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ABSTRACT Hypergraph neural networks have gained substantial popularity in capturing complex
correlations between data items in multimodal datasets. In this study, we propose a novel approach called
the self-supervised hypergraph learning (SHL) framework that focuses on extracting hypergraph features
to improve multimodal representation. Our method utilizes a dual embedding strategy and leverages
SHL to improve the accuracy and robustness of the model. To achieve this, we employ a hypergraph
learning framework to extract global context effectively by capturing rich inter-modal dependencies.
Additionally, we introduce a novel self-supervised learning (SSL) component that utilizes the interaction
graph data, thereby strengthening the robustness of the model. By jointly optimizing hypergraph feature
extraction and SSL, SHL significantly improves the performance of multimodal representation tasks.
To validate the effectiveness of our approach, we construct two comprehensive multimodal micro-video
recommendation datasets using publicly available data (TikTok and MovieLens-10M). Prior to dataset
creation, we meticulously handle invalid entries and outliers and complete missing mode information
using external auxiliary sources, such as YouTube. These datasets are made publicly available to the
research community for evaluation purposes. Experimental results on the above recommendation datasets
demonstrate that the proposed SHL approach outperforms state-of-the-art baselines, highlighting its superior
performance in multimodal representation tasks.

INDEX TERMS Multimodal, micro-video, self-supervised learning, hypergraph neural networks.

I. INTRODUCTION
Recommendation services have emerged as a fundamental
element in various business domains, including, but not
limited to, popular e-commerce platforms, such as Amazon
and Taobao; social media platforms, such as Facebook and
WeChat; and short video-sharing platforms, such as TikTok
and Kwai.

The aforementioned platforms are heterogeneous in nature,
that is, they are populated by users as well as a broad range
of entities (also known as items) such as video clips, text
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snippets, audio tracks, and metadata describing available
content or auxiliary information, such as ratings or likes.
Therefore, users are allowed to interact in several ways, and
it is crucial to accurately predict whether a target user likes or
dislikes a specific entity.

Most previous studies use historical interactions between
users and entities to generate predictions, and they focus
on two key points: presentation learning and interaction
modeling [1], [2]. In existing models, the quality of the
representation directly affects the accuracy of the model’s
predictions.

An increasing number of researchers have applied graph
neural networks (GNN) [3] to more effectively describe
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associations between users and items, and some studies have
experimentally demonstrated the high predictive accuracy of
GNNs [4], [5].

Moreover, inspired by the concept of GNN information
propagation, researchers have adopted a similar approach to
enhance the feature representation of users and entities.

For example, neural graph collaborative filtering (NGCF)
[6] and light graph convolutional network (LightGCN)
[7] convert collaborative filtering (CF) signals into feature
representations using this propagation concept and achieve
good results.

Standard GNN approaches to making recommendations
have two main limitations.

First, existing approaches mainly consider direct interac-
tions between a user and an entity; user-item interactions can
be visually represented as a bipartite graph (see Figure 1)
in which the first group of nodes corresponds to users and
the second group of nodes corresponds to entities (In our
example, entities coincide with movies.). In graph theory,
we call these direct interactions first-order connectivity.
However, interactions between users and entities can be

more complex and rich than direct interactions. A proper
representation of these interactions can provide valuable
insights into the association between users and entities.
To gain a better understanding, let us consider Figure 1
again, the upper part: Here, we disclose a complex (but
frequent) chain of interactions in which a user u1 liked a
movie m1 viewed by a user u2 who positively evaluated a
movie m2 and so on.

We colloquially call the highway message the chain of
interactions above and observe that the existence of such a
chain suggests that u1 is likely to appreciate the movie m3.
Bipartite graphs are effective in modeling direct interactions,
but they fail to capture highway messages in which nodes
associated with users are arbitrarily connected with nodes
corresponding to entities. Hereinafter, we call higher-order
connectivity the interactions between users and entities that
resemble the highway message depicted in Figure 1. Equiv-
alently, first-order connectivity can be classified as a type of
local feature. In contrast, higher-order connectivity relations
can combine nodes that potentially reside in far regions of the
user-entity graph. Thus, higher-order connectivity is a type of
global feature.

Second, entities are often associated with a range of
modalities, such as texts, images, audio, and videos. Thus,
graph mapping interactions between users and entities are
multimodal. Existing approaches [6], instead, consider only
a single modality feature.

Recent studies [8], [9], [10], [11] have shown that feature
modeling ofmultimodal information can capture fine-grained
preferences between users and entities. However, the tradi-
tional graph structure (where only one edge exists between
two nodes) significantly limits the representation of features
between users and entities.

In addition, studies have [12], [13] shown that themodeling
of complex relationships in hypergraphs is superior to that

FIGURE 1. Hyperedge-based message highway. Herein, we describe a
complex chain of interactions. The solid line represents the direct
interaction between the user and the item, and the dashed line
represents the hyperedge used for high-speed information transmission.

of traditional GNN networks. Hypergraphs [14] provide
a flexible and natural modeling tool for modeling such
complex relationships. In many real networks, such complex
relationships are common, thus stimulating the problem of
using hypergraphs for learning. Concurrently, studies using
self-supervised learning (SSL) [15] have shown that it can
effectively improve the robustness of models.

However, in the aforementioned studies, their focus is
on examining the relationships between adjacent nodes in
the graph and uncovering the profound connections between
nodes. Nodes that are farther apart can rely only on multiple
aggregations of GNNs to achieve this. However, owing to
excessive smoothing and the presence of noise, a GNN
with too many layers will affect the overall performance
of the model. This study aims to use hypergraph-based
learning structures to capture global feature information and
enhance local feature information based on traditional GNNs.
Additionally, it captures user preferences for different modes
on a multimodal interaction graph. The result is a new
architecture called multimodal self-supervised hypergraph
learning (SHL).

The SHL architecture replaces edges with hyperedges.
Thus, we propose to map the user-entity interaction graph as
a hypergraph. In general, a hyperedge connects an arbitrary
number of nodes associated with users with an arbitrary
number of nodes representing entities (see Figure 2 for a
practical illustration). Hyperedges are an easy-to-understand
tool for describing higher-order connectivity; thus, they
extend the traditional methods that consider only first-order
connectivity. However, the methods developed to train GNNs
can be easily extended to manage hypergraphs, as shown in
the subsequent sections.

In summary, the key contributions of this study are as
follows.
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• We propose a new method, SHL, that uses dynamic
hypergraph structure information to capture the feature
representation on the global scale between differ-
ent modalities. Our SHL architecture incorporates an
attention-based mechanism to represent local features.
Global- and local-level features are then properly
merged to obtain a more accurate representation of any
entity.

• We propose an efficient technique to learn the structure
of hypergraphs. In particular, we assume that the
incidence matrix of a hypergraph (that is, the matrix
containing, for each hyperedge, nodes such as hyperedge
connects) can be factorized as the product of two low-
rank matrices. Thus, we significantly reduce the number
of parameters required to learn and avoid overfitting.

• We construct two complete multimodal micro-video
datasets that can be reused by the research community
for evaluation purposes. We started with two public
datasets, TikTok and MovieLens-10M [16], and elim-
inated invalid data and outliers; we also completed
missing mode information. We compared our architec-
ture with that of five state-of-the-art competitors and
conducted experiments.

II. RELATED WORK
A. COLLABORATIVE FILTERING-BASED METHOD
Previous studies on personalized recommendations have used
the CF technique. Recently, studies have been conducted by
combining neural networks and CF-based methods. In detail,
matrix factorization (MF) methods [17] compute the inner
product in the latent space of the user item to predict ratings,
but this choice cannot capture complex interactions. To this
end, He et al. [18] introduced the neural collaborative filtering
(NCF) method, which replaces the inner product with
nonlinear functions obtained using a multilayer perceptron
to model interactions between the user and item features.
Chen et al. [19] proposed an attention mechanism called
attentive collaborative filtering (ACF) to properly capture
implicit feedback in multimedia recommendation.

B. GRAPH NEURAL NETWORK-BASED METHOD
Methods such as NCF or ACF learn the embeddings of
the user and item from descriptive functions such as IDs
or attributes. In particular, information about the interaction
between the user and item is only relevant to defining the loss
function used to train the model. However, GNNs can fully
use user-item interaction information; thus, they have been
extensively exploited in the design of modern recommender
systems. A major breakthrough is due to the NGCF approach
described by Wang et al. [6], which refines the embedding of
a user (respectively, an item) by aggregating the embeddings
of the interacted users/items. This mechanism resembles
the well-known message-passing procedure used in graph
convolutional neural networks. LightGCN [7] is built on
NGCF, but it significantly simplifies the architecture of

FIGURE 2. A hypergraph connecting users and items on a Social Web
platform. Here, e1, e2, and e3 are the hyperedges.

NGCF by incorporating only a neighborhood aggregation
module.

C. GRAPH CONVOLUTION NETWORK-BASED METHOD
In the field ofmultimedia recommender systems,Wei et al. [9]
introduced the multimodal graph convolutional network
(MMGCN) system. The MMGCN system constructs a
bipartite user-item interaction graph for each modality. Then,
it combines signals from the relevant contents (such as
frames) of interactive objects for each modality (such as
videos). The output of such an aggregation step is used to
learn a better user representation.

D. GRAPH ATTENTION NETWORK-BASED METHOD
In GNN models, noise information can increase because
of the continuous iteration of message transmission and
aggregation [7]. In contrast, graph attention network (GAT)
architectures can better control the spread of noise infor-
mation in the message transmission process [10]. However,
owing to the limitations of embedding vector smoothness in
GAT architectures, it is difficult to spread node information
over long distances. This means that two users with
similar interests cannot correlate with each other when they
correspond to nodes located in distant regions of the user-item
interaction graph. Hypergraphs are elegant tools used to solve
this problem [20]. As shown in Figure 2, a hyperedge can
link any number of vertices in a hypergraph [21]; thus, it can
connect nodes in distant regions of the user-item interaction
graph.

E. CONTRASTIVE LEARNING-BASED METHOD
Moreover, numerous studies [22], [23], [24] have shown that
SSL can significantly enhance the robustness of the model.
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For example, self-supervised graph learning (SGL) [15]
leverages edge and node dropout, along with the utilization
of random walk techniques. Another example is multimodal
graph contrastive learning (MMGCL) [25], where SSL tech-
niques are integrated into multimodal learning, accompanied
by a proposed negative sampling strategy that facilitates the
augmentation of the targeted graph data.

In this study, we aim to advance the current state-of-
the-art by introducing a novel approach that combines
GNN architectures with hypergraphs in the context of
multimodal data. Our primary objective is to enhance the
robustness of the model by incorporating SSL methods. This
unique combination allows us to harness the inherent noise
reduction capabilities of GNNs while enabling the flexible
aggregation of related nodes in arbitrary configurations.
Using these synergistic techniques, we strive to achieve
superior performance and address the challenges posed by
complex and diverse data environments.

III. PROPOSED METHOD
In this section, we describe the overall framework of the
multimodal SHL model.

As illustrated in Figure 3, the proposed model comprises
five components: a multimodal embedding layer, a local
encoding layer, a global encoding layer, amultimodal feature
fusion layer, and a prediction layer. First, through the
multimodal embedding layer, we convert a video into a visual
vector, an audio vector, and a text vector as input for the
model. Next, different modes of data flow through the local
and global feature coding layers concurrently and finally
converge at the fusion layer. The data in the same mode share
the weight. Different colors in the diagram represent different
modes. Finally, multimodal feature fusion and prediction
of the interaction between each user and each entity are
performed through the multimodal feature fusion layer and
the prediction layer. In the following sections, we provide a
detailed explanation of each component of the model.

A. PROBLEM STATEMENT
Let U , I , andM denote a set of users, entities, and modalities
(with sizes |U |, |I |, and |M |, respectively). The goal of SHL is
to generate new users Unew and entities Ipos so that a user has
a high degree of matching with the appropriate entity while
ensuring that the new user Unew and entity Ineg have a low
degree of matching when they do not match. Here, pos and
neg represent positive samples that users like and negative
samples that users do not like, respectively.

B. MULTIMODAL EMBEDDING LAYER
In line with previous studies [18], [19], we assume that
each user/entity is endowed with an ID; thus, we learn
an embedding eu (respectively, ei) for each user u ∈ U
(respectively, entity i ∈ I ) from such an ID. For each
modality m ∈ M and each user u ∈ U (respectively, entity
i ∈ I ), we learn an embedding em,u (respectively, em,u). For
example, in the case of text, we apply the popular Doc2Vec

algorithm [26]. We denote the number of features used to
encode raw visual, acoustic, and text data as Video, Audio,
and Text , respectively.

For each modality, we manage the graph recording
interactions between users and entities (see Figure 3).

C. LOCAL ENCODING LAYER
Inspired by previous studies [27], [28], the GAT network
extracts local graph features. To study the embedding of a
node h, the local encoding layer combines three types of
embeddings: the ID embedding of h, the embedding of h,
and the embeddings of the neighbors of h. We then illustrate
how the gate/attention blocks manage the embeddings of the
neighbors of h.

For a fixed modality m ∈ M , we apply the following
equation to learn the embedding of the neighbors Nh of h as
follows:

em,Nh = R

∑
t∈Nh

fa(h, t)fg(h, t)WN
mem,t

 , (1)

where (and hereinafter) R denotes the LeakyReLU function.
Functions fa(h, t) and fg(h, t) are the gating and attention
components, respectively. Finally, WN

m denotes the trainable
parameter matrix, and em,t denotes the embedding of node t
in modality m.
We implement the gating mechanism through an inner

product, as follows:

fg(h, t) = δ

(
e⊤m,hem,t

√
dt

)
, (2)

where δ(·) denotes the sigmoid function, and dt denotes the
out-degree of the node t . We recall that the gating mechanism
controls the information flow in the propagation process.

After obtaining the gating weights, we compute the
attention weights as follows [29]:

fa(h, t) =
(
Wm,hem,h

)⊤ tanh(Wm,tem,t ), (3)

where tanh function is utilized as a nonlinear activation
function and m denotes different modal spaces. The matri-
ces Wm, h and Wm, t are the learnable transformation
matrices.

To determine the attention weights that represent the
affinity between two nodes, we use the inner product and then
normalize the attention weights across all neighbors using
the softmax function [30]. This allows the final attention
scores to distinguish the varying importance scores of the
neighbors:

fa(h, t) =
expfa(h,t)∑

t ′∈Nh exp
fa(h,t ′)

. (4)

Finally, we modify the feature representation of h using the
embedding em,Nh . In particular, the ID embedding eh of h is
used as the anchor between modalities and consequently acts
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FIGURE 3. Architecture of our SHL model containing multimodal embedding layer, local encoding layer, global encoding
layer, multimodal feature fusion layer and prediction layer.

as the propagation highway. The formula is as follows:

ẽm,h = R(Wh
mem,h) + eh, (5)

em,local = R(Wl
mem,Nh ) + ẽm,h, (6)

where Wh
m and Wl

m denote the trainable parameter matrices,
respectively, and em,local denotes the local embedding in the
modality m.

D. GLOBAL ENCODING LAYER
Owing to the limitations of the local feature representation,
it is challenging to transfer information between distant
nodes. Therefore, we introduce the concept of global features
to relate nodes in distant regions of themultimodal user-entity
interaction graph and use hypergraph structure learning
(HSL) to build the global feature representation of both users
and entities.

1) HYPERGRAPH MESSAGE PASSING
According to Jiang et al. [20], messages passing across
the nodes of a hypergraph are relevant to capture deeper
higher-order relationships and thus enable us to construct
global features.

A hypergraph comprises both nodes and hyperedges, and
each hyperedge can link any number of nodes [31]. Each
hyperedge establishes a direct information channel between
the user and item. More formally, we define a hypergraph
GH in which N is the set of nodes and H is the set
of hyperedges. We also assume that the size |H | of the
available hyperedges is a fixed hyperparameter in our model.
We introduce two matrices, that is, H ∈ R|N |×|H | (which
is a trainable hypergraph dependency matrix) and E ∈

R|N |×d (which is the matrix collecting node embeddings)

under the assumption that each embedding has size d . Thus,
we compute

em,global = R(HH⊤E). (7)

2) HYPERGRAPH STRUCTURE LEARNING
Because of the addition of the hypergraph dependency
matrixH, the entire model depends on numerous parameters.
Consequently, the space required to store all parameters
increases significantly, as does the complexity of the training
phase. To maintain the computational complexity of our
approachwithout sacrificing the expressiveness of ourmodel,
we decompose H as follows:

H = E·W, (8)

where E ∈ R|N |×d and W ∈ Rd×|H |. Thus, we can
reduce the number of parameters to d×|H |, resulting in a
significant decrease in the complexity of the training phase
and allowing the model to run smoothly without sacrificing
its expressiveness.

3) HYPERGRAPH STRUCTURE MAPPING
To complete our SHL system, we stack several hypergraph
neural layers (HNLs) to increase the ability of the hypergraph
to capture global features. The specific formula is as follows:

em,global = R(Hfhnl(H⊤E)), (9)

fhnl(X ) = R(WhnlX ) + X ,X = H⊤E, (10)

where fhnl() represents the hypergraph neural layers, matrices
H and E are defined before, andWhnl represents the trainable
parameter matrix.
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E. MULTIMODAL FEATURE FUSION LAYER
Based on previous studies [32], [33], [34], once we acquire
local and global feature representations of a modality m,
the next step involves fusing them to generate a composite
representation denoted by em. This fusion process is achieved
by applying the following equation:

em = R
(
em,local + em,global

)
. (11)

The last step involves fusing each representation em to
obtain a representation e. We adopted two strategies: average
feature fusion and gate feature fusion. We detail these two
strategies below.

1) AVERAGE FEATURE FUSION
In the average feature fusion strategy, we compute the mean
of representations em for each modality m ∈ M :

e =
1

|M |

∑
m∈M

em. (12)

2) GATE FEATURE FUSION
In the gate feature fusion strategy, we first use the Concat
function to connect the features of the various modalities:

e∗ = Concat{e1|| · · · ||em| ∀ m ∈ M}. (13)

Next, we calculate and obtain the weight information:

W′
m =

R(eTm) ⊙ R(W∗
me

∗)
√
d

,

Wm =
expW

′
m∑

m∈M expW′
m
,

(14)

where ⊙ represents the torch.mul function.
Finally, we use the weight information to obtain the final

fusion feature data:

e =

∑
m∈M

Wm ⊙ em. (15)

F. CONTRASTIVE LEARNING
After obtaining the local and global features, we use the
global feature based on a hypergraph as the supervisory signal
to reduce the influence of noise on the local feature. Formally,
we take InformationNoise Contrastive Estimation (InfoNCE)
[35] and label it as Lssl :

pos = exp
(∑

i(globali · locali)
0.1

)
,

neg =

∑
i

exp

(
locali · globalTi

0.1

)
,

Lssl =
1
N

∑
i

(
− log

(
posi

negi + ϵ
+ ϵ

))
, (16)

where i represents the index of the nodes, ϵ represents a
hyperparameter, andN represents the dimension of the nodes.

G. PREDICTION AND OPTIMIZATION
To predict the match scores yui between the user represen-
tation eu and the entity representation ei, we compute their
inner product as follows:

yui = e⊤u ei. (17)

Following Rendle et al. [36], we employ Bayesian
Personalized Ranking (BPR), which assumes that users favor
previously used items over unused ones to improve the model
parameters. The loss function L to minimize is

L =

∑
(u,i,j)∈O

− ln
(
δ(yui − yuj)

)
+ Lssl + λ∥θ∥

2
2, (18)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−
}, R+ represents

the positive samples in the dataset and R− represents the
negative samples that do not exist in the dataset. Here, λ

represents the regularization weight and θ represents the
regularization parameters.

IV. EXPERIMENTS
To demonstrate the superiority of SHL and elucidate the
reasons for its effectiveness, we conducted comprehensive
experiments and addressed the following research questions.

• RQ1: How does SHL compare to state-of-the-art models
in terms of top-k recommendation performance?

• RQ2:What benefits can the incorporation of hypergraph
learning provide to the model?

• RQ3:What impact do various configurations have on the
effectiveness of the proposed SHL?

A. EXPERIMENTAL SETTINGS
We preprocessed two publicly available micro-video datasets
by performing data cleaning. As is customary, we randomly
partitioned each dataset into training, validation, and test
sets. To compare the performance of our SHL method with
the baselines, we reimplemented several popular methods as
baseline models and conducted experiments.

1) DATASETS PREPARATION
To evaluate the performance of SHL, we employed two pub-
licly available datasets: TikTok andMovieLens. In particular,
Table 1 presents some statistics on input datasets.

• TikTok1: This dataset was first made available in a
TikTok data mining competition. The TikTok dataset
comprises brief movies ranging from 3 to 15 seconds,
coupled with a text description made public by the video
creator. We cleaned the data before using it; in detail,
we removed data items with missing modalities and
outliers.

• MovieLens2: This dataset contains rating data for
multiple movies provided by multiple users. Movie
metadata and user attribute information are available.

1http://ai-lab-challenge.bytedance.com/tce/vc/
2https://grouplens.org/datasets/movielens/
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TABLE 1. Dataset Introduction: Statistics for the TikTok and MovieLens datasets. The variables Video, Audio, and Text represent the number of features
used for the raw visual, acoustic, and textual data, respectively.

TABLE 2. Performance evaluation of the baselines and SHL.

In this study, we used the MovieLens-10M dataset. For
multimodal feature extraction, we first crawled the rele-
vant video data from YouTube. After that, we extracted
visual characteristics from video keyframes using the
ResNet50 network [37]. The trained VGGish [38]
network was applied to learn audio features. Finally,
the doc2vec algorithm [26] is employed to learn text
features, where the text contains the title and content.

2) EVALUATION METRICS
We randomly divided each dataset into three parts: training
set (70% of input data), validation set (20% of input data),
and test set (10% of input data). We used three metrics widely
adopted in the recommender system literature: Precision@K,
Recall@K, and Normalized Discounted Cumulative Gain
(NDCG)@K with K = 10 [6], [39]. In the training process,
we selected the learning rate from {1e-3, 1e-4, 1e-5}, adopted
the warm-up learning strategy, trained for 1000 rounds, and
finally reported the average performance obtained by all users
in the test set.

3) BASELINES
We compared our approach with the following five baselines.

• ACF [19]. The ACF system leverages the attention
mechanism to capture implicit interactions between
items and users, thereby generating recommendations
for multimedia content.

• GraphSAGE [40]. GraphSAGE computes node embed-
dings using node feature information on unseen nodes.
It learns embeddings by sampling and aggregating the
feature information of the local neighbors of a node
using a feature function.

• NGCF [6]. The NGCF model implements a mechanism
inspired by convolution in GNNs to explicitly model
higher-order connectivity patterns.

• MMGCN [9]. The MMGCN builds separate bipartite
graphs for each modality, connecting users to items in
each modality, and then aggregates the representation

information of these modalities to obtain the final user
and item representation features for prediction.

• Multigraph attention and gating [10]. Multigraph atten-
tion and gating (MGAT) is an improvement of MMGCN
and introduces attention and gating mechanisms to
aggregate neighbor nodes to control the propagation of
node information.

• MMGCL [25]. The MMGCL is an extension of
SSL-based recommendation models that extend SGL.
This method utilizes modal masking and edge loss
techniques to achieve graph enhancement. However,
the paper [25] presents some ambiguities, so the
experimental evaluation of the model is based on a
comprehensive comparison between the paper and our
results.

B. PERFORMANCE COMPARISON (RQ1)
Table 2 presents the findings of the comparative analysis. The
following conclusions can be drawn from this table.

• In every assessment measure, SHL surpasses all baseline
models on the TikTok and MovieLens10K datasets.
In particular, we report an improvement of up to
5.6% (respectively, 5.4%) between SHL and the second
best-performing baseline in the TikTok (respectively,
MovieLens) dataset. We attribute these improvements to
the combination of features obtained by the local and
global embedding layers. Thus, our model can capture
the implicit relationships between nodes at a deeper
level.

• The GNN-based model (that is, ACF) performs better
than the traditional CF-based model. These advances are
due to the graph convolution layer, which can effectively
capture the relationships between nodes and effectively
incorporate the features of the neighbors of a node to
improve the representation learning stage.

• Our HSL makes up for the defects of the GNN-based
and CF models. The HSL is suitable for determining the
deep-level association information between nodes.
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TABLE 3. Ablation study on key components of SHL.

FIGURE 4. Hyperparameter research of the SHL.

C. ABLATION STUDY OF SHL (RQ2)
We investigate the impact of global hypergraph learning and
hypergraph mapping on the performance of the proposed
SHL model. Table 3 summarizes the evaluation results.

1) EFFECT OF GLOBAL HYPERGRAPH LEARNING
To investigate the overall effect of global hypergraph learning
on the model, we conducted an experiment and evaluated its
performance. We disabled this component from the model,
termed -Hyper. Experiments show that once the hypergraph
learning component was removed. The performance of
the model decreased significantly. This implies that global
collaboration can effectively capture the implicit features
between nodes and refine the node feature representation
through global message passing.

2) EFFECT OF HYPERGRAPH STRUCTURE MAPPING
We disabled the hypergraph structure mapping module in
the model, termed -HNL. We found that the overall effect
of the model shows a significant downward trend if we do
not use deep hypergraph structure mapping. This shows that
hypergraph structure mapping can help hypergraph learning
capture more detailed feature representations.

3) EFFECT OF SELF-SUPERVISED LEARNING
After the SSL was removed, significant performance degra-
dation occurred in all cases, confirming the positive effects of
the enhanced global-to-local knowledge transfer.

D. HYPERPARAMETER COMPARISON (RQ3)
Here, we examine how some key hyperparameters affect the
proposed SHL model. The results are shown in Figure 4.
As can be observed, when there are 64 hyperedges and
128 hidden dimensions, the proposed model produces the
best results. Hyperedges can establish a high-speed channel
for information transmission between disconnected nodes in
the proposed model. Increasing the number of hyperedges

FIGURE 5. Comparison of the mean average distance (MAD) of the model
with different hidden dimensions.

TABLE 4. Running time of each epoch.

and hidden dimensions yields more complex semantic
information. Concurrently, the performance drop may lie
in overfitting because of an increase in the number of
hyperedges and hidden dimensions.

E. OVER-SMOOTHING EFFECT ANALYSIS
Over-smoothing is a critical problem that distinguishes the
features of a complex of different nodes and affects the model
performance. We used the mean average distance (MAD)
as an evaluation index and conducted experiments with it.
The results are shown in Figure 5. The results show that the
proposed SHLmodel achieves the best results under different
hidden dimensions.

F. RUNNING TIME ANALYSIS
Wemeasured the time (in seconds) required to complete each
epoch as a function of the number |H | of hyperedges. Our
tests were conducted on a Linux (Ubuntu 22.04) machine
equipped with two Intel(R) Xeon(R) Gold 6254 CPUs @
3.10GHz, four Nvidia GeForce RTX 3090 GPUs, and 256GB
RAM. The results obtained are shown in Table 4. We observe
that an increase in |H | slightly affects the increase in running
time, so our system is competitive even on large datasets.

V. CONCLUSION
This study introduces amultimodal recommendationmethod,
SHL, based on hypergraph, which extends the existing
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GNN technique. SHL introduces a global-based hypergraph
dependency learning method that utilizes global high-order
hidden features to compensate for the shortcomings of
traditional GNNs in feature extraction. In particular, when
learning user preferences, we use traditional GNNs to learn
local features. Concurrently, we use the dynamic hypergraph
learning method to obtain global features to enhance local
feature information and compare the learned global features
with local features to enhance the robustness of the model.
Finally, we verify the validity of the model using two
experiments with real datasets. However, some shortcomings
are still present in this study, such as data noise. In subsequent
works, we will focus on exploring and studying this problem
further.
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