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ABSTRACT In the present scenario, the transportation Cyber Physical System (CPS) improves the reliability
and efficiency of the transportation systems by enhancing the interactions between the physical and cyber
systems. With the provision of better storage ability and enhanced computing, cloud computing extends
transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud
computing cannot fulfill the requirements in transportation CPS like lower context-awareness and latency.
For enhancing the context-awareness and reducing the latency in a realistic MEC environment, an efficient
portable deep learning model: Convolutional Neural Network (CNN) with Chaotic Lévy Flight based Firefly
Algorithm (CLFFA) is implemented in this article. In the CNN model, the CLFFA selects the appropriate
hyper-parameters or reduces the redundant parameters that results in minimal model size and inference
latency than the traditional CNN models. Additionally, the CNN-CLFFA model significantly outperformed
the existing models by means of recall, accuracy, Fl-score, and precision on the benchmark datasets like
German Traffic Sign Recognition Benchmark (GTSRB), MIOvision Traffic Camera Dataset (MIO-TCD)
classification, and VCifar-100 datasets. The numerical analysis demonstrates that the CNN-CLFFA model
obtained maximum accuracy of 99.02%, 99.11%, and 99.03% on the VCifar-100, MIO-TCD, and GTSRB-T
datasets, which are superior to the traditional models.

INDEX TERMS Convolutional neural network, cyber physical system, firefly algorithm, intelligent trans-
portation system, mobile edge computing.

I. INTRODUCTION

In recent decades, the integration of transportation systems
with the advanced communication technologies gained atten-
tion among the researchers [1]. The transportation CPS is
expected to bring more improvements in the present trans-
portation systems by means of sustainability, efficiency, and
safety [2]. In the transportation CPS, Internet of Things (IoT)
facilitates the interaction among computing platforms and
physical environments, where it helps in extracting the use-
ful information from the huge volume of IoT data to make
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timely and intelligent decisions [3], [4]. Currently, the deep
learning and machine learning algorithms are efficient in
extracting the useful information from the IoT data [5]. The
deep learning algorithms have more stringent demands in
the computing-devices, but the majority of the IoT devices
have not fulfilled the demands, because of the computing and
storage limitations [6]. These limitations are overcome with
the introduction of cloud computing in the IoT devices by per-
forming off-loading computing tasks in the cloud servers [7].

In the transportation CPS, cloud computing has better
computing ability and data storage, but it cannot fulfill
the requirements of context-awareness and low latency [8],
[9]. Potentially, the MEC overcomes the cloud computing
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limitations by performing off-loading tasks in the edge
servers, which are deployed at access points and base sta-
tions. In this article, the traffic signs and vehicle recognition
are considered as an example in the Intelligent Transporta-
tion System (ITS) and transportation CPS [10], [11]. The
traffic signs and vehicle recognition plays a crucial role in
the transportation CPS. Here, the user requests are redi-
rected to the nearest edge servers instead of remote cloud
servers, which are initiated from the mobile devices [12].
In the similar way, the context-awareness is greatly improved
and latency is reduced by implementing a portable CNN
model [13], [14]. Furthermore, the mobile devices in trans-
portation CPS have limited storage capacity and computing
power. Conventional deep learning models are ineffective
for deployment on mobile devices, because of their resource
constraints. Whereas, the portable CNN model is efficient
and lightweight, which is well suited for deployment on
resource constrained devices. Additionally, transportation
CPS need real time processing for tasks like traffic signs
and vehicle recognition. Without the need for communica-
tion with remote servers, the portable CNN model enables
timely decision making on mobile devices. In this article, the
hyper-parameters of the CNN model are selected by CLFFA
that results in maximal classification accuracy with minimum
model size and inference latency. The contributions are as
follows:

o We used Principal Component Analysis (PCA) jittering
and data augmentation (color, rotation, and Gaussian
augmentation) techniques for reducing the overfitting
and class imbalance problems. Specifically, PCA jit-
tering is robust to viewpoint changes and illumination
variations, which affect the appearance of vehicles
and traffic signs. On the other hand, data augmenta-
tion increases the image variability that enables the
CNN-CLFFA model in learning more generalized fea-
tures, which makes this model more resilient to the
variations experienced in the real world scenario.

o We integrated CLFFA with the CNN model to choose
the optimal hyper-parameters that reduces the redundant
parameters and improves the efficacy of the activa-
tion function. Additionally, the selection of appropriate
hyper-parameters diminishes the model size and it
results in limited inference latency and computational
time. Furthermore, during the training process, the
hyper-parameter selection leads to faster convergence
rate.

o The effectiveness of the proposed CNN-CLFFA model
is validated on two modules such as MEC module
(Jetson TX2) and personal computer. The evaluation
measures: accuracy, recall, Fl1-score, model size, infer-
ence latency, and precision confirmed that the proposed
CNN-CLFFA model obtained better results in the per-
sonal computer than the Jetson TX2 module.

This article is prepared in the following manner, a few
papers on the topic of ITS are surveyed in Section II. The
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details about undertaken methodologies, results, and the
conclusion of the CNN-CLFFA model are presented in Sec-
tions III, IV, and V, respectively.

Il. RELATED WORKS

Chen et al. [15] have presented a Deep Belief Network
(DBN) model for detecting attacks in MEC. Here, the active
feature learning improves accuracy in the DBN model, and
it is better related to other comparative machine learning
models. In this study, the DBN model uses 512 hidden units
for learning the attack features, and further, a contrastive
divergence method was employed to update the parametric
values in the DBN model. In the experimental evaluation,
ten datasets were utilized for conducting experiments, and
the presented DBN model gained 6% higher accuracy than
the comparative models. However, the presented DBN model
was computationally costly, because it includes complex data
models. Additionally, Shen et al. [16] have implemented a
genetic algorithm in green ITS for optimizing the locations
of public parking. In the ITS, the presented genetic algorithm
not only supports parking guidance and assists in public
parking allocations.

In the ITS, Ashraf et al. [17] have presented an effective
Intrusion Detection System (IDS) for finding the suspicious
activities in vehicles to infrastructure networks, in-vehicles
networks, and vehicles to vehicles communications. Here,
the autoencoder model was integrated with the Long Short
Term Memory (LSTM) network for recognizing the intrusive
events in the Autonomous Vehicles (AVs). The presented
IDS’s performance was tested on two online datasets, and the
obtained results confirmed that the presented IDS has higher
detection accuracy than the existing techniques. On the other
hand, the presented IDS has high time complexity and suffers
from the vanishing gradient problems.

Zhou et al. [18] have presented a new light-weighted
stacked CNN model for supporting MEC in transportation
CPS. The presented stacked CNN model includes com-
pression layers with factorization convolutional layers to
improve the context-awareness and reduce the latency in
MEC. The results showed that the presented stacked CNN
model decreases the unneeded parameters by diminishing the
size of the model, and maintains higher accuracy than the tra-
ditional CNN models. Here, the effectiveness of the stacked
CNN model was evaluated by conducting an experiment in a
real time MEC platform. The results showed that the stacked
CNN model effectively preserves the model size and main-
tains high accuracy in a real-time MEC platform. However,
the stacked CNN model was computationally costly.

In the application of ITS, Kumar et al. [19] have presented
an effective system for controlling the traffic lights. The
presented system runs in three modes, such as: emergency,
priority, and fair. Here, the Fuzzy Inference System (FIS)
was used to select an appropriate mode (emergency, prior-
ity, and fair) based on the traffic condition, and the deep
reinforcement learning approach switches the traffic lights
(yellow, green, and red) in dissimilar phases. The obtained
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results showed the effectiveness of the presented system over
the existing systems in light of different evaluation measures.
The reinforcement learning causes an overload and its main-
tenance cost was too high.

Rathore et al. [20] have presented a new transport control
framework, which exploits sensor technology and CPS for
effective decision-making. The presented framework utilizes
the information of road conditions, speed of the vehicles,
traffic intensity, and travel time for constructing the city
graphs and it represents the road networks. The conven-
tional graph method needs authorities and commuters for
developing an optimal and smart transportation system. Here,
an Apache GraphX software tool was used for processing the
data streams. The presented framework’s performance was
analyzed by means of processing time and throughput, and
the achieved results were superior to the existing systems.

Currently, the CPS is incorporated with several physi-
cal systems (industries, ITS, and cities) for improving its
comfort, efficiency, energy, and intelligence. In the present
scenario, the ITS highly relied on the Traffic Flow Predic-
tion (TFP). Jain et al. [21] have used Adaptive Neuro FIS
(ANFIS) model for effective TFP and energy management
in ITS. In this literature, the ANFIS model computes engine
torque, and further, the combination of a fuzzy wavelet neural
network with sailfish optimization algorithm was employed
for estimating the traffic flow in the ITS. The experimental
findings on a benchmark dataset demonstrated that the pre-
sented model outperformed the existing models. However,
the ANFIS model has four concerns in the ITS such as curse
of dimensionality, difficulty in the selection of membership
function, computationally expensive, and the interpretability
loss.

In addition to this, the Traffic Sign Detection (TSD) is cru-
cial in ITS, but it is quite challenging. A robust, fast, and real
time TSD supports and relieves the drivers, where it helps in
improving the driving comfort and safety. Rai et al. [22] have
incorporated the You Only Look Once (YOLO) v5 model
with the CLEAR framework for effective TSD in adverse
climatic conditions. The evaluation performed on the open
image dataset showed the efficacy of the presented model
over the existing models by means of recall and mean average
precision. The undertaken YOLO v5 model was extremely
fast, but computationally costly.

Liu et al. [23] have integrated reinforcement learning with
the bidirectional LSTM network for improving the energy
efficiency of CPS in ITS. Zhou et al. [24] have presented a
Wide Attention Deep Composite (WADC) model for TFP.
The presented WADC model has two modules: deep com-
posite module and wide attention module. The wide attention
module extracts the features from the traffic flow data, and the
deep composite model has LSTM and CNN components for
generalizing the extracted features. The results revealed that
the presented WADC model obtained superior performance
than the existing nine deep learning and machine learning
models. However, the incorporation of two deep learning
models increases the complexity and processing time.
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Wasim et al. [25] have implemented CNN model for aca-
demic activity detection in the smart CPS. The CNN model
effectively recognizes the academic activities in the real time
campus dataset, and its performance was validated by means
of memory requirement, computational time, and accuracy.
As discussed in previous literature, the CNN model obtained
superior performance in academic activity detection, but
expensive in other applications like co-operative control of
multi-agent systems [26], [27].

The conventional CNN model is computationally intensive
because it requires significant memory and processing power.
Mobile devices have limited computational resources, in the
context of transportation CPS. Resource intensive models like
CNN lead to delays that affect tasks like traffic signs and
vehicle recognition. The conventional CNN model struggles
with the precise detection of smaller objects, and is sensitive
to variations in weather, environmental, and lighting condi-
tions. These drawbacks affect the practical deployment of
traditional CNN models in this system. In order to highlight
the above-stated concerns, a portable deep learning model is
proposed for supporting MEC in transportation CPS.

lll. METHODOLOGY

In recent times, several transportation CPS applications
are employed in the realistic traffic conditions, particularly
related to the traffic signs and vehicle recognition. Tradition-
ally, machine and deep learning algorithms are utilized in
traffic signs and vehicle recognition. Compared to machine
learning algorithms, deep learning algorithms are advanced in
computer vision and image processing applications. Usually,
deep neural networks contain more parameters with multiple
layers that results in larger model size and requires strong pro-
cessing devices. Therefore, a portable CNN-CLFFA model is
proposed in this article for effective traffic signs and vehicle
recognition. The steps involved in the proposed framework
are as follows:

e Input data are collected from GTSRB, MIO-TCD, and
VCifar-100 datasets.

e Image pre-processing is accomplished using PCA Jit-
tering, color augmentation, rotation augmentation, and
Gaussian augmentation.

e Traffic signs and vehicle recognition is performed
using CNN-CLFFA model.

e Performance analysis is done using the measures
like accuracy, Fl1-score, recall, model size, inference
latency and precision.

A. IMAGE PRE-PROCESSING

After acquiring the images from GTSRB, MIO-TCD, and
VCifar-100 datasets, the image pre-processing is performed
utilizing PCA jittering and data augmentation (color, rota-
tion, and Gaussian augmentation) techniques [28], [29].
In this scenario, the class imbalance and overfitting prob-
lems are resolved by adopting data augmentation techniques
with an oversampling approach. The oversampling approach
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FIGURE 1. Sample-augmented images.

optimizes the images in every class and then averages the
class distributions. The oversampling approach efficiently
resolves the problem of class-imbalance in the GTSRB,
MIO-TCD, and VCifar-100 datasets [30], [31]. The data
augmentation techniques avoids overfitting problems by
obtaining a number of images with dissimilar effects [32].

e Gaussian augmentation: Additional images are gen-
erated with the inclusion of Gaussian noise.

¢ Rotation augmentation: Augmented images are gen-
erated by rotating the original images clockwise
between the degrees of 0 to 360.

e Color augmentation: It adjusts the contrast, bright-
ness, and color saturation of the original images.

e PCA jittering: Feature vectors and feature values are
computed from the images by calculating the standard
deviation and mean values from the Red Green Blue
channels. The sample-augmented images are shown in
Fig. 1.

B. TRAFFIC SIGNS AND VEHICLE RECOGNITION

After pre-processing the acquired images, the traffic signs
and vehicle recognition is performed by implementing a
stacked CNN model [33], [34]. Due to the higher learn-
ing capacity in the image representations, the stacked CNN
model is effective in image processing and computer vision
applications. In the initial phase of the CNN model, the
pre-processed images are passed to the convolutional lay-
ers, which have kernel filters for learning and convolving
the vectors from the pre-processed traffic sign and vehicle
images [35]. In the convolutional layers, the kernel filter per-
forms nonlinear activation, and it is mathematically depicted
in (1).

M N
aij=f (Zm_1 D W X Xigmn b) (0

where, wy, , is indicated as convolutional weight matrix, b is
represented as bias, and f is indicated as nonlinear activation
function [36]. In the nonlinear activation a;;, the neurons
(i,)) are inter-connected with the upper neurons Xy jin.
In this scenario, the ReLU activation function o (x) is utilized
for measuring the nonlinear functions and feature maps in
the convolutional layers. The mathematical expression of the
ReLU activation function o (x) is indicated in (2).

o (x) = max(0, x) 2

The convolutional kernels and the hidden vectors are
extracted from the pre-processed images in the convolutional
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layers. In this scenario, we considered the kernel size of
3 x 3, stride of four, and convolutional kernels of 64 for
extracting vectors (learning parameters) in the first convo-
Iutional layer. The deep feature extraction is accomplished
in the next convolutional layer with the kernel size of 3 x 3,
stride of two, and convolutional kernels of 128 [37].

Next is the pooling layer, the nonlinear sub-sampling pro-
cess is carried out in the pooling layer for reducing the
vector’s size. In this layer, the two commonly utilized pooling
methods are average pooling and max pooling. The maximum
values are selected in the max pooling operation, and the
average value of the elements are considered in the average
pooling operation. Here, the down sampling process is per-
formed in the two pooling layers with max-pooling operation
in order to maintain the dominant vectors. The activation set
is denoted as P and the pooling region is specified as E.
The activation set and the average pooling (AP) operation are
mathematically depicted in (3) and (4).

P = {pilk € E} 3)
Y upIL: )
|PE|

In addition, the mathematical expression of max pooling
(MP) operation is indicated in (5). Where, a set of cardinal
numbers x is denoted as |x|.

MP = max(Pg) (5)

The output layer is the fully connected or flatten layer,
which is used along with the softmax function. In the flat-
ten layer, every node is inter-connected with the nodes of
the upper layer for merging the extracted vectors. Here, the
softmax function is used for converting the extracted vectors
into probability vectors in order to perform classification.
The softmax function S; is mathematically presented in (6).
Where, g is denoted as the flatten layers with output vectors,
N is indicated as number of classes, and the output vector of
j™ value is denoted as a;.

The architecture of the stacked CNN model is speci-
fied in Fig. 2. For reducing the size of CNN model, the
hyper-parameters are selected by the CLFFA, which are listed
as follows: momentum is 0.9, optimizer is Adam, activation
function is ReL.U, mini batch size is 500, max epochs is 100,
learning rate drop period is 5, learning rate drop factor is 0.2,
loss function is binary cross entropy, and the initial learning
rate is 0.001.

In this context, the learning rate is a crucial hyper-
parameter, which influences convergence speed of CNN
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Max-pooling layer 2

Convolutional layer 1 (64 filters, stride=4, size=3 X 3)

Pre-processed image

Max-pooling layer 1 |

Convolutional layer 2 (128 filters, stride=2, size=3 X 3)

FIGURE 2. Architecture of the stacked CNN model.

model while training the data. Here, the CLFFA finds
the optimal learning rate of 0.001 and it avoids problems
like overshooting and slow convergence. Additionally, the
CLFFA finds the optimal batch size of 500, which bal-
ances model performance and efficiency for traffic sign and
vehicle recognition. During data training, the batch size
directly affects the memory requirements and convergence
speed. The regularization techniques like dropout plays a
vital role in preventing overfitting problems. The optimal
selection of dropout rate/regularization parameter improves
the CNN model’s generalization ability. During data training,
the CLFFA finds the optimal point for early stopping and
it overcomes overfitting problems by stooping the training
process, while the CNN model begins to exhibit signs of
decreasing performance on the validation set.

e

>y et

Generally, the FA follows the firefly interacting behav-
ior by using its flashing lights. This optimization algorithm
considers all the fireflies are unisex, which means brighter
fireflies attract residual fireflies [38], [39], [40]. According
to the objective function, the firefly’s brightness is directly
proportional to the attractiveness of the fireflies. Here, the
intensity of the light /() is computed by performing inverse
square law, which is specified in (7).

Sj (6)

1) =1p x e P> %)

where, the actual light intensity is represented as Ip and the
coefficients of light absorption are specified as p. Addition-
ally, the attractiveness of the firefly is represented as B(r) and
it is mathematically expressed in (8). Where, the attractive-
ness is Bo in the condition of p= 0. In the conventional FA,
the Cartesian distance metric is utilized for computing the
distance between fireflies i and j at x; and x;. The mathemat-
ical expression of the Cartesian distance metric r;; is denoted
in (9). On the other hand, the firefly’s positions are updated
by utilizing (10).

B(r) =By x e " ®)
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2
—OXra
Xipt1 = Xi + Bo x e i x (x5 — xiy)

+ o x (rand — 0.5) (10)

where, rand is represented as the uniform random vector,
X;,p is denoted as the spatial coordinate of i" firefly at p'
component, ¢ is indicated as time, and the term pe [0, 1] at
u" dimensional space [41], [42].

The traditional FA and other conventional algorithms like
grid search, random search, and genetic algorithm have a
drawback of lower exploration and exploitation ability in the
global and local search spaces that result in poor conver-
gence rate. To overcome the aforementioned drawback, a new
CLFFA is implemented in this article for hyper-parameter
selection, here; the fitness function is the hyper-parameters
of the CNN model. It is analyzed based on the performance
metrics like precision, recall, F1-score, and accuracy. The
CLFFA uses the search pattern of Lévy Flight Distribution
(LFD) and chaotic map (Gauss/Mouse map) instead of the
random parameter 8 in orderto strengthen the exploration
and exploitation ability of the algorithm in the global and
local search spaces, where this process efficiently improves
the convergence speed. In the CLFFA, the firefly’s positions
are updated based on LFD, which is mathematically depicted
in (11).

2
—OXra
Xip+1 = Xi + Bo x e i x (x; — xiy)

+ a x sign(rand — 0.5) ® Lévy (11

The parameter 8 in (11) is replaced by the (12) and (13).
Where, the randomization parameter is represented as « and
the Hadamard product is denoted as ®. The sign(rand—0.5)
accomplishes a random direction, if the random step is drawn
utilizing the Lévy flights, where it helps in enhancing the
ability of global search. The mathematical expressions of
Lévy random number and LFD are denoted in (14) and (15).

B = (Blnaos — Po) €71 + fo (12)
-1 _
ﬂéhaos = l/ﬂt 0 ﬁc‘haos =0 (13)

chaosmOd(l) otherwise
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) @ xp
Lévy (n) B (14)
Lévy(im ~u=1"""0<n<2) (15)

where, the terms ¢ and p are represented as standard distri-
butions, and @ is calculated using (16).

t(1 + 1) x sin(w x 7)

1/n 16
T+ D) x o x 2002 (16)

b=1I

where, 7 is represented as a gamma function and n= 1.5. The
parameters fixed in the CLFFA are: gamma is 1, beta is 1,
threshold value is 0.5, theta is 0.97, number of population
is 30, and the number of iteration is 100. The proposed
CLFFA terminates, once the maximum number of itera-
tions is reached. The numerical analysis of the proposed
CNN-CLFFA model is presented in Section IV, and the pseu-
docode of the CLFFA and the steps involved in the proposed
CNN-CLFFA model is given as follows.

Pseudocode of the CLFFA

Input: Set light absorption coefficients, iteration iter, uniform
random vector, initial attractiveness, and maximum number of
iteration maxiter.
Output: Selection of best hyper-parameters for the CNN
model
Generate random solutions along with the firefly’s dimension.
Compute the threshold limit value.
Estimate the fitness value of every firefly.
While (iter < maxiter)
Firefly’s positions are updated utilizing (10).
If rand < 0.5
Firefly’s positions are updated based on LFD utilizing
equation (11).
End If
Sort the solutions based on the fitness value and save the
present best solution.
Return the best solution.

Steps involved in the proposed CNN-CLFFA model

Step 1: First, set the parameters of the CLFFA like num-
ber of iterations, absorption coefficient, initial attractiveness,
randomness, and number of fireflies.

Step 2: Compute light intensity for every firefly and fur-
ther, calculate the firefly’s attractiveness utilizing (8).

Step 3: Compute the firefly’s movement with less bright-
ness towards the firefly’s with more brightness.

Step 4: Then, the exploration and exploitation ability of
the FA algorithm is improved by including LFD and chaotic
map (instead of the random parameter 8) in the global and
local search spaces by using (12)-(16).

Step 5: Further, the CLFFA is employed for selecting the
hyper-parameters of the CNN model such as initial learning
rate, loss function, drop factor of learning rate, drop period
of learning rate, number of epochs, batch size, momentum,
activation function, and optimizer.

Step 6: Train the CNN model by using the hyper-parameters
and evaluate the fitness function.

Step 7: Repeat the steps 2 to 6, until the maximum number
of iterations is reached.
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TABLE 1. Details about system configuration.

Personal computer

Operating system Win-64bit
RAM 128 GB
Processor Intel core 19 12th generation
GPU NVIDIA GeForce RTX 3080 Ti
Jetson TX2 module
Operating system Win-64bit
RAM 128 GB
Processor NVIDIA denver2 with ARM Cortex A57
GPU 256-core NVIDIA Pascal

Step 8: Compare the performance of the proposed model
with the existing models by using the evaluation measures
like accuracy, F1-score, recall, model size, inference latency,
and precision.

IV. RESULTS AND DISCUSSION

The proposed CNN-CLFFA model is implemented on two
modules: MEC module (Jetson TX2) and personal com-
puter. Here, Keras 2.0 is the software framework used
for experimental evaluation, and it runs on the Win-64bit
operating system. For MEC, the Jetson TX2 module is devel-
oped with lower power consumption and smaller size. The
embedded platform includes 128GB LPDDR4 memory, Hex-
core ARMv8 Central Processing Unit (CPU), and 256-core
NVIDIA Pascal Graphics Processing Unit (GPU). The details
about system configuration are specified in Table 1.

A. EVALUATION MEASURES

In this article, the efficacy of the proposed CNN-CLFFA
model is evaluated on the VCifar-100, MIO-TCD classifica-
tion, and GTSRB datasets in light of precision, recall, model
size, Fl-score, inference latency, and accuracy [43]. The
accuracy is determined as the ratio of total number of classifi-
cations to the number of correct classifications. Additionally,
the file size (MB) and the number of parameters of the trained
models are considered for evaluating the model size and infer-
ence latency on the VCifar-100, MIO-TCD classification, and
GTSRB datasets. The evaluation measure: recall determines
the ability of a CNN-CLFFA model in finding the relevant
data points of a class. Similarly, the precision determines
the ability of a CNN-CLFFA model in returning only the
data points of a specific class, and Fl-score is a harmonic
mean value of recall and precision. The mathematical formu-
las of accuracy, recall, Fl-score, and precision are given in
(17)-(20). Where, FN, FP, TP, and TN are indicated as false
negative values, false positive values, true positive values, and
true negative values.

TP + TN
Accuracy = x 100 (17
TN + TP + FN + FP
TP
Recall = —— x 100 (18)
TP + FN
2TP
Fl1—score= — x 100 (19)
2TP + FP + FN
21031
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Bus Bicycle

FIGURE 3. Sample vehicle images in VCifar-100 dataset.

TABLE 2. Statistics about the MIO-TCD classification dataset.

Types of vehicles/classes Testing images Training images

Background 40,000 160,000
Single unit truck 1,280 5,120
Articulated truck 2,587 10,346
Work-Van 2,422 9,679
Motorcycle 495 1,982
Non-motorized vehicle 438 1,751
Pickup truck 12,727 50,906
Car 65,131 260,518
Bus 2,579 10,316
Pedestrian 1,565 6,262
Bicycle 571 2,284
Total 129,795 519,164

Articulated truck " Pickup-truck

e
~ - || B =
F, S
' ~ : m & -
_ ~ ~ 12
Bi-cycle  Motorcycle Pedestrian Bus Non-motorized vehicle Background

FIGURE 4. Sample images in MIO-TCD classification dataset.

P

Precision = —— x
TP + FP

100 (20)

B. DATASET DESCRIPTION

The VCifar-100 dataset includes vehicle images, which are
extracted from the Cifar-100 dataset, where it has 60,000
vehicle images (32x32) and 100 classes. Particularly, the
VCifar-100 dataset has five classes such as trains, motorcy-
cles, trucks, buses, and bicycles. In this dataset, the vehicle
images in every class are identical, so it avoids class imbal-
ance problems. The sample vehicle images in VCifar-100
dataset are mentioned in Fig. 3.

In recent times, the MIO-TCD classification is one of the
largest motorized traffic analysis datasets, where it includes
eleven classes: bus, pedestrian, motorcycle, background,
articulated truck, bicycle, car, single unit truck, work van,
non-motorized vehicle, and pickup truck. The MIO-TCD
classification dataset has 129,795 testing images and 519,164
training images, which are recorded using surveillance cam-
eras placed across the United States and Canada. The
statistics about the MIO-TCD classification dataset and its
sample images are graphically given in table 2 and Fig. 4.

Additionally, the GTSRB is one of the extensively utilized
datasets in TSD, which has 50,000 images and 40 classes.
In this scenario, we selected three main types such as attention
signs, direction signs, and speed limit signs. The sample
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Datasets Total images Classes
VCifar-100 60,000 100
MIO-TCD classification 648,959 11
GTSRB 50,000 40

TABLE 4. Results of CNN-CLFFA model and the existing models by means
of model size and inference latency.

Number of Model size Inference
Models arameters (MB) latency
P (seconds)
RNN 4,385,208 36.5 0.40
LSTM 3,900,903 30.4 0.43
Bi-LSTM 3,659,762 27.9 0.39
VGG-16 15,303,222 119.2 0.36
GRU 2,476,829 19.9 0.22
AlexNet 756,382 6 0.19
VGG-19 603,445 4.8 0.08
CNN 600,212 4.7 0.08
CNN-FA 566,342 4.2 0.07
CNN-CLFFA (Jetson
TX2)
CNN-CLFFA 509,344 38 0.02

(Personal computer)

images in the GTSRB dataset are graphically depicted in
Fig. 5. The data augmentation and oversampling techniques
resolve the class imbalance problem in the GTSRB dataset.
In order to simplify the discussion, the GTSRB dataset is
categorized into three types: speed limit sign images are
considered as GTSRB-1, direction sign images are repre-
sented as GTSRB-2, attention sign images are denoted as
GTSRB-3, and the combination of three traffic signs indicates
GTSRB-T (Total). Furthermore, the details about the under-
taken datasets are given in Table 3.

C. QUANTITATIVE STUDY

In this research article, the CNN-CLFFA model’s efficacy
is validated with nine existing models such as Recurrent
Neural Network (RNN), LSTM, Bi-directional LSTM (Bi-
LSTM), Visual Geometry Group (VGG)-16, Gated Recurrent
Unit (GRU), AlexNet, VGG-19, CNN, and CNN-FA. The
common parameters of RNN, LSTM and Bi-LSTM networks
are: 100 hidden layers with 100 units, activation functions
are sigmoid and tangent, dropout rate is 0.5, batch size is 64,
learning rate is 0.001, and network type is fully connected.
The VGG-16 comprises sixteen layers in that three layers
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TABLE 5. Results of CNN-CLFFA model and the existing models in light of classification accuracy.

Classification accuracy (%)

Models VCifar-100 MIO-TCD GTSRB-1 GTSRB-2 GTSRB-3 GTSRB-T
RNN 89.75 89 88.62 89.07 88.44 89.75
LSTM 90.12 89.27 90.80 89.77 88.60 90
Bi-LSTM 90.78 90.05 90.86 90.43 89.76 91.12
VGG-16 91.28 91.20 91.02 91.22 90 92
GRU 92 93.24 92.30 92.40 92.10 94.90
AlexNet 93.25 95.45 97.22 95.63 94.38 95.28
VGG-19 96.44 97.17 98.06 96.35 98.22 98.10
CNN 96.90 97.22 98.40 97.87 98.10 98.45
CNN-FA 97.50 97.23 98.80 98.12 98.55 98.76
CNN-CLFFA 99.02 99.11 99.12 99.32 99.21 99.03
TABLE 6. Results of CNN-CLFFA model and the existing models in light of precision.
Precision (%)

Models VCifar-100 MIO-TCD GTSRB-1 GTSRB-2 GTSRB-3 GTSRB-T
RNN 88 87.83 87.09 88.25 88.40 88.24
LSTM 88.18 88.10 88.87 88.70 88.68 89.26
Bi-LSTM 89 89.09 89.98 90.40 90.15 90.15
VGG-16 90.26 90.26 90.56 90.80 90.44 90.32
GRU 93.02 94.60 93.42 93.44 92.66 93.96
AlexNet 94.32 96.50 96.28 94.68 94.78 96.88
VGG-19 97.40 98.19 98.78 97.42 98.28 98.42
CNN 97.65 98.20 98.82 97.92 98.16 98.28
CNN-FA 98.11 98.20 98.90 98.33 98.27 98.90
CNN-CLFFA 99.14 99.32 99.08 99.30 99.12 99.10

are fully connected and thirteen layers are convolutional.
The AlexNet has eight layers: three fully connected layers
with ReLU activation function and five convolutional layers
with max-pooling operation. Similarly, the GRU model has
100 hidden layers with 100 units, activation function is ReL U,
dropout rate is 0.5, batch size is 32, learning rate is 0.001,
optimizer is Adam, loss function is mean absolute error, and
network type is fully connected. Lastly, the VGG-19 has
nineteen layers in that three are fully connected layers and
sixteen are convolutional layers.

The results of CNN-CLFFA model and the existing models
(RNN, LSTM, Bi-LSTM, VGG-16, GRU, AlexNet, VGG-
19, CNN, and CNN-FA) by means of model size and
inference latency are depicted in Table 4. By viewing Table 4,
the CNN-CLFFA model has a minimal size of 3.8 MB and
inference latency of 0.02 seconds by reducing the number
of parameters to 509,344. However, the comparative models
(RNN, LSTM, Bi-LSTM, VGG-16, GRU, AlexNet, VGG-
19, CNN, and CNN-FA) have size of 36.5 MB, 30.4 MB,
27.9 MB, 119.2 MB, 19.9 MB, 6 MB, 4.8 MB, 4.7MB, and
4.2 MB.

The obtained results of CNN-CLFFA model and the
existing models (RNN, LSTM, Bi-LSTM, VGG-16, GRU,
AlexNet, VGG-19, CNN, and CNN-FA) in terms of classi-
fication accuracy are denoted in Table 5. By viewing Table 5,
the proposed CNN-CLFFA model has high classification
accuracy of 99.02%, 99.11%, 99.03%, 99.21%, 99.32%,
and 99.12% on the datasets like VCifar-100, MIO-TCD,
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GTSRB-T, GTSRB-3, GTSRB-2, and GTSRB-1, here, the
results are analyzed on the personal computer. The obtained
experimental results revealed that the proposed CNN-CLFFA
model is feasible and attributable in reducing the redundant
and unnecessary parameters than the conventional models.
As depicted in Tables 5, 6, and 7, the proposed CNN-CLFFA
model not only improves classification accuracy, but also
reduces the computational cost and time.

Correspondingly, the numerical results of CNN-CLFFA
model and the existing models (RNN, LSTM, Bi-LSTM,
VGG-16, GRU, AlexNet, VGG-19, CNN, and CNN-FA) by
means of precision, recall, and F1-score are stated in Tables 6,
7, and 8. On the benchmark datasets, the CNN-CLFFA model
obtained maximum precision, recall, and F1-score values
than the comparative models. Specifically, the CNN-CLFFA
model obtained 99.14%, 99.32%, 99.08%, 99.30%, 99.12%,
and 99.10% of precision value, 99.18%, 99.26%, 99.17%,
99.25%, 99.14%, and 99.16% of recall value, and 98.98%,
99.10%, 99.18%, 98.97%, 98.98%, and 99.12% on the
VCifar-100, MIO-TCD, GTSRB-1, GTSRB-2, GTSRB-3,
and GTSRB-T datasets. The selection of hyper-parameters in
the CNN model by CLFFA significantly removed the redun-
dant parameters of the trained model, here; the numerical
evaluation is carried-out using the personal computer.

D. COMPARATIVE STUDY
The comparative evaluation between the CNN-CLFFA and
light-weighted CNN is depicted in Table 9. Zhou et al. [18]
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TABLE 7. Results of CNN-CLFFA model and the existing models in light of recall.

Recall (%)
Models VCifar-100 MIO-TCD GTSRB-1 GTSRB-2 GTSRB-3 GTSRB-T
RNN 89.65 89.22 89.44 89.24 88.59 90
LSTM 89.70 89.92 89.88 89.40 89.08 90.22
Bi-LSTM 90.76 90 90.36 90.88 90.47 90.25
VGG-16 91.66 91.32 91.58 91.84 91.28 91.92
GRU 94.72 95.68 94.90 94.30 93.40 94.82
AlexNet 95.80 97.46 97.52 95.69 95.82 97.44
VGG-19 98.43 99 98.90 98.21 97.92 98.90
CNN 98.55 99.06 98.98 98.57 98.22 98.66
CNN-FA 98.80 99.12 99.02 98.97 98.72 98.55
CNN-CLFFA 99.18 99.26 99.17 99.25 99.14 99.16
TABLE 8. Results of CNN-CLFFA model and the existing models in light of F1-score.
Fl-score (%)
Models VCifar-100 MIO-TCD GTSRB-1 GTSRB-2 GTSRB-3 GTSRB-T
RNN 88.70 90.55 90.50 90.65 89.50 91.30
LSTM 88.98 90.96 90.79 90.90 90.74 91.86
Bi-LSTM 89.10 91.04 91.12 91.68 91.40 92.20
VGG-16 90.25 92.87 92.20 92.80 92.77 93.42
GRU 92.70 94.12 95.76 95.42 94.46 95.80
AlexNet 94.33 96.44 96.96 96.60 96.90 96.73
VGG-19 96.80 97.66 97.48 97.24 97.72 97.94
CNN 97.56 98.32 97.94 97.50 97.98 97.98
CNN-FA 97.78 98.69 98.86 98.85 98.64 98.95
CNN-CLFFA 98.98 99.10 99.18 98.97 98.98 99.12
TABLE 9. Comparative results of CNN-CLFFA model and light-weighted CNN model.
. Classification accuracy (%)
Models Model size VCifar-100 GTSRB-1 GTSRB-2 GTSRB-3 GTSRB-T
Light-weighted CNN [18] 4.9 MB 96.98 98.43 98.61 97.91 98.96
CNN-CLFFA 3.8 MB 99.02 99.12 99.32 99.21 99.03

have introduced a light-weighted CNN for supporting MEC
in transportation CPS by enhancing the context-awareness
and decreasing the latency. The experiments conducted on
the online datasets revealed that the size of light-weighted
CNN is 4.9 MB by reducing the number of parameters to
602,475. Additionally, the light-weighted CNN has a max-
imal classification accuracy of 96.98%, 98.96%, 97.91%,
98.61%, and 98.43% on the VCifar-100, GTSRB-T, GTSRB-
3, GTSRB-2, and GTSRB-1 datasets. Whereas, the size of
CNN-CLFFA is 3.8 MB, and it selects appropriate parameters
of 509,344. The CNN-CLFFA obtained 99.02%, 99.03%,
99.21%, 99.32%, and 99.12% of classification accuracy
on the VCifar-100, GTSRB-T, GTSRB-3, GTSRB-2, and
GTSRB-1 datasets. The obtained numerical results revealed
that the CNN-CLFFA efficiently maintains high accuracy and
preserves the model’s size in the MEC applications.

E. DISCUSSION
In this article, a novel CNN-CLFFA model is proposed for

supporting MEC applications in transportation CPS. The pro-
posed CNN-CLFFA model has a main benefit of a smaller
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model size and inference latency than the traditional CNN
models. The model with a smaller size effectively utilizes
resources that ensures optimal performance even on mobile
devices with restricted computing power. Furthermore, the
smaller model size reduces storage requirements, which is
more vital in edge devices. The numerical analysis demon-
strated that the proposed CNN-CLFFA model maintained
higher accuracy in vehicle and traffic sign classification,
and reduced computational time and cost. The selection of
optimal hyper-parameters in CNN model by CLFFA reduced
computational cost to 234,565, where the light-weighted
CNN with FA model has a computational cost of 335,872,
and the computational complexity of the CNN-CLFFA model
is linear O(N), where N indicates size of input data and O
denotes order of magnitude. Furthermore, the CNN-CLFFA
model has limited computational time of 22.10 seconds,
43.10 seconds, and 14.42 seconds on the VCifar-100, MIO-
TCD, and GTSRB-T datasets, which are minimal than the
existing models (RNN, LSTM, Bi-LSTM, VGG-16, GRU,
AlexNet, VGG-19, CNN, and CNN-FA). The performance
analysis by means of computational time is specified in
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TABLE 10. Performance analysis by means of computational time.

Computational time (seconds)

Models VCifar-100 MIO-TCD GTSRB-T GTSRB-1 GTSRB-2 GTSRB-3

RNN 31.45 82.48 45.28 35.40 32.48 32.06
LST™M 30.14 80.30 44.46 33.24 31.60 31.36
Bi-LSTM 29.33 76.59 42.42 30.12 31.22 30.14
VGG-16 28.27 72.33 40.35 28.41 30.26 30.38
GRU 44.24 55.20 28.32 26.24 22.09 20

AlexNet 28.20 47.12 22.44 18.54 20.36 20.25
VGG-19 27.12 48.05 20.34 17.22 18.18 17.26
CNN 26.10 46.03 19.22 16.49 17.10 17.08
CNN-FA 25.08 45.50 17.44 15.54 16.52 16.33
CNN-CLFFA 22.10 43.10 14.42 11.10 12.03 11.54

Table 10. The efficacy of the CNN-CLFFA model is clearly
described in Tables 4, 5, 6, 7, 8, 9, and 10.

In this paper, we have evaluated the reliability and accuracy
of the proposed system in traffic sign and vehicle recognition
under a real world scenario. Scenario: a four way urban inter-
section with multiple lanes, pedestrian crossings, and traffic
lights. Here, different vehicles are considered, including bicy-
cles, buses, cars, vans, etc., and analyzed the performance
under two conditions (varied traffic density and daytime with
normal weather conditions). Pass criteria: proposed system
achieved predefined accuracy level in traffic sign and vehicle
recognition. Fail criteria: proposed system does not respond
within a timeframe and it is not properly aligned with actual
traffic conditions and movements.

V. CONCLUSION

In the mobile applications, the deep learning models face
numerous challenges, particularly at MEC devices and IoT
nodes. The deep learning models with heavy size results in
computing and storage problems in the mobile devices, there-
fore, it is essential in developing a portable CNN model to
support transportation CPS. In this article, an efficient CNN-
CLFFA model is implemented in transportation CPS for
enhancing the context-awareness and reducing the latency in
a realistic MEC environment. Here, the size of CNN-CLFFA
model is smaller and maintains higher classification accuracy.
For instance, the size of CNN-CLFFA model is 3.8 MB,
which is very smaller compared to the existing models like
RNN, LSTM, Bi-LSTM, VGG-16, GRU, AlexNet, VGG-
19, CNN, and CNN-FA. Further, the proposed CNN-CLFFA
model achieved higher classification accuracy of 99.02%,
99.11%, and 99.03% on the VCifar-100, MIO-TCD, and
GTSRB-T datasets. Correspondingly, the precision and recall
of the CNN-CLFFA model also outperforms the comparative
models (RNN, LSTM, Bi-LSTM, VGG-16, GRU, AlexNet,
VGG-19, CNN, and CNN-FA).

By inspecting experimental results, the conventional CNN
model failed in recognizing smaller distant vehicles and traf-
fic signs, particularly when they are present in a smaller
portion of the image. Furthermore, the conventional CNN
model struggled to adapt to illumination changes, weather
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conditions, and other external or environmental variations.
Therefore, as a future extension, advanced objection recog-
nition models like You Only Look Once (YOLO) can be
developed for the effective recognition of smaller objects,
even in diverse conditions. Models like YOLO capture con-
textual information and relations between objects for the
accurate recognition of smaller objects. Specifically, the
YOLO model effectively reduces false positives, which is
vital while handling smaller objects. The YOLO model
improves overall accuracy and reduces false detections by
optimizing the localization process. In addition to this,
the proposed CNN-CLFFA model can be applied in other
transportation CPS domains like parking systems, aircraft
transportation systems, industrial automation, healthcare, and
battlefield surveillance.

Data Availability: The datasets generated during and/or
analyzed during the current study are available in the [V Cifar-
100 dataset], [MIO-TCD classification dataset] and [GTSRB
dataset] repositories.

« VCifar-100 dataset: https://git-disl.github.io/
GTDLBench/datasets/cifar-100_datasets/

o MIO-TCD classification dataset:https://www.kaggle.
com/datasets/yash88600/miotcd-dataset-50000-
imagesclassification

« GTSRB dataset: https://www.kaggle.com/datasets/
meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
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