
Received 27 December 2023, accepted 25 January 2024, date of publication 2 February 2024, date of current version 20 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361650

Tuning Machine Learning to Address
Process Mining Requirements
PAOLO CERAVOLO 1, (Member, IEEE), SYLVIO BARBON JUNIOR 2,
ERNESTO DAMIANI 3, (Senior Member, IEEE),
AND WIL VAN DER AALST 4, (Fellow, IEEE)
1Department of Computer Science, University of Milan, 20133 Milan, Italy
2Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
3Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
4Chair of Process and Data Science, RWTH Aachen University, 52056 Aachen, Germany

Corresponding author: Sylvio Barbon Junior (sylvio.barbonjunior@units.it)

The work was partially supported by the Multilayered Urban Sustainability Action (MUSA) project, funded by the European
Union–NextGenerationEU, under the National Recovery and Resilience Plan (NRRP) Mission 4 Component 2 Investment
Line 1.5: Strengthening of research structures and creation of R&D ‘‘innovation ecosystems’’, set up of ‘‘territorial leaders
in R&D’’ (CUP G43C22001370007, Code ECS00000037). The work was also partially supported by the SERICS project
(PE00000014) under the NRRP MUR program funded by the EU–NextGenerationEU.

ABSTRACT Machine learning models are routinely integrated into process mining pipelines to carry out
tasks like data transformation, noise reduction, anomaly detection, classification, and prediction. Often, the
design of such models is based on some ad-hoc assumptions about the corresponding data distributions,
which are not necessarily in accordance with the non-parametric distributions typically observed with
process data. Moreover, mainstream machine-learning approaches tend to ignore the challenges posed by
concurrency in operational processes. Data encoding is a key element to smooth the mismatch between
these assumptions but its potential is poorly exploited. In this paper, we argue that a deeper understanding of
the challenges associated with training machine learning models on process data is essential for establishing
a robust integration of process mining and machine learning. Our analysis aims to lay the groundwork for a
methodology that aligns machine learning with process mining requirements. We encourage further research
in this direction to advance the field and effectively address these critical issues.

INDEX TERMS Process mining, machine learning, non-parametric distribution, concurrency, non-
stationary, zero-shot learning, encoding, training.

I. INTRODUCTION
Process Mining (PM) is an established discipline rooted
in data mining and business process management. The
use of traditional PM tasks such as process discovery
and conformance checking is now commonplace in many
organizations [1], [2]. The benefits of integrating PM
with traditional process monitoring, bringing automation,
transparency and efficiency to the forefront, are now widely
recognized [3]. However, the last decade has witnessed a
surge of new insights from the field of artificial intelligence
that has captured the attention of the PM research commu-
nity [4]. Figure 1 illustrates the key steps in applying data

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

science to PM. Data from the event logs of information
systems is extracted and prepared for process discovery and
conformance checking, the combined output of these tasks is
used for predictive monitoring and action-oriented decision
making. Artificial intelligence enhances these processes
by facilitating various downstream operations. Currently,
there is a notable focus on leveraging Large Language
Models (LLM) to seamlessly interface PM algorithms with
natural language [5], [6], [7], as illustrated in point (3)
of Figure 1. But in today’s practice, is ad-hoc Machine
Learning (ML) models that are routinely integrated into
PM pipelines, performing various tasks that are today part
of PM libraries [8]. Figure 1 point (1) highlights data
transformation, noise reduction, and feature engineering.
Figure 1 point (2) mentions prediction, simulation, and

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24583

https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0003-2601-9327

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

FIGURE 1. The PM tasks and their relation to ML.

recommendation. Our focus in this paper is on consistent
procedures to train ML models for their ad-hoc integration
into PM pipelines.

For example, ML is playing a key role in the interface
between PM and sensor platforms. Advances in sensing
technologies have made it possible to deploy distributed
monitoring platforms capable of detecting fine-grained
events. The granularity gap between these events and the
activities considered by classic PM analysis has often been
bridged using ML models [9], [10] that compute virtual
activity logs, a problem that is also known as log lifting [11].
ML has been proposed as a key technology to strengthen
existing techniques, for example, using trace clustering to
reduce the diversity that a process discovery algorithm must
handle in analyzing an event log [12], [13], [14], [15],
to simplify the discovered models [16], [17], [18], or to
support real-time analysis on event streams [19], [20], [21].
ML is adopted to apply predictive models to the executing
cases of a process. This research area, known as predictive
process monitoring, exploits event log data to foresee future
events, remaining time, or the outcome of cases, in support
of decision making [22], [23], [24]. Root cause analysis [25],
[26] and explainability [27], [28] are other tasks that can be
applied to event log data using ML techniques, in order to
improve our understanding of a business process. MLmodels
have also been used in addition to (or in lieu of) classic
linear programming [29] to optimize business processes’
resource consumption and to provide insights to process re-
design [30]. Computational support for PM appears to align
with that of MLmodels from a technological standpoint [31],
[32], [33]. This convergence might suggest a straightforward
integration of these fields.

Nevertheless, in practice, this integration is far from
straightforward. When mapping PM tasks to ML tasks,
it becomes imperative to construct training functions and
select hyperparameters guided by business process-specific
assumptions.Many of these assumptions stem from the inher-
ent characteristics of human social systems. For instance,
it is widely recognized that process variants follow non-
parametric distributions [34]. In contrast, ML models often
benefit from data normality, and skewed data distributions

can introduce bias into their predictions. Furthermore, the
conventionalML perspective on event log data often oversim-
plifies the reality. Properly encoding the procedural nature of
event log traces poses significant challenges [35]. Frequently,
the sequence of executed events is represented solely by a
fixed-length prefix. Even more intricate is the encoding of
concurrency and the interactions that govern events within
a business process [36]. The process of encoding event log
data into a feature space compatible with ML algorithms
is a pivotal design choice. It has profound implications for
sample complexity, data distribution, and feature relevance
for analysis purposes. This includes tasks such as detecting
concept drift [37] and enabling zero-shot learning principles
on PM tasks [38].

Today, much of the research on integrating ML with PM
focuses on developingMLmodels to attain high performance
in specific business process management scenarios. Less
attention has been paid to designing a general methodology
to select and adapt ML models based on the nature of the
PM problem, taking into account the specific properties of
the process data. We argue that, when using ML models
in PM pipelines, it is important to prevent any mismatch
between the assumptions on input data underlying the ML
models and the information captured by the event logs
used to feed them. Indeed, careless assumptions about the
encoding of input data can lead to biasedmodels with reduced
generalizability. Arbitrarily selecting ML algorithms leads
to unfair evaluation and sub-optimal solutions. For example,
a given ML model cannot be compared with another if their
implementations consider different feature spaces [39]. It is
also important to make sure that ML models are exposed to
process-specific information, such as the processes’ control-
flow constraints [36]. In this paper, we attempt to identify
some of the causes of this mismatch and suggest how to
remove them, with the aim of fostering research on a sound
methodology to address the integration between PM andML.

We believe that the PM and ML research communities
must work together to address these issues. This call for
collaboration is valid in general, but particularly in business
process management, where data analysis has to leave the
safe harbor of experimental science to sail into the open sea
of decision science, where reproducibility is often a challenge
due to the unique contextual factors influencing each business
process. We believe that the community should invest in
defining common practices and benchmarks to promote fair
comparison, by specifying common settings, and tracking
progress in the field over time [40]. In this paper we discuss
the challenges in a specific direction, i.e. from PM to ML.
More specifically, in Section II, we discuss the issues leading
to the PM-to-ML mismatch. In Section III, we introduce
some basic PM notions. In Section IV, we link them to ML
principles. Section V clarifies the discussion by presenting
a couple of samples. Section VI proposes research lines for
advancing in the direction of a general methodology that
integrates ML models into PM pipelines. Section VIII closes
the paper.

24584 VOLUME 12, 2024

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

II. THE ISSUES LANDSCAPE
An important issue underlying our discussion is how to
account for the specificity of process data in ML algorithm
selection and hyper-parameter tuning. Of course, processing
event logs presents all the usual challenges of data prepro-
cessing and preparation. We will not discuss standard data
preprocessing techniques such as outlier removal [41], [42],
noise filtering [43], [44], and missing entry recovery [45],
as these can be addressed by current statistical techniques.
Rather, we will focus on issues specific to process data.

A. DATA DISTRIBUTION
When selecting an ML model for a PM task, there may be a
temptation to assume that the processed data fed to the model
will conform to a normal distribution. Indeed, the assumption
of data normality can be advantageous for various types of
ML models. Specifically, models such as Gaussian, naive
Bayes, logistic regression, and linear regression explicitly
rely on the assumption that the data distribution is bivariate
or multivariate normal. Many phenomena of interest for busi-
ness process analysis, such as the duration of some activities,
are known to follow normal or log-normal distributions.1

For other PM data, however, assuming normality is not
advisable. For example, process variants are specific activity
sequences that occur through a process from start to end.
Variants’ occurrence in an activity log is typically following
a non-parametric power-law trend that complies with the
Pareto principle [34]. A normal distribution cannot always
be assured also for the pairwise dependency relationship
between activities, a key statistical information exploited
by process discovery algorithms [46]. Indeed, in this case,
the normality assumption has been verified for some event
logs, including some popular benchmarks we will discuss
in Section V (the ‘‘Road traffic fines’’ [47] and ‘‘Receipt
phase of an environmental permit application process’’ [48]).
However, the normality of dependencies in less regular or
not observed in ‘‘spaghetti’’ like processes, as in the ‘‘BPI
Challenge 2015 Municipality 1’’ [49]. There are reasons
to believe that dependencies in loosely specified logs may
follow some power-law trend as well, and require careful
parameter fitting in statistical analysis.

At first glance, this may not seem particularly problematic,
since most ML algorithms, such as decision trees, support
vectormachines, or neural networks, are generally considered
to be robust to non-normal distributions and can handle
a variety of data types and distributions. However, it is
important to note that certain characteristics of a data
set, such as the presence of outliers, skewed distributions,
or unbalanced classes, can still cause serious difficulties
for ML algorithms [50]. If the training data is skewed
toward a particular class or outcome, as in power-law or
log-normal distributions, the model may be more likely to

1See, for instance, the ‘‘lunch break’’ duration distributions at
https://www.statista.com/statistics/995991/distribution-of-lunch-breaks-
by-length-in-europe/

predict that class or outcome, even if it is not the most
likely. Independent Component Analysis provides ways to
detect Gaussianity and non-Gaussianity [51]. Of course, non-
normal distributions can be transformed into normal ones
using Box-Cox transformations [52], and unbalanced data
sets can be balanced [53], [54], but as we will see in
Section V, such data transformations should be applied with
caution, as they have consequences for the performance of
the models.

B. CONCURRENCY
Another area of focus is concurrency. How to use ML
to predict the behavior of highly concurrent systems and
processes is still an open problem, and research in the
AI community has only scratched the surface. Most ML
approaches view event logs as merely sequential data [55],
rather than sequential manifestations of a concurrent sys-
tem. This can lead to under-sampling of the log space
and insufficient training to handle seemingly out-of-order
event sequences [56]. To effectively address this challenge,
ML models must be provided with additional context about
the concurrent execution of tasks or the underlying control
flow in the system. One avenue that has been explored
to integrate this information is the use of bidirectional
long-short term memory (BiLSTM) architectures. For exam-
ple, Thapa et al. [57] used BiLSTM to identify concurrent
human activities in a smart home environment. In addition,
their subsequent work introduced a synchronous algorithm
called sync-LSTM [58], which adapts the Long Short-Term
Memory (LSTM) algorithm to handle multiple parallel input
sequences and generate synchronized output sequences.
Predicting the behavior of highly concurrent systems using
ML remains an actively evolving field, as evidenced by the
recent comprehensive review by Neu et al. [59]. Researchers
are exploring novel techniques andmethodologies to improve
our understanding and predictive capabilities with respect to
concurrency in various domains. Despite the progress that
has been made, concurrency poses an ongoing challenge,
stimulating continued exploration and innovation in the field.

C. NON-STATIONARY BEHAVIOR
Even when process data distributions can be fitted accurately,
ongoing processes, especially those involving resources that
learn and age, such as people and equipment, change over
time. This gives rise to non-stationary behavior. Concept drift
detection techniques are therefore needed [21]. In traditional
data mining applications, concept drift is identified when a
concept, i.e. the relationship between a data instance and its
associated class, changes at two different points in time [60].
Concept drift can compromise the accuracy of predictive
process monitoring techniques by causing performance
degradation due to evolving patterns and dynamics within
the process data. In PM, many aspects of drift should
be carefully monitored, including the appropriateness of
the event trace with respect to the model, the dependency

VOLUME 12, 2024 24585

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

relationship between activities, and the interdependency
between activities and available resources or cycle time. Each
aspect should be appropriately coded and monitored using
statistical analysis [37]. While there has been progress in
research, the practical application of concept drift detection
in real process mining scenarios is still an evolving area [61],
[62], [63], [64]. The adoption of these techniques in
industrial settings depends on the development of robust and
scalable methods that can handle the complexity of dynamic
processes.

D. LLM FOR ZERO-SHOT LEARNING
Zero-shot learning involves identifying solutions that were
not encountered during training [65]. This approach uses
unstructured auxiliary information encoded during training
instead of explicit labels. The system learns to associate
new input elements with encodings that have the highest
similarity in terms of auxiliary information, allowing it to
propose results not seen during training. In PM, where
labeled process data may be limited or inaccessible, zero-
shot learning becomes critical. LLMs, exemplified by
Generative Pretrained Transformers (GPT), have emerged as
fundamental models for zero-shot learning applications [66].
Pre-trained on rich linguistic data, LLMs capture complex
patterns, context, and semantics in natural language. Orga-
nizations can use LLMs for various machine learning tasks
without the need for extensive task-specific training datasets,
streamlining development and increasing efficiency. LLMs’
ability to understand prompts and generate human-like text
or multimedia data can also greatly simplify user interaction
with PM algorithms.

Integrating LLMs into PM shifts the focus from analysis
to synthesis of activities to achieve desired goals [67].
LLMs can analyze logs, couple them with other data,
and suggest operational actions to achieve goals [7]. The
challenge lies in learning the mapping between log prefixes
and desired outcomes in the latent space constructed by
GPT algorithms. One promising strategy is to combine
LLMs with diffusion models, which have demonstrated the
ability to learn conditional probability distributions within a
latent space [68]. While it’s important to exercise caution,
especially given the training time constraints associated with
current diffusion models, which are primarily designed for
3D representations, these models provide valuable assistance
in probabilistically mapping latent space data points. For
example, mapping known prerequisites for performing pro-
cess activities to a decision path within a particular business
process [69].

E. DATA ENCODING
ML algorithms are trained using datasets, where each data
point is a vector in a multi-dimensional feature space. PM,
on the other hand, deals with event logs, which capture
business processes in the form of sequential records of
events over time. Each event is defined by dimensions such

as execution time, resource usage, and data exchanged.
However, the primary focus is on viewing each event as
a step in a sequence of activities that together form a
specific business process case. This difference in the data
structures of ML and PM is a challenge. In PM, the order
of activities is critical and is the most important information
to convey. On the other hand, ML training sets typically
don’t consider the order of examples. Although one could
encode the sequence of events in a case as a single data
point, this compromises the representation of events as
multidimensional objects. Reconciling the focus on temporal
order in PM with the feature-driven representation of ML
algorithms is not trivial. To complicate matters, events
in a business process are not only influenced by intra-
case dependencies. They are also susceptible to inter-case
dependencies, such as sharing the same set of resources with
events in other cases. Effective event log encoding should
ideally capture all of these aspects.

Surprisingly, the PM community has devoted relatively lit-
tle effort to investigating the impact of encoding methods on
PM pipeline performance. In practices, basic techniques such
as one-hot encoding [70], frequency-based encoding [14],
and general statistics for numerical attributes [23] are often
used. These methods excel at distinguishing cases based on
their constituent activities, frequency, or other characteris-
tics, but fail in capturing the sequential order of activity
execution. To improve the representation of dependencies
between activities, PM has integrated techniques from
several domains, including text mining [71], [72] and graph
embedding [73], [74].While graph embedding methods often
outperform other techniques, they introduce increased time
complexity and a decrease in transparency in the resulting
latent space [75]. Recent advances emphasize encoding
control flow information in feature spaces to represent the
parallelism or optionality of activities [36], [76]. Innovative
approaches include multi-perspective views of traces that
integrate both data-flow and control-flow information [77],
[78]. In addition, the exploration of inter-case encoding,
which captures relationships between different cases, has
attracted attention [79]. However, the application of these
advanced encoding techniques often remains domain-specific
and cannot be widely adopted by the community.

Furthermore, the PM literature lacks comprehensive doc-
umentation of the encoding techniques used to map PM data
to ML algorithms. Comparative studies are rare and only a
limited number of examples, such as [35], [80], and [81],
are available for reference. The chosen feature space is often
implicitly defined, specific encoding steps remain unclear,
and the actual code used is not disclosed. Ablation studies,
which evaluate the performance impact of removing parts of
the data representation, are still the exception rather than the
rule. We argue that formalizing the encoding procedure can
provide a rationale for this crucial design choice, aligning it
with specific analytical goals and assumptions relevant to the
algorithms under consideration. In Section IV, we present a
proposal for such a formalization.

24586 VOLUME 12, 2024

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

III. BASIC NOTIONS IN PM
To make this paper self-contained, in this section we recall
some of the basic concepts of PM. An event log is a collection
of events generated in a temporal sequence and stored as
tuples, i.e., recorded values from a set of attributes. Events
are aggregated by case, i.e., the end-to-end execution of a
business process. For the sake of classification, all cases
following the same trace, i.e., performing the same sequence
of business process activities, can be considered equal as they
belong to the same process variant.
Definition 1 (Event, Attribute): Let 6 be the event uni-

verse, i.e., the set of all possible event identifiers; 6∗ denotes
the set of all finite sequences over 6. Events have various
attributes, such as timestamp, activity, resource, associated
cost, and others. Let AN be the set of attribute names. For
any event e ∈ 6 and attribute a ∈ AN , the function #a(e)
returns the value of the attribute a for event e.
The set of possible values of each attribute is restricted

to a domain. For example, #activity : 6 → A, where A
is the set of the legal activities of a business process, e.g.
A = {a, b, c, d, e}. If e does not contain the attribute value
for some a ∈ AN , then #a(e) = ⊥. It follows that an
event can also be viewed as a tuple of attribute-value pairs
e = (A1, . . . ,Am), where m is the cardinality of AN .
Definition 2 (Sequence, Sub-sequence): In a sequence of

events σ ∈ 6∗, each event appears only once and time
is non-decreasing, i.e., for 1 ≤ i ≤ j ≤ |σ | :

#timestamp(ei) ≤ #timestamp(ej). Thus ⟨e1, e2, e3⟩ denotes three
subsequent events. A sequence can also be denoted as a
function generating the corresponding event for each position
in the sequence: σ (i → n) 7→ ⟨ei, . . . , en⟩, with en the last
event of a sequence. In this way, we can define a sub-sequence
as a sequence σ (i → j) where 0 ≤ i < j < n.
Definition 3 (Case, Event Log): Let C be the case uni-

verse, that is, the set of all possible identifiers of a business
case execution. C is the domain of an attribute #case ∈ AN .
We denote a case c ∈ C as ⟨e1, e2, e3⟩c, meaning that all
events are in a sequence and share the same case. For a
case ⟨e1, e2, e3⟩c we have #case(e1) = #case(e2) = #case(e3)
= c. An event log L is a set of cases L ⊆ 6∗ where each
event appears only once in the log, i.e., for any two different
cases, the intersection of their events is empty. When the case
identifier is not used as a grouping attribute, an event log L̂
can be simply viewed as a set of events, thus L̂ ⊆ 6.
Definition 4 (Variant, Event Log): The cases c1 and c2 fol-

low the same variant if ⟨e1, e2, e3⟩c1 and ⟨e4, e5, e6⟩c2
have the same sequence of activities, e.g. #activity(e1) =

#activity(e4) = a, #activity(e2) = #activity(e5) = b, #activity(e3)
= #activity(e6) = a. We call this sequence a trace. This
implies an event log can also be viewed as a multi-set of
traces. We denote an event log as a multi-set by writing
L = [⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20]. The superscript
number of a trace details the number of cases following this
variant. For example, ⟨a, b, a⟩11 means we have a variant with
11 cases following the trace ⟨a, b, a⟩.

IV. A FORMALIZATION OF PM DATA ENCODING
In Section II, we discussed the challenges associated
with fully encoding event logs into a format suitable for
downstream ML algorithms. One of the aspects we need to
capture is the control-flow, which represents the sequence of
activities and the path the process follows. Understanding the
control-flow is critical to identifying patterns, bottlenecks,
deviations, and opportunities for improvement within a
business process. In addition, many analytics can benefit
from capturing the data-flow, which focuses on how data
is generated, processed, and transmitted within the various
activities of a process. Another important distinction lies
in inter-case and intra-case dependencies within a business
process. Intra-case examines interactions and dependencies
within a single case, while inter-case examines those between
different cases. Furthermore, events in an event log are
not just characterized by the activities or tasks performed.
They encompass several dimensions, including the resources
consumed, the agent performing the activities, and the
outcome produced. Capturing thismultidimensional perspec-
tive may be essential for developing effective analytics.
Ideally, an encoding process should capture all of these
aspects. However, the techniques currently used, especially
in real-world applications, fall short of this ideal. Most
encoding methods today focus primarily on the control-flow,
predominantly from a inter-case perspective [35]. Events are
often represented simply by the activity performed, and cases
are represented as sequences of events, often with a fixed-
length prefix. This oversimplification does not fully capture
the wealth of information contained in event logs. While
there are proposed methods that emphasize the intra-case
view, they are rarely implemented in practice [82]. Although
the literature provides encoding proposals for data-flow [83],
these are typically tailored to specific domains. A recent
trend underscores the importance of capturing concurrency
constraints [36], [76]. In this section, we aim to shed light on
how PM data is encoded to align with ML algorithms, and
why this process remains a significant research challenge.

For the sake of space, we limit our discussion to supervised
learning, probably the most widely applied ML approach.
Generally speaking, supervised techniques train models to
compute functions f : Rd

→ Rd ′

where the input is a
d-dimensional vector x and the output is a d ′-dimensional
vector y. Each dimension is a measurable piece of data, a.k.a
feature or attribute. For popularML tasks, the output is mono-
dimensional. In regression, the output is a real-valued scalar
value, while in classification, the output is a natural number
indexing a ‘‘class’’. However, nothing prevents having
multidimensional vectors in output. In structured learning,
input and output may be a structure like a block matrix,
divided into sub-matrices to represent algebraic entities such
as graphs, tensors, etc. The training process to approximate
f requires a set of examples {(x1, y1), . . . , (xn, yn)} where
inputs and outputs are paired.We can then define this training
set as an example matrix X := [x1, . . . , xn]⊤ ∈ Rn×d and

VOLUME 12, 2024 24587

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

a label matrix Y := [y1, . . . , yn]⊤ ∈ Rn×d ′

, given by the
number n of vectors and the number d of dimensions in the
vector space.

In their original format, PM log entries do not belong to
a vector space. This is because the events in an event log
are grouped by case and this grouping is essential to keep
a connection with business process execution. Because the
number of events per case is variable, data transformations
are needed to create vectors of a predefined length.

Our goal here is to formalize the procedure to encode the
cases into vectors in a way that can be used as a template to
describe the specific encoding chosen for a PM application.
Our starting point is L̂ ⊆ 6, a log view as a set of
event identifiers. This representation can be mapped into a
vector spaceX by applying a suitable transformation function
grouping event by case and returning vectors of size equal to
or less than the event size.
Definition 5 (Encoding function): Given an event log L̂ ⊆

6, an encoding function 0 : 6 → Xn×d represents L̂ in
the vector space X. The encoding function 0 is valid if it
defines a transformation where two elements of 6, ei and ej
are aggregated on the same element x ∈ Rd if #case(ei) =

#case(ej), with n ≤ |C|, i.e. the vectors in X are a subset of the
cases in C.

We propose a canonical representation of 0 as a com-
position of a filtering function π , a dimensioning function
ρ, a grouping function η, and a valuation function ν,
i.e., 0 = ν ◦ η ◦ ρ ◦ π . One or more of these
components can implement the identity function with null
effects.

In particular, π : 6 → 6α imposes a condition on the
events’ attributes or the attributes’ values, ∀e ∈ L̂ ∧ a ∈

AN : P(#a(e)), where P is a predicate, thus |6α| ≤ |6|.
For example, filtering the events by their timestamp ∀e ∈

L̂ : YYYY-MM-DD ≥ #timestamp(e) ≤ YYYY-MM-DD. The
function ρ : 6α → D defines the dimensions of the vector
space, creating new dimensions based on a range of values in
the original dimensions or, less commonly, grouping multiple
dimensions into a single one. Often, the set D is the union of
multiple attribute domains, i.e.D = Ak=1∪Ak=2∪· · ·Ak=l .
The function η : 6α → Xn×d

α , with d = |D|, assigns
to Xα the values of the attributes in e and groups events
by case so that ∀x∀ak : xi,j = #ak (e) ⇐⇒ #ak (e) =

Dj ∧ #case(e) = ci. The number of elements in the vector
space equals the number of cases to include in the example
matrix, thus n ≤ |C|. Because the sets 6α and D can be
view as columnar matrices Mn×1

6α
and Md×1

D , the size of Xα

is equal toM6α ×M⊤
D , i.e. the set of events we selected with

π is multiplied by the dimensions we identified with ρ. It is
worth mentioning that, when grouping is applied, each vector
component becomes an array of attribute values rather than a
single value. The function ν aims at transforming these arrays
of attribute values into real-valued scalar values. We define
ν : Xn×d

α → Xn×d to clarify the components of the two
matrices are valuated differently.

TABLE 1. The road traffic fines event log.

For example, the basic one-hot encoding schema corre-
sponds to a null π , a ρ with D =

⋃l
k=1Ak , an η for

grouping the events of a same case, and a ν : Xn×d
α →

{0, 1}n×d , returning xi,j = 1 if at least a value #ak (e) = Dj
is observed for the case #case(e) = ci, and 0 if not. The
popular activity profile schema [12] encodes an event log
into a vector of activity values by simply counting all events
of a case that include that activity. The encoding function
maps the events in L̂ into X by executing the four canonical
transformations as follows. First, it verifies to consider only
events associated with activity values ∀e ∈ 6 : #activity(e) ̸=

⊥. Then it defines the dimensions of X with ρ so that
D = A, where A is the set of legal business process
activities. Third, it aggregates the data by case with η. Finally,
it performs the evaluation with ν, assigning the count of the
components in xi,j for each case ci. For instance, the log
L = [⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20], is transformed in
the first matrix in 1 with π , in the second matrix with ρ, in the
third matrix in with η, to finally get the fourth matrix in 1
with ν.

e1
e2
e3
e4
e5
. . .

ab
c

a b c
a b c
a b c

[a, a] b ⊥

[a, a] b ⊥

. . .

1 1 1
1 1 1
1 1 1
2 1 0
2 1 0
. . .

 (1)

We believe that if the PM community would get used
to clarifying the definition of the following functions when
defining an encoding procedure, the literature will benefit
in terms of the comparability of the results. For example, a
data-flow approach will require clarifying the contribution
of the different dimensions in encoding cases. An intra-case
approach will require modifying the η function to encode
multiple cases into a single vector.

V. ILLUSTRATIVE EXAMPLES
We will now use two examples to illustrate the concepts
introduced above. The first example relates to the impact
of data distribution on PM analytics, as discussed in
Section II-A. We refer to the real-life event log of ‘‘Road
Traffic Fines’’ [47]. The events recorded in the event
log include creating a fine notice, recording the fine
amount, verifying that payment has been received, registering

24588 VOLUME 12, 2024

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

FIGURE 2. Two decision trees generated from the ‘‘Road Traffic Fine’’ event log. In 2a the data in input conforms to the case distribution observed
in the event log. As a consequence, the most frequent variants take the lion’s share and the numeric feature amount decides multiple split points.
In 2b data is balanced oversampling those variants with low occurrence. The split points in the tree use now categorical features. The decision tree
is an example of an algorithm significantly affected by uncritical training using the case distribution of event logs.

an appeal with the prefecture, and others. The reader
interested in more details is referred to [84]. As shown
in Table 1, the occurrence of trace variants follows a
Pareto distribution, with only 4 variants covering more
than 88% of the recorded cases, and with 100 variants
having a single occurrence. The most occurring variant
is ⟨Create Fine, Send Fine, Insert Fine Notification,
Add Penalty, Send for Credit Collection⟩56482, the
second is ⟨Create Fine, Payment⟩46371, the third is
⟨Create Fine, Send Fine⟩20385, and so on.

Now let us try to develop predictive analytics on this event
log. For example, we might ask why certain cases have
a significantly longer duration than others. To investigate
the problem, we are interested in looking for patterns that
correlate with long duration. The encoding method we used
represent the cases in the event log as vectors composed
of categorical data, such as the activities performed, and

numerical data, such as the number of penalties and the trace
duration.2 A decision tree can then be used to highlight the
factors that influence case duration. We express it as a simple
binary problem: to be below or above a threshold of 200 days.
Figure 2 illustrates the results we obtain. Figure 2a shows a
decision tree corresponding to the case distribution observed
in the event log. The whole set of cases in L is encoded
in X . As a result, the most frequent variants make up the
lion’s share of the examples used to train the decision tree.
Figure 2b shows the decision tree obtained by balancing
the case distribution among variants by oversampling the
variants with low frequency. This is achieved, for example,
by creating X which takes an equal number of occurrences
for the variants in L. Since the splitting points of the tree are

2The methods used for encoding the event log in
a vector space are available in the PM4PY library
https://pm4py.fit.fraunhofer.de/documentation#decision-trees

VOLUME 12, 2024 24589

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

chosen to best separate the examples into two groups with
minimal mixing, the low-occurrence cases tend to be ignored.
In fact, the tree in figure 2a relies on the numeric feature
amount to decide onmultiple split points. On the contrary, the
tree in figure 2b defines the split points using only categorical
features. This is due to the fact that the variants not associated
with a penalty amount were quite rare, and by increasing
their representation to balance the data set, we prevented the
algorithm from using the penalty amount as a discriminative
feature. It is important to note that, in general, we cannot
say whether proactive balancing is better than using the data
as it is, or even which balancing factor to apply. However,
it is clear that the distribution of the data did affect our
results. The choice of strategy is highly dependent on our
specific objective. If the goal is to analyze an event log to
identify automatable procedures and extract decision rules,
the emphasis should be on frequent behavior [34]. On the
other hand, if the goal is anomaly detection [87] or root cause
analysis [26], the representation of rare examples becomes
imperative.

Our next example relates to the need to capture concur-
rency, as discussed in Section II-A. While the events in
an event log are described as sequences of activities, the
behavior they describe should be interpreted differently based
on the model that generated them. By running the Heuristic
Miner algorithm [85] on the ‘‘Road Traffic Fines’’ [47]
event log, we observe that alternative paths can be followed
to complete the process. If a case includes the execution
of the Payment activity, it will not include Send Fine
and the following activities. The same algorithm applied
to the ‘‘Artificial Patient Treatment’’ [86] will reveal the
concurrent execution of the Blood Test, X-ray Scan,
and Physical Exam activities. All of these activities
are required to complete the diagnostic phase, except for
the X-ray scan which can be skipped, but the order
of execution is not relevant. Thanks to process models,
PM techniques take concurrency into account. Two sequences
⟨a, b, c⟩ and ⟨a, c, b⟩ can have the same model compliance if
the model describes b and c as concurrent activities, while the
compliance value will be different if b and c are sequential
or refer to alternative paths. Unfortunately, most ML models
consider event logs as sequential data only. When cases are
encoded in a vector space, the inference the ML model can
make is based on the distance in that space. The distance
between a sequence ⟨a, b, c⟩ and ⟨a, c, b⟩ is treated the same
in the vector space, and we cannot distinguish between the
sequences based on the reference process model. In terms
of our example, an ML procedure could effectively predict
the lead time of a case, knowing that the Payment activity
was performed. While, training an ML algorithm to predict
the compliance of a treatment with the diagnostic protocol is
more complex and will require a larger amount of training
data, since the ML model must incorporate examples of the
equivalence of the different execution orders of the Blood
test, X-ray scan, and Physical test activities.

Encoding this equivalence in vector space spaces is still an
open challenge.

VI. TOWARD AN INTEGRATED METHODOLOGY
Guided by the above considerations, we will now outline the
strategy to be used to properly integrate PM andML. Figure 4
provides a synoptic view of the mapping of PM tasks to ML
tasks. The challenges discussed are organized vertically based
on their complexity, starting from methods that have already
entered practice in PM to open challenges that have not yet
been solved by the research community.

For example, preprocessing techniques such as outlier
removal [41], [42], noise filtering [43], [44], and missing
entry recovery [45], are today addressed using unsupervised
ML such as PCA and clustering.

Other challenges with moderate difficulty are related to
label availability and unbalanced scenarios [87]. In this case,
semi-supervised ML techniques, such as Active Learning,
and generative models, such as Generative Adversarial
Network (GAN) can be valuable solutions. Active learn-
ing [88] is valuable in PM because of its reduces the
manual effort involved in labeling by intelligently selecting
instances for annotation and optimizing the labeling process.
This adaptability is critical for capturing evolving patterns
in dynamic processes, allowing the model to iteratively
refine its understanding of complex behaviors over time.
Active learning also addresses challenges such as unbalanced
data sets by strategically focusing on underrepresented
classes, and helps reduce annotation bias by prioritizing
uncertain or difficult instances. This iterative approach not
only improves model performance, but also strategically
leverages human expertise for more impactful contributions.
Alternatively, the training process can be enriched using
generative models [89]. To deal with the sequential nature
of event logs Sequence GANs can be considered, in which
the adversarial samples are designed from discrete sequences,
such as events. The application of GANs is not limited to
data augmentation, as they can also be used to improve data
quality for process model generalization [89]. Preliminary
results are available on using GAN-generated data to improve
predictive tasks (e.g., lead time of incomplete cases) under an
adversarial framework [90], [91].

When dealing with non-stationary process behavior, the
use of sampling techniques proves to be a promising strategy
for mitigating the effects of non-stationary distributions in
event log data [92]. Once the data approaches a state of
near-stationary behavior, it is noteworthy that the underlying
business process may naturally change its pattern over time,
leading to the phenomenon known as concept drift [21], [37],
[93]. Despite efforts to address this challenge, we still con-
sider it an open problem due to the fact that in the literature the
event stream is typically modeled as a complete trace stream,
assuming knowledge from the initiation to the completion of
the activity. In reality, drift can begin at any point within the
event stream, long before the endpoint is reached and the rest

24590 VOLUME 12, 2024

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

FIGURE 3. (a) The Heuristic Miner Algorithm [85] was used to discover a model from the ‘‘Road Traffic Fines’’ [47] event log. The discovered model
specifies alternative routes that can be followed to complete the process. In particular, executing Payment or Send Fine implies different
subsequent paths. (b) The Heuristic Miner Algorithm [85] is used to discover a model from the ‘‘Artificial Patient Treatment’’ [86] event log. The
discovered model specifies that Blood test, X-ray scan, and Physical test are executed in parallel. Any order can be followed in executing
these activities.

FIGURE 4. From task to task, an overview of PM and ML relationship.

of the trace is revealed. To address this information gap, some
researchers make statistical adjustments based on Hoeffding
bounds [94]. Essentially, using statistical assumptions about

the confidence interval of the data becomes a means of
making decisions about the onset of drift. The use of
‘‘stateful’’ ML models, especially deep learners based on

VOLUME 12, 2024 24591

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

the LSTM architecture, holds the potential to effectively
handle drifts. However, addressing such challenges requires
the expertise of experienced machine learning practitioners
and the establishment of a robust computing infrastructure.

A. HYPER-PARAMETER TUNING
Once a class of ML models is selected, hyperparameter
tuning must be performed to instantiate the ML model
that provides the desired accuracy (and possibly some
required non-functional properties, such as explainability).
Searching the model space by trial and error can be tedious.
Automated Machine Learning (AutoML) is a reasonable
alternative to address these problems, based on sharing prior
knowledge for similar tasks. AutoML can help solve cold-
start [95], for which little contextual information (and even
the full list of classes) may not be available at the start
of training, by exploiting meta-features and information
about similar models, similar to how human experts start
an old-fashioned search for desirable models driven by their
experience on related tasks [96]. Some AutoML-based PM
research discusses how to find an appropriate PM pipeline by
recommending steps [15], [97]. For example, [97] suggests
the encoding method, since the large number of available
techniques can make the selection difficult. Furthermore,
there are encoding methods that can be adapted to certain
data.

VII. FINAL RECOMMENDATIONS
In this final section, we present a set of recommendations that
aim to be valuable for both PM practitioners and researchers.

A. RECOMMENDATION 1: CHOOSE DATA
REPRESENTATION CAREFULLY
When dealingwith PMdata structures, it is crucial to translate
them into a metric feature space suitable for manipulation
by ML algorithms. Preserve contextual information, such as
control-flow, concurrency, and inter-case constraints, which
are essential for thorough process analysis. The selection
of encoding techniques should align with problem-specific
goals and constraints.

B. RECOMMENDATION 2: FIT THE DATA DISTRIBUTIONS
PM often involves non-Gaussian, non-stationary distribu-
tions. At the same time, skewed distributions can significantly
influence the learning process. Testing different class balance
configurations may be required for reliable training. Use
AutoML to reduce manual effort and improve ML models.

C. RECOMMENDATION 3: EMBRACE ZERO-SHOT
LEARNING
Given the unpredictability of outcomes in PM tasks, espe-
cially in domains such as process optimization where the
full set of possible outcomes may be partially known,
incorporating zero-shot learning, such as using LLMs, can
be beneficial. However, effectively adapting these models to
PM tasks remains an open challenge.

D. RECOMMENDATION 4: ENSURE EARLY QUALITY
WITH CONSTRAINTS
Given the gradual convergence of data distribution estima-
tion, avoiding a long convergence period is essential to
prevent a significant increase in model error during training.
Impose control-flow or resource-usage constraints on ML
models is still an open challenge.

E. RECOMMENDATION 5: LEVERAGE DOMAIN
KNOWLEDGE
Domain knowledge plays a critical role in effective PM.
Integrating domain-specific information and constraints into
ML models significantly improves their performance and
interpretability. Actively involving domain experts in feature
engineering and model validation processes ensures that the
developed models align with the intricacies of the business
processes. Consider employing Active Learning as a valuable
technique to iteratively engage domain experts and refine
models based on their insights.

F. RECOMMENDATION 6: EVALUATE MODEL
INTERPRETABILITY
PM tasks often require interpretable models to gain insight
into process behavior and make informed decisions. Evaluate
the interpretability of ML models and select algorithms that
provide transparent explanations of predictions, especially
in contexts involving critical processes or compliance and
regulatory requirements.

G. RECOMMENDATION 7: CONTINUOUSLY MONITOR
AND UPDATE ML MODELS
Process environments are dynamic, and changes over time
can affect MLmodel performance. Establishing a monitoring
and evaluation framework facilitates timely updates to
ensure accuracy and relevance in evolving process scenarios.
Concept-drift detection and continuous learning is essential.

H. RECOMMENDATION 8: ENCOURAGE KNOWLEDGE
SHARING AND COLLABORATION
Encourage knowledge sharing and collaboration within the
PM community. Encourage the dissemination of successful
case studies, research, and best practices defining and
using benchmarks. Participate in conferences, workshops,
and online forums to connect with other practitioners
and researchers and stay abreast of the latest ML/PM
developments.

By following these recommendations, PM practitioners
and researchers can improve the effectiveness and efficiency
of process mining applications, enabling better process
understanding, optimization, and decision making.

VIII. CONCLUSION
The growing use of ML methods in PM requires a robust
and comprehensive methodology for integrating these algo-
rithmic techniques. The purpose of this paper was to address

24592 VOLUME 12, 2024

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

the challenges associated with ML/PM mapping and to
identify the basic principles for establishing amethodological
foundation in this area. Through the analysis conducted
in this study, we have provided a set of recommendations
that can guide practitioners and researchers in effectively
applying ML to PM tasks. These recommendations cover
various aspects of the PM process, from data representation
to model evaluation and monitoring. By following these
recommendations, PM practitioners and researchers can
improve the effectiveness and efficiency of their ML-driven
process mining applications. It is important to recognize
that the field of ML in PM is constantly evolving, and
new challenges and opportunities will continue to emerge.
Therefore, ongoing research and collaboration between prac-
titioners and researchers is essential to refine and extend the
proposed recommendations. By adopting a methodological
foundation that integrates ML techniques into PM, we can
unlock the full potential of process mining and harness the
power of data-driven insights to drive process understanding,
optimization, and decision making across multiple domains
and industries.

REFERENCES
[1] Deloitte. (2021). Global Process Mining Survey. [Online]. Available:

https://mpm-processmining.com/en/global-process-mining-survey-2021/
[2] W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri,

T. Baier, T. Blickle, J. C. Bose, P. Van Den Brand, R. Brandtjen, and
J. Buijs, ‘‘Process mining manifesto,’’ in Proc. Int. Conf. Bus. Process
Manag. Cham, Switzerland: Springer, 2011, pp. 169–194.

[3] M. Imran, S. Hamid, and M. A. Ismail, ‘‘Advancing process audits
with process mining: A systematic review of trends, challenges, and
opportunities,’’ IEEE Access, vol. 11, pp. 68340–68357, 2023.

[4] O. Loyola-González, ‘‘Process mining: Software comparison, trends, and
challenges,’’ Int. J. Data Sci. Analytics, vol. 15, no. 4, pp. 407–420,
May 2023.

[5] T. Teubner, C. M. Flath, C. Weinhardt, W. van der Aalst, and O. Hinz,
‘‘Welcome to the era of chatgpt et al. the prospects of large language
models,’’ Bus. Inf. Syst. Eng., vol. 65, no. 2, pp. 95–101, Apr. 2023.

[6] D. Chapela-Campa and M. Dumas, ‘‘From process mining to augmented
process execution,’’ Softw. Syst. Model., vol. 22, no. 6, pp. 1977–1986,
Dec. 2023.

[7] A. Berti, D. Schuster, and W. M. van der Aalst, ‘‘Abstractions, scenarios,
and prompt definitions for process mining with LLMs: A case study,’’ in
Proc. Int. Conf. Bus. Process Manag. Cham, Switzerland: Springer, 2023,
pp. 427–439.

[8] A. Berti, S. van Zelst, and D. Schuster, ‘‘PM4Py: A process mining library
for Python,’’ Softw. Impacts, vol. 17, Sep. 2023, Art. no. 100556.

[9] N. Tax, N. Sidorova, R. Haakma, and W. M. van der Aalst, ‘‘Event
abstraction for process mining using supervised learning techniques,’’
in Proc. SAI Intell. Syst. Conf. Cham, Switzerland: Springer, 2016,
pp. 251–269.

[10] S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider, ‘‘Event
abstraction in process mining: Literature review and taxonomy,’’Granular
Comput., vol. 6, no. 3, pp. 719–736, Jul. 2021.

[11] G. Tello, G. Gianini, R. Mizouni, and E. Damiani, ‘‘Machine learning-
based framework for log-lifting in business process mining applications,’’
in Proc. Int. Conf. Bus. Process Manage. Cham, Switzerland: Springer,
2019, pp. 232–249.

[12] M. Song, C. W. Günther, and W. M. Van der Aalst, ‘‘Trace clustering
in process mining,’’ in Proc. Int. Conf. Bus. Process Manage., Cham,
Switzerland: Springer, 2008, pp. 109–120.

[13] R. J. C. Bose and W. M. Van der Aalst, ‘‘Context aware trace clustering:
Towards improving process mining results,’’ in Proc. SIAM Int. Conf. Data
Mining, 2009, pp. 401–412.

[14] A. Appice and D. Malerba, ‘‘A co-training strategy for multiple view
clustering in process mining,’’ IEEE Trans. Services Comput., vol. 9, no. 6,
pp. 832–845, Nov. 2016.

[15] G. M. Tavares, S. Barbon Junior, E. Damiani, and P. Ceravolo, ‘‘Selecting
optimal trace clustering pipelines with meta-learning,’’ in Proc. Brazilian
Conf. Intell. Syst. Cham, Switzerland: Springer, 2022, pp. 150–164.

[16] A. Kalenkova, A. Polyvyanyy, and M. La Rosa, ‘‘A framework for
estimating simplicity of automatically discovered process models based on
structural and behavioral characteristics,’’ in Proc. Int. Conf. Bus. Process
Manag. Cham, Switzerland: Springer, 2020, pp. 129–146.

[17] A. Senderovich, A. Shleyfman, M. Weidlich, A. Gal, and A. Mandelbaum,
‘‘To aggregate or to eliminate? Optimal model simplification for improved
process performance prediction,’’ Inf. Syst., vol. 78, pp. 96–111, Nov. 2018.

[18] D. Chapela-Campa, M. Mucientes, and M. Lama, ‘‘Simplification of
complex process models by abstracting infrequent behaviour,’’ in Proc.
Int. Conf. Service-Oriented Comput. Cham, Switzerland: Springer, 2019,
pp. 415–430.

[19] V. P. Mishra, B. Shukla, and A. Bansal, ‘‘Analysis of alarms to prevent
the organizations network in real-time using process mining approach,’’
Cluster Comput., vol. 22, no. 3, pp. 7023–7030, May 2019.

[20] G.M. Tavares, P. Ceravolo, V. G. T. Da Costa, E. Damiani, and S. B. Junior,
‘‘Overlapping analytic stages in online process mining,’’ in Proc. IEEE Int.
Conf. Services Comput. (SCC), Jul. 2019, pp. 167–175.

[21] P. Ceravolo, G. M. Tavares, S. B. Junior, and E. Damiani, ‘‘Evaluation
goals for online process mining: A concept drift perspective,’’ IEEE Trans.
Services Comput., vol. 15, no. 4, pp. 2473–2489, Jul. 2022.

[22] N. Di Mauro, A. Appice, and T. M. A. Basile, ‘‘Activity prediction of
business process instances with inception CNN models,’’ in AI*IA 2019—
Advances in Artificial Intelligence. M. Alviano, G. Greco, and F. Scarcello,
Eds. Cham, Switzerland: Springer, 2019, pp. 348–361.

[23] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba, ‘‘Pre-
dictive process mining meets computer vision,’’ in Proc. Int. Conf. Bus.
Process Manage. Cham, Switzerland: Springer, 2020, pp. 176–192.

[24] A. E. Márquez-Chamorro, M. Resinas, and A. Ruiz-Cortés, ‘‘Predictive
monitoring of business Processes: A survey,’’ IEEE Trans. Services
Comput., vol. 11, no. 6, pp. 962–977, Nov. 2018.

[25] Z. D. Bozorgi, I. Teinemaa, M. Dumas, M. La Rosa, and A. Polyvyanyy,
‘‘Process mining meets causal machine learning: Discovering causal
rules from event logs,’’ in Proc. 2nd Int. Conf. Process Mining (ICPM),
Oct. 2020, pp. 129–136.

[26] M. S. Qafari and W. van der Aalst, ‘‘Root cause analysis in process mining
using structural equation models,’’ in Proc. Int. Conf. Bus. Process Manag.
Cham, Switzerland: Springer, 2020, pp. 155–167.

[27] K. M. Hanga, Y. Kovalchuk, and M. M. Gaber, ‘‘A graph-based approach
to interpreting recurrent neural networks in process mining,’’ IEEE Access,
vol. 8, pp. 172923–172938, 2020.

[28] N. Guo, C. Liu, C. Li, Q. Zeng, C. Ouyang, Q. Liu, and X. Lu,
‘‘Explainable and effective process remaining time prediction using
feature-informed cascade prediction model,’’ IEEE Trans. Services Com-
put., early access, Jan. 15, 2024, doi: 10.1109/TSC.2024.3353817.

[29] M. Prodel, V. Augusto, X. Xie, B. Jouaneton, and L. Lamarsalle,
‘‘Discovery of patient pathways from a national hospital database using
process mining and integer linear programming,’’ in Proc. IEEE Int. Conf.
Autom. Sci. Eng. (CASE), Aug. 2015, pp. 1409–1414.

[30] Y. Al-Anqoudi, A. Al-Hamdani, M. Al-Badawi, and R. Hedjam, ‘‘Using
machine learning in business process re-engineering,’’ Big Data Cognit.
Comput., vol. 5, no. 4, p. 61, Nov. 2021.

[31] W. V. D. Aalst and E. Damiani, ‘‘Processes meet big data: Connecting data
science with process science,’’ IEEE Trans. Services Comput., vol. 8, no. 6,
pp. 810–819, Nov. 2015.

[32] W. van der Aalst, ‘‘Academic view: Development of the process mining
discipline,’’ in Process Mining in Action. Berlin, Germany: Springer, 2020,
pp. 181–196.

[33] F. Veit, J. Geyer-Klingeberg, J. Madrzak, M. Haug, and J. Thomson,
‘‘The proactive insights engine: Process mining meets machine learning
and artificial intelligence,’’ in Proc. BPM (Demos), 2017, pp. 1–5.

[34] W. van der Aalst, ‘‘On the Pareto principle in process mining, task mining,
and robotic process automation,’’ in Proc. 9th Int. Conf. Data Sci., Technol.
Appl., 2020, pp. 5–12.

[35] G. M. Tavares, R. S. Oyamada, S. Barbon, and P. Ceravolo, ‘‘Trace
encoding in process mining: A survey and benchmarking,’’ Eng. Appl.
Artif. Intell., vol. 126, Nov. 2023, Art. no. 107028.

VOLUME 12, 2024 24593

http://dx.doi.org/10.1109/TSC.2024.3353817

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

[36] M. Vazifehdoostirani, L. Genga, and R. Dijkman, ‘‘Encoding high-level
control-flow construct information for process outcome prediction,’’ in
Proc. 4th Int. Conf. Process Mining (ICPM), Oct. 2022, pp. 48–55.

[37] L. Baier, J. Reimold, and N. Kühl, ‘‘Handling concept drift for predictions
in business process mining,’’ in Proc. IEEE 22nd Conf. Bus. Informat.
(CBI), vol. 1, 2020, pp. 76–83.

[38] B. Hilprecht and C. Binnig, ‘‘One model to rule them all: Towards zero-
shot learning for databases,’’ 2021, arXiv:2105.00642.

[39] E. Rama-Maneiro, J. C. Vidal, andM. Lama, ‘‘Deep learning for predictive
business process monitoring: Review and benchmark,’’ IEEE Trans.
Services Comput., vol. 16, no. 1, pp. 739–756, Jan. 2023.

[40] J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, ‘‘Scientific machine
learning benchmarks,’’ Nature Rev. Phys., vol. 4, no. 6, pp. 413–420,
Apr. 2022.

[41] M. F. Sani, S. J. van Zelst, and W. M. van der Aalst, ‘‘Applying
sequence mining for outlier detection in process mining,’’ in Proc.
OTM Confederated Int. Conf. Move Meaningful Internet Syst. Cham,
Switzerland: Springer, 2018, pp. 98–116.

[42] M. F. Sani, S. van Zelst, and W. M. van der Aalst, ‘‘Repairing outlier
behaviour in event logs using contextual behaviour,’’ Enterprise Model.
Inf. Syst. Architectures (EMISAJ), vol. 14, pp. 1–5, Dec. 2019.

[43] W. Li, H. Zhu, W. Liu, D. Chen, J. Jiang, and Q. Jin, ‘‘An anti-noise
process mining algorithm based on minimum spanning tree clustering,’’
IEEE Access, vol. 6, pp. 48756–48764, 2018.

[44] X. Sun, W. Hou, D. Yu, J. Wang, and J. Pan, ‘‘Filtering out noise logs for
process modelling based on event dependency,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Jul. 2019, pp. 388–392.

[45] F. Fox, V. R. Aggarwal, H. Whelton, and O. Johnson, ‘‘A data quality
framework for process mining of electronic health record data,’’ in Proc.
IEEE Int. Conf. Healthcare Informat. (ICHI), Jun. 2018, pp. 12–21.

[46] A. Berti, ‘‘Statistical sampling in process mining discovery,’’ in Proc. 9th
Int. Conf. Inf., Process, Knowl. Manag., Mar. 2017, pp. 41–43.

[47] M. De Leoni and F. Mannhardt, ‘‘Road traffic fine management process,’’
Eindhoven Univ. Technol., The Netherlands, Tech. Rep., 2015, doi:
10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[48] J. Buijs, ‘‘Receipt phase of an environmental permit application process,’’
Eindhoven Univ. Technol., The Netherlands, Tech. Rep., 2014, doi:
10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

[49] B. van Dongen, ‘‘Bpi challenge 2015 municipality 1,’’ Eindhoven Univ.
Technol., The Netherlands, Tech. Rep., 2015, doi: 10.4121/uuid:a0addfda-
2044-4541-a450-fdcc9fe16d17.

[50] S. Maghool, E. Casiraghi, and P. Ceravolo, ‘‘Enhancing fairness and
accuracy in machine learning through similarity networks,’’ in Proc. Int.
Conf. Cooperat. Inf. Syst. Cham, Switzerland: Springer, 2023, pp. 3–20.

[51] T.-W. Lee, ‘‘Independent component analysis,’’ in Independent Component
Analysis. Berlin, Germany: Springer, 1998, pp. 27–66.

[52] R. M. Sakia, ‘‘The box-cox transformation technique: A review,’’ J. Roy.
Stat. Soc., Ser. D, vol. 41, no. 2, pp. 169–178, 1992.

[53] M. Roccetti, G. Delnevo, L. Casini, and S. Mirri, ‘‘An alternative approach
to dimension reduction for Pareto distributed data: A case study,’’ J. Big
Data, vol. 8, no. 1, pp. 1–23, Dec. 2021.

[54] V. Bellandi, E. Damiani, V. Ghirimoldi, S. Maghool, and F. Negri, ‘‘Val-
idating vector-label propagation for graph embedding,’’ in Cooperative
Information Systems, M. Sellami, P. Ceravolo, H. A. Reijers, W. Gaaloul,
and H. Panetto, Eds. Cham, Switzerland: Springer, 2022, pp. 259–276.

[55] W. M. van der Aalst, ‘‘Concurrency and objects matter! Disentangling the
fabric of real operational processes to create digital twins,’’ in International
Colloquium on Theoretical Aspects of Computing. Berlin, Germany:
Springer, 2021, pp. 3–17.

[56] C. D. Francescomarino, C. Ghidini, F. M. Maggi, G. Petrucci, and
A. Yeshchenko, ‘‘An eye into the future: Leveraging a-priori knowledge
in predictive business process monitoring,’’ in Proc. Int. Conf. Bus.
Process Manag., Barcelona, Spain. Cham, Switzerland: Springer, 2017,
pp. 252–268.

[57] K. Thapa, Z. M. Abdullah, B. Lamichhane, and S.-H. Yang, ‘‘A deep
machine learning method for concurrent and interleaved human activity
recognition,’’ Sensors, vol. 20, no. 20, p. 5770, Oct. 2020.

[58] K. Thapa, Z. M. Abdhulla AI, and Y. Sung-Hyun, ‘‘Adapted long
short-term memory (LSTM) for concurrent human activity recognition,’’
Comput., Mater. Continua, vol. 69, no. 2, pp. 1653–1670, 2021.

[59] D. A. Neu, J. Lahann, and P. Fettke, ‘‘A systematic literature review on
state-of-the-art deep learning methods for process prediction,’’ Artif. Intell.
Rev., vol. 55, no. 2, pp. 801–827, Feb. 2022.

[60] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wozniak,
‘‘Ensemble learning for data stream analysis: A survey,’’ Inf. Fusion,
vol. 37, pp. 132–156, Sep. 2017.

[61] D.M. V. Sato, S. C. De Freitas, J. P. Barddal, and E. E. Scalabrin, ‘‘A survey
on concept drift in process mining,’’ ACM Comput. Surv., vol. 54, no. 9,
pp. 1–38, Dec. 2022.

[62] J. N. Adams, S. J. van Zelst, L. Quack, K. Hausmann,W. M. van der Aalst,
and T. Rose, ‘‘A framework for explainable concept drift detection in
process mining,’’ in Business Process Management. Rome, Italy: Springer,
2021, pp. 400–416.

[63] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba,
‘‘DARWIN: An online deep learning approach to handle concept drifts
in predictive process monitoring,’’ Eng. Appl. Artif. Intell., vol. 123,
Aug. 2023, Art. no. 106461.

[64] B. Scheibel and S. Rinderle-Ma, ‘‘An end-to-end approach for online
decision mining and decision drift analysis in process-aware information
systems,’’ in Proc. Int. Conf. Adv. Inf. Syst. Eng. Cham, Switzerland:
Springer, 2023, pp. 17–25.

[65] M. Käppel, S. Schönig, and S. Jablonski, ‘‘Leveraging small sample
learning for business process management,’’ Inf. Softw. Technol., vol. 132,
Apr. 2021, Art. no. 106472.

[66] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, ‘‘Large language
models are zero-shot reasoners,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 35, 2022, pp. 22199–22213.

[67] M. Vidgof, S. Bachhofner, and J. Mendling, ‘‘Large language models
for business process management: Opportunities and challenges,’’ 2023,
arXiv:2304.04309.

[68] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, ‘‘Score-based generative modeling through stochastic
differential equations,’’ 2020, arXiv:2011.13456.

[69] C. Sun, J. Han, W. Deng, X. Wang, Z. Qin, and S. Gould, ‘‘3D-
GPT: Procedural 3D modeling with large language models,’’ 2023,
arXiv:2310.12945.

[70] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas, ‘‘Predictive business
process monitoring with LSTM neural networks,’’ in Proc. Int. Conf. Adv.
Inf. Syst. Eng., vol. 10253, E. Dubois and K. Pohl, Eds. Cham, Switzerland:
Springer, 2017, pp. 477–492.

[71] S. M. Weiss, N. Indurkhya, and T. Zhang, Fundamentals of Predictive Text
Mining (Texts in Computer Science), 2nd ed. Berlin, Germany: Springer,
2015.

[72] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. 31st Int. Conf. Int. Conf. Mach. Learn., vol. 32, 2014,
pp. 1188–1196.

[73] A. Grover and J. Leskovec, ‘‘Node2vec: Scalable feature learning
for networks,’’ in Proc. KDD. New York, NY, USA: Association for
Computing Machinery, Aug. 2016, pp. 855–864.

[74] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, ‘‘Don’t walk, skip: Online
learning of multi-scale network embeddings,’’ in Proc. IEEE/ACM Int.
Conf. Adv. Social Netw. Anal. Mining. New York, NY, USA: Association
for Computing Machinery, Jul. 2017, pp. 258–265.

[75] G. M. Tavares and S. Barbon, ‘‘Analysis of language inspired trace
representation for anomaly detection,’’ in ADBIS, TPDL and EDA
2020 Common Workshops and Doctoral Consortium. Berlin, Germany:
Springer, 2020, pp. 296–308.

[76] A. Chiorrini, C. Diamantini, L. Genga, M. Pioli, and D. Potena,
‘‘Embedding process structure in activities for process mapping and
comparison,’’ in New Trends in Database and Information Systems
(ADBIS), vol. 1652, S. Chiusano, T. Cerquitelli, R. Wrembel, K. Nørvåg,
B. Catania, G. Vargas-Solar, and E. Zumpano, Eds. Berlin, Germany:
Springer, 2022, pp. 119–129.

[77] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba, ‘‘A multi-
view deep learning approach for predictive business process monitoring,’’
IEEE Trans. Services Comput., vol. 15, no. 4, pp. 2382–2395, Jul. 2022.

[78] A. Guzzo, M. Joaristi, A. Rullo, and E. Serra, ‘‘A multi-perspective
approach for the analysis of complex business processes behavior,’’ Exp.
Syst. Appl., vol. 177, Sep. 2021, Art. no. 114934.

[79] J. Kim,M. Comuzzi, M. Dumas, F. M.Maggi, and I. Teinemaa, ‘‘Encoding
resource experience for predictive process monitoring,’’ Decis. Support
Syst., vol. 153, Feb. 2022, Art. no. 113669.

[80] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi, ‘‘Outcome-
oriented predictive process monitoring: Review and benchmark,’’ ACM
Trans. Knowl. Discovery Data (TKDD), vol. 13, no. 2, pp. 1–57,
2019.

24594 VOLUME 12, 2024

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://dx.doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
http://dx.doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17

P. Ceravolo et al.: Tuning Machine Learning to Address PM Requirements

[81] P. D. Koninck, S. V. Broucke, and J. D. Weerdt, ‘‘act2vec, trace2vec,
log2vec, and model2vec: Representation learning for business processes,’’
in Business Process Management (Lecture Notes in Computer Science),
vol. 11080, M. Weske, M. Montali, I. Weber, and J. vom Brocke, Eds.
Berlin, Germany: Springer, 2018, pp. 305–321.

[82] A. Senderovich, C. D. Francescomarino, C. Ghidini, K. Jorbina, and
F. M. Maggi, ‘‘Intra and inter-case features in predictive process monitor-
ing: A tale of two dimensions,’’ in Business Process Management (Lecture
Notes in Computer Science), vol. 10445, J. Carmona, G. Engels, and
A. Kumar, Eds. Berlin, Germany: Springer, 2017, pp. 306–323.

[83] M. de Leoni and W. M. P. van der Aalst, ‘‘Data-aware process mining:
Discovering decisions in processes using alignments,’’ in Proc. Symp.
Appl. Comput. (SAC), S. Y. Shin and J. C. Maldonado, Eds. 2013,
pp. 1454–1461.

[84] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst,
‘‘Decision mining revisited - discovering overlapping rules,’’ in Advanced
Information Systems Engineering, S. Nurcan, P. Soffer, M. Bajec, and
J. Eder, Eds. Cham, Switzerland: Springer, 2016, pp. 377–392.

[85] A. J. M. M. Weijters, W. M. P. van Der Aalst, and A. K. A. De Medeiros,
‘‘Process mining with the heuristics miner-algorithm,’’ Technische Univ.
Eindhoven, The Netherlands, Working Papers, 2006, vol. 166. [Online].
Available: https://pure.tue.nl/ws/portalfiles/portal/2388011/

[86] (2020). Process Mining in Healthcare Tutorial. [Online]. Available:
https://gitlab.com/healthcare2/process-mining-tutorial

[87] S. B. Junior, P. Ceravolo, E. Damiani, N. J. Omori, and G. M. Tavares,
‘‘Anomaly detection on event logs with a scarcity of labels,’’ in Proc. 2nd
Int. Conf. Process Mining (ICPM), 2020, pp. 161–168.

[88] D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst, ‘‘Cortado:
A dedicated process mining tool for interactive process discovery,’’
SoftwareX, vol. 22, May 2023, Art. no. 101373. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352711023000699

[89] J. Theis and H. Darabi, ‘‘Adversarial system variant approximation
to quantify process model generalization,’’ IEEE Access, vol. 8,
pp. 194410–194427, 2020.

[90] F. Taymouri, M. L. Rosa, S. Erfani, Z. D. Bozorgi, and I. Verenich,
‘‘Predictive business process monitoring via generative adversarial nets:
The case of next event prediction,’’ in Proc. Int. Conf. Bus. Process Manag.
Cham, Switzerland: Springer, 2020, pp. 237–256.

[91] C. van Dun, L. Moder, W. Kratsch, and M. Röglinger, ‘‘ProcessGAN:
Supporting the creation of business process improvement ideas through
generative machine learning,’’ Decis. Support Syst., vol. 165, Feb. 2023,
Art. no. 113880.

[92] W. C. Cheung, D. Simchi-Levi, and R. Zhu, ‘‘Learning to optimize under
non-stationarity,’’ in Proc. 22nd Int. Conf. Artif. Intell. Statist., 2019,
pp. 1079–1087.

[93] J. Carmona and R. Gavalda, ‘‘Online techniques for dealing with concept
drift in process mining,’’ in Proc. Int. Symp. Intell. Data Anal. Berlin,
Germany: Springer, 2012, pp. 90–102.

[94] P. Domingos and G. Hulten, ‘‘Mining high-speed data streams,’’ in Proc.
6th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2000,
pp. 71–80.

[95] H. Chemingui, I. Gam, R. Mazo, C. Salinesi, and H. B. Ghezala, ‘‘Product
line configuration meets process mining,’’ Proc. Comput. Sci., vol. 164,
pp. 199–210, Jan. 2019.

[96] R. L. Hu, C. Xiong, and R. Socher. (2019). Correction Networks: Meta-
Learning for Zero-Shot Learning. [Online]. Available: https://openreview.
net/forum?id=r1xurn0cKQ

[97] G. M. Tavares and S. B. Junior, ‘‘Process mining encoding via meta-
learning for an enhanced anomaly detection,’’ in Proc. Eur. Conf. Adv.
Databases Inf. Syst. Cham, Switzerland: Springer, 2021, pp. 157–168.

PAOLO CERAVOLO (Member, IEEE) is currently
an Associate Professor with the Department of
Computer Science, University of Milan, Italy.
His research interests include data representa-
tion and integration, business process monitoring,
and empirical software engineering. On these
topics, he has published several scientific arti-
cles. As a data scientist, he was involved in
several international research projects and inno-
vative startups. For more information please visit:

http://www.di.unimi.it/ceravolo.

SYLVIO BARBON JUNIOR is an Associate
Professor with the Department of Engineering and
Architecture, University of Trieste (UNITS), Italy.
He is currently a Co-Director of the Machine
Learning Lab. Prior to this, from 2012 to 2021,
he led a research group dedicated to the study
of machine learning with the Computer Science
Department, State University of Londrina (UEL),
Brazil. His research interests include encompass
computer vision, pattern recognition, and machine

learning, with a current emphasis on meta-learning, stream mining, and
process mining.

ERNESTO DAMIANI (Senior Member, IEEE)
received the Honorary Doctorate degree for ‘‘his
contribution to big data teaching and research’’
from the Institute National des Sciences Appliques
de Lyon, France. He is currently a Full Professor
with the University of Milan, Milan, Italy, and
the Founding Director of the Center for Cyber-
Physical Systems, Khalifa University, United Arab
Emirates. His research interests include cybersecu-
rity, big data, and cloud/edge processing.

WIL VAN DER AALST (Fellow, IEEE) is cur-
rently an Alexander-von-Humboldt Professor with
RWTH Aachen University, leading the Process
and Data Science (PADS) Group. He is also the
Chief Scientist at Celonis, and part-time affiliated
with the Fraunhofer FIT. He is the Deputy CEO
of the Internet of Production (IoP) Cluster of
Excellence and the Co-Director of the RWTH
Center for Artificial Intelligence. He is an IFIP
Fellow, ACM Fellow, and an elected member of

the Royal Netherlands Academy of Arts and Sciences, the Royal Holland
Society of Sciences and Humanities, the Academy of Europe, the North
Rhine-Westphalian Academy of Sciences, Humanities and the Arts, and the
German Academy of Science and Engineering.

Open Access funding provided by ‘Università degli Studi di Trieste’ within the CRUI CARE Agreement

VOLUME 12, 2024 24595

