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ABSTRACT Detecting respiratory diseases is of utmost importance, considering that respiratory ailments
represent one of the most prevalent categories of diseases globally. The initial stage of lung disease
detection involves auscultation conducted by specialists, relying significantly on their expertise. Therefore,
automating the auscultation process for the detection of lung diseases can yield enhanced efficiency.
Artificial intelligence (AI) has shown promise in improving the accuracy of lung sound classification by
extracting features from lung sounds that are relevant to the classification task and learning the relationships
between these features and the different pulmonary diseases. This paper utilizes two publicly available
respiratory sound recordings namely, ICBHI 2017 challenge dataset and another lung sound dataset
available at Mendeley Data. Foremost in this paper, we provide a detailed exposition about employing
a Convolutional Neural Network (CNN) that utilizes feature extraction from Mel spectrograms, Mel
frequency cepstral coefficients (MFCCs), and Chromagram. The highest accuracy achieved in the developed
classification is 91.04% for 10 classes. Extending the contribution, this paper elaborates on the explanation
of the classification model prediction by employing Explainable Artificial Intelligence (XAI). The novel
contribution of this study is a CNN model that classifies lung sounds into 10 classes by combining
audio-specific features to enhance the classification process.

INDEX TERMS Artificial intelligence, explainability, respiratory diseases, sound processing.

I. INTRODUCTION
Respiratory conditions are among the most prevalent medical
ailments worldwide, affecting over 500 million individuals
globally [1]. Most of the patients struggle to recognize
or understand symptoms of chronic diseases, resulting in
delayed diagnoses. The manual auscultation method is the
most widely employed method by physicians to examine
patients’ lung sounds for disease diagnosis [2]. An expert
physician is needed to auscultate the lung sound of the
patient as it is complicated to diagnose diseases due to a
lack of calibration of the instrument and also to the noisy
environment like heartbeat sounds and coughing sounds [3].
Lung sound types are in 3main categories;Wheeze, Crackles,
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and Rhonchi. Wheeze is a sustained, high-pitched, abnormal
sound produced when there’s a blockage in the airway,
hindering normal breathing produced from the lungs of the
patient with diseases such as pneumonia, and interstitial
pulmonary fibrosis [4], [5]. Crackles are sudden, intermittent
sounds that occur during both inhalation and exhalation
associated with diseases like asthma and chronic obstructive
pulmonary disease (COPD) [4], [5]. Rhonchi are continuous,
low-pitched, and coarse sounds that resemble snoring or
rattling produced due to the presence of airway secretions [5].
Utilizing these sound types through the auscultation process,
medical practitioners gather their expertise on the relevant
lung disease.

In recent years, a significant impact of AI in the
healthcare sector, particularly in detecting conditions such
as cancers, respiratory conditions, and neurological disorders
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is evident [6], [7], [8], [9], [10], [11], [12]. Deep learning
(DL) applications for lung sound classification have gained
significant research interest [13], [14]. Deep learning feature
extraction is a data-driven method that identifies features
directly from raw data, facilitating the analysis of disease-
specific features [15]. Convolutional Neural Networks
(CNNs) have been used to classify spectrograms generated
by lung sounds as they proficiently extract features from
images, learning to recognize patterns, rendering them highly
suitable for tasks like object detection, image segmentation,
and classification [16], [17], [18].

Existing studies in lung sound classification have primarily
focused on binary or small multi-class classification prob-
lems, often involving two to six classes [2], [19], [20], [21].
While these studies have contributed valuable insights into
the applications of AI in healthcare, due to the constrained
number of disease classes present in the datasets used in
these studies, they may not fully address the diversity of
diseases which is a challenge faced by clinicians. Employing
explainable Artificial Intelligence (XAI) techniques in the
prediction of the classification model is an under-explored
area in the domain of lung sound classification. Compared
to the existing studies, this study mainly addresses the
challenge of classifying lung sounds into 10 classes as a novel
contribution. Furthermore, we highlighted the improved
model performance achieved by employing stacked audio
inherent features compared to using individual features
for feeding the CNN model. In addition, the integration
of XAI techniques also adds a unique dimension to our
approach.

The main contributions of the paper are as follows.
• Combining two publicly available datasets, namely the
ICBHI 2017 challenge dataset [22] and the dataset
developed by Fraiwan et al. [23], serves the purpose
of increasing the variety of diseases covered in our
study. Unlike many existing studies that rely on a single
dataset, this approach enhances the generalizability of
our model by incorporating a broader spectrum of
respiratory conditions.

• Instead of using one type of audio feature, our paper
suggests combining three different feature types: Mel
Spectrogram, MFCC, and Chromagram for each audio
sample. This approach creates a 3D representation of
features, aiming to capture a richer set of character-
istics from the lung sounds to improve the model
performance.

• Develop a classification model using a CNN to classify
10 classes of lung-related diseases.

• To enhance the interpretability and trustworthiness
of our classification model, we incorporate XAI
techniques. This ensures transparency in the model’s
decision-making process, addressing concerns related to
model trustworthiness.

The remainder of the paper is organized as follows;
Section II describes the available public lung sound datasets,
the taxonomy of techniques used in lung sound processing,

and related works on lung sound classification for respi-
ratory disease detection. In Section III, we delve into the
comprehensive details of the developed model, the overall
methodology, and XAI techniques. Section IV analyses the
outcomes of the classification model and the results obtained
through XAI. Section V discusses lessons learned during
the research and state-of-the-art comparison in lung disease
identification. Finally, Section VI presents the conclusion of
the study.

II. BACKGROUND
A. LUNG SOUND DATASETS
Several studies have been reported employing DL tech-
niques on automated respiratory sound classification to
detect lung diseases, utilizing the existing publicly available
datasets. While the majority of studies have focused on
respiratory anomaly prediction, i.e., classifying lung sounds
as wheeze, crackles, or rhonchi [5], [24], a lesser num-
ber of studies have stepped further on classifying lung
sounds into various disease categories. However, the lack
of a well-balanced audio data set of lung sounds has
been a major challenge in automated respiratory sound
classification.

ICBHI 2017 [22], which is a commonly used publicly
available dataset, consists of 920 sound recordings. This
dataset consists of 8 classes, where the duration ranges
from 10s to 90s. Several studies have introduced new
datasets with different augmentation techniques. For exam-
ple, Tariq et al. [2] have applied an oversampling method that
replicates samples to achieve balance among the classes of the
ICBHI dataset. Additionally, the authors removed the asthma
category, which contains only a single recording, from the
dataset. Moreover, since the ICBHI dataset is relatively small
for training DLmodels, Acharya and Basu [4] have employed
augmentation techniques such as noise addition, speed
variation, random shifting, and pitch shift, to increase the size
of the dataset. In another point of view, as a contribution to
the lack of publicly available datasets, Fraiwan et al. [23]
have created a multiclass lung sound dataset of 112 entries,
which contains audio data of 77 unhealthy subjects and
35 healthy subjects. Here, the duration of the records ranges
from 5s to 30s and the dataset consists of 11 classes including
healthy, pneumonia, asthma, COPD, lung fibrosis, heart
failure, heart failure & lung fibrosis, heart failure & COPD,
pleural effusion, asthma & lung fibrosis, and bronchitis.

Furthermore, there are other datasets created by research
groups that are not publicly accessible [5], [25]. However,
those recordings also consist of data imbalance issues,
which is a common problem in the lung sound domain.
The main reason for this is that certain diseases, such as
common respiratory infections or conditions like asthma, are
frequently encountered in clinical practice, whereas others,
such as lung fibrosis and pleural effusion, are comparatively
rare [26]. As a result, creating a lung sound dataset with
an equal number of samples for each class becomes a
challenging task.
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B. TAXONOMY IN LUNG SOUND PROCESSING
The field of DL-based lung sound identification is evolving
continuously. New approaches, techniques, and applications
have been emerging over time. Figure 1 shows the taxonomy
considered for this study, which is used to process, classify,
analyze, and interpret the lung sound data using DL
techniques. Based on the objectives of the application,
researchers can select different combinations of techniques.
Here, we considered data preprocessing approaches such
as normalization [26], augmentation [3], [4], [27], feature
extraction [3], [20], [27], [28], [29], classification [2], [20],
[24], [30] and explainability [19], [31], [32], [33].

C. RELATED STUDIES
Literature has highlighted the role of preprocessing in
sound classification, as it directly influences prediction
accuracy [34]. Among different approaches, normalization
plays an important role in data preprocessing to ensure
consistency, especially when dealing with lung sounds
recorded using various devices [34]. Ma et al. [26], have used
the min-max normalization technique to process records in
the ICBHI dataset to standardize the data across different
recording devices.

From another point of view, the noise in the data, including
heartbeat and coughing sounds can be utilized to simulate
real-time scenarios in lung sound audio recordings [3],
[27]. For example, Serbes et al. [28], have applied a
12th-order Butterworth band-pass filter with 120 and 1800Hz
cut-off frequencies, and Ma et al. [26], have used
a 5th-order Butterworth band-pass filter, which helps to retain
the frequency of interest from 100 to 2,000Hz to minimize
noise effects.

Different augmentation techniques are used to main-
tain consistency in each class of the dataset [34].
Acharya et al. [4], have applied noise addition, speed
variation, random shifting, and pitch shifting to create
augmented samples to address the data imbalance and
the lack of lung sound recordings data. The authors have
stated that aside from increasing the dataset size, these data
augmentation methods also help the network learn useful
data representations despite different recording conditions,
different equipment, patient age, and gender, and inter-patient
variability of breathing rate. Similarly, Srivastava et al. [27],
have immersed loudness augmentation, mask augmentation,
shift augmentation, and speed augmentation to address the
same issue. Additionally, the authors have trimmed and
padded the audio files to a length of 20 seconds using the
Python library Librosa [35].
Moreover, extracting features from audio data and feeding

them into the classifiers have an impact on the accuracy of
classifications. While the Mel-spectrogram and MFCC can
be identified as the two most utilized spectrograms in related
work, features such as Chromagram, Q-Chromagram, and
Zero-crossing rate have also been employed to feed into the
classifiers [27], [28]. For instance, Basu and Rana [20], have

extracted MFCC (spectral features), from the audio data and
40 features have been extracted from each audio data to train
the model, which has resulted in 95% accuracy. Similarly,
Tariq et al. [2], have extracted three unique features from the
audio samples, i.e., Spectrogram, MFCC, and Chromagram,
to build the fusion of three optimal CNN models. In addition,
several feature extraction and classification techniques for
obstructive pulmonary diseases such as COPD and asthma
are presented in the literature [29]. The process involves
feature extraction through signals such as Fast Fourier
Transform (FFT), Short Time Fourier Transform (STFT),
spectrogram, and wavelet transform. As mentioned by
Brunese et al. [3], they have used many spectrogram-based
and non-spectrogram-based feature extraction techniques,
including chromagram, root mean square, spectral centroid,
MFCC, zero-crossing rate, spectral roll-off (SR), and other
feature computations due to its demonstrated effectiveness
in performing tasks involving supervised machine learning.
Apart from the lung sound domain, other studies have
also used techniques like Spectrogram, and wavelet trans-
form [36].

In various disease categorizations, among diverse ML
algorithms including SVM, kNN, and logistic regression,
neural networks demonstrate notably superior prediction
performance [3], [25], [37].

Accordingly, several research studies have explored the
classification of lung sounds using DL algorithms. CNN is
one of the most used and promising DL model for respiratory
disease classification [27], [38], [39], [40]. Among them,
Brunese et al. [3], have shown a possible approach to
exploit a two-step classifier based on CNN to detect lung
disease at a fine grain, to discriminate between healthy
and affected lung conditions. Here, the abnormal sound
detection by the first classifier is further categorized into
7 disease types using the second classifier with an F-score
of 0.923. In another study, the lightweight CNN developed
by Shuvo et al. [24], detected 5 types of lung diseases
utilizing scalograms as the time-frequency representation of
signals. Another CNN-based approach was developed by
Basu et al. [20], by feeding MFCC features, to classify
lung sounds into 5 disease categories and showed an
accuracy and precision of 95.25% and 0.95, respectively.
Tariq et al. [2], have built a fusion of three optimal CNN
models by feeding the image feature vectors transformed
from audio features to classify 6 disease types and have
achieved an accuracy of 99%. In another study, Nguyen
and Pernkopf [41], have introduced techniques like sample
padding, feature splitting, a CNN snapshot ensemble, and a
focal loss objective for lung sound classification, achieving
superior performancewith the highest ICBHI scores of 78.4%
and 83.7% for the 4-class and 2-class tasks, respectively.
Considering other classifiers, Perna et al. [30], have defined
a learning framework based on Recurrent Neural Network
(RNN) models to handle respiratory disease prediction
problems at both anomaly and pathology levels to discover
the time-dependent patterns from sound data. Moreover,
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FIGURE 1. Taxonomy of Sound Preprocessing.

Nishi et al. [42] employed various classifiers, including
support vector machine (SVM), k-nearest neighbour (KNN),
logistic regression (LR), decision tree, and discriminant
analysis (DA), for COPD identification. Notably, the SVM
classifier yielded an initial accuracy of 83.6%. Subsequently,
they successfully achieved a remarkable 100% accuracy.
Although few studies have shown high accuracy levels [2],
[20], some of them endure limitations such as lack of data
and [4] and advanced feature extraction [28].
Furthermore, XAI techniques have been utilized in

recent studies to improve the trustworthiness of the clas-
sifier and increase the confidence of the end-user in
using DL-based support solutions [43]. Mainly, gradient-
based methods [31], which consist of Gradient-weighted
Class Activation Mapping (GradCAM), saliency maps,
and perturbation-based methods [32], that include Local
Interpretable Model-Agnostic Explanations (LIME) and
Shapley Additive Explanation (SHAP) are used in the
literature. However, only a few studies have addressed
explainability in lung sound and heart sound classification
domains. Additionally, few studies have expressed the
value of interpretations of neural networks. Among them,
Choi and Lee [19], have employed Grad-CAM to visualize
the attention of a CNN model for lung disease diagnosis.
The Grad-CAM visualizations showed that the model could
focus on the characteristic points of the respiratory sounds for
different diseases. Similarly, Topaloglu et al. [33], have used
Grad-CAM to generate heat maps, effectively distinguishing
asthma lung sounds from those of normal individuals. From
another point of view, Wang et al. [44], have utilized
SHAP values to explain the contribution of the different
time-frequency representations for the output of the heart
sound classification model based on the ImageNet CNN
model.

Accordingly, in the domain of lung sound classification,
the existing state-of-the-art research has primarily focused
on the classification of up to seven distinct diseases. Fur-
thermore, with respect to feature extraction from audio data,
many studies have traditionally employed individual feature

representations. This approach could limit the capacity of
models, such as CNNs, to capturemore spatial patterns within
the data. The limited studies that have delved into explaining
classification predictions have mainly relied on frequency-
based interpretations. Therefore, considering the real-world
practice, classifying lung sounds of a variety of conditions
and interpreting the results in the original waveform would
be of utmost importance.

III. SYSTEM MODEL
A. MATERIALS
In this study, we combined two publicly accessible
datasets: ICBHI 2017 [22] and the dataset developed by
Fraiwan et al. [23], both of which provide diagnoses for
various lung diseases. We combined the two datasets to
increase the number of available samples for specific lung
conditions, and since each dataset has some different types
of lung diseases, combining them gives us a bigger variety of
classes to apply for the study.

The annotation files of ICBHI include seven disease
types: chronic obstructive pulmonary disease (COPD), upper
respiratory tract infection (URTI), asthma, lower respiratory
tract infection (LRTI), bronchiectasis, pneumonia, bron-
chiolitis, and healthy lung sounds. However, the dataset
exhibits a significant imbalance, where COPD accounts for
approximately 86% of the data. The dataset created by
Fraiwan et al. [23], consists of seven unique diseases, three
classes representing combinations of these unique diseases,
healthy samples, and, in total, it comprises 11 classes. As the
primary step, we extracted and combined audio samples and
standardized them into a fixed window length to ensure
data consistency. The resulting dataset comprised 6-second
audio clips, uniformly sampled at 44,100 Hz with 16-bit
depth and a stereo channel configuration. The WavePad
software, an open-source application for audio editing,
was utilized to segment longer audio clips into multiple
6-second segments. This step became necessary for certain
classes due to the insufficient availability of audio samples
required to meet the predetermined range for each class.
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We removed classes corresponding to ‘‘heart failure’’ from
the dataset since they are unrelated to respiratory diseases and
discarded the LRTI disease class to mitigate data imbalance.
We further refined the dataset by excluding multi-labeled
classes since they had less samples, resulting in the selection
of 10 distinct classes: asthma, bronchiectasis, bronchiolitis,
bronchitis, COPD, lung fibrosis, pleural effusion, pneumonia,
URTI, and healthy. We augmented the two classes ‘‘pleural
effusion’’ and ‘‘bronchitis’’ using the positive pitch shifting
technique to balance the classes. The data volume before
and after augmentation of two classes, subsequent to fixed
window length audio file extraction from the combined
dataset, is depicted in Table 1. Accordingly, we used a total of
1219 data records after augmentation, and using the 80:10:10
split ratio, the training, testing, and validation sets consist of
891, 111, and 112 records, respectively.

TABLE 1. Combined dataset: original and augmented data.

B. PROCESS VIEW
The primary goal of this research is to construct a model
for the identification of pulmonary diseases from lung sound
data. Figure 2 shows the overall process flow of this study.
As the first step, we apply data augmentation techniques
to mitigate the imbalance data issue and improve lung
disease detection accuracy. Here, we applied a pitch shift of
1 semitone to each audio sample to minimize any impact
on the original audio signal, using librosa.effects.pitch_shift
library with a sample rate of 22050 and the number of steps
as 1. Then normalization is applied to maintain numerical
stability during processing and model training. The following
step involves extracting three prominent audio features
inherent from audio data: Mel-Spectrogram, MFCC, and
Chromagram. Third, we stack the three feature types on top of
each other to create a 3D feature representation for each audio
sample. Fourth, we feed this 3D feature to our convolutional
neural network. Finally, we employ Grad-CAM and Saliency
to identify the relevant regions of the original waveform
corresponding to the model’s predictions.

C. FEATURE EXTRACTION
The feature extraction process is crucial in this study to
transform the lung sound signals from the time-series domain
to the time-frequency domain (spectrograms) and combine
the extracted three time-frequency features to represent as
images, which are fed to the image classification model. The
spectrogram is calculated as in (1) and (2), where S(τ ) is the
time-domain signal, t is the time localization of short time
Fourier transform (STFT ), andW (τ −t) is a window function
to cut and filter the signal [2], ω is the angular frequency and
j is the imaginary unit, which is defined as the square root
of -1.

spectrogram(t, ω) = |STFT (t, ω)|2 (1)

STFT (t, ω) =

∫
∞

−∞

S(τ ).W (τ − t).e−jωτdτ (2)

We used techniques such as MFCC, Mel, and Chroma to
generate the spectrograms for the input audio data. The
Mel-Spectrogram represents the short-term power spectrum
of a sound produced by sampling air pressure over time,
transforming it from the time domain to the frequency
domain using the Fast Fourier Transform (FFT), and then
converting frequency to the Mel-scale and color dimension to
amplitude [27]. The Mel scale is calculated as [2] and [45],
where f is the frequency.

m = 2595 log10

(
1 +

f
700

)
(3)

After computing the logarithm of the mel spectrogram
values to compress the dynamic range, we get the log mel
spectrogram. MFCCs are coefficients that collectively make
up a Mel-frequency cepstrum (MFC) that represents the
short-term power spectrum of a sound based on a linear
cosine transform of a log power spectrum on a nonlinear Mel
scale of frequency [2]. The log mel spectrogram is subjected
to a Discrete Cosine Transform (DCT) to decorrelate the
coefficients and capture the most significant features. The
resulting coefficients are the MFCCs. The nth MFCC (Cn))
is given by (4), where M is the number of Mel filters, and
log_mel(m) is the mth value of the log mel spectrogram [46].

Cn =

M−1∑
m=0

cos
(

πn (2m+ 1)
2M

)
· log_mel (m) (4)

The mel spectrogram is a more detailed representation
of the power spectrum, capturing the distribution of energy
across frequencies over time. In contrast, MFCCs are a more
compact representation designed to emphasize characteristics
relevant to human perception

Chroma features capture the harmonic and melodic char-
acteristics of the sound [2]. Employing librosa.feature library,
configuring n_fft and hop_length as 2048 and 512 respec-
tively for each feature, we extracted the dominant features
from each audio sample in the lung sound i.e., MFCC,
Mel Spectrogram, and Chromargam with the dimension of
(128×264). Following this, the created spectrograms for each
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FIGURE 2. Overall Process.

audio sample were stacked using NumPy’s ‘stack’ function,
creating a three-dimensional input for the classification
model (128×264×3). To encapsulate the 3D representation
of features, each 2D feature (Mel, MfCC, Chroma), com-
parable to the RGB channels in an image, is stacked on
top of each other to create three channels. This creates
a 3D representation, with each channel capturing unique
information from the audio signal. The resulting structure
forms a comprehensive feature representation for each audio
sample in the dataset. The overview of the feature engineering
process is shown in figure 3, consisting of pre-processing and
feature extraction stages, by taking an asthma sample as an
example.

D. CLASSIFICATION MODEL
We proposed a customized CNN as the classifier of this study.
CNNs are widely recognized and efficient DL models that
learn and extract intricate features from image data [2], [34].
Our CNNmodel comprises a set of layers including the input,
2D convolutional, 2D max pooling, batch normalization,
dropout, 2D global average pooling (GAP), and dense. The
entry point of the model is the input layer, preserving that the
model receives the input in a compatible format to process
further. Convolutional 2D layers apply filters to identify
spatial patterns, edges, and textures within the input, enabling
the model to recognize relevant features through the ReLU
activation function, as it enhances the model’s ability to
compute complex, non-linear relationships in the data [47].
The formula for the convolutional layer is expressed in ((5))
and ((6)). The 3-dimensional input tensor is represented by
i, j, k while the output layer is represented by y(l)i,j,k . The

weights for the filters are described by w(l,f )
a,b,c and σ is the

activation function.

x(l)i,j,k =

∑
a

∑
b

∑
c

w(l,f )
a,b,c · y(l−1)

i+a,j+b,k+c + bias(f ) (5)

y(l)i,j,k = σ
(
x(l)i,j,k

)
(6)

The max pooling layer reduces the spatial dimension of
the data by computing the maximum of the feature map,
while the GAP layer calculates the average of feature maps
across spatial dimensions, simplifying the spatial complexity
of data to provide a compact representation for classification.

Batch normalization enhances the training stability and speed
of convergence by normalizing the input of each layer. The
dropout layer implements a hold-out strategy to prevent
overfitting by randomly deactivating a portion of neurons
during training. The dense layer is pivotal for generating
the model’s final predictions, converting previously extracted
features into class probabilities utilizing the ‘softmax’
activation function. Figure 4 illustrates the architecture of
the model which is developed using Keras and a Tensorflow
back-end. All the convolution layers consist of a kernel size
of (3,3) with the same padding followed by a ReLU activation
layer. Having the same padding allows input to be padded in
such a way that the output feature map has the same spatial
dimensions as the input. All the max pooling layers have a
(2,2) window size.

To deploy on an embedded device, the CNN classification
model must remain computationally efficient, avoiding
excessive computational expense associated with a high num-
ber of learnable parameters and arithmetic operations [24].
To address this, the model has a lightweight architecture that
has been optimized to substantially reduce the number of
parameters to 510,825.

For model training, we assigned sample weights to balance
the influence of different classes, ensuring that the model
does not favour the majority classes and accurately predicts
the minority classes. To compute sample weights for each
class, we divided the number of recordings in the smallest
class by the number of recordings in each class ensuring
that the sample weight of the smallest class is set to
one that has the highest importance. Moreover, the model
was compiled using the Adam optimizer and adjusted the
learning rate as 10−4. The loss function employed for
the multi-class classification task was Sparse Categorical
Cross Entropy. It is an extension of the Cross-Entropy loss
function that is used for binary classification problems [48].
The model computes the loss by comparing the predicted
probability for each class with the corresponding actual
class probability, penalizing the probability based on how
far it is from the actual expected value. Cross-entropy is
defined as in (7), where ti is the truth label and pi is
the Softmax probability for the ith class. The model was
set to train for 100 epochs, with the integration of an
early stopping callback function to prevent overfitting to the
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FIGURE 3. Feature engineering process (for an asthma sample).

FIGURE 4. CNN architecture.

training data.

LCE = −

n∑
i=1

ti log(pi), for n classes (7)

E. EXPLAINABILITY
The explainability of the proposed model is addressed using
both Grad-CAM and the saliency method. The Grad-CAM,
technique computes a weighted sum of the gradients of the
last convolutional layer output with respect to the target class
to visualize the input feature relevance to the prediction of
the model [49]. Since the interpreted regions correspond to
specific frequency bands, unlike pure image classifications,
issues arise such as how the frequency band is related to the
model’s prediction. Next, to backtrack the interpretations of
the model to analyze the behavior of the audio waveform,

the saliency method was utilized. We employed two saliency
methods, both using backpropagation to assess the relevance
of individual features within the input layer.

The first method used the regular ReLU activation
function, while the second used a guided ReLU function
to mitigate the contribution loss of nodes resulting from
the use of pooling layers [50]. Both methods provided
values in the range of 0 to 1 representing the contribution
levels of each input feature for a specific prediction. Next,
we applied a threshold to mask out low-contributing features
using the saliency map values and used these thresholds
to identify the most contributive pixels in the image and
mapped them back to the original waveform, highlighting the
most relevant segments for the prediction. To further enhance
the visualization, we calculated three distinct thresholds to
indicate the contributions as low, average, and high, where
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the mean value of all the contributions derived from the
saliency map is used to represent the average level while
the ones above and below the average convey slow and high
contributions, respectively. After calculating these threshold
values, the contributed regions in the original audio are
visualized using varying opacity levels to highlight areas of
significance.

IV. RESULT ANALYSIS
We conducted comprehensive experiments for the proposed
CNN model in four steps to assess that the stacked
representation of the audio inherent features, i.e., Mel spec-
trogram, MFCC, and Chromagram is better in comparison
to using these features individually for CNN classification.
First, the model was trained and tested employing Mel
Spectrograms. Next, the same step was repeated with MFCC
and Chromagram. Finally, the experiment was done with
the stacked representations. Furthermore, we experimented
with the interpretation of our model’s predictions using XAI
techniques.

A. CLASSIFICATION RESULTS OF THE PROPOSED CNN
Our objective was to demonstrate that the combined feature
representation outperforms the classification performance
achieved using each of the features namelyMel-spectrogram,
MFCC, and Chroma separately. Table 2 provides a summary
of the results obtained for the proposed CNN model.
We considered the weighted average as the testing accuracy
for the models. The highest accuracy of 91.04% is obtained
for the stacked features. The other performance criteria
selected for evaluation were precision, recall, and F1-score
as given in (8) to (11), along with the confusion matrix.
Here, True Positive (TP) represent the outcome where the
model correctly predicts the positive class. Similarly, a True
Negative (TN) is an outcome where the model correctly
predicts the negative class. Conversely, False Positive (FP)
refer to cases where the model inaccurately predicts the
positive class, and False Negative (FN) occur when the model
incorrectly predicts the negative class.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(8)

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

F1 − score = 2 ×
Precision× Recall
Precision+ Reall

(11)

TABLE 2. Results of classification.

Since the dataset is imbalanced, we employed the weighted
average for metric calculations since this approach accounts
for variations in class frequencies. First, we assigned weights
to each class based on their respective number of instances.
Next, the weighted average was calculated by taking the sum
of the product of the metric (accuracy, precision, recall, or F1-
score) for each class and its corresponding weight, divided by
the total sum of weights across all classes.

In order to enhance the analysis of the results,
Figure 5 displays the confusion matrix for the approach
with the highest reported weighted accuracy, which is the
stacked representation. Here, the classes 0 to 9 denote the
asthma, bronchiectasis, bronchiolitis, bronchitis, COPD, lung
fibrosis, pleural effusion, pneumonia, URTI, and healthy
classes, respectively. The confusion matrix serves as a visual
representation and summary of the classification algorithm’s
performance. According to the matrix, the model has
performed well for bronchiolitis, bronchitis, pleural effusion,
and URTI classes and has an averagely high performance
for bronchiectasis, COPD, and lung fibrosis, pneumonia, and
healthy classes. The asthma class has obtained a relatively
low accuracy with more false positives and false negatives.
When considered overall, the model has shown impressive
performance on the dataset, with significant precision and
recall values.

FIGURE 5. Confusion Matrix for CNN Classification with Stacked Features,
where classes denote 0 - asthma, 1 - bronchiectasis, 2 - bronchiolitis,
3 - bronchitis, 4 - COPD, 5 - lung fibrosis, 6 - pleural effusion,
7 - pneumonia, 8 - URTI, and 9- healthy class.

Figure 6 shows the training and loss curves on the CNN
model. The overall decreasing trend in loss and increasing
trend in accuracy depict that the CNN model is effectively
learning and generalizing from the stacked features. Small
spikes in both the loss and accuracy curves can be mostly
due to the nature and variations present in the lung sound
dataset.

In addition to the holdout method, we performed k-fold
cross-validation with k=5 to further evaluate the robustness
of our model. Across the five folds, our model demonstrated
a strong performance, achieving an accuracy of 89.2%, an
F1 score of 0.88, a precision of 0.89, and a recall of 0.88.
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FIGURE 6. Training and Loss curves.

B. CLASSIFICATION RESULTS OF THE OTHER EXISTING
CNN MODELS
To further emphasize on the performance of our model,
we conducted an evaluation by comparing its perfor-
mance with several existing CNN architectures, including
Xception, DenseNet, MobileNetV2, InceptionV3, ResNet50,
and VGG16. The results of this comparative analysis are
presented in Table 3. Notably, when comparedwith the results
in Table 3, our model demonstrates high performance and
outperforms these models.

TABLE 3. Results of classification.

In order to analyze the results further, Figure 7 displays the
confusion matrices for the above existing models.

While DenseNet has been able to perform well when
considered class-wise, it has less accuracy in the healthy
class. Xception, MobileNetV2, and VGG16 have an average
accuracy in all the classes except the asthma class, while
InceptionV3 and ResNet50 have poorly performed in lung
fibrosis. Inception has the lowest performance when com-
pared with all other models. So, the class-wise classification
result is distributed across all the models, where an identical
performance is not depicted. The confusion matrix of the
proposed model as in Figure 5 shows better performance
than DenseNet which outperformed other pre-trainedmodels.
Figure 6 shows the graphical comparison of all models
using Receiver Operating Characteristic(ROC) curves. The
ROC curve is a graphical representation used to assess the
performance of a classification model and depicts the true
positive rate against the false positive rate at each threshold
setting. According to Figure 6, the Area Under the Curve of
the proposed model is higher than the other existing models
emphasizing the overall classification performance of the
proposed model.

The architecture of the model developed by authors
of [24], which has 3.7674M parameters and is claimed

as lightweight, outperforms other contemporary lightweight
models such as ShuffleNet V2, MobileNet V2, and NASNet,
while obtaining better trade-off between the number of
parameters, requiring significantly lower storage space and
computational power. Our model, with 510,825 parameters,
has a parameter count lower than that of [24], which needs
much fewer computational requirements. We also calculated
the inference time for a stacked image of a lung sound using
a Core i7-8750 processor with clock speed specifications of
2.20GHz. The time required for the classification of a stacked
image using the proposed model is 0.026s ± 0.01s, while
the MobileNetV2 takes 0.085s ± 0.01s and the lightweight
model in [24] has taken 0.07s ± 0.01s. Thus, the proposed
CNNhas a lightweight architecture that is faster in classifying
a sound image as compared to [24]. In addition, the model
size of the proposed solution is 6.5 MB. Therefore, the
solution gives a lightweight CNN model with multi-feature
integration.

C. XAI RESULTS
In order to identify the best interpretable method for our
study, we conducted experiments involving Grad-CAM heat
maps and Saliency maps in two stages. At the initial stage,
we generated the heat maps and the superimposed image of
both the original feature representation and saliency maps as
shown in Figure 9. Here, a clear relevance in features for
model predictions could not be drawn since there was no
mapping between the time-frequency characteristics of the
audio and the explainable visualizations.

Accordingly, while both methods namely, Grad-CAM and
saliency map showed color variances for relevant regions,
the inability to identify any patterns within these images
that would effectively support to identification of the disease
was a clear challenge. As a solution for this, we sought
a more direct means of identifying relevant areas using
the original audio waveform. However, this requirement
introduced another limitation with Grad-CAM heat maps that
does not link the highlighted regions back to the original
audio waveform. In order to address this limitation, further
experiments were carried out with the saliencymap approach.
Here we made a significant breakthrough by highlighting
important regions in the original waveform for better analysis
with different relevance levels. When applied a guided ReLU
activation function during the backpropagation process to
assess the input relevance of stacked images, we observed
improved interpretations than when utilizing regular ReLU
activation.

Figure 10 depicts the XAI representation of bronchiolitis
signal that is predicted as positive, utilizing regular ReLu
and guided Relu. We have used the relevance values
generated from the saliency map to get the most used pixels
in the stacked spectrogram image, when representing the
explainability of the prediction using the audio waveform.
Since the x-axis of the spectrogram represents the time of
the audio waveform, we utilized values in the time axis to
highlight the audio waveform. Here, we used time regions
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FIGURE 7. Confusion matrices for Xception, DenseNet, MobileNetV2, InceptionV3, ResNet50, and VGG16, where classes
denote 0 - asthma, 1 - bronchiectasis, 2 - bronchiolitis, 3 - bronchitis, 4 - COPD, 5 - lung fibrosis, 6 - pleural effusion,
7 - pneumonia, 8 - URTI, and 9- healthy class.

based on three threshold values high, average, and low to filter
contribution into three levels in the audio waveform. These
regions are indicated as blue for very low or zero contribution,
yellow for low contribution, red for average contribution,
and maroon for high contribution to the model’s prediction.
Here, different sections of the signal have contributed to the
final predictions in different relevance levels, based on the
extracted features and the computations performed in the
layers of the proposed CNN classifier. It can be seen that,
the guided-ReLu approach captured only the more important
features for optimal prediction, compared to the regular-ReLu
representation.

To evaluate our XAI approach, we employed important
features from the saliency map as a mask, which we used
to remove important features from the original spectrogram

TABLE 4. Explainability evaluation results.

image. After masking important features from each stacked
image in the test dataset to create a new masked dataset, this
masked dataset is used to assess the original model. Table 4
shows the results of that evaluation.

Based on the reduction of the accuracy, F1-score, preci-
sion, and recall with the masked test set when compared
with values with the original test set, we can evaluate the
explainability model. Since all the values reduce after the
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FIGURE 8. ROC curves of existing models and proposed model.

FIGURE 9. Representation of heat maps and saliency maps for
Bronchiectasis sample.

masking it can be deduced that the explainability result gives
the most important features used for prediction.

V. DISCUSSION
Throughout the research, we encountered various challenges
and gained important insights into the domain of lung sound
classification. As we evaluated the results of our experiments,
we learned valuable lessons and were able to compare our
work with the state-of-the-art research.

A. LESSONS LEARNED
In this study, we addressed lung sound multi-classification
with 10 classes. We have shown the importance of stacking
different feature extraction techniques to obtain better
performances. The proposed CNN model classifies the
lung sound data with an accuracy of 91.04%. Furthermore,
we experienced different XAI techniques on sound data
classification, which is another novel contribution in this

domain. The observations of this study are described as
follows.

• Multi-class classification in lung sound domain
In the domain of lung sound classification, performing
10-class multi-class classification poses a unique set of
challenges that significantly impact the accuracy and
generalizability of the models developed. The main
reason behind this is the limited availability of audio
records. Also, it’s often difficult to gather a dataset
with an equal representation of various lung conditions,
since some diseases are relatively rare while others are
more frequent. Therefore, data imbalance will prevail
almost all of the time. The highest accuracy showed
by the proposed model, which is 91.04%, is up to
the competing level while many of the existing studies
yielded an accuracy of less than 90%.

• Model validation by preventing data leakage
Model validation is the process of evaluating the
performance and generalization ability of the DL model
on new data. This ensures that the model can effectively
make accurate predictions on unseen data that has not
been seen during the training phase. Data leakage is
another important aspect to be considered, which occurs
when information from beyond the training data is uti-
lized to train the model, enabling it to learn undisclosed
details and thereby invalidating the estimated perfor-
mance of the mode being constructed [51]. Preventing
data leakage is crucial for reliable model validation,
as it ensures the model is only evaluated based on what
it learned during training, preventing any unintended
exposure to external information that could compromise
its ability to generalize accurately. According to the
dataset details shown in Table 1, we split the dataset
into training, testing, and validation sets in such a way
that no subject contributed data to both the training
and validation sets. Thus, our proposed solution has
performed model validation avoiding any data leakages,
and ensuring that there are no overoptimistic results.

• Importance of feature representation methodology
When utilizing a CNN for audio classification, extract-
ing audio inherent features that best represent the
audio signal has extreme importance. Our approach
showed that combining Mel Spectrogram, MFCC, and
Chromagram by stacking on top of each other yields
better results. According to our observations, the main
reason behind this is the ability of the CNN model to
explore as many feature patterns as possible through
its convolutional layers and adjust weights for better
classification. When considering features individually
for classification, it can be seen that Chromagram yields
very low results while Mel Spectrogram and MFCC
perform almost equally.

• Importance of retaining noise in lung sounds
In the context of lung sound classification, removing
noise is not always an appropriate preprocessing step.
Since the lung sound databases utilized by this study
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FIGURE 10. Comparison between regular ReLU and Guided ReLU.

were made by collecting records of respiratory sounds
from different research teams with different recording
tools, the recordings can often exhibit various types
of noises, mirroring real-world scenarios [52]. Some
studies have considered adding random noise to the
audio samples to avoid overfitting during training [2].
Since a certain level of uniformity in the noise character-
istics cannot be determined in the datasets, conducting
experiments in different signal-to-noise ratio levels was
not considered.

• Importance of utilizing proper XAI techniques
The explainability results showed two key observa-
tions. First, unlike pure image classification tasks,
interpretability techniques applied to audio data, such
as spectrograms, often fall short of providing effective
insights for human analysis. For audio, understanding
the impact of frequency content alone is not sufficient.
Instead, we found that backtracking and highlighting
specific regions in the audio waveform offer a more
insightful approach since it enables analysis of wave-
form shapes and the time intervals within the highlighted
regions. Many image classification XAI evaluation
techniques, including image entropy and pixel flipping,
predominantly focus on assessing explainability in the
context of human-readable images. Since our approach
involves classifying audio waves using spectrogram
images, these conventional evaluation techniques are
ineffective. However, it is important to note that even
these methods require further improvement since we are
currently adapting XAI methods primarily designed for
image processing to the audio domain.

B. COMPARISON WITH STATE-OF-THE-ART RESEARCH
We conducted a comprehensive evaluation of the lung
sound classification models, regarding feature selection and
representation, model architecture, dataset used, number of
classes, performance results, and XAI techniques utilized.
The overall comparison of our study for lung sound

TABLE 5. Comparison of existing studies.

classification with state-of-the-art research is shown in
Table 5. The best state-of-the-art approach for lung classifi-
cation that has obtained the highest accuracy of 99% is by [2].
However, they have augmented the data about ten times
the original and categorized it into 6 classes. The study by
Chen et al. [53], has used different features using the ResNet-
50, with over 23M trainable parameters resulting in 98.79%
accuracy, but their classification only includes 3 classes. Our
model has shallow trainable parameters, thus it enables us to
run the model in resource-constrained environments without
sacrificing accuracy. Choi and Lee [19], have used CNN
with attention module and depthwise separable convolution
to classify 6 classes with 92.5% accuracy and employed
Grad-CAM as an XAI technique to visualize the important
regions of the input data that contribute to the model’s
decision. Although the accuracy result published in this paper
does not outperform the other state-of-the-art performances,
a direct comparison cannot be drawn since we perform
a 10-class classification and employ several XAI methods.
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C. CHALLENGES AND FUTURE EXTENSIONS
Several research directions could be explored as future
research in the lung sound domain. Developing quantized
models employing techniques such as quantization-aware
training, and post-quantization techniques will be of an
importance when proceeding with the research work for
real-time automatic lung sound auscultations. The generaliz-
ability of the model should be tested by deploying the system
in an edge device, without sacrificing accuracy which is not
a complex task considering the low number of parameters.
However, proper quantization techniques should be employed
for this task. An improvement is needed in pre-processing or
data augmentation techniques to overcome data issues such
as data imbalance and noise, which are common in medical
research, resulting in poor performance. Moreover, exploring
interpretable methods for audio classifications needs proper
attention from researchers towards the improvement of this
domain. Also, addressing data issues in medical research
will remain a prominent focus of research work for an
extended period. Furthermore, a validated model using
medical practitioners can be implemented as a support tool
for clinical settings. A mobile application comprising the
developed model can be developed, which is connected to
an electronic stethoscope to listen to lung sounds and predict
lung diseases in real-time. Thus, the generalizability of this
model can be improved by conducting an external validation
process with new patients’ data in clinical practice [54].

VI. CONCLUSION
This study presents a deep learning approach for lung sound
classification. As a novel contribution, we proposed a CNN
model to classify lung sounds into 10 classes employing
stacked features as a means to improve the performance of the
model.We utilized two publicly available lung sound datasets
with different numbers of samples and class imbalance
ratios. By employing stacked feature representation, our
CNN model achieved a maximum accuracy of 91.04%,
hence showing the importance of combining different audio
inherent features to discover new patterns of features involved
in a specific disease in the lung sound domain. Explainability
methods such as Saliency maps and Grad-CAM provided
insights into the classification model’s predictions allowing
us to visualize the important regions in the audio waveform,
the time intervals, and frequency content. We will further
improve the research by exploring more DL techniques such
as Quantized CNNs, and Quantum CNNs to improve the
model performance and implement a real-time lung sound
analysis system.
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