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ABSTRACT The optimization of vanadium redox flow batteries (VRFBs) is closely related to the
flow rate control: a proper regulation of the electrolyte flow rate reduces losses and prolongs battery
lifetime. To this end, a flow factor control strategy in VRFBs was proposed in the literature provided
with numerical/experimental validations. Yet, a theoretical justification of this approach was lacking. The
respective control law is a generalization of Faraday’s law of electrolysis since it employs a special scaling
parameter referred to as the flow factor. In this paper, we show that this coefficient is directly related to the
conversion rate of electrolyte in the cell. Furthermore, we pose an optimal control problemwithmaximization
of total battery power integrated over time to determine an optimal flow factor. To this end, we use a simple
stochastic policy gradient algorithm. The case studies illustrate the application of the computed optimal
controller under various load currents and demonstrate that there is no single flow factor for all modes, the
optimal performance of the battery can only be guaranteed by different values of this parameter. As a result,
the proposed control strategy can be used for advanced control and monitoring tools for industrial VRFB
systems.

INDEX TERMS Vanadium redox flow battery, flow rate control, optimal flow factor.

I. INTRODUCTION
High-capacity and high-power storage systems are becoming
ever more relevant in modern power sector. This trend is
driven by a number of transformations in the structure and
operation of the electrical grid, namely the deployment of
renewable energy sources, as well as the desire to optimize
costs, depending on the changing energy prices, e. g., see [1].
Vanadium redox flow batteries (VRFBs), although being a
relatively young technology, nevertheless have a number of
advantages in this regard, i. e., good scalability and long
cycling life and low capacity degradation, see [2] and [3].
Electrochemical reactions in redox flow batteries take

place in liquid electrolytes rather than on solid electrodes
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as in traditional lithium-ion batteries. These electrolytes are
stored in separate tanks, resulting in minimal self-discharge.
However, the presence of a hydraulic system with pumps
makes it challenging to maintain optimal operation. Power
engineering journals have proposed various methods for
controlling electrolyte flow that go beyond the traditional
constant flow rate approach. The first ‘‘steps away’’ from
constant flow rates, involved simple controllers switching
pumps on/off, see [4]. Other approaches known from the
literature include the use of sliding modes, model predictive
and proportional-integral controllers, online optimization,
fuzzy logic, etc. (see, e.g., the following papers [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13]). However, it is most natural
to use a feedback controller based on the scaling of the well-
known Faraday’s law of electrolysis using a gain referred to
as the flow factor (or stoichiometric factor), e. g., see [14] and
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references therein. The following recent review articles on
vanadium batteries, their features and control, namely [15]
and [16], should also be mentioned here.
It is worth noting that previous research on VRFBs has

focused heavily on the flow factor parameter, often resulting
in heuristic adjustments and modeling of the system’s
operation, along with consideration of loss functions. Several
publications emphasize the significance of accurately select-
ing the flow factor value based on experimental findings,
while others discuss the importance of the conversion rate
parameter and offer suggestions for its selection. In our study,
we establish a connection between these two parameters
and justify one through an optimization problem, thereby
justifying the other as well. At the same time, neither
formulated nor solved are: the problem of studying the
relation of the flow factor with VRFB system parameters
(a), nor the problem of optimal gain selection (b). Our work
aims to solve the outlined interrelated problems.

The paper is organized as follows. Section II introduces
an overview of vanadium batteries, their operating principles
and models. Besides, a flow factor based controller is
described and the problem statement is formulated. The
theoretical results that justify such a controller structure
and reveal the relationship with battery parameters and
conversion rate are given in Section III. Moreover, in the
same section, an integral criterion for battery performance is
formulated on the basis of the total battery power function
derived by the authors. Based on this, the optimal control
problem is solved to find the best flow factor in the sense of
the introduced criterion. A simple stochastic policy gradient
is employed to this end.

The theoretical results are accompanied with simulations
and discussion presented in Section IV. Finally, conclusions
are given.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. VRFB STRUCTURE AND OPERATION
The diagram of a typical VRFB is presented in Fig. 1. The
electrical energy is stored in electrolytes in two separate
tanks, each tank has a volume Vtk . The electrolyte contains
salts of vanadium dissolved in solutions of sulphuric acid.
During the operation, the electrolyte is pumped into a stack
consisting of cells with volume Vc. Thus, the total volume
of the stack is ncVc, where nc is a number of cells. The
electrochemical reactions in a cell can be described as
follows [17]:

Negative electrode: V 3+
+ e− ↔ V 2+, (1)

Positive electrode: VO2+
+ H2O↔ VO+2 + 2H+ + e−.

(2)

Considering the reactions described above and taking into
account mass-conservation law in all compartments of the
battery, one can obtain a dynamical model for vanadium ions
concentrations in the form of ordinary differential equations,
presented in the next subsection.

FIGURE 1. VRFB-based storage configuration extended with two OCV
cells. Here, c2, c3, c4, and c5 are concentrations of the corresponding ions
in the tanks and half-cells.

B. SECOND-ORDER MODEL OF VRFB
In this subsection we will consider the second-order model
that describes the dynamics of vanadium redox flow battery
considering evolution of one of vanadium ions in the cell and
in the tank. This model can be considered as one of the most
simple while it can provide accurate results within several
cycles [18], taking into account the influence of external
conditions (load current w(t) ∈ R), as well as the mixing
rate determined by the battery size and electrolyte flow rate
u(t) ≥ 0: {

ẋ1 = (−αx1 + αx2)u,
ẋ2 = (βx1 − βx2)u+ dw,

(3)

where x1, x2 are the concentrations of V 2+ in the tanks and
stack, respectively, α = 1/Vtk , β = 1/(ncVc), and d =
1/(FVc). The volume of the tank Vtk is typically greater than
the volume of the stack Vst = ncVc, therefore α < β.
In addition, we will consider the system also that includes

two special cells to measure open-circuit voltages at the input
and output of the tanks (OCVin and OCVout cells in Fig. 1,
respectively), which are defined by the Nernst equation and
have the following form:

yin = y0 + 2y1 ln
x1

cb − x1
, (4)

yout = y0 + 2y1 ln
x2

cb − x2
, (5)

where the constant coefficients y0, y1 are known: y0 is the
formal potential (y0 = 1.4 V ) and y1 = RT/F ; R =
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8.314 J
K mol is the gas constant, F = 96485.332 C

mol is the
Faraday constant, and T = 298 K is the temperature.

Thus, the states of the system can be found as follows:

x1 =
cbe

yin−y0
2y1

1+ e
yin−y0
2y1

, x2 =
cbe

yout−y0
2y1

1+ e
yout−y0

2y1

. (6)

The parameters of the lab-scale VRFB setup used to solve
the problem of determining the optimal controller are listed
in Table 1, see also [19].

TABLE 1. Parameters of the VRFB setup.

C. ELECTROLYTE FLOW RATE CONTROL
As noted in the introduction, flow rate control is an important
problem because over- and under-supply of electrolyte can
lead to energy losses as well as malfunction and failure due to
more significant effects of reversible and irreversible parasitic
processes, such as crossover of ions across the membrane,
water transport, hydrogen release, etc. As in any control task,
we must first decide on the type of controller.

A special class of feedback control laws based on a scaling
of Faraday’s law of electrolysis should be distinguished here.
This law allows determining the sufficient flow rate for
chemical conversion of all reactants. As a result, both the
state of the system and the external perturbation are taken
into account (it should be noted that the load current is always
measured, as it is necessary for proper operation of the battery
and formonitoring of the overall battery state-of-charge [20]).
In practical applications the Faraday’s law is usually extended
with multiplication factor (known as the flow factor), that
is normally attributed to additional hydraulic losses in the
VRFB system [19], [21].

The flow factor based control law is as follows

u =


κ1(x1) = −f

ncw
Fx1

during discharge, w < 0,

κ2(x1) = f
ncw

F(cb − x1)
during charge, w > 0.

(7)

When f = 1, we get the classical Faraday’s law, which
states that the amount of chemical change being produced by
a current at an electrode-electrolyte interface is proportional

to the quantity of electricity used, e. g., see [22] and [23] for
the details.

The works devoted to the flow factor are reduced to the
selection of some value corresponding to some good or
acceptable behavior of the lab setup. The relationship of this
variable to the parameters of the battery, to the best of authors’
knowledge, has not yet been discussed in any way.

In this paper, we pursue two goals, namely
• the analytical derivation of the relation between the

flow factor and the conversion rate;
• the optimal choice of this parameter to maximize

the overall battery power, taking into account internal
losses.

III. MAIN RESULTS
A. THE MEANING OF THE FLOW FACTOR
To interpret the flow factor and study its relation to the
asymptotic dynamics of the system and its parameters, it is
important to introduce the following definition.
Definition 1: The conversion rate (or conversion per

pass) equals the amount of active ions participating in the
electrochemical reactions during a single-pass of electrolyte
through the cell fraction. Within our model, this parameter is
defined as follows:

γ =


x1 − x2
x1

for discharge,w<0,
x2 − x1
cb − x1

for charge,w>0.
(8)

It should be noted that for safe battery operation it is
important to keep the conversion rate γ significantly less than
unity, because this ensures the availability of the necessary
amount of reactants in the cell in the case of a sudden change
in load current w.
Next, we demonstrate that the flow factor control strategy

is a special nonlinear feedback control law aimed to keep a
certain value of the conversion rate γ in system (3).

Let us denote a desired conversion rate by γ ∗ ∈ (0, 1] and
suppose the flow rate u > 0 to have no upper bound. We are
now poised to show the following relation of the flow factor
to the conversion rate (cf. [24]):
Theorem 1: For any initial condition γ (0) ∈ (−∞, 1], the

conversion rate γ (t) of system (3) converges asymptotically
to γ ∗, if the control u obeys (7) with f selected as follows

f =
1

γ ∗((1− γ ∗) ncVcVtk
+ 1)

. (9)

Proof: For the sake of simplicity we consider the
discharge mode only, w < 0. The results for the charge can
be proven in the same way.

The proof is based on the analysis of the behavior of γ and
its stability properties with respect to the adjustable parameter
k = fnc

F introduced for convenience.
Since u > 0, let us introduce new time scale in (3), such

that

dτ = u−1dt ⇒ udτ = dt (10)
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and then change the variables like so:

ẋ1 = −αz, ż = −(α + β)z− d
w
u

, (11)

where z = x1 − x2.
Substituting the control signal u by u = −k wx1 , k > 0,

into (11) we find

ẋ1 = −αz, ż = cx1 − (α + β)z, c = d/k. (12)

The dynamics of (12) does not depend neither on u,
nor on w. According to (8), γ = z/x1, therefore

γ̇ =
ż
x1
−
zẋ1
x21

, (13)

or

γ̇ = c− (α + β)γ + αγ 2. (14)

Let us find stable equilibria of the last system. The following
equation

αγ 2
− (α + β)γ + c = 0 (15)

has the roots:

γ1,2 =
1
2α

(α + β ±

√
(α + β)2 − 4αc). (16)

From the linearized system it follows that we have a
pair of stable/unstable fixed points, where a locally stable
equilibrium is

γ = γ1 =
1
2α

(α + β −

√
(α + β)2 − 4αc) (17)

provided that

(α + β)2 − 4αc > 0, or, equivalently, c <
(α + β)2

4α
.

Let V = 1
2 (γ − γ1)2 be a Lyapunov function candidate.

The set 0 where V > 0, V̇ < 0 ∀γ ∈ 0, except for γ1,
where V̇ (γ1) = 0, is the domain of attraction we are seeking
for. Evidently, the function V is positive ∀γ ̸= γ1. It can be
shown, that V̇ ≤ 0 ∀γ ≤ γ2, since V̇ = α(γ − γ1)2(γ − γ2).
On the other hand, all the initial conditions γ (0) ≥ γ2 have no
physical meaning, due to the fact that γ2 > 1. Since γ1 ≤ 1,
we arrive at the condition on k to be satisfied:√

(α + β)2 − 4αc ≥ β − α (18)

(α + β)2 − 4αc ≥ (β − α)2 (19)

α2
+ 2αβ + β2

− 4αc ≥ β2
− 2αβ + α2 (20)

β ≥ c (21)

k ≥
d
β

, (22)

or equivalently

f ≥ 1. (23)

The last inequality illustrates the fact, that the minimal
required flow rate is defined by Faraday’s law of electrolysis,
f = 1. Thus, we can conclude, that for any initial condition

γ (0) ∈ (−∞, 1] the solution of (14) converges to stable
equilibrium γ1 if condition (23) is satisfied. Let us now look
at system (14) and find the flow factor as a function of the
target conversion rate γ ∗. Evidently, the stable equilibrium
point γ1 = γ ∗ can be found from

γ ∗k((1− γ ∗)α + β)− d = 0, (24)

that gives

k =
d

γ ∗((1− γ ∗)α + β)
. (25)

Finally, we find the flow factor f as follows:

f =
1

γ ∗((1− γ ∗) ncVcVtk
+ 1)

. (26)

Evidently, for any γ ∗ ∈ (0, 1] the following inequality holds:

f ≥ 1. (27)

This completes the proof.
A detailed analysis of function (9), its sensitivity to the

battery size and the desired conversion ratio, is given in [24].
Remark 1: As follows from relation (9), the control in

accordance with Faraday’s law is a special case for the target
conversion rate equal to one, γ ∗ = 1.
Remark 2: The obtained result shows that the flow factor

does not need to be selected empirically, it can be calculated,
knowing the parameters of the system and the desired
conversion rate. The resulting control law neither takes into
account the practical constraints on the control signal, nor
the constraints on the states/disturbances. On the one hand,
this one is limiting and confusing: in this case, at the end of
the discharge, when x1 → 0, the flow rate grows infinitely.
On the other hand, in practice, the system operates over a
range of states-of-charge ≈ 20% – 80%, thus never reaching
extremely low x1 values.

The derived relationship between the gain f and the
conversion rate γ ∗ sheds light on the sense of the flow factor,
but does not provide guidelines for its selection. In what
follows, we present an approach to determining the optimal
values of the flow factor.

B. TOTAL BATTERY POWER FUNCTION
To derive the total power function of the VRFB system, it is
first necessary to consider the total battery voltage function
taking losses into account. The battery voltage ybat can be
represented as the sum of the equilibrium potential yeq = yout
and the internal losses (ohmic and concentration losses),
see [25]:

ybat = nc(yeq + sign(w)(yohm + yconc)), (28)

where w > 0 when charging the battery and w < 0 when
discharging. Given the notations used in this paper, we can
write the voltage function for the discharge process (see [26])
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as follows:

ybat = nc(y0 + 2y1ln
x2

cb − x2
− 0.5R̄Am|w|

− 2y1

∣∣∣∣∣ln
∣∣∣∣∣1− |w|A0.4edνFx2u0.4

∣∣∣∣∣
∣∣∣∣∣). (29)

Thus, the total power of the VRFB storage can be
calculated as the difference of the stack electrical power equal
to the product of the battery voltage by the load current, and
the power consumed by the pumps, which can be obtained
from the pump loss model proposed in [11]:

P = nc
(
(y0 + 2y1 ln

x2
cb − x2

)|w| − 0.5R̄Amw2

− 2y1

∣∣∣∣∣ln
∣∣∣∣∣1− |w|A0.4edνFx2u0.4

∣∣∣∣∣
∣∣∣∣∣ |w|)− 3

µLu2

ncκAedεp
. (30)

We now regard (30) as the instantaneous reward.1 With
this at hand, let us formulate the following optimal control
problem:

max
f
Jt (f ) (31)

which depends on the flow factor f as follows:

Jt (f ) : =
∫ T̄

0
P(x1, x2,w, f , t)dt

s. t. (3), (7), (32)

where in turn T̄ is the time at which the state x2 (concentration
in the cell) reaches a value of x∗2 (corresponding to the state-
of-charge of 20%). Basically, we consider the problem of total
reward optimization.

Note that unlike the most related papers [10], [19],
[21], our approach assumes automatic synthesis of the
controller (without manual adjustment of f ), and aims at
the maximization of the available stored energy Jt (f ) as
a criterion, see Table 2. Along with that, we also derive
the relationship between the flow factor and the desired
conversion rate.

TABLE 2. Overview of the control strategies.

We now proceed to the description of the routine to
compute the optimal flow factor using a simple policy
gradient algorithm.

1Wedo not consider the losses separately as by reducing the losses through
adjusting the gain, one can also reduce the overall output power. That is why
it is necessary to consider the difference between the product of the battery
OCV by the current, and the power of losses.

TABLE 3. Results for different loads.

C. COMPUTATION OF OPTIMAL FLOW FACTOR
To solve the problem of selecting the optimal controller
gain f , we will use typical load profiles, similarly to those
in [19]. Wemaximize, for each current profile, (32) following
a basic policy gradient routine (see [27], [28]). We take the
control law (7) as the basis and add a small exploration noise
to it. Specifically, we consider the policy as the following
probability distribution:

ρf (u|x) = N (κ1(x1), σ 2), (33)

where σ is the exploration noise standard deviation. We then
sample actions from ρf at each control time step. One
could take a plain deterministic policy, but it would require
computation of the gradients of the total rewards which
is, on one hand, cumbersome and faces nonsmoothness
issues, on the other. This is seen from the expression (29).
Using the stochastic policy ρf , we can avoid computation
of the gradient of the rewards and only use gradients of
the policy itself, which is straightforward from the (33)
formula. Summarizing, the flow factor learning amounts to
the following:

fi+1← fi + αlearn

J∑
j=0

Pj∇f ρ
fi
j , (34)

where i is the learning iteration index, α is the (in
general iteration-varying) learning rate, j is the time step
index running up to J which corresponds to T̄ . Notice in
formula (34), we do not use the gradients of the rewards,
only the values at time steps j themselves, i. e., Pj. Only the
gradients of the policy, i. e., ρfij are used.

IV. SIMULATIONS AND DISCUSSION
We programmed the vanadium redox flow battery setup along
with the optimal flow factor learning algorithm using the
Python programming language (3.9.16) and a workstation
with a 3,3 GHz CPU, 16 Gb RAM and 16 Gb video RAM
GPU. The maximum number of learning iterations was set
equal 50, whereas σ was set equal 1.67 · 10−7. We have
examined the system on a single discharge cycle from 80% to
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FIGURE 2. Evolution of concentrations x1, x2 (a); evolution of conversion
rate γ (b); flow rate u (c); total reward learning behavior Jt (d). Load
current w = −95 A.

20%.2 This corresponds to the initial concentrations x1(0) =
x2(0) = 1600 mol · m −3 and final concentration x∗2 =
400 mol · m−3. A range of loads w allowed for this battery
was considered, in increments of 25 A. The constant current
load profiles were taken as the most representative ones
for analyzing the effective operation of the storage system.
Table 3 shows the main parameters of the optimizations
performed to find the optimal flow factor f , target con-
version rate γ ∗, best learned total reward J∗t , number of
iterations N .
Example battery discharge dynamics under a load current

w = −95 A and optimal learned flow factor can be seen
in Figure 2. It can be seen that the concentrations decrease
as the battery discharges, with the electrolyte flow rate
(control u) increasing significantly as the battery approaches
a 20% discharge (by more than four times compared to the
initial value). At the same time, the conversion ratio tends
to the equilibrium state γ ∗ = 0.091; convergence to the
neighborhood of the desired value γ ∗ is achieved in t ≈
200 seconds.

Note that in the known literature some universal values
of flow factor f , equally suitable for all load currents, are
proposed. For example, in [19] an interval of values 7− 8 is
given. A comparative analysis with regard to our proposed

2Note that the developed method is equivalently applicable for controller
design in discharge and charge modes (in general case for any current
profile). In calculations and simulations, the discharge mode is considered
for convenience.

criterion shows that e. g., at w = −70 A and f = 7.5 the
system operates for three minutes less than with the flow
factor we found equal to 11.02; the stored available energy
Jt (7.5) = 33.2 · 106 is also lower in this case.

V. CONCLUSION
In this work, a design of an electrolyte flow rate controller
for a vanadium redox flow battery based on the flow factor
concept was suggested. It is a special feedback controller that
takes into account the measured disturbance (load current).
It found application in the control of electrolyte flow rate
in redox flow batteries, but its use was limited to the
experimental selection of the gain (flow factor) providing
correct operation of the battery. The task of studying the
relation of this gain to the system parameters and its influence
on the asymptotic behavior was neither posed nor solved. The
problem of optimal adjustment of the flow factor was not
solved either. This paper gives answers to these questions.
Firstly, it was shown that this factor was not just an arbitrary
adjustable parameter but was closely related to the conversion
rate of the battery. Next, it was demonstrated that the problem
of finding the best flow factor could be posed and solved as
an optimal feedback control problem. The available stored
energy (total battery power integrated over time) was derived
and used as the objective function, whereas typical load
profiles were considered in the design and simulations.
A simple stochastic policy gradient algorithm was employed
to compute an optimal flow factor. To conclude, the proposed
control law can be used for advanced control and monitoring
tools for VRFB storages. Previous research on the given topic
was regarded to selecting a flow factor based on either the
empirical suggestions, or based on the conversion coefficient;
in our work we clearly stated the interconnection between
these two parameters and suggested a method, which would
allow optimal computation for both of them. It is important
to note that the suggested method and the results were
obtained only for a determined set of load profiles, while it
is planned to consider time-varying load profiles w(t) and
solve optimization problems for these cases, the practical
implementation and validation of the proposed control is also
expected.
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