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ABSTRACT Millimeter-wave and Terahertz communications consist of complex analog and mixed-signal
transceivers where overall system performance is often limited by the weakest performing subsystem.
While analog and mixed-signal integrated circuits have significantly advanced, the future of 5G and 6G
transceiver design could be accelerated by including artificial intelligence. In this combination, analog
integrated circuit design and operation would harness machine learning to identify, characterize, and act upon
variations and anomalies in system performance. Focusing on 5G and 6G, this paper investigates solutions
for a unified intelligent integrated transceiver: a conceptual combination of a traditional analog subsystem,
a supporting digital subsystem that enables artificial intelligence, and dedicated feedback circuitry or sensors
that monitor performance, efficiency, or reliability. Active and passive components and propagation channels
are reviewed based on their merits of introducing intelligence. Holistically and for broader applicability,
the paper conceptualizes and coins the notion of an ‘‘intelligent integrated system (IIS)’’, which brings
forward a novel unified vision and approach toward context-aware subsystems that dynamically interact
with ambient and varying operating conditions. To demonstrate viability, the paper concatenates a select set
of measurement results.

INDEX TERMS Analog circuits, artificial intelligence, artificial neural networks, generative AI, electronic
design automation, integrated circuits, intelligent integrated systems, machine learning, microelectronic
circuits, 5G, 6G.

The associate editor coordinating the review of this manuscript and

approving it for publication was Olutayo O. Oyerinde .

I. INTRODUCTION
Millimeter-wave (mm-wave) and Terahertz (THz) (a pro-
visional frequency layer of 6G) electromagnetic (EM)
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waves enable broadband and low-latency telecommunica-
tions. Applications that utilize mm-wave frequencies are
commonplace in integrated circuit (IC) communications,
sensing, and security [1]. THz applications are also evolving
into transformative solutions and reshaping telecommunica-
tions, imaging, and sensing [2]. Physics imposes stringent
limitations on the propagation of high-frequency signals.
Enhancements at the transceiver level are required to realize
expected performance and efficiency of mm-wave and THz
communication systems.

A conventional (non-configurable) transceiver is not
capable of learning and predicting physics-based limitations.
Signal attenuation, scattering, Doppler shift, and noise are
fixed functions of the environment in which it operates [1].
Converting a conventional transceiver into a dynamic and
adaptive system introduces the potential for real-time
reconfigurability and performance enhancements. Artificial
intelligence (AI) and machine learning (ML) advancement
shows that computational algorithms can combine human
intelligence, enabling automated and real-time optimization
in transceiver systems.

The interface between the transceiver and the propagation
channel is typically realized with passive components. Using
AI, a dynamic configuration could be created where feedback
and adaptability would increase performance.While focusing
on 5G and 6G telecommunications, this paper broadly
introduces the notion of an intelligent integrated system
(IIS). An IIS relies on reconfigurable active components
and ‘‘smart’’ passive components. Advancements in recon-
figurable intelligent surfaces (RIS) [3], [4], [5] allow for
parameter adjustments and reconfigurability of meta-surfaces
to adapt to variances in the propagation channel.

In this paper, the potential of applying AI and ML
to active analog and mixed-signal microelectronics, com-
bined with ‘‘smart’’ passive components, towards context-
aware transceiver subsystems that dynamically improve
high-frequency communication, is surveyed and presented.
A simple, but deliberately extreme, analogy to consider here:
a person is intelligent as a result of sensing, memory, brain
power, and most importantly, continuous learning. Thus, the
person delivers dynamic behavior, change and efficacy. IIS
uses this notion.

A. CONTRIBUTION
This paper reviews the possibility to harness the full potential
of previous, current, and future generations of microelec-
tronic circuits through operational and artificial intelligence.
The paper focuses on the potential to create context-
aware systems through, among others, analog intelligent IC
subsystems.

Configurable and context-aware transceiver subsystems
can ideally adapt to operational variations to maintain or
improve system performance. A separate intelligence-fed
digital subsystem would adjust internal parameters to mixed
signal components and rapidly react to changes in system

behavior. At hardware-level, this is demonstrated in [6]
and [7]. In both these articles, mixed-signal circuit behavior
is influenced by external hardware or signal changes. The
advantage of such a technique, in addition to traditional
power/frequency adjustments, is that the transceiver could
learn and understand why certain changes occur and in future
react/predict internal changes in real-time. The information
can be transferred or shared to accurately model performance
variation. To extend the earlier analogy to further appreciate
this behavior: in the ideal composition, within expected
application behavior [8], IIS would incorporate Generative
AI to integrated circuits and systems.

Several academics have published research on mm-wave
AI-assisted communications [9], [10], [11], [12]. This paper
contributes to this research by providing a unified vision
of these techniques. Additionally, this paper proposes that
understanding, learning, adapting, and predicting the prop-
agation channel can lead to further performance advantages
within mm-wave and THz transceivers [3], [4], [5]

B. ORGANIZATION OF THE PAPER
Section II conceptualizes the IIS based on conventional
telecommunications system. It provides a baseline for re-
imagining wireless communications as adaptive intelligent
systems.

Section III identifies and reviews subsystem-specific AI
learning techniques in a wireless communications system.

Section IV identifies and reviews traditional reconfig-
urable transceivers in modern communication solutions.

Section V provides a detailed review of AI-assisted
reconfigurable transceiver subsystems. It identifies crucial
design parameters and how these can impact the system if
paired with AI-assisted design.

Section VI describes true reconfigurability in wireless
communications. It reviews techniques, considerations, and
advantages of such a strategy toward realizing an IIS.

Section VII reviews mature enabling technologies in both
the active and passive domains. The reviewed technologies
enable present solutions and could be combined with AI to
drive next-generation advancements.

Section VIII references the advances in mm-wave and
THz-integrated technology through AI-assisted design and
implementation. These results, if holistically unified, could
potentially drive the realization of a true IIS solution.

Section IX, the conclusion, summarizes the findings in this
paper.

II. CONCEPTUALIZING THE IIS
Fig. 1 is a visual comparison of the differences between a
conventional telecommunications system and the IIS with
intelligent ICs as its building blocks. In this paper, the
reconfigurable IIS concept is also referred to as a dynamic
transceiver.

In Fig. 1a the conventional transceiver relies on prede-
termined design parameters and ranged variables for its
analog, mixed-signal, and discrete ICs. The transceiver has
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FIGURE 1. A comparison between a) conventional and b) dynamic (IIS)
transceiver, also indicating the propagation channel.

three primary components that determine its performance:
the transmitter (Tx), the propagation channel, and the
receiver (Rx).

Transceiver subsystems include frequency synthesizers,
mixers, filters, amplifiers, modulators/demodulators, and
antennas, thus a combination of active and passive com-
ponents. The performance of the transceiver is governed
by its weakest subsystem. However, free space path loss,
scattering, and Doppler shift in the propagation channel
introduces performance variations that are difficult to predict
and mitigate. At mm-wave and THz communications, the
key frequency candidates for 5G and 6G, the variations
are significant as suggested by the Friis transmission
equation [1]. Line-of-sight (LoS) and accurate directivity at
these frequencies become increasingly crucial to maintaining
performance without reverting to increasing the potentially
unsafe transmission power.

Fig. 1b conceptualizes an IIS that is less dependent on
LoS and that introduces additional feedback and feedforward
loops through an AI digital subsystem. Its goal is to observe,
predict, forecast, and adapt to operational and ambient
variations. The AI digital subsystem is integrated into both
the Tx and the Rx and relies on sensors, ML, and stored data
to reconfigure system parameters as functions of real-time
system performance. Additionally, in this representation, the
channel is reconfigurable by introducing, for example, RIS,
driven by programmable logic and powered by the AI digital
subsystem(s).

III. AI-ASSISTED RFIC LEARNING TECHNIQUES
ML is a digital process that relies on computational resources
to learn from its environment. It is scalable as a function of
the resources used to train or infer ML algorithms. The speed
of learning is proportional to the arithmetic capabilities of
the neural processing units (NPUs) that execute numerous
multiply-accumulate operations. Analog microelectronic ICs
are not as scalable as many digital systems. They rely on
transistor advances to increase performance by any order
of magnitude. The scaling and improvement in transistor
technology is a complex and expensive process and relies

on longer-term generational advancements [13]. Increases
in operation frequency govern subsystem-level performance
and place limitations on both the efficacy of algorithms and
how far IC technology can be pushed.

A. HIGH-FREQUENCY LIMITATIONS
AI-assisted analog radio frequency integrated circuit (RFIC)
learning techniques depend on the target application and
the intended subsystem. Not each intelligent IC subsystem
in an IIS requires, or benefits from, the same learning
technique. It is therefore important to identify, analyze,
synthesize, and test numerous techniques for the most
optimal solution. This modularity and customizability for
different applications through programmability provides AI-
assisted reconfigurable systems with an important edge over
conventional systems. A level of ‘‘softwarization’’ of ICs
allows for inter-application optimization.

FIGURE 2. A simplified representation of the subsystems in an analog a)
transmitter and b) receiver.

In a transceiver, each subsystem performs a predetermined
task and its individual performance and efficiency impact
the performance of the system. Fig. 2 is a simplified repre-
sentation of the analog transmitter and receiver subsystems
(adapted and simplified from numerous sources). It visualizes
the core subsystems and components that would require
intelligence to realize a truly intelligent system.

In Fig. 2, IF represents the intermediate frequency, and
LO represents the local oscillator signal. Identifying and
isolating the tasks of each subsystem in Figs. 2 a) and b)
helps to determine their most effective learning technique.
These techniques also depend on the format of the learning
data, the sample size, and the available processing resources.
At mm-wave and THz, these requirements will be different
from lower frequency applications. In this context, primary
differences between high and low frequencies include the
following:

• More specialized modeling and optimization techniques
are required at mm-wave and THz subsystems to
account for a larger number of parasitic effects.
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• At mm-wave and THz operation, the bandwidth of
each channel can be high and might require more
complex signal processing techniques to extract the
information. Learning techniques might therefore have
to be adapted and becomemore complicated. In the ideal
development, it would benefit from Generative AI.

• The propagation loss and LoS requirements at mm-wave
and THz communication are significantly higher than
for lower frequencies. As a result, related limitations
may increase the complexity of learning techniques.

• Noise, scattering, and Doppler shift are typically more
dominant in the receiver front end at mm-wave and THz
transmissions. Therefore, modeling and optimization
can become more complex in these systems. At the
same time, adaptation would benefit from deployed
intelligence.

There are common learning techniques that apply well
to mm-wave and THz-based analog transceivers. These
methods can be adapted for a variety of applications,
including:

• 5G/6G telecommunications,
• wireless backhaul,
• automotive radar,
• imaging and sensing,
• satellite communications,
• terrestrial point-to-point communications,
• wireless VR,
• unmanned aerial vehicles (UAVs),
• radio astronomy, and the
• internet of things (IoT).
Definitionally, to further inclusivity [14], 6G mobile

phones may additionally incorporate satellite communication
capabilities. It is envisaged that the trajectory towards 6G
will need to be more inclusive than before [14]. This implies
that there may be augmentation between frequency solutions
(anticipated: higher frequency as well as satellite or other
non-terrestrial solutions) [15]. Through inclusivity and the
abovementioned applications, several applicable learning
techniques can be identified, presented in the following
paragraph.

B. HIGH-FREQUENCY LEARNING TECHNIQUES
The digital subsystem in an IIS would be responsible for
maintaining and implementing learning algorithms. Even-
tually, the digital subsystem would perform Generative AI.
In the current body of knowledge, references are available
on applying AI and ML to mm-wave (and higher) frequency
transceivers. Papers typically focus on individual (or a few
for comparison) learning techniques and their modifications.
This section summarizes the learning techniques that are
typically applied to high-frequency systems. Providing an in-
depth description of these learning techniques falls outside
the scope of this paper but references are provided. A sum-
mary of common learning techniques that can be applied to
transceiver subsystems is provided in Table 1. Furthermore,
in Table 1, we contextualize the contribution of this paper.

TABLE 1. Machine learning techniques that can be applied to analog
transceiver subsystems. The table contextualizes the contribution of this
paper.

From Table 1, it appears that genetic algorithms (GAs),
based on adaptive heuristic or search engine algorithms, can
be implemented in antenna array and RF front-end subsystem
(mixers, filters, and amplifiers) algorithm development [16].
A GA typically performs better than random search algo-
rithms since it uses historical data to lead the search toward
the highest-performing region within the solution space.
In [16], a GA is implemented to optimize the highly
sensitive broadband silicon germanium (SiGe) heterojunction
bipolar transistor (HBT) low noise amplifier (LNA) design
methodology for radio astronomy. To perform adaptive
equalization in analog RF front ends, neural networks are
recommended since these tasks are typically applied to large
datasets.

Baseband processing is performed by equalizers, decoders,
and demodulators within a transceiver. This type of data
relates to that of audio processing. Therefore, for adaptive
equalization or channel estimation, neural networks and
support vector machines (SVMs) are well suited. Convolu-
tional neural networks (CNNs) and random forest estimation
have been used for signal classification and modulation
recognition.

GAs and PSOs can be used to optimize and improve the
signal-to-noise ratio (SNR) in antenna arrays. For adaptive
beamforming, neural networks that are trained on large
datasets can give estimated coherence factor weights and
minimum variance to improve SNR.

EM interference signals are to be detected and classified
during system operation. EM interferencemitigation involves
several stages, including the detection of unwanted signals
through trained data. Once detected, several techniques
can be used to mitigate the interference, including signal
cancellation, beamforming, or spectrum sensing, all trainable
by AI and ML. The techniques that are best suited for these
types of operations include neural networks, SVM, or random
forest estimation.
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C. HIGH-FREQUENCY LEARNING IMPLEMENTATIONS
In implementing intelligence in each subsystem of a
transceiver, analog high-frequency communication systems
can be of benefit on several levels. For example, an AI-
assisted analog RFIC benefits during both the design
phase and the operating phase. For the design phase,
AI datasets can contribute towards the electronic design
automation (EDA). During the operating phase, continuously
improving algorithms adapt, predict, and adjust circuit and
system parameters to maintain or improve performance.
Furthermore, for an IIS, and thus including intelligence in
the channel, there could be further advantages in reduc-
ing complexity and cost and increasing sustainability and
efficiency.

In [12] it is described how to select a learning technique
for analog RFICs based on the target application and the size
of the available dataset(s). Reference [12] suggests using the
(unsupervised) clustering technique if processing resources
are limited. This technique can provide results where
relatively little information is lost. The second unsupervised
technique suggested by [12] is principal component analysis,
a linear approximation method that also requires less data,
again without losing large portions of information. It is also
suggested that the available datasets for a subsystem should
first be determined, followed by the type of data generated
at each level. To reduce dimensionality of complex datasets,
[12] proposes linear discriminant analysis (LDA) which aims
to maximize the separation between classes as opposed to
maximizing variance. The decision tree, a clear distinction
between the decision criteria and the outcome of the sequence
of decisions, can be extrapolated from such results. Such
a fast and highly scalable technique includes the Naïve
Bayes classifier algorithm where the classifiers are relatively
easily trained and do not require large datasets [12], hence a
practical approach used by many researchers.

From a supervised training perspective, [12] suggests the
SVM which has the advantage of quickly identifying the
optimal linear data separators. However, its complexity in
terms of output parameters can be difficult to interpret and
apply. For large datasets and high volumes of information,
it has been found that artificial neural networks (ANNs) and
deep learning (DL) are popular techniques. These techniques
use a single layer of linear threshold units (LTUs) and a
weighted sum of its inputs, combined with a non-linear
activation function to ‘‘achieve targeted design specifications
while considering accurate physical properties of circuits and
components’’ [12]. ANN and deep learning can possibly
significantly reduce design time and simulation resources
and account for variations in operation. In [12], an extensive
list of contributions towards the modeling of analog RFIC
components, subsystems, and systems is provided. In this
paper, [11], [12], and [13] are referenced, resourced, and
summarized.

The following section summarizes traditional adaptability
and reconfigurability in analog transceivers, as opposed to
AI-assisted techniques.

IV. RECONFIGURABLE TRANSCEIVERS
Reconfigurable or dynamic transceiver front ends that
dynamically adapt their operating parameters to changing
conditions have been presented in [15] and [23]. In this work,
the subsystems rely on continuous feedback and hardware
configurability to progressively control performance at the
component level.

A. HARDWARE FOR RECONFIGURABILITY
Reconfigurability can be achieved with a dedicated single-
chip digital AI subsystem or through a system in a package
(SiP). The merits of the latter are assumed, and an in-
depth review falls outside of the scope of this paper. Before
summarizing the most common methods that have been used
to implement reconfigurability, the types of AI-dedicated
hardware that can be used as a digital subsystem on an analog
transceiver are briefly presented. These types include the:

• neural processing unit (NPU),
• graphics processing unit (GPU),
• field-programmable gate array (FPGA),
• digital signal processor (DSP),
• application-specific integrated circuit (ASIC), and
• tensor processing unit (TPU).
Each type of AI-dedicated hardware presents advantages

and disadvantages that depend on the application (sub-
system), power requirements, and data structures. Table 2
summarizes some of these advantages and disadvantages.
Each subsystem would have its own power, space, and
capability requirements, however, it is possible to consider
more than one solution for a specific application within
an IIS. In the infinitum, a deployed transceiver intelligence
would be continuously updated using cloud/edge computing
techniques. This would allow for enhanced usage of AI,
particularly Generative AI.

When comparing the advantages and disadvantages from
Table 2, it becomes evident that intelligent IC tasks in an
IIS are application-specific and the choice of hardware is
linked to certain trade-offs. If processing speed is important,
the NPU, ASIC, and TPU are good candidates but can be
expensive and may lack flexibility. The GPU and FPGA
technologies are relatively mature. Related resources and
tools are readily available for relatively quick and seamless
integration. However, the power consumption of these
devices is typically high. DSPs are optimized for signal
processing and could be ideal for related subsystems, but
they generally lack flexibility and AI algorithm support.
In future, use of ‘light weight’ edge computing would
enhance firmware integration.

B. TRADITIONAL METHODS OF RECONFIGURABILITY
To achieve current and conventional reconfigurability,
software-defined radios (SDRs) can realize an analog sub-
system and perform ‘‘corrective’’ signal processing on the
transmitted or received RF signal. SDRs can dynamically
alter subsystem behavior based on operating conditions but
are limited by the input variables to observing, and adapting
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TABLE 2. Some advantages and disadvantages of hardware that can
perform intelligent subsystem operations.

to, variations. SDRs and traditional reconfigurable antennas
that modify mostly mechanical components such as switches
and actuators have formed the basis of cognitive radio in its
current form.

Cognitive radios can autonomously detect and adapt to
their operating environment to optimize spectrum utilization
and improve network efficiency [27]. Cognitive radios
implement signal processing and intelligent algorithms
to dynamically sense and manage spectrum disturbances.
Although cognitive radios used as dynamic transceivers do
present solutions to managing spectrum access, AI-assisted
systems could potentially offer more flexibility in processing
capabilities and better react to dynamic changes in the
operating environment [22], [25].
A tunable filter can change its frequency and bandwidth

parameters based on varying input conditions. This is
typically achieved through adjusting input voltages and
currents. These changes allow tunable filters to reject or
accept specific frequencies over a relatively large frequency
range. Tunable filters are, however, typically focused on
accommodating multiple radio access technologies (RATs)
and use RF microelectromechanical systems (RF-MEMS) to
achieve reconfigurability [5], [28]. Enabling components of
tunable filters include varactors (voltage-controlled variable
capacitors) and switched capacitor circuits. The response
of the filter can also be digitally adjusted by enabling or

disabling capacitive configurations based on sets of series
and parallel capacitor combinations. Through cascading
multiple stages of tunable filters, it is possible to selectively
switch between frequency and bandwidth requirements and
enable transceiver reconfigurability. Tunable filters are most
often used to vary operating configurations as opposed to
mitigating variations in external factors. The number of filter
variations is also dependent on the number of configurations
that can be accommodated by the IC. Capacitors, or varactors,
are large components and the number of configurations is
often limited by physical space. Furthermore, the number of
logic configurations is also limited by the reprogrammable
logic capabilities both on- or off-chip.

The voltage-controlled oscillator (VCO) is a key compo-
nent for frequency synthesis in any transceiver and generates
an analog oscillating signal based on a controllable input
voltage. Reconfigurability of a transceiver can be achieved by
adjusting the VCO control voltage to change the frequency
band, or channel, of the transceiver. If the signal quality
is poor, the VCO can adjust the carrier frequency to avoid
interference and improve the SNR [15]. The VCO can also
switch between modulation schemes to adapt to varying
channel conditions or to increase transmission rates. There
are however several limitations to using only the traditional
VCO for transceiver reconfigurability. These include its
limited frequency range, noise and phase noise performance
impacts, power consumption, complexity, and stability. The
VCO also operates independently from other transceivers in
the environment and can potentially reconfigure towards a
band that introduces interference to transceivers operating in
its vicinity.

In mm-wave and THz operation, parasitic effects, propaga-
tion losses, and LoS requirements are more prominent when
compared to lower frequency transceivers. To mitigate the
limitations of SDRs, tunable filters and VCOs to dynamically
reconfigure transceiver parameters, AI-assisted reconfig-
urable transceivers combined with RIS and/or intelligent
antennas do present several advantages in performance and
efficiency. The following section presents some AI-assisted
approaches for transceiver subsystems with reference to
existing research.

V. AI-ASSISTED RECONFIGURABLE TRANSCEIVERS
The premise of subsystem-level transceiver reconfigurability
is not new, what is new, is introducing AI as the key feedback
and learning system. With recent advances in AI as well
as AI-dedicated hardware, improvements in these methods
are actively being researched. To form an IIS as illustrated
in Fig. 1b, an AI-assisted reconfigurable transceiver could
integrate digital subsystems within the Tx and Rx transceiver
ICs, intelligent antennas and RIS, to adapt to channel
variations.

The following approaches at the subsystem level indicate
the requirements and considerations at subsystem level,
specifically considering data structures and typical parame-
ters that require predictability and adjustment.
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A. POWER AMPLIFIER
The linearity of a power amplifier (PA) is a key parameter
which determines its performance based on its input and
output signals. PA linearity, or P1dB compression, indicates
the maximum input power level at which the PA can
provide a linear output signal while avoiding the compression
region. P1dB affects the gain, linearity, efficiency, third-order
intercept point (IP3), and the noise figure of the PA. From a
system-level perspective, the P1dB compression point impacts
both the dynamic range and error vector magnitude (EVM) of
the PA. As reported in [7], at mm-wave frequencies, the PA
is required to deliver a high and linear output power whilst
maintaining efficiency. On scaled semiconductor technology
and at a high operating frequency, external linearization may
be required [29], such as predistortion.

Predistortion (analog or digital) is used to correct phase and
gain distortions or to cancel out inter-modulation products.
Predistortion relies on compensation coefficients that adjust
the input signal before it is amplified to ensure linearity
at the output. Predistortion coefficients are typically stored
and managed by a digital controller and their performance
is related to the quality of the models. In traditional
polynomial-based predistortion, the inverse gain model of
the PA is represented by a limited number of coefficients.
The performance results are reasonable but limited to the
number and quality of the stored algorithms. Gain, phase,
and temperature variations are typically monitored and
adjusted for performance stability. Adaptive predistortion
controllers [11] can detect nonlinearity in a system and
iteratively adjust predistortion coefficients to minimize
residual error. There are however second- and third-order
problems that arise from this technique [11]. A key problem
is that such a technique requires several iterations to converge
to the nominal predistortion coefficients and during this time,
performance can be degraded. This requires environment-
specific data structures and algorithms to be stored for
each successful steady-state condition, leading to increased
storage requirements and latency during lookup.

AI-assisted PAs rely on programmable and reconfigurable
operations to adaptively optimize performance over antenna
voltage standing-wave ratio (VSWR) variations [9] that lead
to changes in the phase and gain of the PA [30]. By recon-
figuring the gain and phase-offsets using the AI digital
subsystem, improved linearity is obtained when external
factors impact antenna VSWR [31]. AI-assisted optimization
of P1dB aims to mitigate performance degradation during
operation through real-timemachine learning in the dedicated
digital subsystem [32]. Another important requirement is
the use of complex modulation schemes such as quadrature
amplitude modulation (QAM) in PAs to achieve high data
rates. Using QAM requires the PA to process signals that
are characterized by a substantial peak-to-average power
ratio (PAPR). Introducing complexity into the design and
optimization, the designer faces challenges. The PA can
no longer rely only on load-pull techniques to achieve the
desired performance at a specific output power level. This

complicates the task of acceptable operation across a wide
range of input power levels. Mm-wave and THz PAs can
use power combining to achieve modest power levels. This
creates a complicated impedance strategy during load-pull
optimization. As a result, careful and tedious design of
impedance networks is needed to ensure optimal power
delivery. One approach to alleviate this is to utilize tunable
transmission lines at the outputs of several parallel-combined
PA cells to dynamically modulate the load impedance [33].
A future approach could entail a sizeable set of simulated

data that is used to feed an algorithmic model to determine
the effective load impedances at specific power points.
Theoretically, this model should be able to determine the
features of the design parameters that are not immediately
obvious to the designer or the simulation tool. In the context
of an AI-assisted PA, the operation demands utilizing a pre-
trainedmodel to control load-modulating circuit components.
Furthermore, enhancing the efficacy of the model can
be accomplished through the incorporation of empirically
acquired data pertaining to temperature variations.

B. MIXER
The performance during baseband signal conversion to a
required RF signal, performed by the mixer, affects system
performance with respect to inherent trade-offs concerning
conversion gain, noise figure, linearity, and isolation. These
parameters impact the sensitivity of the transceiver, its
dynamic range, and its noise figure. Mixer performance,
energy efficiency, and form factor play a key role during
its design phase, and numerous methods and techniques
are used to optimize trade-offs. To achieve adaptability and
reconfigurability of mixers, two primary methods are used,
feedback and control as well as traditional design optimiza-
tion through modeling and simulations. Like adaptive control
systems in other transceiver subsystems, feedback and control
monitors and measures the performance of the mixer and
controls parameters such as bias voltage and impedance,
to adapt to variations in operating conditions. These digital
subsystems are limited by their computing resources and
the quality and number of algorithms. This adds significant
cost and complexity to mixer design and implementation.
Extensive design optimization and simulations lead to better-
performing mixers under the intended operating conditions
but are again limited by resources, time, complexity, and
effort. Neither of these techniques allows predictive adaptive
functions or improvement of the ‘‘statically’’ captured
algorithms or design choices.

AI presents the ability to improve the performance of
mixers by optimizing the mixer design and parameter
selection through large datasets. These datasets aim to
identify the optimal mixer topology, component values,
and operating conditions for a given set of performance
requirements. Such AI-assisted mixer designs can compare
trade-offs from datasets in a relatively short amount of time
that would otherwise not be possible for a human designer.
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Learning how conversion gain, noise figure, linearity, and
isolation are impacted in topologies and under operating
conditions, while constantly learning from and improving
the datasets can lead to improved performance, as reported
by [16], [34], and [35]. As with feedback and control
systems, AI-assisted mixers also require large and accurate
datasets that may be difficult and time-consuming to
generate.

C. FREQUENCY SYNTHESIZER
To generate an RF oscillation frequency, the frequency
synthesizer is implemented using a stable oscillator, typically
a VCO, and a phase-locked loop (PLL). At mm-wave and
THz frequencies, the oscillator and PLL are impacted by
limitations and performance degradations as a function of the
high operating frequencies. Most notable and associated with
high-frequency synthesizer operations is increased phase
noise, and, since mixers require fairly high input drive,
generating frequencies with sufficient power. This occurs
due to high-frequency noise sources in both the oscillator
and the PLL circuits. As a result, the increase in phase
noise leads to frequency instability, and the sensitivity
and range of the system are negatively impacted. High-
frequency synthesizers also typically have higher power
consumption due to the increased energy needed to maintain
oscillation, higher parasitic losses, and significant transistor
gate capacitances. Frequency synthesizers at mm-wave and
THz frequencies cannot achieve the same levels of frequency
tuning as lower frequency components due to the higher
parasitic effects and limitations on the resonator quality
factor. For reconfigurability through control voltage and
varying frequency band of the VCO, AI-assisted configu-
ration datasets are required to intelligently reconfigure the
frequency synthesizer while maintaining operation integrity.
Apart from using AI and ML to adapt to the operating
environment, the frequency synthesizer also lends itself
to benefiting from AI-assisted passive component design
and reconfigurability. Although the frequency synthesizer
traditionally benefits from the reconfigurability of internal
voltages and currents, the effects, especially in mm-wave and
THz operation, are limited. Introducing intelligence to the
passive devices, both during the design and operating phase,
assisted by AI-generated circuits and components, leads
to more degrees of freedom in the frequency synthesizer.
Furthermore, the oscillator in a PLL typically dominates
the circuit simulation time. Due to the higher degree of
nonlinearities the processing requirements for oscillators can
be demanding. Behavioral modeling [10] can reduce the
complexity and time of oscillator simulation, and continuous
learning further increases performance without impacting the
complexity, assuming adequate datasets.

At mm-wave and THz frequencies, low-noise VCO
topologies are available, including cross-coupled, LC, ring,
injection-locked, coupled resonator, and subharmonic VCOs.
Adding intelligence to these topologies may result in a time
and cost reduction for designers. An ML technique for VCO

design is proposed in [36]. The proposed VCO is process,
voltage, and temperature (PVT) robust and has an expanded
linearity range. A model is trained using an ML algorithm
to predict the behavior of the VCO under various PVT
conditions, resulting in a more robust and efficient circuit.
The experimental findings reveal that the VCO has a greater
linearity range and less phase noise than conventional VCO
designs and enhances the efficacy of the integrated circuits.

In [35], VCOs are designed with high linearity and a
wide tuning range by using neural networks to optimize the
design. The Mamyshev oscillator cavity, which can produce
high-energy ultrashort pulses based on the PSO algorithm
is proposed in [37]. The experimental results showcase the
effectiveness of the PSO algorithm, leading to a substantial
enhancement in pulse quality and energy efficiency.

At high frequencies, HBTs are often used as the active
components in VCOs. Through ANNs, the performance of
these HBTs can accurately be predicted. The method for
modeling the small-signal behavior of InP HBTs using ANNs
is proposed in [38]. ANNs have the capability to offer precise
predictions of device behavior without relying on extensive
simulations or measurements. Moreover, ANNs possess the
capacity to learn intricate relationships between input and
output variables, enabling them to capture complex patterns.

As noted in this paper, passive components behave differ-
ently atmm-wave and THz frequencies due to higher parasitic
effects. A neural network (NN) method for modelling
and verifying the parasitic effects in RF and mm-wave
IC designs is reported in [39]. It proposes an NN for
modeling parasitic effects and extracting parameters from
measurement data, employing a feedforward NN architecture
and backpropagation algorithm. The proposed method is
validated using multiple test cases and reportedly offers more
accurate modeling and operating performance than existing
methods. In addition, the potential for automated design
optimization and parameter extraction from this method
is discussed in [39]. Reference [36] presents a promising
method for resolving the challenge of parasitic modeling and
extraction verification in IC design using neural networks.

AI algorithms have the capability to explore an extensive
design space for VCOs, effectively identifying dimensions
and forms that maximize quality factors, minimize losses, and
optimize component matching. Additionally, AI can forecast
the performance metrics of passive components and VCOs,
including quality factor, resonant frequency, and insertion
loss based on their geometries, materials, and operating
conditions.

D. MODULATOR AND DEMODULATOR
Modulation and demodulation techniques play an important
part in transmitting, receiving, and correctly representing
information. As the operating frequency increases, these
subsystems increase in complexity due to the higher signal
bandwidth, losses (both internal and external), and SNR.
The need for improved and advanced modulation and
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demodulation techniques at mm-wave and THz frequencies
has significantly increased. To avoid a continuous increase
in complexity of both the circuits and algorithms, AI-
assisted modulators and demodulators can alleviate these
requirements. They can provide reconfigurability to mitigate
(or replace) the proportionality of complexity and increased
frequency. AI and ML algorithms that have learned and are
learning from available datasets can adapt the modulation or
demodulation scheme to optimize system performance [40].
As modulation schemes increase in complexity, power
consumption also increases. The number of operations
required to encode or decode the information increases,
leading to higher power consumption. As a result, the system
power requirements also rely on the modulation scheme and
can benefit from dynamically adjusting to a less complex
scheme (if real-time operations or ambient conditions allow
it). Furthermore, temperature and humidity that affect
radio signal strength in outdoor wireless networks [41]
could be used as an advantage. AI and ML algorithms
that incorporate the requirements for transmit power and
frequency diversity based on temperature and humidity
can improve the efficiency of high-frequency outdoor
communications.

Another benefit of using AI and ML in the modulation
and demodulation process is the ability to extract data from
the signal faster, if the model can recognize and predict
the modulation scheme and the sequences to decode the
information. For example, automatic modulation classifi-
cation (AMC) [42] reportedly can detect the modulation
scheme with lower overheads in the signal and identify
suspicious or unwanted signal activities. In [42], AMC is
achieved by extracting spectral features as a function of
SNR to achieve 97% classification accuracy. Specifically
related to 5G, [42] summarizes the algorithms associated to
a combination of automatic modulation recognition (AMR
- like AMC) and deep learning (DL) in the 5G physical
layer [42]. The AMR likelihood ratio (LR), essentially
a multiple-hypothesis problem, involves significant effort
in constructing a likelihood function and selecting an
appropriate threshold. Computing power is a limitation of
this technique. According to [42], the feature-based (FB)
recognition algorithm is a key enabler of AMR for low
computational complexity and high accuracy. FB recognition
in its traditional form also has limitations, evident in
complex communication systems and if the SNR is low.
Researchers still prefer using the FB recognition algorithms
as a base for future development. The FB recognition method
does not depend on reducing the likelihood function of a
signal but classifies the scheme based on the classification
accuracy of previous samples. Also, for the FB recognition
method, the signal features must be appropriately chosen
to create high-quality classifiers. In fading channels, this
method struggles with fluctuations that can lead to incorrect
identification.

AI-based DL presents itself as a good method in modu-
lation and demodulation recognition, albeit requiring large

and accurate datasets. DL techniques are more robust than
traditional AMC methods and often lead to more accurate
results. DL is also a form of FB recognition; however,
DL is capable of routinely extracting and classifying the
features of the signal, based on prior information. Although
there are numerous neural network deep learning techniques,
according to [42] the CNN and the recurrent neural network
(RNN) methods are popular for ANR. CNN consists of
multiple convolutional layers, pooling layers, and fully
connected layers [42]. Signal input features are extracted
using the convolutional layers, while the pooling layer is
used to downscale the high dimensionality of the convolution
process. This can increase the speed of computation. The
fully connected layer is used to combine extracted local
features into global features and compute the classification.
CNN works well with images and therefore can be applied
as an AMR based on modulation constellation diagrams
or eye diagrams. RNN uses recursive connections with
feedback to the previous layer. The input to an RNN is
information linked to time. Information is either classified
as a valid input to the memory neuron, an output signal,
or information that can be forgotten. Once decided, this
information can be passed on to the next moment in time,
where the process is repeated. As a result, RNN works well
with audio, text sequences, and time series information. Since
communication signals change with time, RNN can also be
applied to modulation recognition. If sample size, or datasets,
are limited, DL techniques have a lower likelihood of
correctly identifying the modulation scheme and require
forms of data enhancement or a combination of transfer
learning and DL to overcome this limitation.

E. SUMMARY
Table 3 presents a summary of the performance variation(s) in
analog transceiver subsystems as a function of reconfigurable
parameters. To realize intelligent ICs, the digital subsystem
would be responsible for analyzing and learning from these
parameters to adapt and predict behavioral changes.

TABLE 3. Analog transceiver subsystem performance variation(s) and the
AI-assisted reconfigurable parameters to mitigate performance
degradation.

The following section reviews the reconfigurability of
front-end passive components to use channel intelligence and
create an IIS.
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VI. CHANNEL RECONFIGURABILITY
A popular research focus area of 6G transmission and
THz frequencies is larger antenna arrays in multiple-input-
multiple-output (MIMO) configurations. At both mm-wave
and THz frequencies, signal transmission is largely bound to
LoS and pencil beam transmissions. Conceptual architectures
such as transmitting array antenna (TMA) and reflecting
array antenna (RMA) [43] have played an important role in
themanipulation of signal amplitude, phase, and polarization,
specifically in wireless sensor networks (WSNs). In parallel
with 6G research, RIS (also referred to as software-controlled
metasurfaces) and integrated sensing and communication
(ISAC) [5] have also received increased attention. These
appear to have an ability to decrease (not eliminate) the
requirement for LoS and compensate channel effects [44]
without having to increase transmission power. To improve
SNR [44], RIS-assisted MIMO uses many passive reflective
units that adjust the phase of incoming waves and reshape the
wireless propagation path in cases where LoS is blocked [28],
[44] RIS can also vary in its shape (during the design phase),
depending on the application [45]. RIS provides a LoS
path for radar sensing, concentrates signal power on Rx [5]
and moderates Doppler shift in vehicular communication
systems [46] to increase data rates, efficiency, and stability. Its
manufacturing cost can be considered lower when compared
to implementing multiple base stations [28]. RIS capabilities
can also be extended by amplitude-RIS (ARIS) and fully-RIS
(FRIS) [47] towards increased channel orthogonalization.
A brief description of these capabilities will be presented in
this section.

As described in [45], RIS can be classified into three types,
namely:

1. Reflector type, where the RIS only reflects incident
signals towards Rx, on the same side of the base station.

2. Transmissive type, if the received/incident wave pene-
trates the RIS and is transmitted to Rx on the opposite side
of the base station.

3. Hybrid type, a combination of the above where the signal
is split into a transmitted and a reflected portion.

Furthermore, according to [45], RIS is typically cate-
gorized as either for wireless communications to improve
spectrum efficiency, coverage, and energy efficiency, or for
RF sensing to improve security, safety, and reliability. RIS
also intelligently manages these types of networks [48]
through software algorithms and analytical models. Fig. 3 is
a simplified representation of a RIS propagation channel.

In Fig. 3, the transmitter and the receiver are intelligent
ICs as proposed in Fig. 1b. The RIS in Fig. 3 is connected
to an AI-assisted digital subsystem that continuously learns
from data and information generated by the RIS. There are
two signal paths demonstrated in Fig. 3. The first is the
direct channel between Tx and Rx, or LoS, indicated by
hd . Secondly, the wireless channel from Tx to the nth RIS
element is denoted by hA,n and the component from the nth

RIS element to Rx is denoted by hB,n, which constitute the

FIGURE 3. A simplified representation of a RIS propagation channel.

signal components that can be dynamically adjusted through
the RIS. The final expression for the transmission between Tx
and Rx that originates from a vector sum of multiple paths is
provided in [48].

From the simplified representation of a RIS propagation
channel presented in Fig. 3, it appears that a combination of
RIS and AI can result in intelligent propagation channels for
both mm-wave and THz communications. Such a channel
would rely on the ability of RIS to dynamically adjust
the reflection coefficients of its individual elements, and
as a result, vary the amplitude and phase of the EM wave
that passes through it. AI can be employed to adaptively
optimize the RIS configuration to maintain or improve
certain performance metrics. The most common performance
metrics that the RIS aims to optimize are SNR and bit
error rate (BER). These performance parameters are typically
influenced by - and to a higher degree for mm-wave and THz
waves - physical obstacles, EM interference, or multipath
fading. AI can therefore be used to continuously monitor
the performance of the channel and intelligently adapt
RIS configurations as the propagation channel fluctuates.
Through AI integration in RIS, some key advantages are:

• Capacity and data rates can increase with the efficiency
of the wireless communication system through opti-
mization of the RIS.

• Coverage and reliability can be increased by dynam-
ically adapting to the immediate environment and
reacting to physical obstacles or EM interference.

• Energy consumption of the wireless transceiver can be
reduced byAI-assisted RIS through optimization of both
power and bandwidth.

• Through intelligent transmission scheduling, energy
consumption can be further optimized.

• RIS is a cost-effective solution when compared to more
traditional techniques such as base station staggering.
By implementing AI, further cost reductions can be
achieved as the requirement for more, or more complex,
antennas is reduced.

Although RIS presents several unique advantages for mm-
wave and THz communications to be used in future 5G as
well as 6G developments, there are also disadvantages and
criticisms to be considered, namely:
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• Integrating RIS and AI is a relatively complex task and
requires skilled expertise to accomplish. Additional dis-
ciplines (skilled software engineering and mathematical
analysis) are required to implement such a strategy.

• Large datasets and sufficient processing capabilities are
required to realize such a system. These datasets are
typically generated over long periods of time.

• RIS (combined with AI) can improve wireless com-
munication performance, however, for long-range com-
munication, at mm-wave and THz, AI-assisted RIS
would still be limited. Compared to massive MIMO, its
superior ability to yield spatial multiplexing and reduce
EM interference has not yet been proven.

• AI-assisted RIS, where algorithms are key, can lead to
security concerns. Regulatory bodies will in time be
required to evaluate the potential impact on privacy and
security.

• The commercial and financial gains of using RIS need
to be substantial for the trade and commerce industries
to invest in and innovate in this space.

With regards to future 5G technologies and the develop-
ment of 6G, AI-assisted RIS propagation channels remain a
key enabling technology to achieve IIS.

In summary, the drive towards 6G transmission has
focused on the utilization of THz frequencies and larger
and more complex antenna arrays in MIMO configurations.
At mm-wave and THz ranges, LoS, and pencil beam
transmissions dominate, where concepts like TMA and
RMA can manipulate signal properties. Innovations like RIS
and ISAC leverage AI to mitigate LoS requirements and
compensate for channel effects, enhancing signal quality and
stability. RIS-assisted MIMO utilizes passive reflective units
to optimize signal paths, while RIS can also take on various
shapes during design. RIS, categorized for both wireless
communications and RF sensing, is a cost-effective solution
for improved efficiency, coverage, and energy consumption
when integrated with AI. However, complexities and security
concerns necessitate careful implementation. Ultimately,
AI-assisted RIS emerges as a key enabler for achieving
IIS in the context of future 5G and 6G technologies.
To achieve reliable, efficient, and effective reconfigurability,
the enabling technologies need to be identified and chosen
based on various merits. This is an important step to realize
intelligence in current (and ideally mature) technologies as
opposed to relying on next generation implementations.

The following section reviews additional enabling tech-
nologies for reconfigurable transceivers.

VII. ENABLING TECHNOLOGIES FOR RECONFIGURABLE
TRANSCEIVERS
This section provides a review of key technologies and
methodologies of high-frequency communication systems,
particularly in the context of 5G and the forthcoming 6G land-
scape. It reviews the possibility of intelligently harnessing
EDA tools and using AI for active and passive component
modeling, circuit synthesis, and optimization processes. This

can lead to enhanced design quality, reduced cycle times,
and lowered engineering andmanufacturing costs, potentially
at the cost of dataset generation and skills development.
Moreover, this section provides another brief survey of RIS
with AI integration specifically towards spectrum efficiency,
improved coverage, and energy consumption. Finally, the
concept of softwarization for dynamic adaptation in 6G
access networks and harnessing AI, SDN, NFV, and cloud
computing principles is reviewed and presented.

The following paragraph introduces the concept of AI and
ML in EDA tools.

A. EDA TOOLS
Incorporating AI into analog RFIC design can bring sig-
nificant advantages when leveraging EDA tools. EDA tools
can perform component modeling, circuit synthesis, and
automated optimization. These tools enable the comparison
of various architectures and design parameters, for example
transistor sizes and biasing, to achieve optimal efficiency and
desired performance levels. EDA tools with AI capabilities
should simultaneously reduce the duration of the design
cycle and improve the design quality, lowering the cost and
increasing yield. Moreover, these tools reduce reliance on
scarce and costly analog IC design skills, mitigating the
challenges associated with skill availability in the field. The
performance of analog ICs is related to multiple parameters
that can be interdependent and competing. AI algorithms
could optimize these parameters beyond the limitations of
traditional methods, offering the optimal settings necessary
to achieve the desired functionalities of the transceiver.

The design flow and EDA tools for analog design are
typically complex and the design phases are correlated [49].
Several design tasks, such as partitioning, floor planning,
placement, routing, and compaction are manual processes.
Limitations in EDA tools and the large number of interde-
pendent design parameters add to the complexity of analog
design. The conventional approach to analog modeling and
design involves reducing complexity through circuit parti-
tioning, assuming that certain dependencies are negligible,
and focusing on the most significant ones. It also typically
assumes linearity in the circuit. This approach can result
in suboptimal and simplified designs. Considering many
architectures and the effects of various design parameters and
nonlinearities on performance, AI algorithms and datasets
can potentially achieve optimal and efficient designs.

Integrating these datasets into EDA tools is, however,
time consuming and in many cases, application specific. The
success of AI and ML methods depends on diverse and
sizable training data sets. Reference [50] reports a dataset of
∼2 million simulations to train a generative neural network.
While it is desirable to obtain vast amounts of data, computa-
tional burden could also be a limiting factor. Several methods,
such as online learning [51] and transfer learning [52] have
been proposed to alleviate this challenge. Another critical
aspect for AI andML implementation is choosing appropriate
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tools. Practical computational constraints (such as the lack
of large datasets) could rule out neural networks. Conse-
quently, other ML tools such as Kriging and support vector
regression have gained attraction and yielded successful
results [53].

Modern EDA tools and designers do not yet take full
advantage of AI-assisted designs as these datasets and their
integration into EDA tools are still developing. Research on
analog synthesis using the genetic algorithm (GA) can be
traced back to the 2000s [54]. Approaches of generating
circuit netlists using the GA and circuit-building languages
were proposed [55], [56]. Other approaches in the synthesis
of linear and nonlinear circuits are found in [57], [58],
and [59], and a list of papers on GA-based optimization
is given in [60]. As partitioning, floor planning, placement,
and routing tools as earnable multi-objective evolutionary
algorithms and AI have become major research topics, EDA
tools based on ML are expected to grow.

B. ACTIVE COMPONENTS
A core component in any transceiver, and in any IIS, is the
transistor, the primary active component that determines
the switching speed of the circuit. The switching speed
of the transistor is a function of its underlying technology
(material and size, for example) and its electrical properties.
Achieving mm-wave or THz wireless communications is
not possible if the transistor is not capable of switching at
the desired speeds. As the transition to 6G provisions for
THz telecommunications, identifying the potential enabling
active components is key. Since the compounded semi-
conductors indium phosphide (InP) and silicon germanium
(Si1−xGex) transistors are reaching fT above 1 THz and
fmax above 2 THz, these technologies present themselves
as underlying technologies for new-generation wireless
networks. The following paragraphs further explore enabling
active components, with no specific mention of AI or ML in
its development.

To quantify the viability of a transistor as an enabling
technology in high-frequency (mm-wave and THz) operation,
some key parameters should be considered. Importantly,
it is not always practical to solely consider performance
parameters, but external factors should also be included
such as cost, complexity, availability, and reliability. A rel-
atively straightforward and electrical approach to defining
a transistor is by looking at its transition frequency, fT ,
its maximum oscillation frequency, fmax , and its collector-
emitter breakdown voltage (BVCEO). fT is the frequency
where the current gain of the transistor reaches unity [61],
therefore where the transistor can be used as an amplifier
with linear current gain (typically in the common-emitter
configuration to achieve its maximum frequency response).
fmax is the frequency where the power gain of the transistor
reaches unity, therefore the maximum frequency where
the transistor can be used as an oscillator or frequency
multiplier (typically in the common-base configuration to

achieve maximum power). BVCEO describes the maximum
voltage that a transistor can withstand across its collector-
emitter junctions before breakdown occurs, a function of
its doping concentration – therefore an important parameter
to describe its power handling capabilities. fT and fmax
(typically, fmax is higher than fT ) can be verified in
harmonic distortion analyses and power and noise figure
measurements [34].

Silicon has dominated microelectronic circuits since
1965 and as a result, has also been extensively researched
ever since. If maturity is the primary consideration, silicon
technology nodes are the most common. However, silicon
does not have the best performance for high-frequency
wireless communications, especially when considering the
demands of current and future wireless solutions. Compound
semiconductors, specifically III-V compounds, such as
GaAs, InP, and SiGe alloys, have already (since 2000)
demonstrated superior high-frequency performance as well
as additional unique properties, albeit they are not as mature
as pure silicon. Increasing research into these technologies
and a rapid drive toward their maturity have made these
alloys more viable alternatives in mm-wave and THzwireless
communications.

SiGe active components, particularly the HBT, are a
highly feasible candidate for high frequency (mm-wave and
THz included), high bandwidth, and high data rate wireless
communications. The alloy, formed by adding germanium
to silicon during the material processing phase, increases
the carrier mobility, decreases noise during operation, and
increases the cutoff frequency of the transistor, as has been
presented in [7], [16], [34], [62], [63], [64], and [65]. The
bandgap and electron mobility of Si1−xGex depends on
the material composition and doping level of the material,
ranging between pure silicon (x = 0) and pure germanium (x
= 1). At x = 0, the bandgap and electron mobility are 1.12 eV
and 1400 cm2/V.s, whereas at x = 1, these are 0.66 eV and
1900 cm2/V.s, respectively. As a result, its ability to operate at
higher frequencies when compared to traditional silicon and
its higher gain at lower power consumption has spearheaded
SiGe towards becoming more mature. SiGe transistors are
promising for use in 6G communication systems. SiGe
transistors can be integratedwith silicon components on-chip,
also referred to as BiCMOS technology, and enable complex
and highly integrated circuits at high-volume production.
There is, however, more research required to determine the
long-term maturity and validity of SiGe as an enabling
technology in 6G communications. In [62] a SiGe HBT
with fT , fmax , and BVCEO of 505 GHz, 720 GHz, and
1.6 V is presented by optimizing the vertical profile of
the HBT in comparison to earlier technologies presented
by the same authors. As an industrial process, the progress
presented by [62] shows a significant concept for next-
generation SiGe HBTs and is an enabling technology in
future wireless communications. Comparative fT and fmax in
CMOS are presented in [63]. In TCAD, [63] compares the
fin-shaped field-effect transistor (FinFET) with the nanosheet
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FET (NSFET) in terms of its analog RF applications. The
transistors are designed through a carefully controlled 5 nm
gate-length CMOS transistor with a dual channel structure
and a high-k/metal gate stack. The NSFET in [63] presented
a fT and fmax of 441 GHz and 604 GHz, whereas the FinFET
was 413 GHz and 555 GHz, respectively. Also considering
its noise and power handling capabilities, [63] found that the
NSFET CMOS transistor was superior. When comparing the
outcomes presented in [63] to the current capabilities of SiGe,
although these are comparable in performance, it should
also be noted that the CMOS NSFET is not necessarily
representative of its real-world performance. Furthermore,
the complexity and cost of the transistor in [63] are likely to
be higher than that of a SiGe HBT.

InP is another III-V compound semiconductor that presents
as a promising high-frequency, low-noise, high breakdown
voltage technology for use in mm-wave and THz-based
wireless communications. InP inherently supports high
carrier transport and low parasitic capacitances with its
1.35 eV direct bandgap and 5000 cm2/V.s electron mobility
at room temperature. InP additionally presents thermal and
mechanical properties that enable it to be used in high-
temperature and high-power applications. InP-based high
electron mobility transistors (HEMTs) have also demon-
strated superior noise performance and power density. These
characteristics are key in both low-noise amplifiers (LNAs)
and power amplifiers (PAs). In [65] a double HBT and in [64]
a single HBT InP-based transistors are presented with fT
of 428 GHz and 509 GHz, respectively.

C. PASSIVE COMPONENTS
In the passive domain, the focus of this paper largely centers
around the innovative integration of RIS, a critical facet in
the realm of high-frequency communications. The utilization
of RIS in conjunction with AI promises transformative
enhancements in terms of spectrum efficiency, coverage, and
energy consumption. By dynamically adjusting reflection
coefficients, RIS intelligently shapes propagation paths,
mitigates performance degradation due to obstructions or
interference, and adapts to the immediate environment.
This amalgamation of RIS with AI can amplify wireless
communication capabilities, while also presenting potential
cost savings compared to traditional methods. The pivotal
role of AI-assisted RIS propagation channels in achieving IIS
is underscored in references in this paper and reviewed in the
previous section.

D. SOFTWARIZATION
6G access networks are expected to serve large numbers
of distinct devices with traffic of up to 1 Gbps per square
meter and latencies as low as 0.1 ms. Numerous human-type
and machine-type applications are envisioned, each with its
own quality of service (QoS), traffic, security, and latency
requirements. As an example, robotic surgery necessitates
high reliability and low latency, while unmanned vehicle
applications rely on seamless and rapid handovers.

The system intelligence in the edge network and end
devices cannot remain static due to significant and dynamic
variations in wireless communication channels (such as the
impact of blockage in small cells at mm-wave frequencies),
traffic types, reliability considerations, user behavior, device
mobility, energy consumption, and cybersecurity require-
ments. 6G supports the concept of connecting intelligence
rather than connecting objects to achieve high efficiency,
flexibility, portability, and automation. This results in high
levels of computing and ML in edge networks. The range
of communication scenarios in such a network is virtually
boundless, making it impractical to address them effectively
with ‘‘static’’ software solutions. Therefore, the concept of
softwarization emerges as a solution [66]. This concept,
along with virtualization, distributed intelligence, and ultra-
densification, is already available in 5G networks [66].
Softwarization combines SDN, network function virtualiza-
tion (NFV), and cloud computing (CC) principles.
Softwarization is a new concept of intelligence in 5G

and 6G networks, specifically related to its ability to adapt
to its environment (communication channel, interference,
obstacles, mobility), applications, and other dynamic changes
within the network. To enable rapid adaptation, AI models
should be capable of making fast decisions without the
need for supervised training. They should possess the
ability to adapt to dynamic environments and converge
swiftly. Moreover, the hardware infrastructure should be
programmable, allowing on-demand downloads for optimiza-
tion and integration of intelligent modules. Such modules
consist of optimization software and AI modules. In future,
these modules could be cloud/edge-computing enabled and
constitute Generative AI capabilities.

SDN allows decoupling the network control plane from
the data plane [67] (control functions are centralized and
withdrawn from the infrastructure), while NFV separates
design, deployment, and management functions from propri-
etary hardware. AI implementation in edge networks offers
the advantage of offloading computations and storage from
a centralized cloud. This approach enhances bandwidth and
reduces latency since edge networks are in closer proximity
to end devices. Additionally, storage and processing of
private information in edge networks rather than com-
mercial clouds can reduce potential security risks. Certain
computer and storage-intensive AI and ML algorithms
can still be handled by a centralized cloud. The SDN,
NFV, and CC principles enable high flexibility, efficiency,
automatic network management, and on-demand resource
provisioning [68].

A software-based high-level architecture is proposed
in [66] where ML is performed by multi-armed bandit
(MAB) algorithms. This architecture is structured into three
layers: the data plane, the control plane, and the application
plane [66]. The data plane encompasses diverse network
infrastructures like base stations, wireless LAN access points,
and end devices such as sensors, IoT devices, and user
terminals. The control layer houses GPUs for parallel
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processing of software modules within the application layer.
Within the application layer, optimization and AI modules
for various applications are deployed. These modules handle
tasks such as network resource allocation, quality of service
(QoS), and optimization algorithms for both edge networks
and end devices.

The architecture in [66] is versatile and provides better
performance than in cases where AI is embedded in various
devices, such as in [69]. This architecture is validated by
simulation in two scenarios based on MAB algorithms:
neighbor discovery and selection (NDS) in a device-to-device
(D2D) network as well as in an aerial gateway selection in a
UAV network [69].
Various research teams have presented and proposed

solutions that address intelligent adaptations of accessible
technologies. The following section highlights some of these
advances.

VIII. ADVANCES IN MM-WAVE AND THZ ICS
Mm-wave and THz integrated technology has significantly
evolved over the past decade, advancing telecommunications,
sensing, and imaging. This section presents a review of the
transceiver technologies and strides made in AI and ML
to bridge the ‘‘THz gap’’ and the complexities of signal
generation and detection in the 0.1–3.0 THz frequency range.

Collaboration between electronics and photonics is crucial
to harness the potential of THz integrated systems. The THz
gap, a domain between microwave and optical frequencies,
has suffered from inefficient signal generation and detection
methods. Laser-based technologies, utilizing femtosecond
lasers and lightwave-to-THz converters, have created new
integration possibilities and renewed interest in mm-wave
and THz ICs. While these techniques have been successful,
their bulkiness and high costs have necessitated compact and
efficient chip-scale THz solutions [70].
For example, dynamic waveform shaping has emerged

as a transformative tool for reconfigurable radiated periodic
signal generation with picosecond time widths [71]. This
technique allows for precise manipulation of THz (input)
waveforms and enables adaptable signal synthesis. An illus-
trative example of this advancement is found in a scalable
architecture presented in [71]. This architecture generates
and radiates sub-THz periodic waveforms by combining
radiated EM fields of fundamental and multiple harmonic
frequencies. By controlling the amplitudes and phases of
these harmonics, sharp pulses with picosecond time widths
can be dynamically shaped in free space, enabling high
temporal precision [72]. This advancement holds significant
potential for applications requiring ultra-fast and reconfig-
urable signal generation, underscoring the interdisciplinary
synergy between waveform engineering and THz-integrated
technology. Furthermore, by converging disciplines such
as ‘‘solid-state and photonic devices, 2D materials, het-
erogeneous integration, and system demonstrations’’ [73],
researchers have already developed multifunctional and
reconfigurable architectures [73]. The focus of THz devices

has shifted towards more holistic system-level properties,
promoting versatility and programmability.

Silicon-based technologies, exemplified by CMOS and
SiGe, offer high integration levels but encounter limitations in
THz frequency performance (fmax). In contrast, III–V devices
such as InP-based HEMTs and HBTs have excelled in power
generation beyond the 1 THz threshold. SiGe-based devices
show promise for future improvements in fmax , potentially
exceeding 1 THz, while heterogeneous solutions combining
III–V and silicon are envisaged for higher frequencies [73].

The future landscape of THz integrated systems is
defined by emerging applications that hold transformative
potential. THz imaging and sensing hold promise for
non-destructive quality control, 3D imaging, radar, and
gesture recognition [74] across diverse sectors. These
applications demand compact, efficient, high-performance
sensing devices, positioning integrated circuit technology as
a pivotal enabler [74]. THz applications center around the
development of reconfigurable chip-scale systems capable of
spectrum, radiation pattern, and polarization manipulation.
For example, THz spectroscopy offers the potential for
advanced chemical composition identification. According
to [74], AI and ML could advance real-time THz imaging
applications, especially in the 100–300 GHz range, and
benefit from computational-based integrations [74].

THz integration extends to wireless communications,
with prospects for wireless backhaul, data centers, short-
range high-bandwidth links, and satellite communication.
Challenges related to ‘‘circuits and communications archi-
tecture, channel estimation, and resource management’’ drive
innovation [75].

In summary, the landscape of THz integrated technology
has undergone a profound transformation. Recent advances
have propelled the field beyond historical limitations, paving
the way for diverse applications in telecommunications,
sensing, and imaging. As interdisciplinary collaboration
continues and challenges are addressed, the future of THz
integrated systems holds great promise for reshapingmultiple
industries. The incorporation of dynamic waveform shaping
techniques further enhances the potential for reconfigurable
signal generation, adding a new dimension to the capabilities
of THz integrated technology.

IX. CONCLUSION
Analog transceivers operating at mm-wave and THz fre-
quencies are important within the context of 5G and
6G telecommunications. This has ushered in a new era
of challenges and opportunities. These frequencies enable
broadband, low-latency telecommunications, but have inher-
ent limitations, such as high propagation losses, high cost,
and complexity. Conventional transceivers could adapt to a
dynamic environment and harness the full potential of high
frequency bands if design and operational intelligence is
introduced.

This paper presents a novel and unified survey of intel-
ligent analog transceiver subsystem capabilities. To address

VOLUME 12, 2024 21415



J. W. Lambrechts et al.: Intelligent Integrated Circuits and Systems for 5G/6G Telecommunications

transceiver subsystem limitations at high-frequencies, this
paper reviews research on AI and ML integration into analog
and mixed-signal microelectronics. By equipping analog
transceivers with operational intelligence through digital
subsystems, it points to the possibility of creating intelligent
transceivers. Such ICswould be characterized as configurable
and context-aware transceiver subsystems that adapt to
variations in performance to maintain or enhance system
efficiency. This system would have the capacity to learn,
understand, predict, and react to real-time environmental
and operational changes. System adaptability and reliability
could therefore be improved without more expensive and
complex technologies, harnessing the full potential of current
implementations.

Furthermore, our proposal extends beyond the confines
of the transceiver itself, recognizing that the propagation
channel, often interfaced through passive components, plays
a crucial role in system performance. By introducing
intelligence into these interfaces, passive components would
dynamically adjust to variations in the propagation channel,
and it could be possible to realize a true IIS.

Finally, the implementation of intelligent and reconfig-
urable active and passive components can reduce analog
design complexity and potentially lower the cost of realizing
next generation systems. As a unified approach, with
significant impetus of cloud/edge computing and Generative
AI, the paradigm would revolutionize the approach towards
mm-wave and THz transceiver design, ensuring efficient,
reliable, and adaptable communications. Recognizing that
Generative AI has societal implications, this paper refers to
prior work on ethically aligned design. In the broader notion
of IIS, including 5G and 6G, intelligence must remain within
this societal bound.
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