up to 98.6% using Deep CNN in the detection of apple
and banana diseases using a dataset of 6309 images. 98%
was attained by Alberto et al. [91] in the detection of
severity levels of citrus fruit diseases using VGGNet with a
dataset of 3309 and 88.1% by Stein et al. [105] in detecting
mango fruits in the orchard using Faster R-CNN with a
dataset of 71,609 images. On the other hand, traditional
machine learning models accommodate smaller datasets,
with the largest used being 2184 images by Nandi et al. [27]
who classified mangoes using surface defects as observed
in Table 2. Large datasets generally improve learning by
models and thus performance, yet these huge datasets are not
always available [26], [51] and when available, they are not
open source [22]. This makes it hard to reproduce studies
done and make further investigations into results attained
for improvement [7]. Research further indicates that deep
learning-based fruit detection models are largely developed
using fully supervised approaches. Consequently, a model
trained on one distinct domain species and fruit type may not
seamlessly be transferred to another, underscoring the need
for domain adaptation methods. Moreso, several studies [12],
[90] have reported that automated detection and classification
of fruit damages has mostly been post-harvest, with limited
studies done that access damage on fruits while still on trees
in the fields. This would assist farmers in estimating fruit
damage and predicting profits and losses for their yields while
still in orchards.

It should be noted that various CNN architectures exist.
However, their choice of what researchers can adopt in
developing applications depends on the selection of their
parameters and hyper-parameters, as they affect the perfor-
mance of the developed models [79]. This selection process
is currently manual as it is handled by a trial-and-error
approach, which is time-consuming for large models [7].

For both post-harvest and orchard-based assessment of
fruits, YOLO-based algorithms [23], [103], [104], [106] and
Faster R-CNN [53], [57], [104] have been seen to be the most
dominant techniques in the automated detection of fruits,
with ResNet-50 and VGG-16 models widely used to identify
associated damages [23], [87]. However, much as CNN is
the most predominant architecture that has been used in
fruit damage detection, limited studies have used ensembles
despite their strength in yielding good performance [86].

For the developed models, metrics commonly used in
their evaluation are accuracy, recall, precision, specificity,
and the F1 measure. The datasets, pre-processing techniques,
models, and associated hyper-parameters used and adopted
by different researchers are also different, which makes it
hard for future researchers to generalize results. Current
research in deep learning CNN architectures is directed
towards the development of efficient block architectures
that are lightweight and specifically designed for generating
efficient compressed DNN models that are deployable on
mobile and embedded devices due to their limited resources
towards a more convenient accuracy-speed trade-off [75],
[123]. Machine learning-based techniques have also been
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widely used in the damage identification of fruits, with
the main challenge realized being the hand engineering of
features and models not being robust enough to work with big
datasets generated [25]. Other challenges faced in automated
fruit detection include occlusion in orchards that obscures
the necessary parts and features to be detected in plants
and fruits [106]. Research is underway to deal with this
issue. For instance, Hosang et al. [25] developed an approach
that uses an object proposal technique that is capable of
generating numerous potential object regions, a feature that
addresses occlusion by considering alternative locations for
objects of interest being studied. There is also a challenge
in the detection of some defects, such as chilling injuries.
This is because fruits affected with such defects don’t change
colour or texture, and yet most of the current algorithms for
traditional computer vision systems are based on manually
designed features that involve colour or texture and thus are
not suitable for detecting such defects, calling for the need
for other imaging modalities such as thermal imaging [106]
that capture heat radiation emitted by objects, enabling the
detection of temperature variations. Thermal imaging can fur-
ther help to overcome challenges related to lighting variations
encountered when capturing images and occlusions, as it is
not affected by ambient lighting conditions.

VIil. CONCLUSION

This survey reviewed the progress that has been made in the
field of automated damage and defect detection in fruits. Sev-
eral approaches based on computer vision, image processing,
machine learning, and deep learning techniques for identify-
ing fruit damage have been reviewed. Major phases observed
in such automated detection tasks are image acquisition and
pre-processing, annotation, segmentation, feature extraction,
and damage identification, with deep learning-based tech-
niques being the most preferred as they replace hand-crafted
feature learning techniques. In this survey, it is generally
noted that pre-processing techniques improve the perfor-
mance of developed models, with shape, texture, and colour
seen as the most prominent extracted features fed into the
learning models that detect and classify the damages on fruits.
ResNet-50 and VGG-16 are the most used CNN architectures
in fruit damage detection and thus can be recommended
for implementing an effective, accurate automated system
utilized for damage detection and classification. Generally,
the overall benefits of deep learning models have been
observed and are thus recommended in smart farming.

IX. FUTURE RESEARCH

Annotation of the images collected from the trees in the
orchards is a very tedious task that still needs further
innovative studies to save time spent manually labelling the
data using experts who are scarce in most cases. Furthermore,
future research should venture into automated detection
and classification of fruit damages on different varieties of
fruits while still in orchards [12], [90], and automate the
optimization of costs incurred on fruits in fields such as
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applying pesticides to exact locations where infestations are
reported in agricultural farms [97]. Future work should also
look into developing machine learning models that can run
on edge devices, allowing for on-site processing and reducing
the need for larger computational resources to aid in remote
and resource-constrained areas.

Research should also focus on developing automated
solutions based on standard frameworks that implement deep
learning models to detect damages in fruits and address
the challenge of occlusion. The use of CNN architectures
in conjunction with optimizers is seen to yield good
performance in assessing damage and defects in fruits.
As such, future research should adopt this practice in related
studies. More studies should also focus on using existing
models to detect fruits in videos and yield estimation [88].

Future research should further explore the use of IoT
systems and UAVs with environmental parameters such
as temperature and humidity acquired with the ground
segment gadgets embedded. Multi-sensor fusion for thorough
monitoring using sensors with different bands should also
be explored for accurate image analysis of damages inflicted
on fruits and plants in orchard management [124]. Research
should also look more into the development of machine
learning algorithms that predict conditions in which early pest
and disease outbreak infestations can occur in orchards based
on [oT datasets. More so, due to the big data generated by IoT
devices [125] deployed in agricultural fields, research should
focus on more innovative approaches to developing database
systems efficient in managing these datasets. The security and
privacy of these datasets should also be an area of concern to
avoid data breaches and losses through several efforts, such
as hacking [126].
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