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ABSTRACT In Intelligent Transportation Systems (ITS), ensuring road safety has paved the way for
innovative advancements such as autonomous driving. These self-driving vehicles, with their variety of
sensors, harness the potential to minimize human driving errors and enhance transportation efficiency via
sophisticated AI modules. However, the reliability of these sensors remains challenging, especially as they
can be vulnerable to anomalies resulting from adverse weather, technical issues, and cyber-attacks. Such
inconsistencies can lead to imprecise or erroneous navigation decisions for autonomous vehicles that can
result in fatal consequences, e.g., failure in recognizing obstacles. This survey delivers a comprehensive
review of the latest research on solutions for detecting anomalies in sensor data. After laying the foundation
on the workings of the connected and autonomous vehicles, we categorize anomaly detection methods into
three groups: statistical, classical machine learning, and deep learning techniques. We provide a qualitative
assessment of these methods to underline existing research limitations. We conclude by spotlighting key
research questions to enhance the dependability of autonomous driving in forthcoming studies.

INDEX TERMS Connected vehicles, autonomous vehicles, vehicular networks, artificial intelligence,
sensors, anomaly detection, outlier detection.

ABBREVIATIONS
ADS Anomaly Detection System.
ADAS Advanced Driver Assistance System.
AE Auto-Encoder.
AEV Autonomous Electric Vehicles.
AI Artificial Intelligence.
AUC Area Under the Curve.
AV Autonomous Vehicles.
CAVs Connected and Autonomous Vehicles.
CNN Convolutional Neural Network.
DL Deep Learning.
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FDI False Data Injection.
GNSS Global Navigation Satellite System.
HLF High Level Fusion.
ITS Intelligent Transport Systems.
IoT Internet of Things.
IMU Inertia Measurement Unit.
KF Kalman Filter.
LSTM Long Short-Term Memory.
LLF Low Level Fusion.
LiDAR Light Detection and Ranging.
ML Machine Learning.
MLF Mid-Level Fusion.
MAE Mean Absolute Error.
MSE Mean Squared Error.
ROC Receiver Operating Characteristic.
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RNN Recurrent Neural Networks.
SAE Society of Automotive Engineers.
SSL Solid-State LiDAR.
STPA− Sec System-Theoretic Process Analysis for

Security.
STRIDE Spoofing, Tampering, Repudiation,

Information disclosure, Denial of service,
Elevation of privilege.

SVM Support Vector Machine.
TVRA Threat Vulnerability Risk Analysis.
ToF Time of Flight.
V2I Vehicle to Infrastructure.
V2V Vehicle to Vehicle.
V2X Vehicle to Everything.

I. INTRODUCTION
During the last few years, with the increase in population
and rapid urbanization, the rate of vehicles around the
world has grown extremely rapidly. This increase was
implicitly among the primary causes of millions of road
crashes yearly, as the high density of vehicles on the roads
created an unstable congested traffic environment with more
complex and hazardous driving conditions. For this reason,
among others, Intelligent Transportation Systems have been
established as smart technological solutions to improve road
safety and promote smart mobility [1]. ITS offers several
benefits including smart traffic management and monitoring,
enhanced safety services, user-oriented mobility services,
etc. [2]. Moreover, they rely on a connected infrastructure via
inter-vehicle (V2V) and infrastructure (V2I) communication
links interconnecting road sensors, road users, and vehicles.
This allows them to exchange real-time notifications on
their statuses as well as report road conditions, which
helps avoid dangerous situations and improve traffic flow
management [3]. Therefore, due to these significant advance-
ments in ITS technologies, autonomous driving systems are
becoming more and more reliable to implement and, hence
revolutionizing the global transportation system. They consist
of a variety of components that combine both Internet of
Things (IoT) and Artificial Intelligence (AI) technologies,
which helps reduce dependence on human intervention [4],
[5]. Thus, a self-driving system allows vehicles to navigate
freely with minimum, not to say without human guidance,
using sophisticated algorithms and machine learning models
to interpret data collected from multiple onboard sensors and
make real-time self-driving decisions [6].
The implementation of Autonomous Vehicles (AVs) paves

the way for a new era of transportation, yielding many posi-
tive implications for road safety and transport efficiency [7].
They hold the potential to significantly enhance road safety
by mitigating human errors, which are the primary cause
of most road accidents [8]. In addition, they have the
capability to streamline traffic flow and reduce congestion
by employing improved coordination and more efficient
driving techniques [9]. They also contribute to increased

accessibility for the elderly or people with physical or
visual impairments [10], [11], [12]. Furthermore, AVs could
help protect the environment by reducing carbon dioxide
emissions, optimizing energy consumption, and facilitating
the adoption of electric vehicles [13].

Since 2010, many technology and automotive companies
have invested in the development of AVs, such as Tesla,
Google’s Waymo, AutoX, Baidu’s Apollo, BMW, and many
other companies [14]. Hence, many self-driving vehicle
tests are currently underway in carefully selected cities and
regions. Nevertheless, despite all the efforts that have been
made in this sector, there are still a number of significant
obstacles that prevent the widespread use of this technology.
One of the primary barriers to its wider adoption is anomalies
and unanticipated happenings [15]. Currently, Connected
and Autonomous Vehicles (CAVs) rely heavily on multiple
sensors data for making maneuver decisions (e.g., lane
changes, acceleration, deceleration, etc.) as well as navigating
the environment. In recent autonomous driving applications,
three types of sensors, including cameras, LiDARs, and
Radars, are commonly used for sensing the surrounding
environment [16], [17], [18], [19]. However, due to sensor
data uncertainties caused by either cyberattacks or other
external factors, such as sensor malfunctions, environmental
anomalies and weather conditions, autonomous driving
systems require a sophisticated design to capture those
abnormalities and eventually mitigate their impacts. The
presence of outliers can result from various factors such
as the presence of multiple objects with different profiles,
especially in urban scenarios, the low accuracy of perception
sensor measurements, the loss of data after the fusion process,
etc. [20]. These outliers can cause errors in the sensor data,
which can lead to erroneous navigation decisions, resulting in
accidents and fatalities. Therefore, it is crucial to identify and
detect these outliers in the collected data as they may have a
fatal impact on autonomous driving systems.

In order to mitigate the effects of these anomalies on the
operation of autonomous driving systems and AVs in general,
several methods have been investigated in the literature. Each
one of them provides a different detection approach and deals
with different types of data. Moreover, these methods are
implemented at different levels of the autonomous driving
system framework and present different impacts on the
system’s performance. In this context, this paper presents
an in-depth review of the literature on recent advances in
anomaly detection in sensor data for CAVs and provides a
comprehensive guide for researchers and practitioners in the
field.

A. RELATED SURVEYS
Anomaly detection plays an important role in maintaining
the safe operation of AVs. Hence, many efforts have
been made in this area to study the topic from different
perspectives. Thus, a significant volume of literature has been
generated over the last decade. In this section, we discuss
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TABLE 1. Summary of prior existing surveys on anomaly detection solutions.

recent comprehensive surveys that review existing literature
focusing on the anomaly detection field. We provide a
summary and comparison of these surveys in Table 1.
The survey in [21] offers a comprehensive examination

of various anomaly detection methods that rely on Radar,
LiDAR, camera, multimodal, and abstract object-level data.
It presents a systematic analysis that encompasses several
criteria such as detection approaches, corner cases (i.e.,
anomalies) level and simulation datasets. Thus, detection
approaches are further classified into five categories: recon-
struction, prediction, generative, confidence scores, and
feature extraction. Moreover, in [21], the authors discussed
the latest advancements in the field and identified areas where
further research is needed.

In [22], the authors tackled the issue of outliers in IoT
applications by examining its different sources, existing
detection approaches, how to assess detection techniques,
and the difficulties encountered in designing such a solution.
As a next step, the authors provided a literature review
of the most recent existing outlier detection techniques

by classifying them into seven categories: statistics-based,
cluster-based, nearest-neighbor-based, classification-based,
artificial intelligence-based, spectral decomposition-based
and hybrid methods. Within each category, a set of
solutions are discussed and analyzed according to several
criteria such as the nature of test data and the ded-
icated approach (online, offline, distributed, centralized,
etc.).

The survey presented in [23] investigated the anomaly
detection solutions for Autonomous Electric Vehicles
(AEVs) through AI-based approaches. The review fills
the gaps in existing surveys through a detailed study of
associated security vulnerabilities and corresponding AI
methods to classify irregular behaviors. Additionally, this
survey provides a detailed classification that categorizes
anomaly detection techniques, considering network, security,
and AI-based approaches. On the other hand, in [24], the
authors addressed corner cases for visual perception in
autonomous driving and categorized them into five levels
based on their complexity of detection: Pixel Level, Domain
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Level, Object Level, Scene Level and Scenario Level. For
each level, a set of detection solutions have been highlighted.
The authors pursued their investigation in [25] by covering
more detection approaches in addition to their respective
categories (as in [21]) and linking them to the corner case
levels.

Finally, the authors of [26] focused on anomaly detection
techniques based on Machine Learning (ML) and Deep
Learning (DL) approaches designed to assess irregular
behaviors in the IoT data stream. The authors have also
presented a detailed taxonomy that defines the current
literature based on various elements including the nature
of the data, the types of anomalies studied, the learning
modes employed, the window model, the data set and the
criteria used to evaluate such a detection solution. The paper
additionally proposes some future research directions that
may aid in the advancement of innovative anomaly detection
techniques.

B. CONTRIBUTIONS
The aforementioned surveys provide valuable insights into
certain aspects of anomaly detection. Nevertheless, a compre-
hensive survey focusing on outlier detection in autonomous
driving, encompassing diverse sensors such as cameras,
Radar, and LiDAR, along with various anomaly categories
and appropriate detection techniques, is currently unavail-
able. The main contributions of our work compared to the
existing reviews are:

• We provide an overview of how connected and
autonomous vehicles work, their key components and
the benefits arising from the implementation of this
technology.

• We present a comprehensive taxonomy that encom-
passes several elements related to anomaly detection,
which helps better understand this research area.

• We conduct a systematic literature review on anomaly
detection techniques for CAVs. We classify existing
solutions into Statistical, classical Machine Learning,
and Deep Learning methods, which help to discern
recent trends in anomaly detection for CAVs and to
identify emerging techniques within this field.

• We conduct an in-depth qualitative evaluation of the
existing proposals to highlight the strengths and weak-
nesses of each solution. This serves as a foundation to
provide insights for enhancing the security of emerging
CAVs applications.

• We identify open research issues related to self-driving
vehicles. These challenges form a roadmap for future
research efforts by recognizing where further research
is needed to develop secure solutions for autonomous
driving.

C. ORGANIZATION
As shown in Fig. 1, we organize the rest of the paper as
follows: We provide a background on autonomous vehicles
in Section II. In Section III, we present a detailed taxonomy

around anomaly detection. We discuss, in Section IV,
an overview of the recent proposed solutions from the
literature. Section V provides a qualitative analysis of
the solutions discussed while also highlighting some open
research issues. Finally, we close this investigation with a
conclusion. We further provide the list of acronyms used in
this survey.

FIGURE 1. Survey structure and main sections.

II. CONNECTED AND AUTONOMOUS VEHICLES (CAVS)
TAXONOMY
Prior to delving into the core of the subject, it is necessary
to introduce several key concepts related to self-driving
technology. In this section, we detail the six levels of
autonomy of CAVs, the types of sensors included in a CAV
how data are collected through them, as well as how decisions
are generated.

A. LEVELS OF AUTONOMY
With the aim of providing a common basis for understanding
the different levels of automation, the Society of Automo-
tive Engineers (SAE) [27] defined the J3016 standard in
2014 [28], [29].
As shown in Fig. 2, this standard divides vehicle autonomy

into six levels, ranging from zero to full automation
depending on system capabilities. At Level 0, all driving
tasks are fully managed by the driver (human) without
any assistance or automated features. More and more, new
automated features are added at Level 1 to assist the human
driver. At Level 2, an Advanced Driver Assistance System
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FIGURE 2. Driving automation levels.

(ADAS) is built into the vehicle, which can provide steering
and braking/acceleration features. Upon reaching Level 3,
the vehicle will be able to perform the majority of driving
tasks as long as specific conditions are met. Furthermore,
the driver is not required to constantly monitor the driving
process, unless prompted by the system. At the highest
degree of automation, the vehicle achieves full autonomy
making it capable of independently managing all driving
responsibilities in all situations and environments without
requiring human intervention. Hence, the evolution of CAVs
towards the full level of driving automation, indicates that
futuristic vehicles will be very dependent on sensors and that
navigation decisions will be dependent on the quality of the
collected data.

B. ARCHITECTURE LAYERS OF CAVS
The ability of self-driving vehicles to navigate freely
lies in the use of diverse embedded sensor technologies.
As illustrated in Fig. 4, which represents the conventional
architecture of an autonomous driving system, an AV consists
of several key components that can be organized into three
layers: sensing, perception, and decision layers [30]. These
components operate collaboratively to allow the vehicle to
sense and understand its environment, make appropriate
decisions, and navigate smoothly on the roads. Thus, as a
first step, the sensors take care of collecting data from
the environment. These data are then processed in the
second layer in order to extract relevant information such as
recognizing objects, identifying obstacles, and determining
their positions. The extracted information is subsequently
used to generate commands. Finally, the decision layer takes
responsibility for translating orders into mechanical actions
such as braking, acceleration, and steering [31], [32]. These
layers are summarized as follows:

• Sensing layer: Sensing is the crucial first step in
enabling the self-driving car to understand its environ-
ment and make informed decisions. Thus, a variety of

FIGURE 3. Deep learning-based object detection methods.

sensor types are used to collect essential data, such as
camera, LiDAR, Radar, ultrasonic, etc.

• Perception layer: This layer plays a central role in
the architecture of CAVs. Thus, the raw data collected
by the different sensors will be processed in this
layer in order to transform them into a meaningful
representation of the environment and to make deci-
sions accordingly. This layer uses several sophisticated
Machine Learning algorithms for the interpretation
of the extracted information and the object detection
and classification tasks. In addition, these techniques
often rely on Deep Learning algorithms using neural
networks. These methods are trained using extensive
datasets to enhance their capability in recognizing
various object classes, including pedestrians, cyclists,
cars, traffic signs, and others. These algorithms are
mainly divided into single-stage detectors and two-
stage detectors. The main difference lies in the number
of steps involved in the object detection/classification
process. Single-stage detectors are generally very fast,
as they perform detection and classification in a single
step whereas two-stage detectors do it in two separate
steps [33]. In Fig. 3, we have presented a summary
of the most popular object detection algorithms. These
algorithms include You Only Look Once (YOLO)
[34] and its later versions (currently YOLOv8), Single
Shot MultiBox Detector (SSD) [35], Region-Based
Convolutional Neural Network (R-CNN) [36] and its
variants Fast R-CNN [37], Faster R-CNN [38] andMask
R-CNN [39].
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TABLE 2. Comparative analysis of machine learning applications for autonomous driving.

Table 2 provides a comparison between two major ML
applications used by self-driving systems to perceive
their surroundings: object detection/classification and
traffic sign recognition. As mentioned, object detection
techniques provide a high accuracy and excel in the
ability to handle diverse object categories, although they
may be sensitive to small or poorly lit objects. Likewise,
traffic sign recognition algorithms demonstrate high
accuracy in identifying different road signs, but they
can encounter certain challenges disrupting their perfor-
mance. The capabilities and limitations are explored in
the following table, providing insight into the challenges
unique to these two key applications.

• Decision layer: This layer is responsible for making
decisions based on data received from the perception
layer. It serves as the core of the autonomous driving
system, as it determines how the vehicle must react
to changing conditions in its surroundings. Thus, the
obtained data is analyzed to understand the current state
of the vehicle’s environment. This can include identi-
fying nearby vehicles and predicting their movements,
understanding traffic signals, detecting obstacles and
other road users (pedestrians, cyclists, animals, etc.).
Using this information, the decision layer generates
actions including commands for steering control, speed
and braking. Once the decision is made, a trajectory is
generated to plan the vehicle’s route while considering
driving rules, detected obstacles and anticipated move-
ments of other vehicles.

C. SENSORS AND DATA COLLECTION
The integrated sensors in a CAV can be classified into
two groups, proprioceptive and exteroceptive, depending
on whether they measure the internal state (e.g., Global
Navigation Satellite System (GNSS) or Inertia Measurement
Unit (IMU)) of a vehicle system or collect data from
the external environment (e.g., camera, LiDAR, Radar and
ultrasonic sensors). They can also be classified as passive

or active sensors depending on whether they depend on the
energy emitted by the environment (e.g., camera) or whether
they emit energy themselves to gather information (e.g.,
LiDAR and Radar) [40]. These various sensors, characterized
by different functionalities, collaborate harmoniously to
create a holistic perception system for self-driving vehicles.
By combining data from these sensors, the vehicle can exam-
ine and comprehend its environment, thereby facilitating
secure and efficient autonomous navigation. In the following,
we elaborate on the functioning of sensors and the process of
data collection through them. Our primary focus will be on
camera, LiDAR, Radar, and ultrasonic sensors.

1) MAIN SENSORS
• Camera:This type of sensor is essential for autonomous
vehicles as it can allow them to perceive their environ-
ment by detecting both stationary and moving objects
with different profiles. Thus, cameras offer a significant
advantage over other types of sensors because they can
differentiate between colors and textures. In addition,
the installation of several cameras in different positions
around the vehicle provides a 360◦ view as well as
a bird’s eye view allowing the vehicle to identify
nearby objects, such as neighboring vehicles, pedes-
trians, road lines, and traffic signs. Currently, modern
high-definition cameras have the capability to generate
millions of pixels in each frame, achieving a frame rate
ranging from 30 to 60 frames per second [41]. Generally,
cameras can be divided into two categories: monocular
and binocular. Monocular cameras can detect objects
and capture two-dimensional images of the environment
close to the vehicle (short to medium-range perception).
On the other hand, binocular cameras can provide a
three-dimensional (3D) representation of the scene that
simulates human eyes [42]. They are more suitable
for medium to long range perception allowing for
more accurate depth perception compared to monocular
cameras.
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FIGURE 4. Conventional architecture of an automated driving system.

• LiDAR: This is a remote sensing system that employs
laser pulses to precisely determine the distance of
objects. When applied to CAVs, these particular sensors
are crucial as they enable a more comprehensive and
efficient understanding of the surroundings, surpassing
the capabilities of cameras. LiDAR devices can be
classified as medium to long-range sensors, offering a
measurement range of over 200 meters [43]. A LiDAR
sensor is mainly composed of an infrared transmitter
and a receiver for the reflected signals by the objects
that contain a timer calculating the time elapsed between
the emission and the reception of laser (Time of
Flight (ToF)) [44]. To determine the distance of an
object, initially, the sensor emits laser pulses in various
directions. These beams come into contact with objects
along their path, causing them to bounce back. Then,
the receiving device detects these reflected signals and
computes the distance by measuring the time it takes
for the signal to travel. This calculation is performed
for several points which creates a 3D representation
of the vehicle environment’s geometry called point
cloud [45]. LiDAR sensors can be classified into two
main types: mechanical LiDAR and Solid-State LiDAR
(SSL) (see [40] for more details). The main difference
between these two categories lies in the technique
employed to direct the laser beams. The first one
uses a rotating mechanical mirror while SSLs utilize
semiconductors, such as SSL diodes, to generate and
emit laser beams.

• Radar: The term Radar stands for Radio Detection and
Ranging. It refers to a remote detection system using
radio waves to locate, detect, and track objects. The

operation of a radar sensor is based on the principles of
broadcasting radio waves and analyzing their reflection
on objects in order to gather valuable data such as
the object’s distance, its speed, its direction, and more.
Autonomous vehicles rely on radars as one of their
initial sensor options due to their ability to withstand
various weather conditions. Similar to a LiDAR system,
the radar antenna sends radio waves, in the form of
electromagnetic signals at a given frequency. Once these
waves have encountered a solid object, some of the
wave’s energy will be reflected back to the radar (the
reflected signal strength depends on the size of the
object), which will process the signal into a usable form.
Calculating the speed and position of an object is based
on the Doppler property of EM waves [46]. Thus, radar
sensors employ various frequency bands for different
purposes. This includes 24 GHz, 76 GHz, 77 GHz,
and 79 GHz where the higher frequencies, such as those
in the 77 GHz and 79 GHz ranges, provide higher
resolution, enabling better real-time differentiation of
objects [47].

• Ultrasonic Sensors: These measurement devices oper-
ate without physical contact and utilize high-frequency
sound waves to determine the distance to a surrounding
object. In the context of CAVs, these types of sensors are
often employed for the detection of objects close to the
vehicle. Hence, in the same way as a LiDAR or Radar
sensors, the operation of an ultrasonic sensor is based
on the emission of sound waves and the measurement
of the duration it takes for these waves to bounce off
objects and return to the sensor [48]. By using the speed
of sound in air, which depends on some factors like the
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TABLE 3. Comparison of sensors’ characteristics.

temperature and the humidity of the air (e.g., at 20◦C
the speed of sound is equal to about 343 m/s), the sensor
can calculate the distance between itself and an object.
Moreover, ultrasonic sensors rely on sonic transducers to
transmit sound waves falling between 40 kHz to 70 kHz
for automotive applications. This range of frequencies
exceeds the range of human hearing making it safer
for use [44]. These sensors are generally useful for the
detection of objects at short distances (approximately
10 meters), enabling tasks like parking maneuvers and
low-speed obstacle avoidance [49].

2) SENSORS’ CHARACTERISTICS COMPARISON
In this section, we summarize the characteristics previously
discussed for each sensor (camera, LiDAR, Radar, and ultra-
sonic sensors). In Table 3, we provide a comparative analysis
of these technologies. This analysis encompasses various
criteria including the perception technology employed,
range, sensitivity to weather conditions, cost, and other
relevant aspects. Our evaluation draws from multiple studies,
including [18], [44], [46], [50], [51].

D. SENSOR DATA FUSION
The data fusion refers to the process of combining data
from various sensors. The objective of this stage is to
achieve a more precise and complete representation of the
vehicle’s environment, in order to make smarter decisions
and improve the overall performance of the system. Indeed,
each sensor possesses its own strengths and weaknesses
regarding to resolution, precision, range, and so on, data
fusion aims to take the benefits of each data source
while mitigating their limitations. Generally, to enhance
the perception capabilities of self-driving vehicles, three
possible sensor combinations are adopted for sensors fusion:

FIGURE 5. Classification of sensor fusion techniques according to the
level of abstraction of fused data.

Camera-Radar Camera-LiDAR, and Camera-LiDAR-Radar
[52]. In fact, camera sensors can provide detailed appearance
data on objects, however, they are sensitive to some lighting
conditions which can cause data anomalies. To address this
limitation, combining camera images with Radar or LiDAR
outputs provides more details about the positions of objects
and their speeds with the possibility of tracking them.

As shown in Fig. 5, to combine information from two
or more types of sensors, three approaches can be adapted:
High-Level Fusion (HLF), Low-Level Fusion (LLF) and
Mid-Level Fusion (MLF) [53]. By using HLF methods,
each sensor interprets its data independently and the data
fusion is done using the results of each one of them. These
techniques have the advantage of lower complexity compared
to other techniques, however, they may generate inadequate
or insufficient information resulting in data anomalies. On the
other hand, LLF approaches aim to merge the raw data from
each sensor together without prior filtration with the objective
of improving the process of object recognition. In practical
implementation, these methods necessitate intricate sensor
pre-configuration to achieve a clear perception [40]. Like-
wise, MLF approaches are techniques that combine HLF and
LLF strategies. Their objectives are to derive features from
the initial readings obtained from each sensor andmerge them
in a subsequent stage to generate a combined signal that can
be used for further analysis [54].

E. AUTONOMOUS DRIVING SERVICES
Autonomous vehicles can provide several benefits and
services. These advantages can be divided as follows:

1) DIRECT BENEFITS
• Comfortable and safe driving: By eliminating more
and more human involvement in the driving process,
CAVs can significantly reduce the risk of accidents
and make decisions in an efficient way. Thus, with the
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use of a combination of multiple types of sensors and
intelligent algorithms, CAVs can anticipate potential
collisions and take preventive measures more quickly
than a human driver such as braking or changing
lanes [55]. Moreover, by means of V2V and V2I
communications, vehicles are able to collaborate and
make decisions based on amore complete understanding
of their environment. As a result, this facilitates a
decrease in both the frequency of accidents and traffic
congestion on the roadways for around 90% using full
autonomous vehicles [56].

• Accessible driving to everyone: Autonomous vehicles
can make driving accessible to everyone by reducing
mobility constraints for people with special needs.
In addition, the use of self-driving vehicles eliminates
the need for advanced driving skills and peoplewho have
not learned to drive or who still have difficulty driving
can benefit from transport services.

• Optimized driving time: As a result of applying
the advanced features provided by self-driving vehi-
cles, driving time can be minimized and managed
in an efficient way. Thus, CAVs are coded to use
enhanced driving methods in comparison to those
used by humans [57]. These improvements result in
better decision-making regarding route selection, faster
navigation, and reduced time spent on parking.

2) INDIRECT BENEFITS
• Reduced air pollution: In the higher levels of automa-
tion, particularly levels 4 and 5, driving will be smoother
and more efficient so that fuel consumption and carbon
dioxide emissions will be reduced remarkably [58].
As well as, by minimizing waiting times and improving
traffic flow, the release of polluting gases caused by
traffic congestion and frequent stopping and starting of
vehicles will be considerably reduced [59], [60].

• Moderate energy consumption: By using self-driving
systems, energy consumption is expected to be more
moderate compared to traditional driving practices.
Since CAVs allow to reduce the time spent on the
road, the energy consumption necessary to cover a given
distance will be decreased as a result of this. Thus,
a number of studies, reported in [9] and [61], have shown
that the application of CAVs can save up to 40% of fuel.

• Less expenses for maintenance: A very important
advantage results from the use of autonomous driving
systems which is the reduction of maintenance cost.
Since CAVs are equipped with advanced technologies,
they can quickly detect any problem or potential
malfunction. Furthermore, by avoiding collisions and
road damage, maintenance costs will be significantly
reduced.

III. ANOMALY DETECTION SYSTEMS IN CAVS
Anomaly detection is an essential task to guarantee the safety
of autonomous vehicles and the certainty of their decisions.

Above all, it is also important to understand what an anomaly
is, its forms/types and the potential causes that can increase
the risks of producing erroneous readings. To clearly illustrate
the Anomaly Detection System (ADS) in CAVs, we present,
in Fig. 6, a detailed taxonomy which highlights several
important elements, mainly: the types of anomalies and
their sources, the different categories of techniques used for
detection and the diversity of datasets used for evaluation.
We present, in more detail, all of these elements in the
remainder of this section.

A. ANOMALY DEFINITION
Explaining an anomaly is somewhat challenging as there is
no precise definition for it. Nevertheless, various works have
suggested approximate explanations for it, such as in [62]
and [63]. In general, an anomaly, commonly referred to as an
outlier or corner case, occurs when ameasurement or reading
significantly diverges from the typical values generated by a
sensor. In simpler terms, it represents data that deviate from
the rule and shows unexpected behavior compared to what
the sensor usually produces.
As shown in Fig. 6, there are typically three categories of

outliers that can occur: point anomaly, contextual anomaly,
and collective anomaly. Point anomalies are the easiest
to identify and refer to a reading that significantly dif-
fers from the rest of the captured data. An instance of
this anomaly could be a false detection of an object’s
distance caused by a temporary radar failure. Contextual
anomalies, on the other hand, depend on the context
of perception. They might be considered normal in one
context but abnormal in another. For example, if there
is a sensor malfunction, the distance measurement, which
is considered normal at a given speed X , turns into an
anomalous value whenmoving to a different speed Y . Finally,
collective anomalies represent a group of observations that
diverge together from the expected values, e.g., when
several autonomous vehicles simultaneously encounter and
report unusual situations such as detecting an unknown
object on the road that does not conform to the typical
objects.

B. CAUSES OF SENSOR DATA ANOMALIES
Several factors can cause anomalies in the data collected by
sensors. However, they can be categorized into three classes:
sensor malfunction, measurement errors due to changing
environmental conditions, and security threats.We categorize
them as follows:

• Sensor malfunction: IoT devices are highly susceptible
to hardware and software errors. These faults are caused
by several sources, including sudden sensor failure,
damage to internal components due to prolonged sensor
usage, wrong calibration, software errors, or connectiv-
ity problems. As a result, these factors can contribute
to disrupting the proper functioning of the sensor by
producing low-precision readings [64], [65].
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FIGURE 6. Taxonomy of anomaly detection system in CAVs.

• Environmental conditions: One of the major chal-
lenges facing CAVs is the changing environmental
conditions. Thus, the performance of the sensors is
significantly affected by climate conditions such as
temperature, fog, rain, humidity, strong light, etc. For
example, when it rains, water droplets can interfere
with the laser beam trajectory of a LiDAR sensor,
causing unwanted reflections as a result. LiDAR can
interpret these reflections as additional obstacles leading
to inaccurate detection of the number of obstacles [49],
[50].

• Cyberattacks: The network of CAVs is very exposed
to several cyberattacks which can have serious impacts
for the safety of CAVs. Thus, as sensors are funda-
mental elements for autonomous driving, attackers can
manipulate the various captured data, misleading the
CAVs decision systems [66]. These types of attacks,
such as jamming and spoofing attacks, primarily target
the availability and integrity of sensor data [67], [68].
In addition, the control components of self-driving
vehicles can also be targeted by attacks aimed at
disrupting the stability of their trajectories or taking full
control of them remotely. Furthermore, since CAVs rely
on cloud services to primarily manage data storage and
software updates, attackers can affect the availability
of these cloud infrastructures by launching attacks like
denial of services (DoS).

C. IMPACT OF ANOMALIES ON CAVS’ OPERATION
As mentioned previously, several factors such as enrion-
mental conditions and cybersecurity threats, can drastically
affect and disrupt the safe operation of CAVs, includ-
ing their perception systems. These disruptions can make

decision systems less precise and harm the safety of road
users [49], [69]. In addition, frequent perceptual errors can
lead to loss of trust in autonomous driving systems. Thus,
it is necessary to implement mechanisms for identifying
anomalies and preventing their adverse effects on the security
and performance of CAVs. In the following, we summarize
the potential impacts of anomalies on self-driving vehicles
perception systems.

• Incorrect interpretation of the environment: the
presence of anomalies of various types can lead to errors
in the readings provided by the autonomous vehicle’s
sensors, resulting in an incomplete or erroneous per-
ception of the surrounding. These errors mainly include
misclassification of objects and obstacles.

• Inaccurate decisions: Once the data received from
the perception layer is incomplete or incorrect, the
decision system will generate erroneous or inadequate
actions. For instance, it could incorrectly anticipate
the movements of other vehicles on the road or react
incorrectly to the presence of an unforeseen obstacle.

• Navigation Issues: As a result of the presence of
anomalies, self-driving vehicles may have trouble fol-
lowing the lane and adapting to changing complex traffic
conditions and understanding signs.

• Increased risk of collision: the inaccurate decisions
generated can increase the risk of collisions, as the CAVs
cannot correctly perceive their environments. This can
be of particular concern in congested traffic situations
or challenging weather conditions.

D. ANOMALY DETECTION SYSTEMS
Since autonomous vehicles rely on sensory data and AI-based
algorithms to make decisions and navigate their environment,
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it is very likely that some anomalies will be produced.
These anomalies can have serious consequences for the safety
of CAVs [70]. Hence, it is mandatory to implement ADS
capable of mitigating the negative impacts that anomalies can
cause on the navigation decisions of the CAVs. An ADS for
CAVs is a collection of mechanisms/algorithms that makes it
possible to identify, isolate, and prevent any deviation from
the normal state of the CAV system towards an abnormal
situation due to several causes discussed previously. The
ADS is characterized by several tasks, primarily monitoring
the system state and collecting data against anomalies using
advanced algorithms. As soon as anything abnormal is
detected, the ADS can take safety measures by generating
instant notifications to the vehicle’s control system, which in
turn, for example, will isolate the affected sensor.

In general, an ADS is composed of several modules and
stages and its operation differs depending on the types of
learning, i.e., supervised, unsupervised, and semi-supervised.
In supervised learning mode, the ADS goes through two
phases: the training phase, using examples of labeled samples
(normal and abnormal) and the effective online detection.
In the first phase, the ADS model is trained on a base
model representing the normal and abnormal behavior of
the data. Then, in a second phase, the ADS uses the base
model as a reference to compare the data in real time,
using a detection/classification algorithm, in order to identify
anomalies. Additionally, the raw data streams from the
different sensor types are passed to a pre-processing stage
for normalization before being used [71], [72]. Detection
models under this learning mode provide high performance
with reduced false positive rates, however they are not reliable
against unexpected or rare anomalies not presented in the
training data. On the other hand, in unsupervised learning,
the algorithm does not require labeled data for training, and
it is based, essentially, on the available data to identify and
learn regular behaviors and through which it can detect any
deviations. These types of models have the advantage of
detecting a variety of anomalies including those that are
not present in the training data, unlike supervised learning.
However, these models suffer from a higher number of false
positives/negatives, since they do not have an annotated
schema to differentiate clearly between normal and abnormal
data [73], [74]. In semi-supervised learning, a combination of
labeled and unlabeled data is used to take the advantages of
two previous modes (supervised and unsupervised). Labeled
data, in this mode, is used to train the model to identify
anomalies in the unannotated data [75]. Nevertheless, these
models are generally more complex in their implementations,
as they handle both varieties of data types.

Several algorithms and methods have been introduced
in the literature for anomaly detection. In general, these
methods can be classified into algorithms that are either
based on Statistical approaches or ML approaches. As for
the statistical approaches, they are based on mathematical
models, and they are designed to handle sensor uncertainties
and errors reliably due to their strong theoretical basis.

However, they may have certain limitations in terms of
processing non-linear or complex data. In contrast, classical
ML and DL approaches refer to artificial intelligence
models that use advanced algorithms to tackle complex tasks
[76], [77].

In Fig. 6, we have presented a summary of anomaly
detection approaches. For each category, we have included
an example of the most frequently used algorithms. For
statistical techniques, we can cite the Bayesian network,
Kalman Filter (KF) [78], etc. As for classical ML models,
supervised and unsupervised ML are very commonly used
for anomaly detection. For example, clustering algorithms
like Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [79], regression models like Decision Tree
(DT) [80], and classification models like Support Vector
Machine (SVM) [81]. As for methods based on DL, they
include Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), such as long short-term memory
(LSTM) and Generative models like Generative Adversarial
Networks (GANs) [82], [83].

E. EVALUATION METRICS
Evaluation metrics help improve the reliability and safety
of driverless vehicles by ensuring high-quality solutions
in preventing potential incidents and detecting anomalies.
Thus, several metrics are used to measure the technique’s
performance and they are varied depending on the type
of approach used (i.e., ML, DL or Statistical). These
metrics mainly include Accuracy, Precision, Recall, F1-
score, Mean Squared Error (MSE), ROC (Receiver Operating
Characteristic) curve [84], Area Under the Curve (AUC) and
more [85]. Accuracy measures the rate of correct results
among all predictions. It explains a model’s ability to
correctly differentiate between anomalies and normal data.
Precision aims to assess the number of normal data correctly
identified among positive predictions. On the other hand,
Recall measures the number of anomalies correctly detected
among all real anomalies. F1-score combines Precision
and Recall by giving an overall measure of the detection
efficiency [86]. The use of these metrics is mainly linked to
the type of task adopted (i.e., Regression, Classification or
Clustering). Thus, for classification, algorithms are evaluated
using Accuracy, Precision, Recall, F1-score, ROC or AUC.
As for Regression tasks, we can use the MSE metric, which
calculates the difference between the predictions and the true
values, and theMean Absolute Error (MAE) which calculates
the average of the absolute deviations between the predictions
and the correct values.

F. OPEN DATASETS FOR CAVs
To reliably assess an anomaly detection solution, it is crucial
to choose a diverse and representative dataset including a
wide range of scenarios. This allows for a comprehensive
examination of the solution’s performance and limitations.
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In this subsection, we present some of the most well-known
open datasets.

Generally, three categories of databases are widely
employed for evaluating anomaly detection methods: syn-
thetic, public, and real-world databases [87]. Synthetic
datasets are artificially generated by injecting various
scenarios of anomalies using a simulation environment.
In contrast, real-world databases are composed of real data
gathered from the onboard sensors of autonomous vehicles
while navigating. Many of these datasets either synthetic or
real-world are made public and can be used by practitioners
to evaluate their anomaly detection methods in CAVs. The
open datasets have a variety of benefits for autonomous
vehicle research and development. They provide a large
amount of data with diverse and realistic scenarios. In
addition, the process of collecting real-world data for AVs
is generally expensive and complex, and therefore public
datasets offer a cost-effective alternative for researchers [88].
Since public datasets provide a large volume of real data
coming from several types of sensors, anomaly detection
models are trained on a large amount of normal data, which
makes the detection of abnormal situations, therefore, more
efficient and accurate. Additionally, the variety of scenarios
and conditions makes it possible to create more complex and
unusual scenarios.

As shown in Table 4, a variety of datasets are available
for use and testing, among which we find datasets for
2D annotations for RGB (Red-Green-Blue) cameras and
multimodal datasets containing several types of sensors.
Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI) dataset launched in 2012, is one of the first
widely used public multimodal datasets whose task of interest
includes optical flow, stereo, visual odometry and 3D object
detection, and tracking. Since then, research in this field has
been intensively increased and many open datasets have been
released, for example, Apolloscape in 2018, Open Waymo,
A2D2 (Audi Autonomous Driving Dataset) and nuScenes
in 2019. On the other hand, there exist other datasets that
are dedicated mainly to semantic segmentation, which aims
to identify objects and obstacles based on images collected
through camera sensors by assigning a class label (pedestrian,
car, tree, etc.) to each pixel of the image. These datasets
provide a rich base of thousands of captured real-world
scenes that are ready to use in various tasks such as anomaly
detection. Cityscapes and BDD100K (Berkeley DeepDrive
100K) datasets are two examples of databases used to
gain a semantic understanding of complex urban scenes.
In Table 4, we present and compare nine public datasets
according to several criteria such as the types of sensors used
for data collection, the number of classes, and the studied
environment.

G. OPEN-SOURCE SIMULATORS FOR CAVs
Dedicated simulators for autonomous vehicles play an
important role in testing and validating AV-related solutions.

They provide virtual test environments that are very close
to reality. These environments are flexible and they allow
researchers to experiment and evaluate the performance of
their algorithms on complex scenarios and improve them
before real deployment [98], [99]. Thus, they make it
possible to reduce the costs related to developments and
tests compared to those in real conditions. In addition,
these environments enable the study of autonomous vehicles’
behavior when faced with unusual scenarios and situations,
i.e. in the presence of anomalies, by providing means to
integrate abnormal behavior, environmental disturbances or
hardware failures.

Currently, there are several simulators for autonomous
driving, the majority of which are open-source. For instance,
the ‘‘Car Learning to Act’’ tool known as CARLA is an
open-source simulator launched in 2017 by Computer Vision
Center (CVC) and Intel Labs, which is widely used and
known by its detailed and realistic environments [100].
Similarly, the LGSVL simulator is a free tool developed
and launched by LG Electronics in 2018, which provides
a virtual test environment for autonomous driving. It offers
an organized architecture allowing to simulate a variety of
sensor types [101]. Also, Gazebo [102] is a well-known
simulator launched in the early 2000s. It is characterized
by its versatility as it allows to simulate multiple types of
robots in addition to autonomous systems. However, it does
not have an integrated support allowing to simulate weather
conditions contrary to the other simulators dedicated to
CAVs. As for Apollo, developed by the company Baidu in
2016, is a simulator dedicated mainly to autonomous driving.
It provides functionality for creating and testing complex
driving scenarios in a realistic 3D environment [103]. AirSim
is a Microsoft product launched in 2017, which offers
diversified scenarios and it also offers the ability to generate
synthetic data [104].

IV. ANOMALY DETECTION TECHNIQUES FOR CAVs
As we mentioned previously, anomaly detection techniques
fall into three main groups: purely statistical techniques,
techniques based on classical Machine Learning, and others
based on deep artificial neural networks. In this section,
we discuss the advances in each category and investigate the
most recent proposed solutions in the literature.

A. STATISTICAL-BASED TECHNIQUES
Anomaly detection techniques based on statistical approaches
seek to identify observations that exhibit behaviors diverging
remarkably from the normal data distribution. In this section,
we discuss some statistical anomaly detection methods used
in the context of CAVs.

In [105], the authors have sought to increase the resilience
of autonomous vehicles in the face of sensor faults and
adverse attacks. To this end, they have proposed a detection
technique exploiting the redundancy of the data coming
from several sensors that measure the same physical variable
(e.g., distance calculation). Thus, the redundant data is
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TABLE 4. Comparison of selected open datasets for autonomous driving.

used to feed a sensor fusion algorithm to estimate the
correct information in the presence of attacks. Subsequently,
detection and isolation of corrupted sensors are performed
based on the estimation results. In this work, the authors
have also designed an H∞ controller dedicated to CAVs with
an integrated Cooperative Adaptive Cruise Control (CACC).
The role of this controller is to stabilize the closed-loop
dynamics of each CAV in a platoon.

In [106], Wang et al. have proposed a lightweight anomaly
detection method for CAVs based on a nonlinear car tracking
motion model minimizing false positives/negatives. The
proposed technique considers both data from embedded
sensors and data received via V2Vs and V2I communications
to improve detection performance. In this work, the authors
have addressed the problem of potential delay in the
communication channel when using information from the
lead vehicle, which can make the use of conventional fault
detection methods, such as the X2 detector, is not suitable.
In order to overcome this challenge, they implemented
an Enhanced Extended Kalman Filter (AEKF) that takes
into consideration environmental information about the
trajectory of the lead vehicle to optimize detection accuracy.
To integrate this information, the authors have used the
Intelligent Driver Model (IDM) car tracking model [107].
In parallel with the AEKF, they applied a classic X2 detector
whose role is to identify several varieties of anomalies
mainly: short anomaly, noise, bias, gradual drift and miss.

Collective Awareness (CA) in intelligent agent networks
within CAVs was the focus of the study presented in [108].
Kanapram et al. have proposed an approach to establish
an initial level of CA. Thus, they considered a specific
functionality of collective self-awareness named agent-
centred detection of abnormal situations occurring in the
environment. In this approach, the authors have used for the

detection and prevention of anomalies, Dynamic Bayesian
network (DBN) models which take into account time series
of sensor data collected during sensing. Each DBN is
linked to an agent in the network, which allows all agents
to be informed of potential anomalies occurring. To train
node variables and conditional probabilities linking nodes in
DBN models, the authors relied on a Growing Neural Gas
(GNG) algorithm. Therefore, each agent will have a model
representing the normal behaviors of all agents in the same
network. In addition, each agent uses, for state estimation
and anomaly detection, aMarkov jump particle filter (MJPF).
To simulate this solution, the authors have used a dataset
collected from AVs in a real environment.

Mori et al. [109], have emphasized the complexity of
fault detection and isolation for sensor systems in AVs.
To overcome this problem, the authors have presented a
novel strategy for detecting and isolating defects using a
Student’s t-distribution based adaptive unscented Kalman
filter (T-AUKF). This filter is used to evaluate the behavior of
each sensor with the T 2 Hotelling test based on the predicted
output of the sensor and its covariance. This method allows
precise detection of faults/anomalies through the evaluation
of the correlation between the data generated in the same
sensor. Moreover, with the identification of the covariance
and degree of freedom of the robust Student’s t-distribution
of outliers, the measurement noise will be updated adaptively.
To validate their solution in terms of location accuracy and
measurement noise estimation, the authors used the CarSim
simulator and an experiment on a highway scenario.

B. CLASSICAL MACHINE LEARNING-BASED TECHNIQUES
The use of traditional ML-based anomaly detection tech-
niques can offer a variety of advantages making them still
usable even in the era of deep learning. In fact, traditional
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TABLE 5. Summary of selected statistical-based techniques.

ML techniques are robust against outliers/anomalies when the
data size is small or medium. In this section, we present some
proposed solutions and summarize the most representative
ones in Table 6.

Han et al., in [110], have proposed a novel collaborative
approach for protecting autonomous driving systems with
lifelong anomaly detection. This approach aims to protect
CAVs against time series anomalies, i.e., GPS spoofing
threat, and adversarial image examples, primarily road sign
and lane recognition attacks. The proposed method workflow
is divided into two stages: offline training and online
prediction. During the first stage, the one-class model is
trained to learn normal data (labeled as benign) collected
from AVs. As a result, the model will be able to predict
outliers (labeled as malicious) that deviate significantly
from normal samples. During online prediction, the per-
ception and localization modules are monitored by the
anomaly detector module. If a suspicious event is reported,
the control module will be notified to take mitigating
actions.

In [111], the authors have presented a new observer-based
method to improve the security of AVs against sensor faults
and false injection attacks. The proposed framework com-
bines a signal filtering model, using an Adaptive Extended
Kalman filter (AEKF), and a detection and recovery method
based on One-Class Support Vector Machine (OCSVM)
models. At each instant, the AEKF generates the innovation
value, which measures the deviation between the readings,
coming from sensors, and the prediction, and then sends
it to the fault detector module for anomaly detection. The
detection model is composed of several OCSVMmodels and
it can dynamically choose which one to use depending on
the average innovation. To incorporate anomalous behavior,
the authors have randomly injected anomalies into the normal
trajectory data.

The authors of [112] have addressed the security issues
caused by GPS spoofing attacks facing the CV/AV localiza-
tion system. In this work, after collecting a sufficient number
of historical trajectories as a demonstration, maximum
entropy inverse reinforcement learning will be adopted to
derive the optimal driving policy that will be used to generate
a predicted optimal trajectory. In addition, a statistical method
is developed to compare the optimal trajectory with the
observed one. Finally, a decision tree classifier is adopted
to differentiate between normal trajectories and attacked
trajectories. To evaluate the performance of the proposed
technique, two attack patterns are simulated. The first model
aimed to generate lateral deviations from the original AV
trajectory. On the other hand, the second model aims to attack
and disrupt the operation of Basic Safety Messages (BSMs)
in CVs.

Liu et al. [113], have discussed the effect of Perception
Error Attacks (PEAs) on AV functioning and proposed a
detection technique called LIFE. This technique relies on
the fusion of point cloud LiDAR and camera images to
detect PEAs and determine which sensor is under attack.
The operation of LIFE is mainly divided into two stages:
verification of consistency between LiDAR and camera
data and the evaluation of the sensor reliability. To check
the consistency, the 3D LiDAR points are extracted and
clustered using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm, each cluster
of which represents a detected object. Then, each group will
be projected on 2D image by calculating their positions.
Finally, the positions of detected objects on the images will
be compared with those calculated from LiDAR. Once an
inconsistency is detected, LIFE can detect which sensor is
attacked.

In [114], the authors have presented a new solution
dedicated to radar-type sensors aimed at identifying moving
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FIGURE 7. Fault classification scheme [115].

objects called ghosts. To collect data for the test, several
experiments were performed on a 77 GHz automotive radar.
Then, a list of detection features is computed and extracted
for use as input for a classifier based on the Random Forests
(RF) algorithm. The classifier then divides the detected data
into three classes: real moving detection, infrastructure, and
ghost Detection. To predict in which class a new observation
is included, it is necessary to follow the decisions in the tree
from the root to one of the leaf nodes containing the class type
that is consistent with its characteristics.

The authors of [115] have addressed the safety and stability
of CAVs platoons in the presence of faults. To this end,
they proposed a supervised classifier capable of identifying
and classifying anomalies into three categories: Engine
Bearing Knock (EBK), False Data Injection (FDI) attack,
or communication time delay. As shown in Fig. 7, to properly
identify the anomaly class, the authors have relied on two
classifiers, the first of which has the role of checking whether
the fault is a limited disturbance or a communication delay,
while the second determines if the disturbances are of EBK
type or FDI attacks. Also, for each classifier, the authors
have tested several techniques from the literature (mainly,
SVM, Naive Bayes (NB), K-Nearest Neighbors (KNN), and
Quadratic Discriminant (QD)) in order to validate the best
combination. Simulation results proved that using Q-SVM as
a first classifier and a QD for the second gives a high accuracy
rate of 97.7% and 96.2%, respectively.

C. DEEP LEARNING-BASED TECHNIQUES
The adoption of DL offers numerous benefits compared
to classical ML methods, mainly in terms of processing
non-linear or complex data and the accuracy of anomaly

detection. This explains the substantial amount of ongoing
research centered around this approach. In this section,
we present various suggested techniques for identifying
anomalies in sensor data within Connected and Autonomous
Vehicles. A summary of these solutions is presented in
Table 7.
In [116], the authors have proposed an anomaly detection

technique for CAVs based on the Long Short-Term Memory
(LSTM) deep network model. The solution proposed in this
study aims to detect FDI attacks on the control system of
autonomous vehicles, where attackers manipulate sensor data
to compromise vehicle behavior. The dataset used for the
simulation was generated by injecting FDI attacks into an
AV simulation-based system, developed by MathWorks Inc,
to create anomalies. After the preprocessing step, the data will
be passed to the LSTM layer. Then, the prediction process
(normal/abnormal) is performed in the fully connected
Softmax layers. To demonstrate the effectiveness of this
approach, its performance was evaluated against existing
methods in the literature in terms of accuracy where it
achieved an average of 99.95%.

In [117], Wyk et al. have proposed an approach for
detecting anomalies, caused by false injection attacks and
sensor failures, which combines two methods: DL using
convolutional neural network (CNN) and Kalman Filtering
(KF) with a X2 detector. In the CNN-KF framework, the
initial step involves processing the raw data using the
CNN layer to detect and eliminate abnormal readings.
Subsequently, the remaining normal data is then forwarded
to the KF model for additional identification of any other
anomalies. To simulate the proposed solution, the authors
have injected different types of anomalies into the data set
extracted from the RDE database.

The study in [118] proposed an anomaly detection method
that integrates a combination of a multistage attention
mechanism with a CNN based on the LSTM model. The aim
is to detect anomalies resulting from various factors such
as sensor malfunctions, errors, or cyberattacks. As shown
in Fig. 8, the data in the MSALSTM-CNN model is
first reformed into 3D sequences to feed the CNN model.
The features extracted by the CNN are converted into
vectors and forwarded to the LSTM layer. In addition,
the authors also have designed a method called Weight-
Adjusted fine-tuned Ensemble (WAVED), comprising a
set of distinct classifiers that are adjusted according to
weights. This method is intended to detect anomalies in
multi-sensor data. As in previous works, anomalies were
injected by modifying the original dataset obtained from
the Safety Pilot Model Deployment (SPMD) dataset [119].
Simulation results show that the MSALSTM-CNN method
can provide high anomaly detection rates regardless of
whether the anomaly rates in the dataset are low or
high.

Another DL-based anomaly detection solution is presented
in [120], which uses a modified CNN, denoted by M-CNN,
to identify a variety of anomaly types such as sensor faults
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TABLE 6. Summary of selected ML-based techniques.

FIGURE 8. Overview of the proposed MSALSTM-CNN framework [118].

or cyberattacks. As shown in Fig. 10, as a first step, the raw
data, obtained from the SMDP database, is pre-processed to
eliminate redundant data and irrelevant null values. These
data are then used to extract from them the most relevant
features for anomaly detection. To extract these features,
convolutional and pooling layers are used for this task. Thus,
theM-CNN architecture consists of five convolutional layers,
and after each convolutional layer, a maximum pooling layer
is applied. Finally, anomaly detection is performed in the
fully connected layer of CNN. To highlight the detection
efficiency of this model, the authors compared it with two
algorithms widely used in the literature, SVM and Isolation

Forest (IF) algorithms. The presented simulation results show
that the MCNN model provides a high accuracy rate of 99%,
outperforming the other two models.

The work of [121] introduced a new anomaly detection
model, called CWT-CNN, which combines Continuous
Wavelet Transform (CWT) and CNN to identify anoma-
lies caused by malicious behaviors. By transforming the
in-vehicle sensor signals extracted from a real-world dataset
into a CWT scalogram (CWTS), themodel captures both time
and frequency domain information. Then, the CNN uses the
CWTS generated to learn and differentiate between normal
and abnormal vehicle sensor behaviors. The dataset for the
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FIGURE 9. General architecture of the MCNN-based anomaly detection
technique [120].

simulation is taken from Open Source Driving data [122].
These data were collected using a Lincoln MKZ car driving
for 70 minutes in various weather conditions.

In [123], the authors have proposed a DL model that
enables CAVs to perform real-time anomaly detection on
the data collected from both onboard and external sensors.
To achieve this goal, an LSTM Auto-Encoder (AE) is
employed to extract relevant features from the input signals.
Once these features are extracted, they will be taken as
input for the CNN classifier which is composed of three
one-dimensional convolutional layers with 32 filters and
kernels of different sizes and thus the data can be treated at
different resolutions. To evaluate the performance of the AE-
CNNmodel, the authors have employed real-world data from
the Multi-Modal Intelligent Transportation Signal Systems
(MMITSS) dataset. Additionally, they investigated the impact
of tuning model parameters on anomaly detection across
three scenarios. The proposed technique achieves a precision
rate of 94.2% and an accuracy of 95.5%.

To protect CAVs against sensor errors and security
threats, Rezaei et al. [124], have proposed a detection
technique, based on GAN, called GAN-enabled Autoencoder
for Anomaly Detection (GAAD). Thus, the authors have used
a GAN-based method for detecting anomalies, building on a
framework already proposed in literature called GANomaly.
They further extended the GANomaly architecture by
incorporating an extra AE. The hypothesis is that the AE can
refine the generator’s reconstructed outputs and correct errors
introduced during the reconstruction of anomalous behavior.
To evaluate this technique, the authors have used a dataset
extracted from real data collected by a fleet of 20 autonomous
vehicles.

Watts et al. [125], have presented another technique
for detecting anomalies caused by anomalous/faulty infor-
mation by integrating a CNN classification model into
a Bayesian framework comprising a Partially Observable
Markov Decision Process (POMDP) model. In this method,
the CNN model first analyzes past sensor readings and
provides probabilities of anomalies at each epoch. These
probabilities, along with additional features, serve as ‘imper-
fect observations’ for the POMDP model. In the next
step, the POMDP model determines the optimal anomaly
classification threshold based on the system’s belief state.

FIGURE 10. Anomaly segmentation framework proposed in [129].

Furthermore, they employed the Asynchronous Advantage
Actor-Critic (A3C) algorithm to approximate the optimal
policy, enabling a dynamic adjustment of the threshold in real
time.

The authors in [126] have tackled the problem of
corner cases (anomalies) resulting from the identification
of instances outside the learning distribution (unknown
classes). To this end, a novel pipeline is proposed for
detecting unknown objects by leveraging the strengths of
both LiDAR and camera data. To start the process, the
input image undergoes semantic segmentation, resulting in
a mask that outlines the road’s coordinates. This mask is
subsequently projected into the 3D LiDAR space. When
certain objects cannot be detected by the 3D object detector,
their corresponding points are remapped back into the 2D
image space, which contains more detailed information.
Afterwards, an image classifier is utilized to classify these
objects. An object is deemed anomalous only if the image
classifier fails to assign it to a specific class. For the
evaluation, the authors presented a qualitative evaluation only
by defining typical scenarios and presenting their outputs.

Similar to the previously mentioned study, Jin et al. [127],
have exploited the advantages of fusing camera data with
LiDAR point cloud to provide an anomaly detection frame-
work that facilitates robust autonomous navigation against
disturbances. The authors have defined three main compo-
nents in this framework: (i) joint representation learning
for camera and LiDAR data fusion using variational auto-
encoder (VAE), (ii) anomaly detection learning to identify
anomalous readings, and (iii) anomaly reconstruction and
navigation policy learning that helps reduce the anomaly
effects. For the evaluation, the dataset is synthetically
generated using the CARLA platform.

Unlike previous approaches that target global anomaly
detection and work across various sensor types, the solution
presented in [128] focused specifically on radar sensor
readings. Thus, the authors have addressed the prob-
lem of ghost targets (false targets), which can interfere
with radar operations. They have designed an anomaly
detection technique based on the PointNet++ architecture
in which they have extended the Multi-Scale Grouping
(MSG) module with a new module called Multi-Form
Grouping (MFG), considering anomalous radar targets in
a ring-shaped region around the radar sensor origin. The
MFG module combines both circular and ring querying
forms to capture neighbors information at multiple scales.
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TABLE 7. Summary of selected DL-based techniques.

In addition to detecting multipath anomalies such as
ghost targets, this approach also provides the ability to
deal with single-target anomalies resulting from errors in
the direction of arrival estimation or Doppler velocity
ambiguities.

In [129], the authors have presented a new solution to
improve the reliability of camera data (captured images),
against instances of anomalies encountered during semantic
segmentation. The authors have proposed a pixel-wise
anomaly detection framework combining both the advantages
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of resynthesis approaches with that of the uncertainty
estimation methods proposed in the literature. At first,
the input image will be passed through a segmentation
network which will produce a semantic map and two
uncertainty maps (softmax entropy and softmax distance).
Then, the generated semantic map will be processed to
produce a photo-realistic image using the synthesis network.
Subsequently, the characteristics of the input and generated
images will be compared in order to verify the perceptual
difference. Finally, all the images are sent to the spatial
dissimilarity module to generate the anomaly prediction.

In [130], a multi-stage intrusion detection technique is
presented to mitigate the effects of intrusions on CAVs
In-Vehicle Network (IVN). In this framework, the first step
consists in filtering and cleaning the extracted data (for
training and testing) with the aim of standardizing it. After
their pre-processing, the resulted features are passed to a
bi-directional normal state-based LSTM classifier for attack
identification. To evaluate and improve the performance of
the proposed technique, the authors have used two data
sources: the UNSWNB-15 database [132], which is intended
for exterior network communications, and Car Hacking
database [131], which is intended for in-vehicles communica-
tion.Moreover, each database encompasses a variety of attack
types such as DoS and fuzzy. Simulations indicated that the
proposed method provides high performance reaching an
accuracy rate of 99.11% for the Car Hacking dataset and
98.88% for the UNSWNB-15 dataset.

V. DISCUSSION AND OPEN RESEARCH ISSUES
After investigating a number of anomaly detection techniques
for CAVs existing in the literature, we propose in this
section to discuss the main findings of this review and
summarize the most important developments in this field.
Afterwards, we suggest several open research issues that
require additional efforts to devise high-standard ADS for
futuristic CAVs.

A. DISCUSSION
It is important to perform a qualitative analysis of these
techniques in order to better understand the strengths and
weaknesses of the existing methods and guide practitioners
in the field about the best strategies to follow for ADS. In this
section, we compare the previously discussed solutions based
on five criteria: complexity, accuracy, scalability, detection
time, and number of anomaly sources investigated. These
criteria are defined as follows:

• Complexity: describes how difficult the implementa-
tion of the solution is, by taking into consideration
several factors such as the adopted architecture, the used
methods, and the simulation requirements.

• Accuracy: This criterion gives an idea of the perfor-
mance of the solution and to what extent it is precise.

• Scalability: determines a solution’s ability to adapt
to increasing volume of data without degrading
performance.

• Detection time: refers to the computational complexity
of the proposed method and indicates whether a solution
is able to rapidly detect anomalies or not.

• Addressed anomaly sources: as we have classified,
in Section III-B, the potential causes of anomalies
into three categories (i.e., Sensor faults, environmental
conditions and security threats), we determine the
number of causes of anomalies addressed by each
solution. For example, 1 means that only one anomaly
cause is addressed by the solution, while 3 indicates that
the solution addresses the three causes simultaneously.

Table 8 shows the response of each solution to these
different criteria. The term ‘‘N/A’’ indicates that it is not clear
whether a criterion is satisfied by the solution or not. Through
the results of this analysis, we can conclude the following
points:

• The majority of these solutions can provide high
performance in terms of accuracy and detection time.
Thus, as shown in Fig. 11, approximately 83% of these
solutions have a high accuracy rate. However, these
results are very sensitive to simulation parameters and
estimations.
As a result, a change in these parameters can degrade
solution performance.

• Most of these techniques are evaluated generally using
low or medium amounts of data. In addition, tests on
anomalies are carried out by generating them artificially.
All of these factors can influence the scalability of a
solution. For instance, only about 39% of solutions can
provide a high scalability.

• It is difficult to design a generic anomaly detection
solution that deals with all types of anomalies and their
potential causes. For instance, the evaluation shows
that only about 9% of these solutions have addressed
the three categories of anomaly sources. This can be
explained by the lack of datasets rich in ready-made
labeled anomalous scenarios, especially environmental
disturbances such as adverse weather conditions.

• The evaluation shows that the tendency in designing
anomaly detection techniques is to focus, generally,
on accurate and fast solutions without significantly
focusing on the scalability and complexity of the
algorithm, seeing that rapidity and safety are top priority
for CAVs.

• It can be clearly noticed that DL-based anomaly
detection methods show their dominance over other
methods. As shown in Fig. 12, about 57% of these
solutions are based on DL. This is explained by their
ability to manage massive and non-linear data while
ensuring a high accuracy in anomaly detection.

B. OPEN RESEARCH ISSUES
Over the last decade, a lot of efforts have been made to
develop effective anomaly detection solutions for CAVs.
Nevertheless, there are many challenges that need to be
further addressed to design ADSs to meet the rapid evolution
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TABLE 8. Evaluation of anomaly detection solutions for CAVs according to a variety of criteria.

in the automotive industry. These challenges can be identified
as follows:

1) ULTRA FAST REAL-TIME PROCESSING
Autonomous vehicles primarily rely on sensory data and
notifications from the environment in their operation to

make real-time decisions such as navigation, braking, and
acceleration. These data are usually massive and require
very rapid processing to identify anomalies. In real driving
scenarios, particularly on highways, autonomous vehicles
navigate at high speed in a high-density environment, where
decisions must be made very quickly. A reliable anomaly
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FIGURE 11. Evaluation criteria versus number of solutions.

FIGURE 12. Detection approaches per years versus number of solutions.

detection technique must therefore take these constraints into
account in order to guarantee ultra-rapid anomaly detection
in real-time.

2) DATASET AVAILABILITY
Currently, the existing datasets used for validating and
testing anomaly detection solutions for AVs have quite
a few limitations hampering the design of efficient and
resistible models for different scenarios. Mainly, the lack
of labeled data that allows to properly differentiate between
normal samples and abnormal ones, can slow down the
development of robust models for CAVs. Moreover, most of
the proposed solutions are trained only on the normal data
and any diverging behavior will be considered as an anomaly.

This is essentially due to the absence of datasets rich in
abnormal scenarios and attacks, which makes the search for
an adequate dataset a difficult task. Therefore, it is a priority
to consider existing weaknesses when creating new datasets.
Thus, an appropriate dataset must be clearly labeled, contain a
variety of scenarios and above all constantly updated to enrich
the knowledge of the model with other new anomalies.

3) OPEN-SOURCE SIMULATORS LIMITATIONS
Open-source platforms used for simulating anomaly detec-
tion algorithms for autonomous vehicles, despite their
numerous advantages, can have several limitations making
simulated solutions less reliable in their performance. Thus,
existing simulators are generally unable to handle the
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complexity of real-world scenarios and rarely occurring
situations. Furthermore, the lack of periodic updates can
make these platforms unsuitable for rapid changes in CAV
technology. For this, it is important to face these limits to
guarantee high-precision solutions.

4) SCALABILITY
Many concerns revolve around the use of CAVs and how
much this technology will help us ensure road safety. In other
words, there are always risks associated with the reliability
of sensors and the effectiveness of the decision-making
system. For this, many questions are being raised about
the ability of AVs to make safe decisions in complex or
unpredictable conditions where anomalies are highly likely to
occur. Thus, most anomaly detection techniques are trained
on less complex and well-structured datasets. However,
in real scenarios, CAVs sensors will collect a huge and
diverse amount of data, making anomalies more frequent and
unpredictable in terms of type and source. In this case, it is
very likely that the detection method will lose its efficiency
and its performance will deteriorate. For this, it is important
to guarantee the detection technique’s capability to manage
and process a large volume of data.

5) COLLECTIVE ANOMALY DETECTION
The heterogeneous types of anomalies and their varied
sources represent a major challenge facing the decision
systems of driverless vehicles since it is very difficult to
manage all types of anomalies at the same time. In addition,
the higher the complexity of the algorithm, the greater the risk
of associated latency. Therefore, it is a priority to think of new
mechanisms to optimize the accuracy and detection time at
once, notably, cooperative anomaly detection where vehicles
collaborate to detect all types of new anomalies encountered
by sharing data collected from several sources. However,
these techniques pose several challenges, especially security
and adaptability problems due to the heterogeneity of data.
Therefore, future research must focus on these issues in
order to create reliable and secure cooperative detection
solutions.

6) CONTEXT-AWARENESS FOR AUTONOMOUS DRIVING
Contextual awareness is a crucial aspect of autonomous
driving, due to its numerous advantages over CAVs decision
systems. Increased contextual awareness allows self-driving
vehicles to better react and quickly adapt to changing driving
conditions, detecting and avoiding potential risks. Active
inference models, as a good example, aim not only to
passively perceive the environment but also to actively predict
and adapt to unanticipated changes, which is crucial for safe
and efficient autonomous driving. However, there are still
some concerns that require further investigation in future
research, essentially, investigating how these models can
better handle uncertainty and make robust decisions in less
than perfect conditions.

7) INFRASTRUCTURE AND EMERGENCY SITUATIONS
Undoubtedly, the present Infrastructure faces numerous
limitations concerning equipment and connectivity. Hence,
to guarantee permanent cooperation and exchange between
CAVs, reliable high-speed connectivity is essential to allow
the different forms of communications within a network
of vehicles including V2V, V2I, and V2X. This will,
consequently, allow vehicles to improve their decisions and
increase their knowledge of their surrounding. In addition,
until now, tests on AVs have been carried out in well-selected
areas and less complex driving conditions. However, during
the effective use of CAVs, several unpredictable events will
be produced and will put the vehicle in unusual scenarios.
Thus, several events can disrupt the normal operation of the
AV, such as the case of an accident on the road, the sudden
sight of a pedestrian, a sudden braking failure or damaged
roads. In these cases, it is important to ensure that the vehicle
reacts quickly to avoid collisions and to protect the driver and
other road users.

8) PRIVACY PRESERVATION
Autonomous vehicles are vulnerable to a wide range of
potential attacks, highlighting the critical importance of
enhancing their cybersecurity. However, it is also important
to point out the security issues related to protecting user
privacy and ensuring the integrity of sensitive information.
Since CAVs sensors collect several types of data from
their surroundings, it is possible that some of this data is
sensitive, for example camera sensors can capture the faces
of pedestrians and vehicle license plates. To address these
challenges, it is essential to pay close attention to the variety
of threats in future research. This will enable the development
of new security solutions that consider the specificities of this
technology.

9) THREAT ANALYSIS AND RISK ASSESSMENT MODELS
INTEGRATION
The security of CAVs can be improved through the use
of threat analysis frameworks. These approaches make
it possible to comprehensively identify potential risks,
thereby helping to enhance the resilience and reliability
of autonomous systems. Thus, there are several systematic
threat analysis and risk assessment models that can be
applied to the security of self-driving vehicles, such as
Threat Vulnerability Risk Analysis (TVRA) [133], Spoof-
ing, Tampering, Repudiation, Information disclosure, DoS,
Elevation of privilege (STRIDE) [134] and more [135].
In this context, adopting the System-Theoretic Process
Analysis for Security (STPA-Sec) methodology can effec-
tively contribute to the creation of resilient and secure
autonomous driving environments. STPA-Sec is a systematic
methodology widely used in the safety assessment and
design of complex systems such as autonomous driving
systems. This framework excels in identifying risks such
as cyberattacks against AI algorithms, unauthorized access
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to vehicle control commands and its sensors. STPA-Sec
provides a comprehensive hazard assessment, addressing
concerns related to incorrect decisions, system failures and
malicious interventions [136]. Additionally, their focus on
developing and implementing security controls ensures a
strong defense against identified risks. In the following, how
the integration of STPA-sec approach can benefit the safety
of autonomous driving systems:

• A holistic risk analysis: STPA-Sec allows a complete
understanding by considering the entire self-driving
system, including hardware or software components, the
various embedded sensors, in addition to interactions
with the environment. This ensures a complete overview
of possible safety hazards.

• Threat Anticipation: Thanks to its systemic approach,
STPA-Sec allows for the early identification of dangers
that could compromise the operation of autonomous
vehicles. This enables proactive intervention before
risks materialize.

• In-Depth Problem Analysis: STPA-Sec goes beyond
superficial problem identification, by analyzing deeply
the causes of vulnerabilities. This allows for more
effective correctivemeasures, helping also to understand
the reasons why certain situations may turn into dangers.

VI. CONCLUSION
Autonomous vehicles represent a very promising future
alternative for road safety and the efficiency of transporta-
tion systems. However, several challenges require further
attention to ensure the successful implementation of this
technology. Anomalies are one of those major issues that
can threaten the functioning of a driverless vehicle system.
Through the study presented in this paper, we have drawn
up an overview of CAVs, the types, causes and impacts of
anomalies that can affect its sensors and decision systems as
well as the varieties of detection methods.

First, we have presented the key components of a CAV
system and the main types of integrated sensors, with a focus
on the services and benefits offered by autonomous driving.
We have also provided a detailed taxonomy of anomaly
detection systems, where a variety of important elements in
anomaly analysis and identification are discussed, including
potential sources of anomaly, different categories of detec-
tion techniques, open datasets for anomaly research and
testing and available open-source simulators. This can help
researchers interested in the field of autonomous driving and
anomaly detection specifically to better understand this issue.

The second step of this study consists in discussing a
number of recent anomaly detection solutions dedicated
to CAVs. We have classified these techniques mainly into
three categories: statistical, classical machine learning, and
deep learning. In addition, for each technique, we have
provided information about the used algorithms for the
implementation, and the simulation environment such as the
dataset used and the type of addressed anomalies. Then,
we have presented a qualitative evaluation of these solutions

based on several criteria. The aim of this evaluation is to focus
on the strengths and weaknesses of each solution as well as
the open areas for research.

Finally, we have identified some open research issues that
require more attention in order to design reliable anomaly
detection solutions. In future work, we plan to design an
anomaly detection solution taking into consideration the
challenges presented in this study.
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