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ABSTRACT In the realm of supply chain management, the impact of Artificial Intelligence (AI) tools
on optimizing commodity distribution is undeniable. This study presents the transformative potential of
Al and computer vision in the field of commodity supply chain management. The capability of Al to
reduce yield loss and enhance supply chain efficiency is a growing trend and vision-based commodity
defect monitoring can be useful in this regard. We explored the employment of real-time computer vision
techniques in supply chain flaw management, which include Detection Transformer (DETR), a type of
Vision Transformer (ViT), and compared its performance with the You Only Look Once (YOLO) and other
Al models. Computational feasibility is assessed, encompassing various computer vision and Al models,
by using a dataset comprising images of commodity items used to substantiate our findings. The obtained
results have shown the improved performance of DETR with a detection and classification accuracy of 96%,
directly correlating with improved supply chain management. On the other hand, the higher computational
burden imposed by DETR makes it less feasible for the higher constrained embedded applications. The
practicality of Al algorithms for real-time defect identification reveals promising prospects for integration
into supply chain systems. This research underscores AI’s potential to revolutionize commodity supply chain
management, extending its benefits to various commodity distribution networks.

INDEX TERMS Supply chain management, computer vision, artificial intelligence, smart agriculture.

I. INTRODUCTION

From the very beginning of the human race, food items
supply, and management have remained very crucial for
survival. The availability of defective food items may cause
deterioration on a large scale. To handle such issues regarding
the supply chain management of food items, the natural
production of crops has to be sustained under the required
constraints. Crop diseases are one of the natural causes of
defective food items, which has long posed a significant threat
to the sustainability of production and supply of these items.
Such defects, be they in the form of contaminated crops or
low-quality produce, can have far-reaching consequences on
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a global scale, affecting not only the economic aspects but
also the overall health and well-being of communities. A key
catalyst for these issues within the commodity supply chain
is the integrity of natural crop production. Maintaining crop
health and quality following stringent constraints has always
been a complex task. Crop diseases harm our ecosystem
because they cause damage to crops, soil, and other things [1].
Farmers are having a difficult time combating the many
diseases that are affecting their crops, which has led to a
significant drop in both production and the product rating
of the yield. It is estimated that 85-95 percent of plant
diseases manifest themselves specifically on the plant leaves.
Nematodes, bacteria, fungi, and viruses are the four main
agents responsible for diseases. Plant disease detection is
one of the crucial tasks, which a farmer has to carry out for
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producing agricultural products to satisfy the needs of his
family and society. The disease identification in plants is a
tedious task, that takes a lot of time, requires manpower, and
is still prone to human error [2]. One of the main causes of a
slower rate of plant development is disease attack. According
to the findings of a comprehensive study on agriculture, the
quantity and quality of agricultural goods may suffer as a
result of the many factors that contribute to plant diseases [3].
Wheat crop is one of the most significant crops used for food
purposes throughout the entire world.

In recent years, the agriculture sector has been witnessing
a growing emphasis on technological advancements to
optimize yields and ensure sustainable practices [4], [5],
[6]. Smart agriculture, fuelled by breakthroughs in Artificial
Intelligence (AI), holds immense potential in effectively
addressing the challenges faced by Small and Medium Enter-
prises (SMEs) in the agricultural sector [7]. The integration
of Al techniques, specifically in disease detection, can revo-
lutionize the way farmers operate, enabling them to mitigate
the risks of crop diseases and improve overall productiv-
ity. This manuscript explores the application of Al-based
disease detection systems within the context of small and
medium enterprises in the agricultural sector of many coun-
tries, intending to enhance agricultural practices, increase
yields, and promote efficient resource management [8],
[91, [10].

In this work, we aim to deploy modern computer
vision techniques to facilitate local farmers to combat the
issues concerning plant disease identification and detection
process. Therefore, the experimental procedure is adopted
for developing efficient computer vision models, which
target the timely prevention of crop diseases using modern
computer vision techniques. In this work, we propose a
Vision Transformer (ViT) for wheat crop disease detection
system, which is called the Detection Transformer (DETR)
[11], [12], [13], [14]. The baseline framework has utilized
three distinct Machine Learning (ML) and Deep Learning
(DL) models, which include Convolutional Neural Network
(CNN) [15], Random Forest (RF) [16], and You Only Look
Once (YOLO) version 5 [17] algorithms for evaluating our
proposed DETR model. Similarly, we also developed a wheat
plant disease dataset, in our effort to facilitate and encourage
further research to deploy smart computational tools in food
and agriculture.

The proposed work has a great potential of employing
modern hardware accelerators, where on-field cameras can
be utilized in farms, greenhouses, or fields to continuously
monitor plant health and detect diseases in real-time.
Similarly, IoT-based sensor networks can deploy it for smart
precision agriculture systems that can monitor, identify,
optimize, manage, and continuously treat wheat crop diseases
over small and large areas quickly.

The food industry heavily relies upon the products made of
wheat, therefore it attained utmost importance in industrial
and household food products. The development of an
Al-based method to detect and identify diseases before
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the production stage will enhance quality management and
enable a smooth supply of quality end products. This work
is proposed by keeping in view the significance of Al and
computer vision in commodity supply chain management
in developing countries. We aim at the deployment of
cutting-edge computer vision methods to reduce disruption in
the supply chain which is mostly due to underproduction or
low yield, defects, and bad quality. In this era, the strength of
Al is trendy in the recognition of factors to yield loss, which
can significantly improve the production cycle and boost the
efficiency of the supply chain. Therefore, we present a case
study based on a food commodity, as a baseline to evaluate
the performances of the proposed Al-based computer vision
models.

II. LITERATURE REVIEW

Data-driven techniques have been used in many areas because
of the inherent benefits they provide in comparison to conven-
tional methods [18], [19]. Some of the prominent advantages
offered by the data-driven methods are their structural learn-
ing capability, offline training mechanism, and flexibility
to adapt according to the available datasets. Therefore,
their applicability has also been observed in plant disease
detection. In many agricultural-dependent economies, the
primary concerns are the identification of plant diseases and
the mitigation of economic damage. To accomplish the task
of automatic detection and identification of plant disease
using computer vision, the work done in [20] has suggested
an approach, which is based on DL-based object detection.
The deployed techniques included the Faster Region-based
Convolutional Neural Network (Faster R-CNN) and primary
Architectures of the Neural Network [3], which were capable
of accurately detecting a wide variety of diseases and
navigating through the challenging tasks related to moving
vehicle, mobile user, and number plate detection. The
validation results showed that the accuracy was 94.6 percent,
which depicted the feasibility of the CNN and presented the
path for an Al-based computational intelligence solution to
this complex problem [20].

In another study, Support Vector Machine (SVM) [21]
was used to achieve early distinction in comparison to
other specific diseases (such as powdery mildew, leaf rust,
and Cercospora leaf spot) as well as between healthy and
vaccine-protected plants [22]. This was accomplished with
a high level of accuracy (up to 90 percent). In the age
of data-driven applications, the storage and processing of
higher amounts of data is a challenging task. Therefore,
many applications are devised to tackle the issue of data
storage and complexity [23], [24], to offer the deployment
of these applications in real-time. The work conducted by
S. R. Maniyath et al. included end-to-end implementation
phases, such as dataset preparation, preprocessing, training,
and validation of a model. The generated datasets of sick
and healthy leaves were pooled, trained using Random
Forest, and used to classify images of diseased and healthy
leaves. Overall, they may use ML to train the big publicly
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available data sets to accurately detect the disease that is
present in plants on a large scale. This work encompassed
several phases of implementation, including the creation
of datasets, the extraction of features, the training of the
classifier, and classification. To classify images of diseased
and healthy leaves, the generated datasets of healthy and
diseased leaves were combined and trained using Random
Forest. In this study, the technique used for image description
was a well-known method called Histogram of an Oriented
Gradient (HOG) [25]. General models for the training of large
datasets, that are freely available to the public, provide us with
a clear method for identifying the disease that is present in
plants on a massive scale [25], [26].

Similarly, the proposed hybrid model in [27] used photos
of the peach plants’ leaves to identify the Infectious spot
disease, that was present in peach plants. The experimental
process for this study has used the Plant Village dataset [28],
a publicly accessible resource to get images of peach plants’
leaves. With 9,914 training parameters, the suggested system
had a 99.35 percent accuracy rate during training and a
98.38 percent accuracy rate during testing. Using a public
dataset made up of 54,306 images of healthy and diseased
plant leaves taken in controlled settings, the authors of this
study train a DL network to distinguish between 14 crop types
and 26 illnesses. This method worked because the trained
model’s accuracy on a test set was 99.35 percent [29].

The work done in [30] describes the applications of
computer vision in warehouse supply management. This
work illustrated various studies, describing the importance of
cutting-edge computer vision and Al models in the concept of
warehouse management. The study suggests the use of Al due
to the delicacy of this task, which requires special precision
to be accomplished without any fault or mistakes. Also, the
work in [31] analyzed the applications of Al for supply chain
management systems in Industry 4.0. It is shown that the use
of Al in warehouse activities improves the logistics, man-
agerial, and coordinating capabilities of warehouse activities.
A critical review of state-of-the-art computer vision models
in the food industry has been carried out in [32]. This study
termed these technologies as computer vision and Al-driven
food industry and exhibited the importance of this technology
for food supply chain management. Different opportunities
including robotics, drone technology, satellite, precision
agriculture, sensor technology, remote sensing, plant data
analysis, and smart irrigation systems are explored to comply
with the food commodity management. Considering rice
as a food commodity, the review of technologies has been
carried out in [33]. This study discussed and analyzed the
potential applications and adoption of computer vision from
the perspective of a supplier, focal firm, and customer for
the supply chain management systems. This study conducted
three (3) research steps that refer to Kitchenham’s SLR;
planning, implementation, and reporting, and suggested the
use of computer vision models. The SLR process obtained
the Critical Success Factor (CSF) component and the SCM
test component, while four stages of testing must be carried
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out to evaluate the process, which are: strategic fit, end-to-end
focus, simplicity, and integrity.

By going through the previous literature studies, we found
the research gap in coming up with computer vision methods
to tackle local problems for detecting and identifying the
diseases in commodities, for which the selected case studies
are the Wheat and Pea crops. We propose a framework that is
effective at automatically detecting and identifying diseases
that affect food crops, by using cutting-edge computer vision
techniques for stored time and real-time applications. The
proposed framework is developed to tackle the issues in
cultivating Wheat and Pea crops, to enhance effectiveness in
their supply chain management.

Ill. CONTRIBUTIONS

o The primary objective of our research is to address the
underlying issues within the commodity supply chain,
with a specific focus on ailment detection and identifi-
cation to enhance flawless production. To achieve this,
we propose a comprehensive framework that leverages
state-of-the-art Al and computer vision techniques for
the identification and recognition of diseases in wheat
crops. Our work distinguishes itself by embracing
cutting-edge computer vision models that not only
deliver exceptional disease identification capabilities
but are also highly compatible with existing hardware
systems. These models can seamlessly integrate into the
overall supply chain management process. The novelty
of our work lies in adopting and proposing cutting-edge
computer vision models, which are hardware-friendly
and may further be embedded as a full-fledged system.
For this reason, various aspects of baseline models - real-
time (DETR, YOLO) and stored time (CNN, random
forest)- are analyzed which include disease recognition
and identification accuracy and computational effi-
ciency.

o In this study, we propose a framework that employs
off-the-shelf computer vision models for wheat crop
disease identification and recognition systems. The
novelty of our work lies in adopting and proposing
cutting-edge computer vision models, which comply
with the resource-constrained environment and may
further be embedded as a full-fledged system. For this
reason, various aspects of baseline models - real-time
(DETR and YOLO) and stored time (CNN and random
forest)- are analyzed which include disease recognition
and identification accuracy, computational efficiency,
and inference speed.

o Given our ultimate goal, we propose Al and computer
vision models that are capable of recognizing food
crop diseases. The proposed study evaluated the per-
formances of DETR with the baseline computer vision
models based on evaluation metrics, which include
model precision, model recall, and model accuracy.
The primary focus of this study is the identification of
diseases that can affect wheat plant leaves.
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FIGURE 1. Layout of the proposed framework.
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FIGURE 2. Internal architecture of a DETR.

o In our work, four commonly used, vision-based com-
putational models are investigated to demonstrate their
deployment in applications, where model accuracy
can be compromised over the vision speed and vice-
versa, i.e., in real-time applications and stored-time
applications respectively. Hence, the achieved objectives
are in accordance with the future employments of not
only the datasets but also the algorithmic complexity of
the model as well.

The proposed work also carried out a study regarding
the computational feasibility of four different ML/DL
models for Wheat crop disease detection and iden-
tification, comprised of different levels of structural
complexities. The CNN and YOLO v5 models are
sophisticated models with the capacity to compress
images, transforming them into a format that is simpler
to process while ensuring that the elements necessary
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for creating an accurate prediction are not jeopardized.
The RF model is a straightforward model with a
reputation for quick computation times and simple
output interpretation. One of the key elements that
contributed to the choice of these models in particular is
the variation in application and model complexity across
them.

The workflow followed in this research is depicted in the form
of a layout shown in Figure 1.

IV. COMPUTER VISION MODELS

In this work, the proposed DETR model is compared with
the commonly used, cutting-edge computer vision models
to classify and detect diseases in wheat plant images. The
baseline models include classical ML models i.e., Random
Forest classifier [34], while modern DL algorithms, such as
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CNN [35], and YOLOVS5 [36] are also trained and tested
to check their feasibility for the task. A brief description
and reason for selecting these algorithms are described in
subsequent sections.

A. DETECTION TRANSFORMER (DETR)

The Detection Transformer (DETR) is a transformer archi-
tecture, which has drawn a lot of interest since it can deliver
cutting-edge performance without relying on custom features
or laborious post-processing procedures [37]. It was first
introduced by the researchers from Facebook Al Research,
by combining the strengths of Vision Transformer (ViT) and
CNN [38]. In order to achieve a fully end-to-end framework
for object detection, DETR employs a straightforward
Transformer encoder-decoder pipeline and does away with
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the requirement for those manually constructed components.
The internal architecture of a DETR is shown in Figure 2.

In Figure 2, we can see that a DETR architecture is
composed of an encoder and decoder layers. The input image
is processed by the DETR encoder using a CNN, which
derives the spatial information in the form of feature maps.
The attended features are processed by the feed-forward
neural network to provide contextualized representations.
The encoder layers aid in the agglomeration of the spatial
data and its encoding into a collection of high-level feature
representations.

The task of object detection is carried out by the DETR
decoder component using the encoded feature representa-
tions obtained from the encoder. It is made up of layers
of Transformer decoders. Additionally, self-attention and
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TABLE 1. CNN model setting.

IEEE Access

Block | Layers Structure
1 Filters= 32 | Size=3x3 | Activation= relu
2 Dropout=25%
3 Batch Normalization Max pooling=(2,2)
1 Filters=64 Dimension=3x3 Activation=relu
2 2 Dropout=25%
3 Batch Normalization Max Pooling= (2,2)
1 Filters=128 Dimension=3x3 | Activation=relu
3 2 Dropout=25%
3 Batch Normalization | Max Pooling= (2,2)
4 1 Flattening Layer
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FIGURE 5. Computational graph view of CNN.

feed-forward neural network modules are included in each
decoder layer. A novel learnable positional encoding module
is also included, which aids in maintaining the spatial
information in the object detection process. By paying
attention to both the geographical and contextual data, the
decoder layers hone the feature representations and provide
object queries.
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1) RANDOM FOREST

Random Forest is a well-known supervised ML model, which
is used for classification and regression applications [39].
Random forest classifiers are ensemble learning, begging
algorithms, which build decision trees using a range of
samples, then classify data samples using the majority
vote of those samples and calculate regression by using
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TABLE 2. Dataset breakdown.

S.No.

Disease Name

Number of Pictures

1

Healthy Plants

245

Leaf Rust

500

Barley Yellow Dwarf 316

| Wl

Powdery Mildew

420

TABLE 3. Hyperparameters setting for random forest.

Hyperparamter | Settings

n-estimators

100

Random state

42

averaging. The structural layout of a random forest classifier
is illustrated in Figure 3. One of the most crucial features
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(d)
FIGURE 6. (a) Healthy plant (b) Barkley yellow dwarf disease (c) Powdery mildew disease (d) Leaf rust disease.

of the Random Forest algorithm is its capacity to handle
datasets comprising both continuous and discrete variables
(e.g., regression tasks), and categorical variables (e.g., clas-
sification tasks). The improved accuracy and computational
efficiency of classical ML techniques, in general, and
Random Forest, specifically, encouraged us to employ them
in our research work. The other reason behind the selection
of Random Forest for the classification task is the efficiency
of the ensemble learning in a variety of tasks.
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TABLE 4. Parameters used in CNN.

(b)

(d)
FIGURE 7. (a) Healthy plant (b) Barkley yellow dwarf disease (c) Powdery mildew disease (d) Leaf rust disease.

Parameters

Settings

No. of epochs

180

Optimizer function | Stochastic Gradient Descent (SGD)

Learning rate

0.001

Loss function Sparse Categorical Crossentropy

Batch size

128

2) CONVOLUTIONAL NEURAL NETWORK (CNN)

One of the most widely used DL architectures for images
is called the Convolutional Neural Network (CNN). The
efficacy of CNN lies in its ability to process images by
deploying the convolution operator, which tends to use
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different operations in which the image is reduced to its
essential smaller size structures. These layer-wise reduced
structures enable the model parameters to be tuned according
to the training images. One such CNN architecture is
illustrated in the form of Figure 4. CNN has recently been
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TABLE 5. Performance metrics obtained for each model.

Model Name

Accuracy (%)

Precision (%) | Recall (%)

DETR 96

92 90

Random Forest 89

88 88

CNN 92

78 80

YOLO 80

70 70

Computational Burden

Model during Training

Testing Time

Features

Random Forest | Low Low

Enhanced classification
performance with low complexity,
but prone to overfitting for a
lower amount of training data.

CNN Moderate

Moderate

Performs complex operations for
data processing and an excellent
match for higher complexity
diseases classification tasks for
future work.

YOLO

High Low

Model training takes long time as
compared with its application

for object detection, which
makes it one of the best models
for real-time disease detection.

DETR

High Low

Similar to YOLO, model training
takes long time as compared with
its application for object detection,
which illustrate its prospects for
real-time disease detection.

FIGURE 8. The attained computational complexities for deployed models.

used for plant disease identification and classification tasks
as illustrated in [40]. In our work, we implemented CNN due
to its efficiency in image and video classification tasks. Our
model settings are listed below in the form of Table 1. In
this framework, three-channel inputs are applied at the input
layer which propagates through all the layers and results in a
three-channel labeled output image.

Here it should be noted that a flattening operation is carried
out to convert a 3D image into a 1D flattened form before its
propagation to the final convolution layer, for a pixel-level
classification task.

The computational graph of the employed CNN model is
also shown in Figure 5.

3) YOU ONLY LOOK ONCE (YOLO)

You Only Look Once (YOLO) is a cutting-edge, real-time
object detection system that is incredibly quick and precise.
YOLO excels at real-time target detection due to its speed and
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detection abilities, making it the ultimate option for real-time
object detection.

YOLOVS is the fifth version of YOLO, which is developed
by the Ultralytics LLC team [41]. YOLOvVS features high
accuracy both in terms of detection and inference speed [36].
Since YOLOVS is a single-stage object detector, it functions
similarly to all other single-stage object detectors. YOLO v5
is comprised of three essential components.

« Model backbone

« Model head

o Model neck
Extraction of important features from the input image is the
main goal of Model Backbone. The CSP (Cross Stage Partial)
Networks are used as the foundation of YOLOVS5 to extract
features from an input image that are rich in informative
content.

The weight file in YOLOVS is of a tiny size and is approx-
imately 90 percent smaller than the weight file in YOLOv4.
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FIGURE 9. Precision VS recall curve.

It is hence appropriate for use in embedded systems for real-
time detection. The YOLOvVS5 delivers increased detection
accuracy over earlier versions, a lightweight design, and a
short detection time. One of the reasons for choosing it for
our study is its prior efficacy, which is crucial in similar tasks.

V. EXPERIMENTAL SETUP

This section is composed of subsections that are related
to the experimental environment, settings, and performance
evaluation metrics used in our study.

A. EXPERIMENTAL ENVIRONMENT

The experiments were conducted at Google servers to
speed up the model training using freely available hard-
ware accelerators i.e., GPU: 1xTesla K80, compute 3.7,
having 2496 CUDA cores, 12GB GDDRS5 VRAM, and 12GB
RAM. The developed datasets were first imported into the
environment, which were then used to train and test the
models after carrying out the desired changes.

B. PERFORMANCE METRICS

In this work, the prime task is the classification of plant
images to detect plant diseases. Therefore, we used the
commonly used performance evaluation metrics as the
performance metrics. Further, the details of deployed metrics
are listed below.

1) MODEL ACCURACY

The accuracy of a model is one of the key performance
indicators, which describes how accurate the model is in
predicting the true labels. Mathematically it can be written
as:

Tp + Ty
Model_Accuracy = (1)
Tp+Tn +Fp+Fy

where:
Tp is True Positive

VOLUME 12, 2024

mAFP_0.5

mAP_0.5:0.95 . precision % recall

Ty is True Negative
Fp is False Positive
Fy is False Negative

2) PRECISION

By dividing the entire number of correct predictions (True
positive) over the count of total predictions, the precision
of the classification model is determined [42]. This measure
illustrates how accurate a classifier is by providing an answer
to the question of how many samples are correctly identified
as “Leaf Rust” were truly “Leaf Rust” out of all the samples.
It can be written as:

Tp

Precision = —— )
Tp+Fp

3) RECALL
The number of right forecasts, for positive predictions, are
known as true positives. Recall is also another performance
metric, which is used to assess the developed model by
dividing true positive forecasts over the summation of true
positive forecasts and false negative forecasts [42]. This
statistic is designed to emphasize the sensitivity of the model,
which means that out of all the samples in the dataset that have
been labeled as having “Leaf Rust” how many of those were
also recognized by the classifier as having “Leaf Rust” in its
predictions? It is determined as:
Tp
Recall = ——— 3)
Tp+ Fy
Equation 3 is used to calculate model precision for positive
classes.
Similarly, for negative classes, there is also another variant
of 3, which is defined as:
Ty

Recall_Score = ——— 4
Tp+ Fy
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FIGURE 10. Plant disease classification with DETR.

VI. METHODOLOGY

In this section, a detailed discussion regarding the key
methodological steps has been included. We have included
the subsections, which are related to the dataset devel-
opment, labeling, and selection of the parameters and
hyperparameters.

A. DATASET DEVELOPMENT

In this work, dataset development was one of the prime
objectives, due to the unavailability of publicly available
wheat crop diseases dataset. Recently, database development
task was carried out in many ML-based research works,
due to the unavailability of the requisite datasets [43],
[44]. Therefore, we developed our own image dataset for
this research work. We collected 1500 images of four
different categories of wheat crop images from a variety of
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fields. Out of these four classes, three classes were labeled
with corresponding diseases, while one class was named
“healthy””. The allotted class names are healthy, barley
yellow dwarf, leaf rust, and powdery mildew. For the sake of
applying the DL and ML algorithms, the images were reduced
to 224 x 224 pixels, to have consistent dimensionality. The
dataset images were taken with a high-quality mobile phone
camera of 64 MP.

In many areas of the world, the commonly observed
diseases in wheat crops are listed in Table 2. Therefore,
our problem breakdown has been specifically included
for these diseases. Table 2 also contains information
about our dataset, including the number of images
gathered for each ailment. For this reason, the images
dataset for the following classes of wheat plant diseases
were collected. The types of images are shown in
Figure 6.

VOLUME 12, 2024
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FIGURE 11. Real Time plant disease detection with YOLO.

In this study, we kept this ratio 70/30 for our train/test data
split due to the unavailability of a higher amount of data.
Similarly, the available data is balanced and stratified to avoid
sampling and class biases.
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B. DATA LABELLING AND ANNOTATION

The images used for training and testing, in real-time disease
detection, are labeled in Roboflow [45], each image is labeled
by drawing the bounding box and class labeling. Two separate
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FIGURE 12. Plant disease classification with CNN.

files containing texts and classes are obtained after the image
labeling step. The text file consists of a class label and the
orientation of the bounding box [46]. Since numbers between
0 and 1 are simple to predict, all of the values in the text file
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are normalized between these ranges. The number of drawn
bounding boxes affects the number of lines in a text file.
To label both the train and test datasets, the dataset is split
into images for training and test purposes at a rate of 80%
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FIGURE 13. (a) Training and validation loss of CNN (b) Training and validation accuracy of CNN.

and 20%, respectively. Some examples of annotated images
are shown in Figure 7.

C. PARAMETERS AND HYPERPARAMETER SELECTIONS

In ML, hyperparameters are values that the user directly
defines to regulate the learning process. These values are
determined before the start of a learning process because a
rigorously tuned set of hyperparameters is essential for ML
and DL to demonstrate effectively while having the optimized
set of parameters. A set of key hyperparameters employed in
this study are:

« n-estimators: The number of trees the algorithm creates
before averaging the result.

« Random State: Regulates how random the sample
selection process is. The model will dependably produce
the same results if it is given the same hyperparameters,
training data, and random state with a fixed value.

The important hyperparameters used for this research are
as follows. These are the parameters that were used for
Random Forest in Table 3and CNN 4, as well.

The selection of hyperparameters is based on a careful
tuning of the model in a trial-and-error manner. In this work,
our model is trained for various numbers of epochs and the
optimum number is selected which provides the approximate
accuracy convergence for preserving computational, power,
and storage resources. Similarly, learning rate is also one of
the crucial hyperparameters, which is selected from a range
of hyperparameters based on the speed and performance
convergence trade-off.

In our model, the convolutional layer is the initial layer
that is utilized to extract the various features from the
input images. In this study, we constructed the following
convolutional layers with the mentioned parameters:
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1) Size = (32, 3, 3), Strides = 2, Padding = same,
Activation = Relu.
2) Size = (3,3), Strides = 2, Padding = same, Activation
= Relu.
3) Fully connected layer, Dropout = 0.5, Activation =
Softmax.
This study does not employ the FC layer without dropout.
The activation function Relu is used, and in the final step,
we apply the softmax function to classify the data into four
different groups.

VII. RESULTS

In our work, we used the commonly used ML and
DL algorithms to check the feasibility of the proposed
framework, in terms of computation resources utilization,
power efficiency, and process time (to check for real-time
applications). The attained performances achieved, in terms
of accuracy, precision, and recall, are shown in the form of
Table 5 and discussed in the subsequent section.

As is evident from Table 5, the DETR outperformed in all
avenues of performance comparison. In comparison to our
model, RF scored 89 percent, and the YOLO v5 model scored
80 percent, while the CNN model achieved an impressive
92 percent accuracy rate. In comparison to real-time detection
in the YOLO model, the DETR has outperformed it in the
field of accuracy, precision, and recall while it has some
limitations of working which are GPU usage limit.

We found that the model accuracies reported for other
plant disease identification are higher as compared to our
study. When observed keenly, we came to know that the
training data was composed of images of different qualities.
Therefore, low-quality training images were one of the
sources, which induced accuracy reduction in our methods.
Therefore, the achieved model accuracies can be further
enhanced by incorporating high-quality image samples.

24129



IEEE Access

1. Ahmed et al.: Improved Commodity Supply Chain Performance Through Al and Computer Vision Techniques

Similarly, It is clear from looking at Table 5, that the CNN
model has a recall of 82 percent, while the YOLO v5 model
has a recall of 70 percent, and the RF model has a recall
of 88 percent. This indicates that the RF model can return
most of the pertinent results - after our proposed framework-
in the dataset in comparison to other models. While CNN
achieves a precision score of 80 percent, as shown in Table 5,
the RF model scores 88 percent, and YOLO v5 scores
70 percent. This demonstrates that when compared to the
other two models, the RF model will significantly produce
more relevant results than it would return irrelevant ones. The
achieved efficacy in terms of classification results of DETR
exhibits the prospects of ViTs for the described categories
of plant diseases. The categorical labels for the healthy and
diseased plants aided the deployment of classical DETR as
compared with the classical ML and CNN models, keeping
in view the lower complexity of the task at hand. It is, further,
investigated that CNN can perform well if more training data
is provided for a multi-class complex problem set.

When we compared the computational efficiency of our
models, the random forest has shown promising results.
Similarly, the begging and voting operations performed by
the RF classifier are more computationally feasible as stated
in Table 8. Therefore, we found it feasible to be utilized
for the applications, where computational complexity is
fundamentally important.

The objectness score, the class probability score, and
the bounding box regression score all contribute to the
YOLO family’s calculation of a compound loss. The Binary
Cross-Entropy with Logits Loss function, which is available
in PyTorch, was used by Ultralytics to determine the loss of
class probability and object score [47].

As far as the real-time applications are concerned, the
proposed DETR model and YOLO demonstrated higher
classification accuracy when tested in real-time tasks for
disease detection as listed in the table shown in Figure 8.
The faster accuracy of DETR has been achieved at the cost
of longer and more tedious offline training, which is also the
same case with YOLO v5. Therefore, its accuracy is prone
to further improvements if the amount of training data is
increased, not only in quantity but in quality as well. The
results obtained with real-time plant detection are shown in
the form of Figure 10 and 11 The objectness score, the class
probability score, and the bounding box regression score all
contribute to the YOLO family’s calculation of a compound
loss. The Binary Cross-Entropy with Logits Loss function,
which is available in PyTorch, was used by Ultralytics to
determine the loss of class probability and object score [47].

As far as the real-time applications are concerned, the
proposed DETR model and YOLO demonstrated higher
classification accuracy when tested in real-time tasks for
disease detection as listed in Table 8. The faster accuracy
of DETR has been achieved at the cost of longer and
more tedious offline training, which is also the same case
with YOLO v5. Therefore, its accuracy is prone to further
improvements if the amount of training data is increased, not
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only in quantity but in quality as well. For our models, the
precision-recall curve has been shown in the form of Figure 9.
The results obtained with real-time plant detection are
shown in the form of Figure 10 and 11
Similarly, the classification performance is illustrated in
the form of Figure 12.

VIII. TRAINING AND VALIDATION ACCURACY

In ML practices, a model is said to be underfitted when it
performs badly on both the datasets it was trained on and
the datasets it was validated and tested on. An ML model
is said to be overfitted if it performs perfectly on a training
sample but badly during the validation/test steps. Accuracy
and loss plots concerning the number of epochs are used to
track CNN’s performance throughout these steps. These plots
indicate that the training and validation accuracies/losses are
directly proportional, showing that the model is continuously
learning and is neither overfitting nor underfitting. A model
is said to have a good fit when it can appropriately generalize
its findings from the validation dataset and learn from the
training dataset. Figure 13 displays the CNN classifier’s
training and validation loss.

IX. LIMITATIONS, SUGGESTIONS, AND FUTURE
DIRECTIONS

In this study, DETR has shown promising results for the
detection and identification of wheat crop diseases as defects
in a food commodity. However, we observed some limitations
and research gaps which can be helpful for future research in
this field. These are listed below:

« Data greedy approach: Although the proposed work
has shown promising results, yet the observed perfor-
mances can be improved further. As we have observed,
DETR constitutes an efficient framework by training
it over a mediocre amount of available data. The sole
cause for this average performance was the availability
of limited training data. It is observed that more training
data will enhance the performance of the framework by
converging to the optimal performance level. Therefore,
the efficiency will further increase by incorporating
more data samples in the training set.

o Higher training time: Model training is one of
the crucial tasks for achieving the required results
using data-driven methodologies by using the available
dataset. The accuracy vs. epochs chart shows that the
model tends to further improve during the experimental
process. As a result, its performance level is more
susceptible to increased usage of computing, time, and
power resources.

o Deploying more models: In the future, more compu-
tational methods can be deployed for object detection
and identification while other data-driven machine
learning and deep learning models can also be used
for further commodity supply chain management tasks.
Furthermore, the scope of this work can also be widened
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by using the deployed techniques for other datasets
related to supply chain management.

X. CONCLUSION

The proposed work targets the empowerment of local
farmers by deploying the cutting-edge object detection
model called DETR. Our model is trained on the local
crops dataset emphasizing the development of wheat crop
dataset from wheat-producing areas and compared with the
results obtained from CNN, YOLO v5, and Random Forest
classifier based on accuracy, precision, and recall metrics.
In all three evaluation criteria, the DETR outperforms for
detecting plant illnesses on wheat crop leaves, in terms
of model accuracy and demonstrated 4% higher accuracy
than the best baseline model. In this work, the utilization
of the Random Forest model foresees that our work was
more accurate and completed in a shorter amount of time.
Additionally, we have observed that CNN stands as a
formidable choice for complex, stored-time tasks, hinting at
the possibility of refining its architecture to unlock further
improvements. As we tread into the future, the integration
of these models into broader agricultural contexts holds
immense promise, marking a decisive stride toward more
effective and responsive crop disease management in the
commodity supply chain. This path of progress beckons, and
its realization is well within reach.
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