
Received 1 January 2024, accepted 21 January 2024, date of publication 2 February 2024, date of current version 20 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361478

Ricci Planner: Zero-Shot Transfer for
Goal-Conditioned Reinforcement
Learning via Geometric Flow
WONGEUN SONG AND JUNGWOO LEE , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea

Corresponding author: Jungwoo Lee (junglee@snu.ac.kr)

ABSTRACT The long-horizon problem has been a persistent challenge in the field of reinforcement learning,
leading to the exploration of various solutions. Planning methods have emerged as a prominent approach,
generating intermediate plans from the current state to the goal state. However, these methods often rely on
the assumption of additional interaction with the environment or the availability of offline data. However,
in real-world scenarios, instead of such information, only time-independent random observations of the
environment can be provided. To overcome this limitation, we propose the Ricci planner, a novel algorithm
capable of generating a plan from the current location to a desired goal using only a limited number of
time-independent random samples from the observation space. We drew inspiration from the observation
that the most efficient path is one with the minimum length and, based on this, we transformed the problem
of finding an efficient path into a shortest path-finding problem. Subsequently, we formulated this as an
optimization problem on a path space. However, the length functional in the path space is highly non-convex
and multi-modal, which results in numerous suboptima, and makes the problem exceedingly challenging to
solve. To address this issue, we employ the Ricci flow to continuously transform the target manifold into a
simpler manifold. Initially, we identify the shortest path on the simpler manifold and subsequently convert
it to the shortest path on the desired manifold by applying the inverse process of the Ricci flow. We conduct
a experimental comparison with graph-based shortest path finding methods. We assessed both the quality of
the generated plan itself and its effectiveness when applied to an agent and observed improved results from
both perspectives compared to the baseline.

INDEX TERMS Deep learning, goal-conditioned reinforcement learning, planning.

I. INTRODUCTION
Reinforcement learning (RL) has gained significant attention
in the field of machine learning in the past decade.
Numerous studies have explored a wide range of tasks,
ranging from simple Atari games [20], [39] to complex
manipulation tasks [2], [18], demonstrating human-level or
higher performance. Despite the extensive research efforts
to date, RL methods are seldom used in practice. This
can be attributed to the challenges posed by long-horizon
and sparse-reward tasks encountered in the real world [26],
[36], which makes it difficut to apply RL to real-life tasks.
To address these challenges, various approaches have been

The associate editor coordinating the review of this manuscript and

approving it for publication was Abderrahmane Lakas .

proposed. One such approach is planning [4], [14], which
involves creating a long-term plan prior to solving the
task. Additionally, hierarchical reinforcement learning (HRL)
[28], [34] has been suggested as a method for performing
long-term tasks by combining low-level policies, which
can only perform short-term tasks, with high-level policies.
Another area of research concerning environments with
sparse rewards involves the modification of goals used during
interaction to goals achieved [3], [10], and the creation of
a denser reward signal [7], [31], as well as the utilization
of offline data [19], [24], [29] obtained from previous
interactions for learning.

However, existing methods has assumed that the target
environment is accessible for sufficient interaction [22], [37]
or that offline data [19], [24], [29] obtained through past

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24027

https://orcid.org/0009-0004-2674-3184
https://orcid.org/0000-0002-6804-980X
https://orcid.org/0000-0003-4725-8634

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

interaction is available. Yet, in practical scenarios where
reinforcement learning agents are used by general users, there
may be limited opportunities for additional interaction or
access to offline data. For instance, consider the use of a
factory-manufactured robot as a householdmaid robot, which
is the most common scenario for the use of RL technology by
general users. In such cases, the robotmust be able to navigate
within a new indoor environment and perform tasks specific
to that environment. However, it may be impractical for the
robot to learn indoor navigation tasks by exploring the house
or obtaining offline data through prior interactions. Instead,
the observation data of the indoor environment or human
demonstration data (not involving robot manipulation) may
be available, and thus the RL agent should have the ability to
execute the given task solely with this data.

To achieve this, one could consider employing a method
that involves constructing a graph using L2 distance in the
observation space and generating a plan using a shortest path
algorithm to execute the given task. However, building the
graph using L2 distance requires careful determination of a
pruning threshold. If the threshold is too small, excessive
pruning of edges can occur, resulting in isolated points
or disconnected regions in the graph, even though they
are actually connected. This can lead to problems where
viable paths are not found even though there are accessible
paths, or longer routes are taken instead of shorter ones.
On the other hand, if the threshold is too large, insufficient
pruning of edges can occur, resulting in connections between
states that are not adjacent. In this case, the generation
of unusable plan which pass through infeasible areas can
occur. Therefore, it can be easily anticipated that determining
an appropriate threshold level has a significant impact on
performance. However, since we assume that no information
about the environment is given, it is not an easy task to
determine such a threshold based solely on data points.
Additionally, the method of building the graph requires
memory corresponding to the square of the given data points
in order to store information about the edges. For example,
if there are 1000 data points, this would require a quantity
of 1,000,000, which may not be feasible for an embedded
computing device used in a robot. Novel algorithm called
the Ricci planner, which generates a plan from the current
state to a goal state by utilizing only a limited number
of observation data of an environment, without requiring
additional interaction or offline data.With the use of the Ricci
planner, even agents with basic skills or those capable of only
short-term navigation can acquire the ability to perform a
new task in a new environment by following the generated
plan. Furthermore, the Ricci planner does not require precise
determination of thresholds or space that is proportional to
the square of the number of data points. The Ricci planner
estimates the structure of the manifold to which the given
observation data belongs, instead of building a graph based
on the observation data. The problem of finding the shortest
path between two points is formulated as an optimization
problem, based on the fact that the shortest path is the element

in the path space that minimizes a length functional.We apply
gradient-based optimization method to obtain the desired
plan.

However, this optimization problem exhibits highly
non-convex and multimodal characteristics. Therefore,
directly applying gradient-based optimization methods to
this problem can result in suboptimal or infeasible plan.
To address these issues, we applied a transformation process
called the Ricci flow, which has been consistently used in
the field of machine learning ([8], [13], [25], [48], [49]).
In this work, we utilized the Ricci flow to transform the target
manifold into a simpler manifold. We first get the shortest
path from the simpler manifold and apply the inverse process
of the Ricci flow to obtain the path from target manifold. The
overall process of the Ricci planner can be observed through
Figure 1. Moreover, we leverage the relationship between the
Ricci flow and the diffusion process to propose an algorithm
that finds the shortest paths by utilizing a time-dependent
unnormalized density function. We experimentally evaluate
the quality of the sampled paths using various real-world
datasets and demonstrate performance improvements when
our approach is applied to zero-shot reinforcement learning.

In summary, our contributions are as follows.

• We propose a method to estimate the structure of
manifold given sample data points from the manifold.

• We propose an algorithm called the Ricci planner, which
samples a feasible and efficient plan between the current
location and the target location.

• We analyze the quality of the paths generated by the
Ricci planner using qualitative and quantitativemethods,
and we demonstrate performance improvements when
our approach is applied to zero-shot reinforcement
learning.

In Section II, we introduce relevant research related to
our work, including planning methods and goal-conditioned
reinforcement learning. In Section III, we briefly outline
the theoretical foundations of our proposed method, cov-
ering topics such as Riemannian manifolds and functional
derivatives. Section IV presents an overview of our proposed
algorithm and provides detailed explanations. In Section V,
we experimentally validate the superiority of our approach,
and in Section VI, we discuss future work and conclude the
paper.

II. RELATED WORKS
A. PLANNING AND HIERARCHICAL REINFORCEMENT
LEARNING
One of the fundamental challenges addressed in modern
reinforcement learning literature is the long horizon problem.
The long horizon problem refers to tasks that require a
substantial number of interactions with the environment to be
completed. Using vanilla reinforcement learning algorithms
to learn such tasks might require an extensive number of
interactions or might lead to the failure of training. Numerous
techniques have been proposed to deal with this long horizon

24028 VOLUME 12, 2024

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

FIGURE 1. Visualization of the path generation process in Ricci planner on a randomly generated maze. The left four figures illustrate the progressive
transformation from a simple manifold to the target manifold, depicting the shortest distance on each manifold. The rightmost figure displays the actual
maze environment and the final resulting path.

problem. One such technique is model-based planning [4],
[14], which involves learning a world model using additional
models that can be employed for planning. Another technique
is hierarchical reinforcement learning [28], [34], which
involves learning low-level policies that operate only in
short horizons and high-level policies that leverage low-level
policies to solve long horizon tasks.

B. GOAL-CONDITIONED REINFORCEMENT LEARNING
Sparse reward signals are an important challenge in the field
of reinforcement learning [33], [46]. Prior research tended
to overlook this issue by formulating the reinforcement
learning problem simply as a Markov decision process
(MDP) [23], [43], [44]. However, MDP assumes that a
continuous reward signal can be observed at each time
step, providing feedback on the agent’s actions. This is
often not the case in real-world scenarios, where agents
typically only receive a binary evaluation indicating success
or failure after completing the task. Consequently, there is
a need for novel formulations and methods that account
for such characteristics of environments. To address this
challenge, a new formulation has been proposed, called the
goal augmented Markov decision process (GA-MDP) [1],
and active research has been conducted under the name of
goal conditioned reinforcement learning (GCRL) [1], [15],
[32] in the literature.
Efforts have been undertaken to tackle the challenge of

the long horizon problem in GA-MDP situations. However,
GA-MDPs with long horizons create even sparser rewards,
which make it difficult to directly apply existing meth-
ods due to the sparsity of the reward signal. Therefore,
further research has been conducted to address this issue.
Another approach proposed is graph-based planning [17],
[21], [50], which is developed based on the intuition that
there exist common waypoints that must be traversed in
order to reach distant goals. In this approach, the first
step involves identifying waypoints, referred to as land-
marks. These landmarks are then represented as vertices,
and a graph is constructed by using a value function
to define the estimated distances between each pair of
landmarks as edges. Subsequently, planning is performed
using the constructed graph to guide the agent towards the
goal.

C. ZERO-SHOT TRANSFER FOR GOAL-CONDITIONED
REINFORCEMENT LEARNING
To enable the deployment of a reinforcement learning (RL)
agent in real-world applications, it is crucial for the agent to
be able to learn and perform new tasks without interaction
and offline data. Despite advancements in algorithms that
can adapt to zero-shot scenarios [27], their evaluation has
been confined to short horizon tasks such as moving objects
to predetermined positions on an obstacle-free flat desk.
Additionally, while the Ricci planner only necessitates a
small number of random samples in the goal space, prior
approaches require both random samples in the goal space
and transition information between states to learn.

D. DIFFUSION MODEL
The sampling process in Energy based model [41] relies
heavily on the accuracy of the score function estimate,
which is the gradient of the energy function [42]. However,
it has been observed that the score function estimate is often
incorrect in low-density regions [40]. To address this issue,
a sampling method called noise conditioned score network
(NCSN) [40] has been proposed. NCSNobtains samples from
the target distribution by first generating samples from a
simple noisy distribution and then iteratively removing noise.
In parallel with this work, a similar framework called the
deep diffusion probabilistic model (DDPM) [16] has been
proposed, and subsequent studies have interpreted NCSN and
DDPM as a unified framework by utilizing mathematical
tools [42] from stochastic differential equations (SDE). The
concept of iteratively transforming samples from a simple
distribution to obtain samples from a target distribution is
similar to the framework employed by the Ricci planner.

However, significant distinctions exist between the two
approaches. In terms of the inference process, the diffusion
model is designed to sample data points from a target distribu-
tion and modify the sampling target using SDE. Conversely,
in the Ricci planner, the emphasis lies in sampling paths
that connect given points, rather than individual points, and
transforming the path through the application of geometric
flow. Regarding the training process, in the case of the
diffusion model, data samples from the target distribution are
provided. In contrast, for the Ricci planner, it is impractical
to obtain data samples directly from the target distribution.

VOLUME 12, 2024 24029

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

III. PRELIMINARY
Due to the limitations of space, it is beyond the scope of
this section to comprehensively cover the topics of stochastic
calculus, differential geometry and functional analysis with
full mathematical rigor. Thus, we aim to offer a more intuitive
explanation to facilitate readers’ comprehension.

A. FOKKER-PLANCK EQUATION
A stochastic differential equation (SDE) is an equation that
describes the infinitesimal change, denoted as dXt , in a
stochastic process Xt using the infinitesimal changes of
generally well-known stochastic processes, such as Brownian
motion. SDE is widely applied in modeling natural phenom-
ena, such as the movement of particles in fluids, as well as in
modeling social scientific phenomena, such as stock market
dynamics. In SDE, the infinitesimal change dXt is typically
expressed as the sum of a deterministic component and a
stochastic component as

dXt = µ(Xt , t)dt + D(Xt , t)dWt . (1)

Here, Wt represents Brownian motion, µ(Xt , t) is referred
to as the drift, and D(Xt , t) is the diffusion coefficient.
Furthermore, the change in the distribution, denoted as
p(x, t), of the solution Xt over time t for the given SDE is
expressed as

∂

∂t
p(x, t) = −

∂

∂x
[µ(x, t)p(x, t)]+

∂2

∂x2
[D(x, t)p(x, t)].

(2)

This equation is commonly known as the Fokker-Planck
equation.

B. METRIC TENSOR FIELD AND COMFORMALLY FLAT
MANIFOLD
To begin with, a manifold is defined as a set that is locally
homeomorphic to Euclidean space. This means that for any
point on the manifold, its very small neighborhood can be
viewed as a subset of Euclidean space. This implies that most
of the geometric objects that we are familiar with, such as the
plane, torus, and sphere, fall into this category.

A metric tensor field [12] on a manifold provides a
way to measure the length of curves on the manifold.
In Euclidean space, we can define a distance metric d(x, y) =√
(x − y)TA(x − y), where A is a positive definite matrix

defined using a basis for Rn. Additionally, the length L(x)
of any differentiable curve x : [a, b] → Rn can be defined
as L(x) =

∫ b
a

√
ẋ(t)TAẋ(t)dt , where ẋ(t) := dx

dt . However,
for a general manifold, it is challenging to define a unified
basis and, consequently, to define ametric or length of a curve
using a single matrix.

However, as each point on a manifold has a local
neighborhood that can be viewed as a subset of Euclidean
space, for each point, a local basis can be defined, allowing
the definition of a matrix-valued function g(x) that provides
a local metric on the neighborhood of each point on the

manifoldM. The length of a curve x : [a, b] →M on this
manifold can be defined as

L(x) =
∫ b

a

√
ẋ(t)T g(x)ẋ(t)dt. (3)

If this matrix can be expressed as a scaling of amatrix tensor η
from some flat manifold, such as Euclidean space, using a
smooth function λ(x)2, the manifold is said to be conformally
flat. The scaling factor λ(x) used in this definition is called the
conformal factor. In this work, we use the term ‘‘conformally
flat’’ to mean η = I , so we have g(x) = (λ(x))2I .

C. GEOMETRIC FLOW AND RICCI FLOW
Geometric flow [6] is a fundamental mathematical tool
employed in Riemannian geometry to model the time
evolution of manifolds. It involves a partial differential
equation that describes the time variation of the metric tensor
gt (x) of the manifold. Among the most prominent geometric
flows, the Ricci flow has been an invaluable tool in the study
of geometry and topology since its introduction by Richard
Hamilton in the 1980s [5]. After Grigori Perelman used the
Ricci flow to prove the Poincaré conjecture in 2003 [35],
its importance became even more evident. The mathematical
expression for the Ricci flow is given by

∂gt (x)
∂t
= 2Ricg, (4)

where Ricg is called Ricci curvature which is a measure of
how much a given point is curved or twisted. By changing
the manifold in the opposite direction of this measure,
Eq 10 transforms the manifold into a simpler shape, thereby
reducing its irregularities. We have leveraged some of the key
properties of the Ricci flow, which has been established as a
fundamental tool in the development of the Ricci planner.

D. GEODESIC AND FUNCTIONAL DERIVATIVE
In Euclidean space, the shortest path between two points is a
straight line. However, in a Riemannian manifold, a straight
line may not be well-defined, and even if it is, it may not be
the shortest path. Thus, a new definition of a straight line is
required formanifolds, which is called a geodesic. A geodesic
is the shortest path among all paths connecting two points.

The functional gradient is a generalization of the gradient
to a function space. For a given path x, if the functional
(a function that takes a function as input) is represented as
J (x) =

∫
L(x, ẋ, t)dt , the functional derivative [11] of the

functional is given by

δJ
δx
=

∂L
∂x
−

d
dt

∂L
∂ ẋ

. (5)

Geodesics are minimizers of the length functional in path
space. Therefore, if the metric tensor is given in an analytic
form, the closed-form expression of the geodesic can be
obtained from the condition that the functional derivative is
zero. However, since the metric tensor is not given in an
analytic form, in our case, we propose a numerical method
to obtain the geodesic.

24030 VOLUME 12, 2024

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

Algorithm 1 Ricci Planner
Input: current state s, goal state g, sample points D
Output: sequence of subgoal {pi}i∈[N]
Initialize:
for i = 0, 1, . . . ,N do

pi← (1− i
N)s+

i
N g

Update:
for t = T ,T − 1, . . . , 0 do

p̃t (·)← Pt (·;D) ◁ density estimation
Set λt (·) by substituting p̃t (·) into (7)
for j = 1, 2, . . . , S do

Calculate { δL
δx (

i
N)}i∈[N] using (6 and 16)

{pi}i∈[N]← {pi − α δL
δx (

i
N)}i∈[N]

{pi}i∈[N]← Make-Regular({pi})i∈[N])

return {pi}i∈[N]

Algorithm 2Make Regular
Input: point sequence {pi}i∈[N]
Output: regularized point sequence
for k = 1, 2, . . . , K do

l0← 0, L0← 0
for i = 1, . . . , N do

li← ||p
(k)
i − p

(k)
i−1||

Li← Li−1 + li

for i = 1, 2, . . . , N − 1 do

ι←
N∑
j=1

I(LjLN ≤
i
N)

τ ←
LN× i

N −Lι

lι+1
p(k+1)i ← τ × p(k)ι + (1− τ)× p(k)ι+1

p(k+1)0 ← p(k)0 , p(k+1)N ← p(k)N
return {p(K)

i }i∈[N]

We apply Eq 5 to calculate the functional derivative of
the length functional. When determining the geodesic, the
functional corresponds to the length. For a conformally flat
manifold, the length functional can be obtained through Eq 3.
Additionally, the functional derivative can be computed using
Eq 5. Therefore, upon substitution, the calculation can be
performed as

δJ
δx

(t) = ∇λ(x(t))∥ẋ(t)∥ −
⟨∇λ(x(t)), ẋ(t)⟩ ẋ(t)

∥ẋ(t)∥

−
λ(x(t))ẍ(t)
∥ẋ(t)∥

+
λ(x(t))ẋ(t) ⟨ẋ(t), ẍ(t)⟩

∥ẋ(t)∥3
, (6)

where λ(·) is a conformal factor of the manifold.

IV. METHODOLOGY
In this section, we elucidate our newly proposed algorithm,
the Ricci Planner. Firstly, in the initial subsection, we provide
an overview of the problem scenario, along with the

assumptions and notations employed herein. Following that,
in the subsequent subsection, we expound on how the
planning problem is formulated as an optimization problem.
In the next section, we delve into the challenges posed by this
optimization problem. Subsequently, we detail how the Ricci
flow is employed to alleviate these challenges. Lastly, in the
concluding section, we provide an in-depth explanation of the
overall framework and the proposed algorithm.

A. PROBLEM SETTING
Our objective is to generate a feasible path from the starting
point to the endpoint without any dependency on a specific
application. We do not make any assumptions about the agent
or environment dynamics, but instead rely on reasonable
assumptions regarding the structure of the manifold that the
given data belongs to and the way it is generated. We assume
that the observation space of an agent is a manifold with a
finite metric tensor field for all x ∈ Rn. Although this may
seem like a restrictive assumption, it covers most connected
subsets of Rn, including those where the manifold is a
low-dimensional embedded set. The areas M ⊂ Rn that are
included in the manifold are handled by assigning the desired
metric tensor to them, and by assigning a high metric tensor
to the areas MC

⊂ Rn that are not included in the manifold.
This ensures that any geodesic connecting two points p and q
inM does not pass throughMC . Consequently, the inclusion
or exclusion ofMC has no impact on the form of the geodesic
if the metric tensor values in M are the same as those in
the original manifold. To ensure that every geodesic on the
manifold is a differentiable path, we assume that the metric
tensor field is differentiable at every point x.
Regarding the data generating process, we make the

assumption that the observed data is generated by observing
the positions of randomly moving particles on the manifold
at random time instances. This assumption encompasses a
wide range of scenarios, such as the cases where the input
data consists of photographic images of the environment,
in which case the particle can be thought of as a human
and the random time instance corresponds to the moment
when the photograph was taken. If the input data corresponds
to the trajectory of another agent, then the particle would
correspond to the agent, and the random time instance would
correspond to a sequence of fixed intervals. Additionally,
we assume that the agent moves randomly on the manifold
while preferring paths with lower cost.

Given the Riemann metric tensor field, we can obtain
almost all the information about the a Riemannian manifold,
including its curvature. Therefore, we first estimate the
Riemann metric tensor field using the given distribution. The
problem scenario assumes that we only have information
about the observed positions of a particle at random times.
However, we cannot determine when the particle passed
through a certain point, in which direction, or at what speed.
Therefore, we only have information about how much each
point is stretched, but not the direction. Consequently, the
information we can obtain from the given data is limited

VOLUME 12, 2024 24031

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

to the scale of the metric tensor of each point. Therefore,
we only consider cases where the manifold is conformally
flat, i.e., those where g(x) = λ2I . Thus, our goal is to
estimate the conformal factor λ(x) instead of a general metric
tensor field g(x).We have assumed that the metric tensor field
is finite and differentiable everywhere. Therefore, it can be
said that the conformal factor is also finite and differentiable
everywhere.

Let us examine the impact of the conformal factor on
particle dynamics. Consider two points, a and b, on a
conformally flat manifold, and suppose there exist two paths
between them of equal Euclidean length, but differing lengths
under the Riemannian metric. One path traverses a region of
high conformal factor, while the other traverses a region of
low conformal factor. Under conformal geometry, the path
passing through the high conformal factor region will be
longer. If a particle moves from point a to point b via either
path, the particle will be more likely to select the shorter
path, resulting in an increased probability of detection per
unit length on the path through the region with a lower
conformal factor. Consequently, particles are more likely
to traverse regions with smaller conformal scales, and the
frequency of particle observations will be greater in those
regions. Therefore, if particles are frequently detected in a
specific area of an unknown manifold, the absolute value
of the conformal factor is likely higher in areas with fewer
particle detections. Thus, we can infer the existence of a
monotonically decreasing function f (x) that satisfies |λ(x)| =
f (p̃data(x)) for the unnormalized density p̃data(x), where λ(x)
is the conformal factor and f (x) is finite differentiable for
all regions. We now turn our attention to determining the
function f (x). Since |λ(x)| = f (p̃data(x)) must hold for all
x, f (x) > 0 for all x. Furthermore, since the conformal factor
is finite differentiable for all regions, f (x) must also be finite
differentiable. Thus, we adopt the function f (x) = e−Ax+B

(A > 0) that satisfies these conditions, which results in

λ(x) = e−Ap̃data(x)+B. (7)

Here, A and B are arbitrary constants that satisfy A > 0 and
|A|, |B| <∞.

B. PLANNING AS OPTIMIZATION PROBLEM
First, we discuss the method to find the geodesic in the set
of paths that connect two given points. On a Riemannian
manifold, given arbitrary path x(t), the length L(x) is defined
as a continuous functional on the path space. Therefore,
in optimization perspective, finding the geodesic between two
points is equivalent to finding the minimizer of the functional
on the set of paths that connect two points. As a closed-form
expression for the conformal factor is not given, we need
to use a numerical optimizer to find the geodesic. In the
optimization problem, the objective is the length of the path,
which is given by the integral

L(x) =
∫ 1

0
λ(xθ (t))||ẋθ (t)||dt, (8)

FIGURE 2. Illustration of the shortest path and initial path in a randomly
generated maze.

where λ(·) is a conformal factor and θ are the parameters of
the path. To findminizer in numerical way, we first determine
how to update the parameters of path. One possible approach
is to estimate the path length using Monte Carlo methods,
compute the gradient utilizing numerical differentiation
method, and update the parameters using gradient descent
method. Specifically, if we use a random variable TU ∼
U [0, 1] following a uniform distribution on the interval [0, 1],
the expected value of the length can be expressed as

E
TU∼U [0,1]

[λ(xθ (TU))||ẋθ (TU)||]. (9)

Therefore, we can estimate the length by sampling nT
points from the uniform distribution on [0, 1] and computing
the average 1

nT

∑
i
λ(xθ (ti))||ẋθ (ti)||. However, this gradient

represents the steepest direction in the parameter space,
whereas what we are interested in is the steepest direction
in the space of paths connecting p and q. If we update
the parameters along this direction, we can achieve a faster
convergence rate. Moreover, since the length of the path x(t)
is a functional of the path, we can also compute its functional
derivative δL

δx . Therefore, instead of updating the parameters
using the gradient in the parameter space, we update them
in the direction of the functional gradient. (Please refer to
Eq 6 for the exact form of the functional gradient of the length
functional.)

C. OPTIMIZATION WITH RICCI FLOW
Finding the shortest path between two points in an arbitrary
manifold is a high-dimensional and multi-modal problem
that is more challenging than optimizing a single point.
This complexity is exemplified in Figure 2, which depicts a
maze environment with a square-shaped starting point and a
star-shaped goal. The initial path between the two points is
represented by a straight line, whereas the dashed line shows
the optimal path. The estimation of the conformal factor from
the samples can result in infeasible areas having high values
and feasible areas having low values. In Figure 2, the initial
path encounters six walls, labeled 1 through 6, on its way
to the goal. We can easily see that in order for the straight

24032 VOLUME 12, 2024

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

FIGURE 3. Visualization of the Cantwell environment, where the black
regions represent unfeasible areas and the white regions represent
feasible areas.

line to approach the optimal path, it should move upwards.
However, for the straight line, it is difficult to determine the
optimal direction of change for the walls of 3 and 5. Even if
it manages to choose the correct direction, it will eventually
encounter another infeasible area and face the same dilemma
again. Moreover, escaping from area 5 is challenging as it
requires encountering more walls, thereby increasing the path
length. This situation creates difficult local optima in the path
space, and each case has its own local optima depending on
where and in which direction newwalls are encountered. As a
result, the optimization process encounters a significantly
larger number of local optima than in typical optimization
problems.

We provided an example of this in a 2Dmaze environment,
but this approach can be applied to real-world data and may
even become more severe. Therefore, directly performing
path optimization for environments with complex topology
may not yield feasible results. Thus, instead of performing
optimization directly on the target manifold, we used
geometric flow to gradually transform the structure in a
simple direction and then transform it slowly back into
the desired result on the target manifold through inverse
transformation. We now consider which a geometric flow
to use in our framework. To do this, we revisit the key
properties of the Ricci flow. The Ricci flow updates the
metric tensor in a direction opposite to the Ricci curvature,
which characterizes the protrusions and indentations of the
manifold. In the case of conformally flat manifolds, the Ricci
flow reshapes the conformal factor landscape in such a way
that previously depressed regions are elevated and previously
elevated regions are depressed. This property is desirable for
our purposes, and thus we adopt the Ricci flow as the basis
of our framework. Furthermore, we observe that the scaling
of the Ricci flow does not impact the transformation pattern
of the geometric flow. As a result, we introduce a positive,
time-dependent scaling function h(t) > 0 to scale Eq 10. The
resulting geometric flow can be expressed as

∂gt
∂t
= −2h(t)Ricg. (10)

The Ricci flow on conformally flat manifolds exhibits an
important property. Let us define ωt (x) as log λt (x), where

λt (·) is the conformal factor of the manifold. Then, ωt (x)
satisfies the heat equation given by

∂ωt (x)
∂t
= 1ωt (x), (11)

where 1 denotes the Laplace operator. In our case, the
conformal factor λt (x) changes according to the scaled Ricci
flow, starting with λ0(x) = e−Ap̃data(x)+B (A > 0).Therefore,
if we define p̃t (x) = − 1

A (log λt (x)− B), we can observe that
pt (·) satisfies Eq 12, where D(t) is a positive scaling factor
that depends only on time as

∂pt (x)
∂t
= 1(D(t)pt (x)). (12)

According to Eq 2, this corresponds to the time evolution of
the probability density function of a pure diffusion process
with a zero drift coefficient. Thus, if we have knowledge of
the time evolution of the unnormalized probability density
function for a pure diffusion process, p̃t (x), we can deduce
the time evolution of the conformal factor, λt (x).

It has been established in previous research that the
stochastic process Xt with dynamics given by dXt =√

d[σ 2(t)]
dt dWt satisfies Xt

d
= X0 + σ (t)Z for Z ∼ N (0, I).

Hence, if we can determine D(t), we can determine σ (t) and
draw samples from pt (x). In other words, it means that we can
determine the conformal factor at any given time by choosing
an arbitrary positive non-decreasing function σ (t).

D. ALGORITHM
In this subsection, we present a concise overview of the
overall algorithmic framework, followed by a detailed expla-
nation of each step. Initially, we seek the path that minimizes
the length for the simplest manifold structure. Subsequently,
we make a subtle adjustment to the manifold structure in
the direction of the target manifold. We then proceed with
the optimization process to identify the minimum-length path
on the altered manifold, utilizing the previously obtained
path as the initial point for the optimization process. This
iterative process continues until the manifold structure
converges to the target manifold. Ultimately, we obtain
the minimum-length path on the desired manifold. The
pseudocode for the entire algorithm is provided in Alg 1.
We adopted a method to represent the path x̃(·) from the

current state s to the goal state g by connecting a fixed
number N + 1 of points {pi}i∈[N] with straight lines ([N] =
{0, 1, . . . ,N }). To uniformly represent all positions on the
path, we utilized points where adjacent points in the sequence
are equidistant. This results in

∀i, j ∈ [N − 1], ||pi+1 − pi|| = ||pj+1 − pj||. (13)

For notation convenience, we designated the first point p0 and
the last point pN of the sequence as s and g respectively,
setting the domain of the path as [0, 1]. Therefore, given
{pi}i∈[N], the path x̃(·) can be represented as

x(t) = τ (t)× p⌊Nt⌋ + (1− τ (t))× p⌈Nt⌉, (14)

VOLUME 12, 2024 24033

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

where ⌈x⌉ = min{n ∈ Z : n ≥ x},⌊x⌋ = max{n ∈ Z : n ≤
x}, and τ (t) = N

(
t − ⌊Nt⌋N

)
(0 ≤ t ≤ 1) with x(0) = s and

x(1) = g.
First, we initialize points evenly distributed along a straight

line connecting the starting point and the ending point,
denoted as {pi}i∈[N]. When updating {pi}i∈[N], we use the
functional gradient δL(x)

δx with respect to the length of x̃(·).
Before providing a detailed explanation of the update process,
let’s consider the case of updating an arbitrary element x(t) in
the path space for an arbitrary functional J (x) using gradient
descent on path space. In this case, one step of the update is
carried out as

x̃(i+1)(·)← (x̃(i) − α
δL
δx

)(·), (15)

where α represents the learning rate.
However, in practical situations, there are additional

challenges compared to the aforementioned case. Firstly,
in practical scenarios, the set on which we perform opti-
mization is not the set of all paths but rather the set of
paths that can be parameterized by a method that we define.
Therefore, even if the update direction in the path space is
given, we cannot directly perform the update in that direction.
Instead, we need to calculate the parameter changes that bring
the direction closest to the desired update. To calculate this,
it is necessary to determine which changes in a parameter
induce the desired direction of variation at each t , and the
change in each parameter must be averaged over all t within
the domain. However, calculating this influence for all t
within the path’s domain is infeasible. One possible approach
is to sample a predefined number M of elements from the
path’s domain, calculate the parameter variation for each, and
then average these values. This method incurs a computation
cost ofO(MN), considering each ti influences all parameters.
However, in our case, since x(iN) = pi holds true, we decide
on N = M and determine ti = i

N . As a result, ti is evenly
distributed over the path’s domain, and the path’s variation
at ti affects only pi, reducing the gradient calculation cost
to O(N).

However, an additional problem arises here. To compute
the path’s variation at each point, we require the first and
second-order derivatives of the path at each point. Since we
parameterize the path by connecting a finite number of points
with straight lines, the path is not differentiable at each ti.
Therefore, we estimate the speed ẋi(ti) and acceleration ẍi(ti)
of the path at ti as the average speed between ti−1 and ti+1 and
the change in average speed between [ti−1, ti] and [ti, ti+1],
respectively. This can be expressed mathematically as

ẋ(ti) =
1

21t
(pi+1 − pi−1)

ẍ(ti) =
1
1t

(
pi+1 − pi

1t
−
pi − pi−1

1t

)
, (16)

where 1t = 1
N . We then use these estimated values

by substituting them into Eq 6. to estimate the functional
gradient δL

δx at each point pi.

FIGURE 4. The feasible rate of the generated path based on the given
number of samples.

However, after performing the update, an additional
problem arises. We desire that the intervals between points
remain constant. Specifically, when denoting the collection
of sequences of equidistant points as PN , we aim for the
updated entity to belong to PN . However, when updating
using the aforementioned method, without considering the
intervals between points, there is no guarantee that an entity
that belonged to PN before the update will still be an
element of PN afterward. Furthermore, the imbalance can
worsen as updates overlap. To prevent the variation in interval
length, it is necessary to project the target entity onto PN
after each update. One conceivable approach for this is to
perform additional optimization at each update step, using
the deviation of the intervals between each pair of points
from their average as the objective. However, applying such
a method would be computationally expensive, requiring
additional optimization at each step.

Therefore, to transform the given point sequence into a
sequence satisfying our desired conditions, we first define a
curve with a constant speed using this sequence and update it
with points at equal intervals on the curve’s domain.We apply
this update iteratively to obtain points that meet our desired
conditions. To explain in more detail, let us denote the target
point sequence at the k-th iteration as {p(k)i }i∈[N]. We connect
adjacent points in this sequence to define a curve. The domain
of this curve is set to [0, 1], and it is endowed with a constant
speed. This way, a piecewise linear curve x̃k (·) with a constant

speed defined on [0, 1] is determined.If we denote
i∑

j=1
||p(k)j −

p(k)j−1|| and ||p
(k)
j − p

(k)
j−1|| as Lj and lj respectively, then x

(k)(·)
can be expressed as

x(k)(t) = τ (t)× p(k)ι(t) + (1− τ (t))× p(k)ι(t)+1, (17)

where ι(t) =
N∑
i=1

I(LiLN < t) and τ (t) = LN×t−Lι(t)
lι(t)+1

.

Furthermore, we determine p(k+1)i by using the values of the
curve at i

N . Therefore, the results p
(k+1)
i after the k-th iteration

24034 VOLUME 12, 2024

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

can be expressed as

p(k+1)i = x̃k (
i
N
). (18)

Furthermore, we verified that applying Eq 18 repeatedly
to any point sequence ultimately results in equidistant
spacing between the points. This observation can be formally
expressed through the proposition outlined below. For a
positive integer N and a sequence of N + 1 points in Rn,
denoted as {p(0)i }i∈[N], if {p

(k)
i }i∈[N] is defined through Eq 18,

we have

lim
k→∞

max
i∈[N−1]

||p(k)i+1 − p
(k)
i || = lim

k→∞
min

i∈[N−1]
||p(k)i+1 − p

(k)
i ||.

The above proposition signifies that repeatedly applying
Eq 18 ultimately results in equal spacing between adjacent
points in the sequence. The proof for this can be found in
the Appendix A The pseudocode for the entire algorithm and
the projection algorithm can be found in Alg 1 and Alg 2,
respectively.

V. EXPERIMENT
In this section, we empirically demonstrate the performance
of the Ricci planner. We first experimentally analyze the
plans generated by the Ricci planner itself and then assess
the performance improvement when applying those plans.
We analyze the generated plans from two perspectives: how
often the generated plans deviate from the feasible area and
how much they deviate on average. To do this, we utilize two
metrics: the feasibility ratio and the infeasibility score. The
feasibility ratio is defined as the proportion of paths sampled
that belong to the feasible region. It is measured as the ratio of
positions within the feasible region among equidistant points
in time. The infeasibility score measures how far the deviated
points are from the feasible region. Therefore, it calculates
the average distance from each point to the closest point in
the feasible region. The points in the feasible region have a
score of 0.

Furthermore, in order to assess the effectiveness of the
plan, we utilize the success rate when applying the generated
plan to a very simple policy. The very simple policy refers to
a policy that only moves in the direction of the goal, without
utilizing any information about the environment. The plan
itself consists of a sequence of points that connect the starting
position to the goal. When employing this policy with the
plan, a sequential achievement approach is employed, where
each point is computed in a sequential manner.

A. BENCHMARKS AND BASELINES
We conducted experiments on two datasets: a synthetic
maze dataset and the Indoor Navigation 2D Dataset (IN2D)
[9], [47]. The maze is generated through the utilization of
the randomized Prim algorithm [30] (Alg 3), and the data
points were randomly sampled along the lines connecting
the centers of adjacent cells. The IN2D dataset includes
information about the locations of furniture andwhether there

Algorithm 3 Randomized Prim
Input: weightW , height H
Output: cell state matrix S
S ← cell state matrix of size ofW × H
S[odd]← "Wall"; S[even]← "Room"
c← (0, 0); Q← {c}
while |Q| ≥ 1 do

c← Q.pop()
c.visited← True
N ← Cells with a positional difference of 2
Partition N into visited V and unvisited U cells
if |V| ≥ 1 then

d← sample one cell from V
Denote the cell between c and d as ‘‘Room’’

Q.extend(U)
return S

are obstacles at each location in a typical indoor environment.
We conducted experiments on the most complex environment
in the dataset of the Canwell environment (Figure 3).

Regarding the baseline method, the problem scenario we
address involves only time-independent random observations
of the environment, making it infeasible to apply existing
planningmethods. Therefore, as a baseline, we used amethod
that builds a graph with all given points as vertices and the
distance between each pair of points as the weight of the edge,
and performs shortest path finding algorithm on the graph for
planning. However, in Euclidean space, the shortest path is a
straight line, so if there are edges between all pairs of points,
the shortest path will be a path that only includes the start
and end points. Therefore, we sorted the pairs by distance
and set theminimum distance between them to infinity, which
reduces the probability of generating a plan that connects the
two points directly and provides a more meaningful baseline.

Therefore, we used the pruning cases of 95% and 90%
edge removal as baselines. This means that in the case of
a total of 100 points, only the closest 5 and 10 points
have edges, which can be considered a reasonable choice.
We used the same baseline in all experiments, which we
referred to as ‘‘graph5’’ and ‘‘graph10’’ repectively. In the
Ricci planner, we applied the Ricci flow method to the target
manifold. To investigate the criticality of applying Ricci flow
to performance improvement, we also conducted experiments
without applying Ricci flow and directly optimized the path
on the target manifold. We labeled this approach as ‘‘sgd’’.
Additionally, we labeled our proposed method as ‘‘ricci
planner.’’

B. EXPERIMENTAL DETAIL
The following subsection provides a detailed description of
the experimental setup used. In the experiment evaluating
the robustness with respect to the number of samples,
we measured the feasible rate by incrementing the number
of samples from 100 to 900 in increments of 200. For

VOLUME 12, 2024 24035

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

FIGURE 5. Success rate based on the distance between the starting
position and the goal.

TABLE 1. Results of the feasible rate.

TABLE 2. Results of the unfeasible score for the IN2D dataset.

the remaining experiments, we used 1000 observation data
points. The policy used for measuring the success rate
uniformly sampled step distances ranging from 0.01 to 0.1,
and a criterion of 0.2 was employed to determine the success
of an episode. Specifically, if the distance between the
current state and the given goal during the episode was
less than or equal to 0.2, the episode was immediately
considered a success. To verify the usefulness of the plan
based on the task’s difficulty, we measured the success
rate according to the distance between the starting point
and the goal. Here, the starting point and the end point
were sampled in the same way as the training data, and
the distance was determined based on the grid distance
between the cells to which each point belonged. Furthermore,
we conducted 20 repetitions for all measurement used in our
experiments.

For density estimation from the given data, we employed
the kernel density estimationmethod [38], using a radial basis
function (RBF) kernel [45]. To illustrate the changes in the
distribution due to Ricci flow, the bandwidth of the kernel was
varied from 0.005 to with uniform intervals. Furthermore,
we used the same hyperparameters for all experiments, and
the details of the hyperparameters used in the experiments
can be found in Appendix B.

C. RESULT
To measure the sensitivity of the given data set to the number
of samples, we measured the feasible rate corresponding to
the number of samples. This result can be seen in Figure 4,
which shows the experimental results for synthetic data,
while the remaining data sets show values near 0.8. However,
the proposed method shows values of 0.9 or higher, and as
the number of samples increases, the feasible rate steadily
improves. We also confirmed that performing gradient-based
optimization without the Ricci flow produces almost the
same results. Therefore, the application of the Ricci flow has
significant meaning.

Table 1 provides the results of feasible rate. Through this,
we found that the Ricci planner not only has the largest
mean of the feasible rate compared to other methods but also
has the smallest standard deviation and shows a significant
difference in the case of the minimum value. Table 2 shows
the measurement values of the score in IN2D, where lower
values are better. Here again, the Ricci planner showed better
performance than other methods. Overall, our experiments
demonstrate that the Ricci planner can be an advanced form
of planner compared to other methods.

Finally, Figure 5 illustrates the success rate based on the
distance between the starting and ending points. By exam-
ining the graph, it can be observed that the success rates
of all baseline methods exhibit a decreasing trend. This is
expected because the task difficulty is roughly proportional
to the distance. Graph 5 and Graph 10 show the same pattern.
However, the Ricci planner shows significant improvement
compared to other methods. Although there is no significant
difference between Graph 10 or SGD and the Ricci planner
when the distance is small, a widening discrepancy becomes
evident as the distance increases, leading to a substantial
difference in the end. This suggests that when the distance
is small, there are fewer obstacles between the two points,
where there is less dependency on the planning method.
However, as the number of obstacles increases, the influence
of the planning method becomes more significant. From the
shape of this plot, we can conclude that the Ricci planner
is more effective in long-term planning. Furthermore, it can
be observed that SGD performs significantly worse with a
much larger margin compared to the measurements of the
feasible rate or feasible score. This can be attributed to the
presence of numerous local optima in the path space as the
number of obstacles increases, resulting in suboptimal paths,
as mentioned in the previous section. Thus, through this
analysis, we can confirm the importance of transforming the
original manifold structure into a simpler manifold.

VI. CONCLUSION
In this paper, we focused on the problem of finding the
shortest path between any two arbitrary points when only
observation data points are given. We first identified the
limitations of a simple approach that builds a graph and
applies a shortest path algorithm on the graph. Therefore,

24036 VOLUME 12, 2024

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

instead of building a graph, we proposed a method to
estimate the manifold structure and formulated the problem
of finding the shortest path as an optimization problem.
We also identified the challenges of this optimization problem
and proposed a method called the Ricci planner, which
alleviates these challenges by continuously transforming the
geometry using the Ricci flow. Furthermore, we experimen-
tally validated both the feasibility of the paths generated by
our proposed algorithm and the advantages of applying these
paths. However, there is a limitation that, as with gradient-
based methods such as the diffusion model, it can incur a high
computational cost.

Gradient computation can be bypassed through additional
training of the score function. However, our research focuses
on situations where only a limited number of data points
are given, so utilizing a trained score function falls beyond
the scope of our study, and we leave it as a future work.
In this study, our focus was on sampling a path between
two points, which is a function defined on a closed interval
of the real line. However, the method of utilizing geometric
flow to transform functions is not necessarily limited to
one-dimensional functions. Therefore, we anticipate that our
research can promote studies on the utilization of geometric
flow in generating functions in various domains.

APPENDIX A PROOF OF PROPOSITION 1
Proof:What we intend to demonstrate is the existence of

the limits for min
i∈[N−1]

||p(k)i+1 − p
(k)
i || and max

i∈[N−1]
||p(k)i+1 − p

(k)
i ||,

with both limits converging to the same value. If we denote
max

i∈[N−1]
||p(k)i+1 − p

(k)
i || as Lk and

1
N

∑
i∈[N−1]

||p(k)i+1 − p
(k)
i || as lk ,

then it is evident that the proposition holds if Lk and lk
each have a limit, and these limits are equal. Therefore,
we demonstrate the convergence of lk first and subsequently
establish that Lk also converges to the same value.

Firstly, we prove the convergence of lk . Consider the
case where there exists a k ′ such that p(k

′)
i = p(k

′
+1)

i for
all i. In this scenario, lk remains constant, and therefore,
it converges. Now, let’s consider the case where no such k ′

exists. In this situation, let’s examine the k-th update using
Eq 18. In this case, the distance traveled by xk (·) between

p(k+1)i+1 and p(k+1)i for all i becomes lk . This distance cannot
be smaller than the straight-line distance between p(k+1)i+1 and
p(k+1)i , i.e., ||p(k+1)i+1 − p(k+1)i ||. In other words, for all i,
we have ||p(k+1)i+1 − p(k+1)i || ≤ lk . However, the equality
||p(k+1)i+1 − p(k+1)i || = lk for all i implies that xk (·) between

p(k+1)i+1 and p(k+1)i is a straight line, indicating p(k
′)

i = p(k
′
+1)

i
for all i. Since we are considering cases where such k ′ does
not exist, lk > ||p(k+1)i+1 − p(k+1)i || holds for all i. Averaging
over all i, we get lk > 1

N

∑
i∈[N−1]

||p(k+1)i+1 − p(k+1)i || = lk+1,

which implies lk > lk+1. Since lk is bounded below by 0 and
is a monotonically decreasing sequence, it converges.

Next, we demonstrate that when lk converges to the limit
l, Lk converges to l as well. Given that lk is monotonically

decreasing and converges to l, for any arbitrary ϵ > 0, there
exists a k ′ such that for all k > k ′, lk−l < ϵ. Moreover,
as previously established, for all i, ||p(k+1)i+1 − p(k+1)i || ≤ lk .
Therefore, Lk+1 ≤ lk holds. Consequently, for k > k ′,
Lk+1−l < ϵ is satisfied. Additionally, Lk+1 ≥ lk ≥ l, leading
to Lk+1−l ≥ 0. Thus, |Lk+1 − l| < ϵ. Consequently, for any
ϵ, there exists a k ′ such that for all k > k ′ + 1, |Lk − l| < ϵ.
This implies that Lk converges to l. Therefore, we can obtain
the desired conclusion. □

APPENDIX B HYPERPARAMETER SETTINGS
In this section, we describe the hyperparameter settings used
in the experiment. The hyperparameters used are listed in
Table 3, and we utilized the same hyperparameters for all
experiments. T ,N , S, and α are variables used in Alg 1. Here,
T represents the number of steps used tomodify themanifold,
N is the number of points used to represent the path, S is
the number of optimization steps in a single manifold for
path optimization, and α denotes the step size used in path
optimization. Additionally, K in Alg 2 represents the number
of steps used for projection iterations. Furthermore, A and
B represent the variables used in Eq 7, which describe the
relationship between the conformal factor and the distribution
of data. Since B influences only the scale of comformal
factor, adjusting it is equivalent to modifying α. Therefore,
for simplicity, we fixed B at 0.

TABLE 3. T , N, S, α refer to the variables used in Alg 1., while K denotes
the variable used in Alg 2. Additionally, A, B represent the variables used
in Eq 7.

REFERENCES
[1] M. Liu,M. Zhu, andW. Zhang, ‘‘Goal-conditioned reinforcement learning:

Problems and solutions,’’ 2022, arXiv:2201.08299.
[2] S. Amarjyoti, ‘‘Deep reinforcement learning for robotic manipulation-the

state of the art,’’ 2017, arXiv:1701.08878.
[3] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,

B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, ‘‘Hindsight
experience replay,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–11.

[4] S. Aradi, ‘‘Survey of deep reinforcement learning for motion planning of
autonomous vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740–759, Feb. 2022.

[5] I. Bakas, ‘‘The algebraic structure of geometric flows in two dimensions,’’
J. High Energy Phys., vol. 2005, no. 10, p. 38, Oct. 2005.

[6] I. Bakas, ‘‘Renormalization group equations and geometric flows,’’ 2007,
arXiv:hep-th/0702034.

[7] T. Carta, P.-Y. Oudeyer, O. Sigaud, and S. Lamprier, ‘‘EAGER: Asking
and answering questions for automatic reward shaping in language-
guided RL,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 12478–12490.

[8] J. Chen, T. Huang, W. Chen, and Y. Liu, ‘‘Thoughts on the con-
sistency between Ricci flow and neural network behavior,’’ 2022,
arXiv:2111.08410.

[9] M. Dobrevski and D. Skocaj, ‘‘Adaptive dynamic window approach,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 6930–6936.

[10] B. Eysenbach, X. Geng, S. Levine, and R. R. Salakhutdinov, ‘‘Rewriting
history with inverse RL: Hindsight inference for policy improvement,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 14783–14795.

VOLUME 12, 2024 24037

W. Song, J. Lee: Ricci Planner: Zero-Shot Transfer for GCRL via Geometric Flow

[11] B. A. Frigyik, S. Srivastava, and M. R. Gupta, ‘‘An introduction to
functional derivatives,’’ Dept. Electr. Eng., Univ.Washington, Seattle, WA,
USA, Tech. Rep. UWEETR-2008-0001, 2008.

[12] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, vol. 2.
Berlin, Germany: Springer, 1990.

[13] S. Glass, S. Spasov, and P. Liò, ‘‘RicciNets: Curvature-guided prun-
ing of high-performance neural networks using Ricci flow,’’ 2020,
arXiv:2007.04216.

[14] C. F. Hayes, R. Radulescu, E. Bargiacchi, J. Källström, M. Macfarlane,
M. Reymond, T. Verstraeten, L. M. Zintgraf, R. Dazeley, F. Heintz,
E. Howley, A. A. Irissappane, P. Mannion, A. Nowé, G. Ramos,
M. Restelli, P. Vamplew, and D. M. Roijers, ‘‘A practical guide to multi-
objective reinforcement learning and planning,’’ Auto. Agents Multi-Agent
Syst., vol. 36, no. 1, p. 26, Apr. 2022.

[15] X. He and C. Lv, ‘‘Robotic control in adversarial and sparse reward envi-
ronments: A robust goal-conditioned reinforcement learning approach,’’
IEEE Trans. Artif. Intell., vol. 5, no. 1, pp. 244–253, Jan. 2024.

[16] J. Ho, A. Jain, and P. Abbeel, ‘‘Denoising diffusion probabilistic models,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 6840–6851.

[17] Z. Huang, F. Liu, and H. Su, ‘‘Mapping state space using landmarks for
universal goal reaching,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–11.

[18] R. Jangir, G. Alenya, and C. Torras, ‘‘Dynamic cloth manipulation with
deep reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), May 2020, pp. 4630–4636.

[19] M. Janner, Q. Li, and S. Levine, ‘‘Offline reinforcement learning as one big
sequence modeling problem,’’ in Proc. Int. Conf. Adv. Neural Inf. Process.
Syst., vol. 34, 2021, pp. 1273–1286.

[20] S. Kapturowski, V. Campos, R. Jiang, N. Rakicevic, H. van Hasselt,
C. Blundell, and A. P. Badia, ‘‘Human-level Atari 200x faster,’’ 2022,
arXiv:2209.07550.

[21] J. Kim, Y. Seo, S. Ahn, K. Son, and J. Shin, ‘‘Imitating graph-based
planning with goal-conditioned policies,’’ 2023, arXiv:2303.11166.

[22] G. Kumar, N. S. Shankar, H. Didwania, R. D. Roychoudhury,
B. Bhowmick, and K.M. Krishna, ‘‘GCExp: Goal-conditioned exploration
for object goal navigation,’’ in Proc. 30th IEEE Int. Conf. Robot Human
Interact. Commun. (RO-MAN), Aug. 2021, pp. 123–130.

[23] M. Lapan, Deep Reinforcement Learning Hands-on: Apply Modern RL
Methods,WithDeepQ-Networks, Value Iteration, PolicyGradients, TRPO,
AlphaGo Zero and More. Birmingham, U.K.: Packt, 2018.

[24] S. Levine, A. Kumar, G. Tucker, and J. Fu, ‘‘Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,’’ 2020,
arXiv:2005.01643.

[25] Y. Li and R. Lu, ‘‘Applying Ricci flow to high dimensional manifold
learning,’’ Sci. China Inf., Beijing, China, Tech. Rep. 192101, 2017.

[26] Y. Li, T. Gao, J. Yang, H. Xu, and Y. Wu, ‘‘Phasic self-imitative reduction
for sparse-reward goal-conditioned reinforcement learning,’’ in Proc. Int.
Conf. Mach. Learn. (ICML), Jun. 2022, pp. 12765–12781.

[27] J. Y. Ma, J. Yan, D. Jayaraman, and O. Bastani, ‘‘Offline goal-conditioned
reinforcement learning via f -advantage regression,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 35, 2022, pp. 310–323.

[28] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori, ‘‘Combinatorial optimization
by graph pointer networks and hierarchical reinforcement learning,’’ 2019,
arXiv:1911.04936.

[29] Y. Jason Ma, J. Yan, D. Jayaraman, and O. Bastani, ‘‘How far I’ll
go: Offline goal-conditioned reinforcement learning via f -advantage
regression,’’ 2022, arXiv:2206.03023.

[30] S. Manen, M. Guillaumin, and L. V. Gool, ‘‘Prime object proposals with
randomized Prim’s algorithm,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2013, pp. 2536–2543.

[31] S. Mirchandani, S. Karamcheti, and D. Sadigh, ‘‘ELLA: Exploration
through learned language abstraction,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 34, 2021, pp. 29529–29540.

[32] Y. Niu, S. Jin, Z. Zhang, J. Zhu, D. Zhao, and L. Zhang, ‘‘GOATS:
Goal sampling adaptation for scooping with curriculum reinforcement
learning,’’ 2023, arXiv:2303.05193.

[33] J. M. Catacora Ocana, R. Capobianco, and D. Nardi, ‘‘An overview of
environmental features that impact deep reinforcement learning in sparse-
reward domains,’’ J. Artif. Intell. Res., vol. 76, pp. 1181–1218, Apr. 2023.

[34] S. Pateria, B. Subagdja, A.-H. Tan, and C. Quek, ‘‘Hierarchical reinforce-
ment learning: A comprehensive survey,’’ ACM Comput. Surv., vol. 54,
no. 5, pp. 1–35, Jun. 2022.

[35] G. Perelman, ‘‘Ricci flow with surgery on three-manifolds,’’ 2003,
arXiv:0303109.

[36] S. Reddy, A. D. Dragan, and S. Levine, ‘‘SQIL: Imitation learning via
reinforcement learning with sparse rewards,’’ 2019, arXiv:1905.11108.

[37] Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng, ‘‘Exploration via hindsight
goal generation,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–12.

[38] M. Rosenblatt, ‘‘Remarks on some nonparametric estimates of a density
function,’’ Ann. Math. Statist., vol. 27, no. 3, pp. 832–837, 1956.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[40] Y. Song and S. Ermon, ‘‘Generative modeling by estimating gradients of
the data distribution,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–13.

[41] Y. Song and D. P. Kingma, ‘‘How to train your energy-based models,’’
2021, arXiv:2101.03288.

[42] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, ‘‘Score-based generative modeling through stochastic
differential equations,’’ 2020, arXiv:2011.13456.

[43] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[44] C. Szepesvári, ‘‘Algorithms for reinforcement learning,’’ Synth. Lectures
Artif. Intell. Mach. Learn., vol. 4, no. 1, pp. 1–103, 2010.

[45] J.-P. Vert, K. Tsuda, and B. Schölkopf, ‘‘A primer on kernel methods,’’
Kernel methods Comput. Biol., vol. 47, pp. 35–70, Dec. 2004.

[46] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai,
and Q. Miao, ‘‘Deep reinforcement learning: A survey,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Sep. 28, 2022, doi:
10.1109/TNNLS.2022.3207346.

[47] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, ‘‘Gibson env:
Real-world perception for embodied agents,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9068–9079.

[48] W. Xu, E. R. Hancock, and R. C. Wilson, ‘‘Rectifying non-Euclidean
similarity data using Ricci flow embedding,’’ in Proc. 20th Int. Conf.
Pattern Recognit., Aug. 2010, pp. 3324–3327.

[49] X. Yu, N. Lei, Y.Wang, and X. Gu, ‘‘Intrinsic 3D dynamic surface tracking
based on dynamic Ricci flow and teichmuller map,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5390–5398.

[50] L. Zhang, G. Yang, and B. C. Stadie, ‘‘World model as a graph: Learning
latent landmarks for planning,’’ in Proc. Int. Conf. Mach. Learn., 2021,
pp. 12611–12620.

WONGEUN SONG received the B.S. degree in
electrical and computer engineering from Seoul
National University, in 2017, where he is currently
pursuing the Ph.D. degree.

JUNGWOO LEE (SeniorMember, IEEE) received
the B.S. degree in electrical and computer engi-
neering from Seoul National University, in 1988,
and the M.S.E. and Ph.D. degrees in electrical
engineering from Princeton University, in 1990
and 1994, respectively. He is currently a Professor
with the Department of Electrical and Computer
Engineering, Seoul National University.

24038 VOLUME 12, 2024

http://dx.doi.org/10.1109/TNNLS.2022.3207346

