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ABSTRACT Correctly performed Cardiopulmonary Resuscitation (CPR) is a critical element in preventing
deaths caused by cardiac arrest (CA). To improve the outcomes and quality of CPR, stand-alone devices
that monitor the performance and provide feedback have been developed. However, these devices have
multiple limitations due to their rigidity and stiffness. Furthermore, most of the devices do not account
for complete chest recoil as a metric of quality CPR, reducing the quality of compressions. To overcome
these limitations, this study proposes smart gloves equipped with e-textiles-based pressure sensors and
inertial measurement units (IMUs) to monitor the quality adult CPR in real-time. The prototype development
combined data-driven design and Research Through Design (RtD) methods, taking into account not
only the accuracy but also the usability of the smart gloves. A preliminary study with nine participants
performing CPR on a doll was conducted to evaluate the accuracy and wearability of the smart gloves. Study
results show that the smart gloves accurately detect chest compression parameters, including compression
depth, compression rate, chest recoil and interruption between compressions based on the intelligent
fusion of pressure sensors and IMUs. In addition, the newly developed smart gloves are lightweight,
hand adaptable, and easily replicable as an alternative for hard case devices. The design methods used
in this study can be applied to design other accessible and comfortable wearable devices in healthcare
settings.

INDEX TERMS Wearable sensor, smart textiles, motion measurement, healthcare technology.

I. INTRODUCTION
Cardiac arrest (CA) occurs when the heart stops pump-
ing, resulting in loss of blood flow to vital organs [1].
Cardiac arrest leads to certain death if resuscitation is
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not started immediately and performed effectively [2].
Chest compressions are key elements of Cardiopulmonary
Resuscitation (CPR) [3]. By performing chest compressions,
rescuers mimic the function of a heart and help the patient’s
blood to circulate into vital organs at a low efficiency (around
20-30% of what the heart is capable of). According to
the 2021 European Resuscitation Council (ERC) Guidelines,
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the effectiveness of chest compressions depends on several
components, such as hand position, minimal interruption,
compression depth, compression rate, and degree of chest
wall recoil [4]. Therefore, quality chest compressions applied
without significant interruption are an important component
for the return of spontaneous circulation (ROSC) [5].
Once a cardiac arrest is confirmed, rescuers should begin
chest compressions immediately for better outcomes [3].
However, previous studies have indicated that professionals,
and especially laypersons, often perform chest compressions
incorrectly [6].

Various devices have been marketed to monitor the
quality of chest compression parameters [6], [7], [8].
These devices provide real-time feedback on compres-
sion quality, helping rescuers adjust their techniques [9].
Many of the devices on the market are integrated with
other larger multi-functional devices such as defibrillators
and simulation manikins [8], [10]. They are particularly
suitable for use in well-equipped hospitals and teaching
institutions [11].
In addition, new standalone and portable products with

integrated sensors and feedback systems have been devel-
oped [12]. Those standalone devices are either placed on
the manikin/patient’s chest or held on the rescuer’s hands
during chest compressions [3], [8], [10], [13]. Ideally,
standalone devices are suitable for use in communities where
well-trained medical professionals and complex devices are
not readily available [10].
Although standalone devices monitor CPR performance,

they have several limitations. First, they are small and
portable, mostly made using traditional electronics and
hard cases. Hence, rigidness and stiffness can cause extra
friction and pressure on the skin and muscles of the CPR
performer, leading to wrist discomfort and pain [8], [14],
[15]. These hard surfaces and rigid devices can also cause
chest pain and discomfort in recovered patients. Second,
having a detached object between the performer and the
training surface can cause incorrect data collection due to
unintentional sensor displacement [8]. Third, as a solution
to the disadvantages of rigid devices, smartwatch-based
wearable devices have been developed to improve the quality
of chest compressions [11], [16]. However, these devices
are placed on the rescuer’s wrist, which is far from the
actual point of compression, making accuracy questionable
and feedback observation difficult. Fourth, although portable
devices provide feedback on chest recoil, there is no evidence
to suggest that they significantly improve the quality of chest
recoil.

The use of smart textiles can be beneficial for the develop-
ment of flexible, soft and wearable devices compatible with
the human body to address the challenges outlined above
[17]. Smart textiles, or e-textiles, are generally considered to
be fabrics with electrical properties or electronic components
embedded into them. As soft materials, smart textiles provide
better fit and wear comfort compared to rigid electronics [18],

essential for user acceptance of smart wearables [19]. On the
other hand, textile materials’ malleability influences e-
textiles’ reliability [20] and causes mechanical incompatibil-
ity with hard electrical components, unavoidable in e-textile-
based systems [21].
Novel textile materials with electrical properties have

proved to be suitable for creating stretchy smart gloves
capable of monitoring body signals such as touch or
pressure [22], [23]. Smart gloves specifically designed to
measure chest compression depth and force during neonatal
CPR showed promising results [24]. However, a similar
approach has not been applied in adults, which will pose
new challenges in terms of technique adoption due to the
scale change. Our interdisciplinary collaborative project takes
up these remarks and aims to investigate the feasibility
of using smart textiles to manufacture smart gloves to
monitor the quality of chest compressions in adults. The
newly designed smart gloves can measure key parameters of
chest compression quality, including compression rate, depth,
interruption and full chest recoil, utilizing pressure sensors
and IMU. The sensor’s misplacement issue is also targeted
by integrating them directly into the glove. Wearability and
manufacturability of the smart gloves are also taken into
account in the design.

A user test with 9 participants at the University of
Turku proved that our prototypes achieved high detection
accuracy while considering the wearability and manufac-
turability of the gloves. To the best of our knowledge, this
work represents the first e-textile-based smart gloves for
real-time assessment of chest compression quality during
adult CPR.

The main contributions of our study are as follows:

• We present a Research through Design process combin-
ing methods from smart textile design and data analytics
in developing a smart garment.

• Our study yields proof-of-concept smart glove proto-
types that are lightweight, hand adaptable, and easily
replicable.

• We integrate chest recoil monitoring into existing com-
pression depth and frequency algorithms with pressure
sensors.

II. BACKGROUND AND RELATED WORK
A. PORTABLE CHEST COMPRESSION MONITORING
DEVICES DURING CPR
During cardiac arrest, CPR should be started immediately to
maintain perfusion to the cerebral and coronary vasculature
systems [3], [4]. According to CPR guidelines [25], high-
quality chest compressions should be done on the lower half
of the sternum. These compressions should be 5 to 6 cm
deep and at a rate of 100 to 120 per minute. The chest
must be completely released (chest recoil) to allow the heart
to refill between compressions [3], [4]. An alternation of
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30 compressions and two rescue breaths should bemaintained
if there is a possibility to provide ventilation [3], [25].

Subjective assessment of the chest compression parameters
mentioned above is challenging [26]. Therefore, the innova-
tion of devices that monitor chest compression performance
is critical to the delivery of high-quality CPR. Various
portable devices have been developed in recent years to
monitor the quality of chest compressions [8], [9]. Portable
devices, such as Beaty [27] and Laerdal CPRmeter 2 [28],
are placed between the patient’s chest and the rescuer’s
hands to monitor chest compression performance and provide
real-time feedback on compression depth, compression rate
and chest recoil. Such devices are stiff and rigid and can
cause chest injuries to the patients and hand pain to the
rescuers [29].
More involved devices exist in an attempt to accu-

rately track the pose and position of hands in general,
such as Müezzinoğlu and Karaköse [30]. These devices
are complex sensor systems aiming to solve a more
generalized form of the CPR monitoring problem, i.e.
pose tracking, and as such is not a subject of our
study.

As a subset of portable devices, wearables provide options
for chest compression monitoring during CPR. Such devices
can be worn in a hand as a wristband [31], smartwatch [32],
or ring [33]. The devices are developed not only to pre-
cisely determine compression depth, rate, interruption, and
chest recoil detection but also to increase user-friendliness,
comfort, and safety for the user [8]. The wearable devices
are typically based on measuring acceleration to detect
compression depth and rate.

Nevertheless, the aforementioned existing portable devices
have limitations. The accuracy of compression depth detec-
tion is not high due to significant drift accumulated in
the double integration process from acceleration to dis-
placement [14], [15]. Studies then focus on correcting
this drift in several different ways. A common method
is high-pass or bandpass filtering, which removes the
low-frequency contributors of the noise that cause the drift.
de Gauna et al. [15] recognised the connection between
integration and low-pass filtering, combining the two into a
single bandpass filter method. Other approaches attempted
to circumvent the integration issue instead of improving
it. These might rely on statistical measures, such as M-
statistic [32], which is somewhat reminiscent of a moving
average. Another example is reliance on an underlying
sinusoidal model that has parameters describing the CPR
depth and frequency [34]. Finally, there are some non-
algorithmic approaches. Hermann et al. [31] tested different
positions for the accelerometer to minimise the inaccuracies
in the acceleration readings. In the same article, the authors
comprehensively compared different algorithms for depth
estimation.

Another limitation in many previous devices is that one
significant issue is left unaddressed and even worsened,

by some of the approaches mentioned above [15], [31].
Complete chest recoil is potentially masked by methods
that rely on drift removal. There may be actual, deepening
drift present in the compressions, which is eliminated in
the readings by the bandpass, M-statistic, and other periodic
methods. A naive solution is increasing the quality and
quantity of accelerometers to reach sufficient precision in
readings. Another often suggested approach is to use pressure
sensing to determine if the chest has been allowed to
recoil [15]. Some portable devices [28], [35] use pressure sen-
sors exclusively tomeasure depth. This approach circumvents
the issue of chest recoil. This paper will address the chal-
lenges presented, particularly focusing on chest recoil and
wearability.

B. SMART GLOVES FOR HEALTHCARE
In addition to the technical limitations, the existing devices
present usability issues due to their rigidity and stiffness,
which can lead to fatigue and wrist discomfort during
chest compressions [8], [14], [15]. To tackle this, smart
textiles-based solutions have been beneficial in the quest for
comfortable wearable body monitoring options in health-
care. These applications can be fabricated, for example,
by embedding conductive fibres, flexible printed circuit
boards, and electrical components with information process-
ing capabilities onto a textile substrate [36] or into textile
structures [37]. Besides electrically functional features, smart
textiles enable harnessing the properties of textile materials,
such as softness, lightweight, and adaptability to the human
body.

In healthcare applications requiring activity monitoring,
clothing apparel such as the Hexoskin shirt [38] has been
proven promising interfaces for diagnostic, monitoring, and
therapeutic purposes [39]. Due to the relevance of the hands
and their contact with the body during CPR, this paper
will focus particularly on smart gloves for healthcare. The
variety of examples range from gloves for determining loss of
movement in rheumatoid arthritis patients [40] to gloves for
physiotherapy [22] and mirror therapy [23]. These examples
illustrate the potential of smart gloves to collect multimodal
data such as pressure, position, or movement, making them a
suitable interface for versatile use cases.

The potential of smart gloves for CPR quality assessment
has also been investigated. Dellimore et al. [24] showcased
the development of a diagnostic tool designed to measure
the chest compression depth and force during neonatal CPR.
The smart glove includes three accelerometers complemented
with force sensors fabricated from a soft and flexible
piezo-resistive textile composite embedded into rubber
fingertips. The experimental results show that the glove can
reasonably measure chest compression depths and force in
the target range required for neonatal CPR [23].
In addition, their approach emphasises the textile-

based solution’s softness and wearability, essential for the
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TABLE 1. Interdisciplinary team roles.

unobtrusive use of monitoring devices. Thus, smart gloves
provide a promising alternative to portable and wearable
devices typically used in CPR quality monitoring.

However, the use of smart gloves to monitor high-quality
chest compressions in adults has yet to be studied. The
concept of CPR is similar for neonates and adults, but there
are significant differences in application due to differences
in physiology, bone density, and body size [41]. Neonatal
body is not as developed as adults’ [41], [42], and it
requires different techniques and equipment when perform-
ing CPR [43]. Unlike adults, neonatal chest compressions
are usually performed with the thumbs of both hands or two
middle fingers of one hand [43]. In addition, adult chest is
stiffer than neonates chest [41]. Wearable devices designed
and calibrated for neonatal resuscitation may not be used
reliably and effectively for adult resuscitation. Therefore, this
study investigates the feasibility of building smart gloves for
real-time quality assessment of adult CPR.

III. DESIGN PROCESS
In the following chapter, we present the interdisciplinary
process of creating our smart gloves for CPR quality
assessment and explain the design and data-driven methods.

A. METHODS
As a multidisciplinary field, wearable technology and smart
textiles unify knowledge across disciplines ranging from
textile and industrial design to electronic engineering and data
science [44]. Thus, our research approach is interdisciplinary,
applying and intertwining methods from the collaborating
disciplines. The roles of team members from different
disciplines can be seen in Table 2. This publication will
focus mainly on the design process following a Research
through Design (RtD) approach [45] using constructive
design methods to create a first proof-of-concept functional
prototype for CPR Quality monitoring. As an approach, RtD
is a generative process which constantly aims to identify
and evaluate design challenges and iterate the process
accordingly.

As shown in Figure 1, the design process started with
gaining an understanding of the use context and its require-
ments through brainstorming sessions [46]. These insights
were translated into product characteristics (e.g. materials)

FIGURE 1. Design process combining low-cost fast prototyping, user tests
and data-driven methods for CPR quality monitoring.

to be tested by producing prototypes of various levels of
resolution [47]. The relevant features were evaluated either
through laboratory testing, mainly to obtain initial data
from the textile-based sensors using an Arduino set-up,
or user studies [48] at University of Turku with the consent
of the participants. During the user studies, qualitative
data was obtained by asking the participants about their
experiences using the prototypes, to better understand the
factor of usability and wearability. Here, usability refers to
the ease of use of the gloves by the user tests participants
to achieve the defined goal effectively, while wearability
assesses the comfort and capacity of the gloves to withstand
wear. The process of each user study was documented via
video recordings, pictures, observations, and field notes.
In addition, the readings collected from gloves prototypes
were recorded for training and testing algorithms for CPR
quality assessment.

The following subsections will describe the steps taken
to create gloves prototypes starting from brainstorming
sessions.

B. BRAINSTORMING SESSIONS
The RtD process started with investigating the needs and
requirements for performing high-quality chest compressions
in the CPR context to lay the foundation for the prototyping
process. For this, four workshops were organised among
the project team members, which consisted of both med-
ical professionals and lay persons. The workshops aimed
to identify the key characteristics of high-quality chest
compression and the shortcomings of the current chest
compression quality assessment solutions related to usability
and wearability. Three workshops were organised online
to pinpoint the challenges identified via literature, surveys
and some team members’ experiences as clinical researchers
specialising in CPR. In addition, one workshopwas organised
in person to demonstrate the components of high-quality
chest compression with Little Anne QCPR Manikin [49].

After the four sessions, five typical mistakes that occa-
sionally occur when performing CPR were identified. The
typical mistakes were (1) the compression depth was out
of the required range; (2) frequency was lower or higher
than recommended; (3) leaning during chest compression
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was common, which leads to inadequate chest recoil; (4)
hands are not correctly positioned on the chest, and (5)
interrupting the compressions for more than 10 seconds
during CPR. Other challenges were related to the high
costs of the existing CPR feedback devices, leading to
limited accessibility. Those mistakes and limitations were
conceptualized into requirements and further translated into
prototype characteristics. The prototype should detect the
depth and rate of compressions, full chest recoil, and length
of interruptions during CPR. In addition, considering the
importance of exploring more accessible chest compression
devices, the prototype should be fabricated using low-cost
materials, easy-access tools such as sewing machines, and
ready-made components such as Arduinos and IMUs.

During brainstorming sessions, several ideas for portable
quality monitoring systems were discussed, including a smart
vest and a smart chest blanket that can be placed on the
chest of a CPR Manikin. To avoid compatibility issues with
training facilities and real patient resuscitation,smart gloves
were deemed the most accessible approach to move forward
with. Thus, the correct hand positioning on the chest was
excluded from the prototype requirements since it includes
interfering with the contact surface and will be approached in
future work.

C. SENSORS SELECTION
The first prototyping phase investigated which textile-based
sensors are the most suitable for creating a first proof-of-
concept glove for CPR training. The essential aspect of CPR
is the pressure between the provider’s hands and the patient’s
chest. Therefore, pressure sensing is necessary to detect the
proper amount of force to guarantee the depth of compression
required. Furthermore, pressure and pressure relief can
determine the full chest recoil and detect interruption during
CPR.

Considering the requirements for a lightweight smart
glove, the two most common types of textile-based pressure
sensors, including capacitive and resistive pressure sensors,
were chosen for test. A capacitive pressure sensor can
be constructed as two layers of conductive fibres with a
dielectric material, such as a polyester fabric, in between.
It measures the change in the coupling capacitance, which
happens when pressure is exerted over the corresponding
sensor area [50]. On the other hand, resistive pressure
sensors measure the change in resistance values obtained
when applying pressure to the sensing area. They can
be constructed by layering conductive fibres separated by
a piezoresistive layer which changes its resistance when
deformed [51]. Because of their good flexibility, sensitivity,
lightweight, and adaptability, these types of sensors are useful
for the field of wearables to measure subtle or large human
motions [52].

To compare the sensor’s noise between capacitive
and resistive pressure sensing, we created two sets of
square-shaped samples (4 × 4cm, 6 × 6cm), respectively,

FIGURE 2. Resistive and capacitive pressure sensors samples in
2 different sizes (4 × 4 cm and 6 × 6 cm).

to obtain data and determine which type would be more
suitable for the first glove prototype. As illustrated in
Figure 2, on top of a base polyamide knitted fabric, two layers
of conductive title (Shieldex Bremen RS) are placed with
a layer of piezoresistive textile (Velosat EeonTexTM LTT-
SLPA 20K ohms) or dielectric textile in between, depending
on the type of pressure sensors. All these layers are bonded
together by a thermoplastic lamination foil. The sensors were
connected to an Arduino board which collects the sensor
readings and forward them to a computer. The sensors were
evaluated by placing different weights on each sensor sample
to obtain the corresponding readings. The weights had a
diameter of 5,5 cm and mass of 0.2g, 10g, 30 g, 185 g and
935 g. When the sample size is 4 × 4 cm, the whole sensor
area is covered; however, for the sample size 6× 6 cm, some
areas are not covered by the weight.

Figures 3 and 4 are the results of the sensor measurements.
The sensor readings are min-max normalized, that is the
readings are scaled to the [0, 1] range, so that it is possible
to compare them to each other. Figure 3 shows the changes in
sensor readings for different weights. An ideal sensor would
yield a monotonous increase in readings for an amount of
added weight, e.g. a 0.2 increase in output for every 200g
of weight added. Figure 4 illustrates the standard deviation
of each sensor with different weights. For each measured
weight, the standard deviation is indicative of sensor noise.
Resistive sensors yield the lowest level of noise based on the
results in Figure 4 and also, by a small margin, are the most
sensitive to changes in Figure 3. The sensor size appears to
have a marginal effect.

D. PRESSURE SENSOR LAYOUT
The next step in the development process was to determine
the layout and number of pressure sensors integrated into
a glove. For that, we applied an embodied design ideation
method [53] and drew insights through engaging in CPR
training. Following the CPR expert’s instructions on how to
position the hands and perform the compressions correctly,
two members of the team practised CPR on a training
manikin. The manikin’s chest was covered with a sheet
painted over with a red pigment as illustrated in Figure 5.
Once finished, the paint stains on the researchers clearly
showed the main touch points on the palm and finger
joints as seen in Figure 5. The method provided a clear
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FIGURE 3. Normalized sensor readings against weight. The figure
illustrates the change in sensor readings when the weight is changed,
with larger reading changes at low weights.

FIGURE 4. Comparison of the normalized standard deviation in sensor
readings at different weights. The standard deviation is indicative of the
sensor noise as weight is constant.

visual representation of the hand’s touch points during CPR
execution, informing the team to design the number and
placements of pressure sensors. Although CPR instructions
typically ask people to interlace fingers while performing
CPR [54], there is in practice no single right way for hand
placement, according to the observations of experts’ CPR
performance. Thus, we decided not to place sensors on the
fingers, but integrate three pressure sensors as indicated in
Figure 5(d) on the palm’.

E. GLOVE PROTOTYPE
The insights from the previous phases informed the design
of smart glove prototype for CPR performance monitoring.
The chest compression tracking requirements and correlating
design choices are shown in Table 2, while the prototype is
shown in Figure 6.

The final design (Figure 6) was based on a pair of left and
right-hand gloves specially made of elastic knitted polyamide
and cotton fabric. A basic M-size pattern was chosen for its
simplicity and fast manufacturing in a laboratory setting. The
fingertips were cut for better adjustment to different hand

FIGURE 5. (A,B,C) Hand painting for pressure points visual cues (D) Final
sensors layout for size M right glove.

sizes, and a wrist strap was added to avoid displacement.
Three resistive pressure sensors were embedded in the
palm of the right-hand glove, which faces the chest when
performing CPR. These textile-based sensors comprised two
layers of conductive fabric (Shieldex®Bremen RS), with a
layer of resistive fabric (EeonTexTM LTT-SLPA 20K ohms)
in the middle. The layers were placed onto the glove fabric
and kept in place by adding a last layer of thermoplastic
lamination foil, which melts under a hot flat iron. Metallic
snap buttons and insulated cables were used to connect
the soft components to the hardware. An elastic band was
added to the wrist to keep the cables in place and avoid
disconnections to the board caused by the arm’s movement.

The pressure sensors were complemented with an IMU
(Adafruit LSM6DS33 6-DoF), which detects motion and
orientation via an accelerometer and a gyroscope to increase
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TABLE 2. CPR monitoring requirements and correlating design choices.

FIGURE 6. Final prototype of pressure sensing glove for right hand.

the accuracy of compression depth and rate detection. The
IMU was attached to a glove worn on the left hand. All the
sensors were connected to a single Arduino UNO Board to
receive and safely obtain the data.

IV. DETECTION ALGORITHM
Chest compression monitoring usually focuses on the
detection of the frequency and depth of each compression.
As indicated in literature [31], the depth measurements are
primarily done by integrating acceleration measurements.
However, this may cause drift in the resulting signal where
the mean of the estimated depth wanders to unreasonable
values. This challenge can be dealt with through different
methods, and based on a comparative study [31], we chose to
augment the bandpass method [15]. The bandpass method is
used to obtain displacement readings from 1-axis acceleration
readings. Depth and frequency can then be read from
the displacement. In our approach, outlined in Figure 9,
acceleration measurements are complemented with pressure
sensor input to properly consider the chest recoil, which is

FIGURE 7. Setup of the chest compression performance monitoring
system. The prototype is designed for the right hand to go under. For a
left-handed person, the pressure sensors and IMU should be swift.

FIGURE 8. User test for data collection at University of Turkul.

FIGURE 9. Flowchart of the applied detection method. The used portion
of original bandpass method is highlighted. Blue rhomboids are
descriptions of data at each step, while green rectangles portray the
processing steps. Red, rounded rectangles portray the output of the
method.

not possible with the bandpass method introduced in earlier
works. Our overall approach then simply changes the method
of compression splits while leveraging the depth estimates
yielded by the bandpass method.
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As both frequency and depth estimates require a certain
time period of a signal to yield meaningful results, we used
the pressure sensors to split the measurements into individual
compressions. This happened via simple thresholding as the
pressure sensor was configured to yield fixed output when
hands are laid neutral on the chest, ready to begin CPR.

Within each of these compressions, we first applied
principle component analysis (PCA) [55] to obtain the
acceleration along the direction of the compressions from
the first eigenvector. Earlier works, such as [15], aligned the
compression depth with one of the acceleration axes, but
this might not be possible in a glove scenario. We applied
singular value decomposition (SVD), a type of PCA suitable
for non-squarematrices, from SciKit-Learn library [56]. SVD
decomposed the matrix of acceleration data M into singular
values 6, and left and right singular vectors U ,V : M =

U6V T . The right signular vector V was of particular interest
here, as it corresponds to the rotation of the original data
that aligns the first dimension towards the greatest variance.
We assumed that the compressions themselves are the main
source of variance in the data, so after applying our rotation
V · M we had data along the direction of the compressions
(equivalently, the data can be obtained via U · 6). This
process has two additional benefits. First, data is always
mean-centered before applying PCA, which eliminated the
constant gravitational component along the compressions.
Second, the noise that is not along the direction determined by
the first singular vector, i.e. the compressions, is eliminated
from the data.

Next, we obtained the displacement from the acceleration
readings. When applying the bandpass method, the filter
parameters should be reset between the compressions to
combat drift due to the cyclical nature of the CPR. In the
original bandpass method [15], the filter resetting is done at
the zero-crossings of the velocity estimates. However, doing
so will potentially mask scenarios where the chest is not
allowed to fully recoil, and each compression is gradually
deeper, i.e. the actual compression depth is drifting. Our
modified method resets the filters based on the thresholded
pressure readings instead, which remedies the issue. Outside
of this and the application of PCA, we apply the bandpass
method as described in [15]. The original bandpass method
is built from two parts: a highpass filter to eliminate noise,
and a lowpass filter in the form of integration. In our
implementation, we chose a fourth-order Butterworth filter
at 0.6 Hz, and cumulative trapezoids were used for the
integration part.

Finally, we arrive at an estimate of the displacement during
a single compression. However, the values of interest were
frequency and pressure depth. As individual compressions
were already obtained, we could measure the peak-to-peak
depth within each press. The peaks were identified using
prominence-based peak detection (prominence of 0.2 in a
[0,1] normalized signal) in SciPy library [57]. Similarly, the
time difference of zero points in pressure sensors yielded
the compression frequency. Finally, the frequency and depth

FIGURE 10. Placement of the ultrasound sensor to obtain ground truth
from a CPR Manikin. The torso outline represents the Manikin, while the
red box illustrates the location of the sensor measuring the distance
indicated by the arrow.

estimates can be unstable due to noise when observing just a
single compression. As is discussed in [15], a user does not
necessarily require feedback for every compression. Hence
we averaged the results over three previous compressions,
similar to [15], to reduce the noise in the estimates.

V. EVALUATION
A. SETUP OF DATA COLLECTION
The CPR gloves prototype was evaluated in a pilot test
in a simulation room at the University of Turku, Faculty
of Medicine (Figure 8). Nine participants were instructed
to perform CPR according to the ERC guidelines [58]
while wearing the glove prototypes. Four of the participants
were health professionals who have experience in providing
high-quality CPR in accordance with the guidelines of the
ERC while the remainder were lay rescuers. We provided
them with details about the study, including the location and
date/time of the demonstration, and only those who agreed
to participate were given more information. We clarified that
participation in the study was entirely voluntary and that they
could withdraw at any time without giving a reason. Consent
for participation in the study was assumed upon arrival at the
University of Turku’s simulation room.

The participants were given verbal feedback by a medical
professional, based on the readings of the CPR manikin,
on their performance to ensure the compression depth
remained within 5 to 6 cm and the compression rate within
100 - 120 per minute. To minimise the effect of fatigue,
each participant performed three sets of compressions (30
per set) with a break between each set. chest compressions
were performed on Little Anne QCPR [49]. Data were
collected from both gloves in real-time during the study.
To determine a ground truth, i.e. the direct observation, for
compression depth measurement, an ultrasonic sensor HC-
SR04 was placed inside a training manikin just below the
pressure area. The sensor was attached to the manikin’s inner
back plate to measure the distance so the manikin’s inner
chest plate as illustrated in Figure 10.

B. DATA SETS
We collected the simultaneous readings of the IMU attached
to one glove, the 3 pressure sensors on the other glove,
as well as the ultrasonic sensor placed inside themanikin. The
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pressure sensor readings were in arbitrary units describing
the resistance in the sensor, which was not calibrated to
real pressure readings. Accelerometer readings were readily
available in the expected units, and gyroscope readings were
not used for this study. The ultrasonic sensor readings given
in milliseconds were converted to meters via multiplication
with the speed of sound. To obtain relative distance for the
compressions, these readings were centred around the first
mode of the distribution.

The noisy ultrasound-based distance was processed by cor-
recting outliers with linear interpolation (excluding outliers
above 25cm), filtering noise with a 4th-order Butterworth
lowpass filter at 3Hz, and identifying individual compression
depths by analyzing peaks and troughs of the signal. The
values for outlier detection and filtering were chosen based
on the chest-to-back distance of the manikin (20cm) and the
expected compression rate (<180 compressions per minute)
respectively. The compression depth of the ground truth
readings was determined from individual compressions.

Using these methods, our data set was sized 8942 samples
at an 18.5Hz sampling rate (8 minutes of compressions).
The low sampling rate was due to the ultrasonic sensor,
while the used IMU and pressure sensors would be able to
offer higher time resolution. These 8 minutes of recordings
included nine subjects with three compression sets each.
As expected, the distribution of ultrasonic readings had two
modes with approximately a 6cm difference, corresponding
to the initial rest state and the compressed date of the CPR
process. There was significant noise present even after the
preprocessing: 99% of the data was found in the interval [-
2.76, 16.45]cm. Accelerometer readings, on the other hand,
were normally distributed for the three axes withmeans [4.29,
−3.43, 7.98]ms−2 and standard deviations of [4.72, 4.41,
5.61]ms−2. These values were within the expected ranges.

VI. FINDINGS
A. SENSOR LAYOUT
The prototyping process and the user study obtained data
showed positive results regarding the feasibility of utilising
a textile-based smart glove for CPR, and verified the design
choices described in Section III.
Resistive pressure sensors applied on the palm were a

suitable option to complement the acceleration data related to
chest recoil, rate of compression, and interruptions between
compressions. The obtained data suggest that even one
pressure sensor placed on the outer side of the palm can be
enough to provide the required additional data (Sensor 1 from
Figure 6 and 11). Contrary to the pressure sensor layout
test results, we observed that data from a sensor near the
thumb does not provide reliable readings (Sensor 3 in the
same figures). Sensor placement on the top of the palm
(Sensor 2 in the figures), under locking fingers, seemed
only reliable for practitioners who do use the locking finger
posture. The final location on the outer side of the palm
provided the most reliable readings of the compressions.

FIGURE 11. Example of pressure data from two participants. Y-axis
represents arbitrary units related to resistance from the pressure sensors.

FIGURE 12. Distribution of errors with the modified bandpass method,
x-axis showing the errors in meters.

Figure 11 showcases the difference in pressure measurements
from two participants applying different compression poses.

B. ACCURACY
For the accuracy of our approach, we provide the results
along three different metrics: instantaneous depth error, depth
estimate error, and frequency estimate error. Instantaneous
depth error describes the positional error between our
estimate and the ultrasonic ground truth at each time step,
while the depth estimate error is the difference between the
depth of compression estimates between the method and
ultrasonic distance. Both of these distributions are displayed
in Figure 12. We observed that focusing on individual
compressions for depth indeed improves the estimation
accuracy from the instantaneous error’s µ = 0.04049, σ =

0.03487 to µ = −0.00996, σ = 0.02337. Thus, while our
method was not appropriate for monitoring the instantaneous
position of the hand during the compressions, it yielded
reasonable results when assessing the compression depth.

Frequency estimates using the peak-to-peak difference
were nearly perfect, with some outlier estimates present.
We achieved a mean error of 8.162 Hz with IQR of 0. This is
unsurprising as the main frequency is not affected by the data
processing or filtering methods, and we are using the same
peak-to-peak estimation method to calculate the frequency
from both displacement and ultrasonic ground truth data.

In [31], the bandpass method from a wrist-worn device
yielded median absolute difference (MAD) of 4.5mm (ours:
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−8.7mm) with interquartile range of 2.3 - 7.8mm (ours:
−25.0 - 5.6mm). Despite the difference being large, the
results are comparable and give an indication of the potential
performance of the model under an ideal scenario. The
first of two factors influencing our results was the usage
of an ultrasonic sensor on the ground truth measurements.
The sensor yielded noisy results, and despite filtering, the
comparisons of baseline and the ground truth were influenced
by this. Especially the large interquartile range can be
expected to be influenced by this. The second influencing
factor was the usage of the sensors in two different hands.
As the IMU was placed on the back of the upper hand, it was
not as accurate in measuring the compression as a placement
on the lower hand could be. We additionally observed the
practitioners’ hands occasionally bouncing due to the spring
inside the Manikin. This would influence the MAD results
obtained by our study. Overall, the resulting MAD indicates
that the modifiedmethod is usable for monitoring CPR depth,
providing additional information about the chest recoil.

C. USER EXPERIENCE
During the study, we observed that the usability, adaptability
and comfort aspects were essential for reliable data collec-
tion besides technical functionality. Observations from the
iterative development process of the proof-of-concept glove
prototypes showed that the glove sizing affected the correct
chest compression performance and data quality while
training. We observed that although the pressure-sensitive
glove fitted various hand sizes, wearing it on more extensive
hands increased the risk of breaking the sensors due to fabric
stretching. On the other hand, a loose glove could move
during CPR, creating a displacement of the sensors and
extra friction to the hand skin, which impacted lowering the
intensity of the exercise.

Material choices were another major contributor to the
comfortable use of the prototype. The polyamide fabric used
for the glove proved to be suitable for maintaining the
elasticity of the glove, allowing it to adapt to different hand
sizes and hand movements. Nevertheless, the exercise was
more intense than expected, causing sweating of the hands.
The polyamide fabric did not absorb or move the sweat to
the textile’s outer surface, creating a humid environment.
The study participants mentioned that it increased friction
resulting in uncomfortable abrasion while performing CPR.
This could also raise a hygienic concern and the necessity for
frequent cleaning.

Finally, fabricating the pressure sensors from flexible
materials enabled the creation of custom-made patches
attached to the polyamide fabric. The sensors retained
some of the materials’ stretchability, although the multilayer
construction was less flexible than the individual materials.
The stiffness of the sensors limited the glove to adapting to
the movements of the palm. The sensors’ size also decreased
the glove’s fit as the laminated sensors and textile wires
covered the whole palm area. As mentioned in section VI.
the number of sensors could be reduced to one, besides which

the results suggest the sensors could also be smaller while still
producing necessary data for chest compression monitoring.
Both modifications to the sensor layout would contribute to a
more flexible glove.

VII. DISCUSSION AND CONCLUSION
This paper presented a development process and an evalu-
ation of smart glove prototypes for CPR monitoring. The
proposed solution can monitor four essential characteristics
of high-quality chest compression: complete chest recoil,
compression depth, compression rate and interruptions
between compressions.

The study applied design methods such as fast prototyping
and bandpass method, which allowed for simultaneously
acknowledging requirements related tomaterials, technology,
wearability, and accuracy throughout the process. A proof-
of-concept glove prototype was achieved, highlighting the
importance of applying both qualitative and quantitative
evaluation methods to guide decision-making in different
development phases. This section discusses the study findings
more in-depth, proposes new avenues for further research,
and addresses the methodological limitations.

Compared to the existing alternatives (e.g. [14], [27], [28]),
our prototype is flexible, adapts to adult hands, and can be
personalised to different hand sizes. This was due to the use
of smart textiles, which allowed for harnessing the benefits
of textile material properties and using textile production
methods in circuit integration. The selected materials and
methods also aided in the creation of a low-cost and
accessible tool for CPR. Replicating the proposed prototype
does not require access to advanced textile fabrication or lab
facilities. On the contrary, the use of typical textile production
techniques (sewing and lamination) lowers the barrier to
producing such gloves. We believe this, together with
using open-source hardware, could increase accessibility to
wearable chest compression monitoring devices, enabling
training to a broader audience. In addition, accessibility
requires transparent knowledge transfer, for example, in the
form of open-source instructions or DIY kits. To ensure it,
the fabrication files, circuit schematics and algorithms will
be made open-source once the project concludes.

The proof-of-concept prototype points directions for
further design and development needs. We observed that
the training setup, which included two smart gloves, was
perceived as slightly invasive. Integrating the sensors in
a single smart glove would interfere less with the CPR
performance. In addition, the two-hands setup also increased
noise in the measurements as the participants’ hands were
not continuously moving in sync. This indicates a need
for better sensor layout design to improve the system’s
usability and measurement accuracy. Moreover, re-designing
the sensor layout should be done in tandem with optimising
the glove’s other form and material factors. In terms of
design, material selection and sewing pattern design need to
consider comfortable use andwearability. For example, fabric
with moisture-wicking properties [59] would help transport
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moisture outside the glove, thus decreasing friction while
wearing the glove. In addition, more user studies should be
conducted focusing on wearability to deeply study the user’s
response to the gloves.

Additionally, as shown in previous research on CPR moni-
toring, real-time feedback elements are typically embedded in
the systems to aid the users in performing better. Thus, further
research is needed to evaluate the most suitable feedback
modalities for a smart glove, such as audio or haptic feedback.

On the technical side, the sensor fusion of pressure
and acceleration into a single smart glove enables the
monitoring of complete chest recoil. Using the presented
algorithm, the glove can accurately monitor the frequency
and depth of compressions to a reasonable extent, and
the method can be expected to work when using different
accelerometers or pressure sensors due to modeling the
scenario mathematically. The combination of these three
factors makes the glove a suitable tool for cardiopulmonary
resuscitation training and lays the groundwork for a similar
tool for real-life scenarios.

Our results yield reasonable accuracy on tracking the
depth, and excellent accuracy on tracking the frequency of
compressions. This also means that the splitting of individual
compressions using our method is successful. Given that
our modified bandpass method executes identically to the
unmodified method after the compression split (Figure 9),
we can expect similar accuracy in tracking depth when using
the same data. In other words, despite the weaknesses in
our tracking accuracy results, our algorithm should not be
expected to influence the accuracy or precision of depth
estimates and our focus is on monitoring the chest recoil as
an additional feature.

Further research could focus on deepening the sensor
fusion by combining well-calibrated pressure sensors into the
depth estimates, instead of using them to segment the signal.
This could lead to improvements in the accuracy of the depth
estimates. The angles of approach here could be Extended
Kalman Filter [60] style data integration, or machine learning
methods like simple feedforward networks or shallow
random forests [61]. Furthermore, including the gyroscope
readings in the sensor fusion has the potential to further
stabilize the compression direction in online scenarios and
hence improve the precision.

Regarding the sensors, work should be done on the
characterization and optimization of the sizes and shapes,
and the hand position during the exercises should also be
considered as a future perspective. Studies with a bigger
number of participants need to be conducted to obtain outliers
points of reference and more generalizable results.

A considerable limitation in our study was the quality
of our ground truth measurements. Obtaining high-quality
depth measurements from the manikin manufacturer would
yield more reliable results but they were not available for
our study. It could also enable pressure sensors to directly
improve the depth measurements. While the pressure sensor
shape and sensitivity remain a challenge, sensor fusion via

machine learning methods has the potential to overcome
these issues and improve the precision of the depth estimates.
Conducting the study through a generative design process
allowed running a user study with early phase prototypes to
gain an initial understanding of the smart gloves’ usability
and electrical performance while exploring new design
opportunities for smart textiles in CPR monitoring. On the
other hand, these prototypes rely on hand-craft techniques
and did not yet take into consideration industrial production,
cost, scalability, or extended user comfort. A future design
prototyping process needs to take these variables into
account.

The presented study showed the design process and out-
come of a novel CPR quality assessment wearable. We have
outlined a design process that can be used for similar smart
garments, showcased our prototype and its functionality, and
elaborated on the inclusion of chest recoil monitoring in the
modified bandpass algorithm. Chest recoil is an important
aspect of CPR compressions and its monitoring and feedback
will improve the quality of CPR. The design process and
the prototype showcases how technology and user experience
aspects influence and inform one another.

Our future research on the glove prototype will focus
on refining the technology towards possibilities on man-
ufacturing, system validation, and user testing. Further,
we encourage researchers to study deeper sensor characteri-
zation on textile-based pressure sensors, multimodal monitor,
and sensor fusion methods in the domain.
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