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ABSTRACT Creating a cyber deception framework for 5G networks, particularly in IoT and cellular
applications, is complex due to critical constraints in managing resources, meeting low latency demands,
and addressing security concerns. While cloud computing aids in alleviating some limitations, it often
falls short in meeting low-latency requirements. Multi-Access Edge Computing (MEC) has emerged as a
solution by bringing resources closer to User Equipment (UEs) to reduce latency. VariousMEC architectures
have leveraged Software Defined Networking (SDN), Network Function Virtualization (NFV), Service
Function Chaining (SFC), Network Slicing (NS), decision-making systems, and deception components.
However, none have integrated these technologies comprehensively to achieve superior Quality of Service
(QoS) and strengthen security. In this paper, we unify SDN, NFV, SFC, NS, decision-making technologies,
and deception to efficiently manage MEC server resources and lure attackers. We utilize cyber deception
metrics, including request collection rates over time and variations in request numbers concerning different
botnet sizes. Moreover, we meticulously address QoS parameters such as latency, computing, storage,
and bandwidth resources. Our approach initiates with a mathematical model for MEC server resource
allocation, introducing a novel architecture that reduces bandwidth, computing, and storage resource usage.
We introduce a cyber deception strategy utilizing uniform distribution and random selection to divert
potential attackers. Simulations validate efficient resource management, notably reducing end-to-end latency
for requests processed on the edge and in the cloud. This enhancement improves QoSwithin theMEC system
and provides valuable insights for advancing decision-making technologies.

INDEX TERMS Multi-access edge computing (MEC), cyber deception, quality of service (QoS), software
defined networking (SDN), network function virtualization (NFV), service function chaining (SFC), network
slicing (NS), decision-making systems.

I. INTRODUCTION
Multi-access Edge Computing (MEC), introduced as a
fundamental concept in the world of networking, represents
a significant paradigm shift in how data processing and
computing are distributed in modern networks. With the
convergence of IoT and the rollout of 5G networks reshaping
digital landscapes, MEC stands at the forefront of this
transformation. It reduces the workload of network devices
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in applications such as 5G and 6G networks, IoT, augmented
reality, and big data [1]. The MEC architectural shift
is pivotal in enabling swift, high-capacity services with
minimal latency. Positioned strategically at the network edge,
MEC servers assume a critical role in data processing and
storage, offering a diverse array of computing resources
essential for the multifaceted functionalities of modern
networks. By intelligently distributing computational loads
from centralized cloud servers, MEC notably diminishes
latency in crucial applications such as video streaming,
IoT frameworks, and augmented reality. Moreover, this
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approach optimizes bandwidth usage by processing data
near end-users, amplifying the overall operational efficiency
of networks [2]. Leveraging MEC’s localized computa-
tional prowess, edge devices gain the capability to execute
intricate computations, facilitating the deployment of real-
time decision-making frameworks across diverse application
domains. This transformative potential reshapes communi-
cation networks, fostering adaptive, responsive, and highly
efficient ecosystems, marking the advent of a new era in con-
nectivity and resource utilization. However, the proliferation
of MEC also brings forth a new set of challenges, notably in
the realm of security. As MEC continues to gain prominence,
understanding its significance in the context of 5G and IoT
while addressing the complex security challenges it presents
becomes imperative for ensuring the resilience and reliability
of the next generation of networked systems [3]. Security
concerns have taken center stage in the realm of MEC,
largely driven by the proliferation of connected devices and
the emergence of novel applications. The shift toward edge
computing, as articulated in [4], has introduced a fresh attack
landscape, demanding a comprehensive scrutiny of security
vulnerabilities inherent to MEC ecosystems. Particularly,
Distributed Denial of Service (DDoS) attacks have gained
prominence as a continually evolvingmenace. The exhaustive
examination presented in [5] delves into the intricacies of
DDoS threats, shedding light on their potential to disrupt ser-
vices and undermine the overall user experience. In response
to these pressing challenges, the MEC community has
fervently committed to improving QoS, ensuring unwavering
and reliable performance. Pioneering research initiatives,
exemplified in [6], are diligently devising advanced resource
allocation strategies aimed at optimizing QoS metrics while
concurrently addressing security concerns. This collaborative
effort marks a crucial integration of methods, strengthening
MEC environments against new threats and improving the
quality of user engagements.

Cyber deception techniques, strategically deploying ele-
ments like honeypots or decoy systems, are crucial in modern
network security. Addressing MEC security challenges,
they prove effective against threats such as DDoS attacks
and unauthorized access. This deception redirects attackers
and provides insights into their tactics. Past applications
in network security have demonstrated their effectiveness,
leveraging these techniques to fortify MEC security against
evolving threats, enhancing resilience [7]. In [8], the author
proposed that by integrating technologies such as SDN, NFV,
SFC, and NS, it is possible to enhance QoS. Moreover, in [7],
it was demonstrated that incorporating these technologies
along with decision-making mechanisms can also bolster
the security of MEC servers. The synergy of SDN and
NFV allows for the separation of the data plane from
the control plane, enabling rapid data processing. SFC
leverages multiple NFV instances to enhance efficiency,
while NS facilitates the use of specific network slices for
real-time data forwarding. Numerous solutions have been put
forth in the past, aiming to improve QoS and implement

a deception framework for threat assessment. However,
to the best of our knowledge, none of these solutions have
comprehensively addressed the simultaneous enhancement
of QoS, the management of deception-related threats, and
the intricacies of the attacker-system interaction critical
for decision-making in MEC networks. In this study, our
motivation is twofold: first, to leverage the aforementioned
technologies to elevate the quality of service within MEC
frameworks, and second, to deceive potential attackers,
particularly in the context of DDoS attacks. To achieve
our goal, we commence by examining the existing body of
research in the MEC domain. Within this field, various inves-
tigations have utilized technologies like SDN, NFV, SFC, NS,
and decision-making methodologies, either independently
or in different combinations, to enhance QoS within the
MEC infrastructure. As we identify challenges inherent in
these approaches, we propose a more robust solution that
integrates all these technologies. Our approach involves
a process for managing requests and responses within a
framework of cyber deception. This framework’s foundation
relies on utilizing Uniform distribution and random strategy
selection to govern the dynamics of interactions between
potential attackers and the MEC system. The use of Uniform
distribution ensures that each potential response has an equal
chance of engaging with the MEC system, guaranteeing a
fair and unbiased approach to security. Meanwhile, random
strategy selection introduces an element of unpredictability,
making it challenging for attackers to anticipate the response
generated from the MEC server. Simulation results clearly
demonstrate that our comprehensive solution not only ensures
heightened QoS forMEC networks but also enables extensive
data acquisition related to potential attackers.

The remaining sections of this paper are structured as
follows: In Section II, we conduct a review of related works in
the realm of QoS enhancement within the MEC framework,
discuss various security measures against DDoS attacks,
and present the underlying motivation for our research.
Section III introduces our solution, which employs Cyber
Deception to augment DDoS detection and mitigation in
MEC, utilizing SDN, Decision-Maker Technology, SFC,
NFV, and NS. Section IV provides insights into the results
of our simulations. Finally, we conclude this paper in
Section IV-E, where we also provide recommendations and
address unresolved issues.

II. RELATED WORK
MEC is an architectural approach that extends cloud
computing to the network edge, positioning computational
power closer to data sources and utilization points. This
proximity significantly minimizes latency, enhances QoS,
and enables real-time data processing across diverse applica-
tions like IoT, augmented reality, and autonomous vehicles.
As emphasized in [7], the importance of MEC in reducing
latency, particularly in IoT and 5G technology, cannot be
understated. MEC encounters several challenges, including
task offloading, congestion control, resource allocation,
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security, privacy, mobility, and standardization. In this paper,
our primary focus is on security concerns. Security assumes
paramount importance in MEC due to its operation at the
network’s edge, making it vulnerable to various cyber threats.
Protecting sensitive data, fortifying edge devices, ensuring
secure data transmission, and defending against threats like
DDoS attacks are critical aspects, as elaborated in [9].
In [10], the authors introduced a security framework designed
for 5G MEC networks, concentrating on enhancing secure
access to network elements and introducing theMECEnabler
for efficient credential management. They explored various
usage scenarios and provided an access control protocol
diagram to illustrate the authentication process within MEC-
driven services.

Cyber deception is a strategy that utilizes false infor-
mation and decoys in networks to mislead and divert
attackers. The goal is to lure, confuse, or delay attackers
while simultaneously detecting their presence and gaining
insights into their tactics, allowing for early threat detection
and enhanced cybersecurity defenses [11]. Furthermore,
in [12], the authors addressed the critical issue of DDoS
attacks on SDN IoT-Edge Computing, exacerbated by the
pandemic-induced remote work trend. They explore the
efficacy of an SDN-based Moving Target Defense (MTD)
technique within a smart building context. The study’s MTD
Reactive and Proactive Network Address Shuffling Mech-
anism successfully defends against UDP, TCP SYN, and
LAND DDoS attacks, safeguarding IoT devices from botnet
compromise by frequently changing network addresses while
ensuring reliable system performance. Additionally, in [13],
a system designed to identify and prevent DDoS attack traffic
stemming from compromised IoT devices is introduced. This
is achieved by monitoring and analyzing specific packet
types—TCP, SYN, ICMP, and DNS—originating from these
IoT devices. Cyber deception enhances DDoS detection
by providing early warnings via decoys, reducing false
positives, conserving network resources, segmenting attacks,
obfuscating attacker intent, providing insights into malicious
behaviors, and enriching threat intelligence [14]. In [7],
authors introduced a deceptive MEC architecture, integrating
NFV, SFC, SDN, NS, and decision-maker technology to
combat cyber threats. They assessed its efficacy through
Monte Carlo simulations, demonstrating its effectiveness
in enhancing security. However, the Quality of Service
(QoS) remains a critical issue in MEC scenarios, involving
the employment of mechanisms or technologies within a
network to regulate traffic and ensure optimal performance
for essential applications when network resources are limited.
Moreover, in [15], notable contributions were made to
enhancing QoS within the context of MEC by integrating
SDN, NFV, SFC, and NS technologies to efficiently oversee
MEC server resources, ensuring reliable QoS requirements
for AVNET are met. Additionally, in [16], a method aimed
at improving both data privacy and security to enhance the
Quality of Experience (QoE) within a MEC environment was
introduced. The key contribution of this work is the proposal

of a hybrid cryptography system, combining both symmetric
and asymmetric cryptography techniques, to enhance data
security, privacy, and user authenticationwithin aMEC-based
network. Notably, none of the previouslymentioned solutions
( [7], [15], [16]) address the dual aspects of improving QoS
and enhancing user interaction with the MEC computing
server within the deceptive framework. To the best of our
knowledge, this pioneering work comprehensively addresses
both these facets simultaneously.

Our objective is to introduce an MEC solution that
harnesses SDN, NFV, SFC, NS, and decision-making
technologies to protect MEC servers from DDoS attacks.
This solution considers resource limitations such as latency,
processing power, storage, and bandwidth, all while aiming
to meet QoS requirements in MEC environments. It also
evaluates the volume of data collected from attackers and
the methodology used for its accumulation over time. These
endeavors are geared toward enhancing decision-making
technology within the system.

III. CYBER DECEPTION FOR ENHANCED DDoS
DETECTION AND MITIGATION IN MEC: LEVERAGING SDN,
DECISION-MAKING TECHNOLOGY, SFC, NFV, AND NS
As proposed by both [8] and [7], the integration of diverse
technologies to enhance QoS and deception tactics within
the MEC framework has been a consistent suggestion.
Expanding upon this advice, we introduce an innovativeMEC
solution in this paper. Our approach harnesses an extensive
array of technologies—such as SDN, NFV, NS, SFC, and
decision-making technology—not only to elevate QoS but
also to lure attackers and gather data about them.

A. PROPOSED ARCHITECTURAL FRAMEWORK
Our presented architectural framework is visually represented
in Figure 1, designed to facilitate the mobility of end
devices while establishing crucial communication links to
prevent collisions with other devices. End devices achieve
this through direct communication or by sending requests
to the nearest Base Station (BS), which, in turn, connects
them to the MEC servers. Upon receiving a user’s request,
the MEC server follows the prescribed procedures outlined
in Sections III-B and III-D.

Our innovative solution is meticulously crafted to ensure
minimal latency, efficient resource management encompass-
ing bandwidth, computing, and storage, enhance ambiguity
for malicious devices, and compile valuable information
about potential attackers to support the decision-making
system. This multifaceted approach is realized through the
integration of cutting-edge technologies, including SDN,
NFV, SFC, NS, deception component and decision-making.
MEC servers maintain open lines of communication with
a diverse array of network components, such as cloud data
centers, end devices, and other MEC servers, fostering these
connections directly or through the BSs. At the heart of our
architectural design is the strategic inclusion of a deception
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component and the adept management of request/response
interactions within the internal structure of the MEC server.

B. REQUEST PROCESS MANAGEMENT
• In this architectural setup, four distinct device categories
are identified: end devices encompassing both normal
and malicious entities. When engaging with the MEC
server’s information or services, end users may delegate
tasks to it. Malicious users may undertake harmful
actions resulting in adverse consequences such as
performance deterioration, resource depletion, server
overload, and security vulnerabilities. Conversely, nor-
mal users may aim to execute legitimate tasks on the
MEC server due to resource limitations on their devices.
This situation arises due to the widespread use of IoT,
with numerous devices lacking computing resources and
relying on the MEC server for computation. The test
scenario in this paper centers around subjecting the
MEC server to DDoS attacks using the GET and POST
methods.

• As outlined by the author in [17], the MEC server
is partitioned into five virtual machines to address
specific requirements, notably assuring QoS and user
experience. VM1 hosts both the Decision Maker and
the SDN controller. Incoming requests directed at
the MEC server are initially intercepted by the SDN
controller, possessing a comprehensive understanding
of the entire MEC server architecture and maintaining
communication with the virtual machines [18]. Upon
reception, the SDN controller relays the request to the
Decision Maker, tasked with determining the request’s
legitimacy (i.e., identifying potential DDoS attacks)
and subsequently transmitting the findings back to the
SDN controller for further assessment. It is presumed
that a botnet and the decision maker’s view have
been established. Once the SDN controller receives the
Decision Maker’s response:

- - If the response confirms the request’s legitimacy,
the SDN controller routes the request to the VNF
checker (3). The VNF checker assesses whether
the available resources within the MEC server can
accommodate the request and furnishes a response
to the SDN controller (4).

* Upon receiving a ‘‘Yes’’ response from the
checker, indicating ample resources within the
MEC server, the SDN controller forwards the
request to the VNF processor (10). TheVNF pro-
cessor carries out the computation and transmits
the response back to the SDN controller (11).
The received response is then dispatched to the
VNF receiver (VM3) for storage in the Cloud
data center (8) and delivery to the legitimate
device.

* If the checker’s response indicates ‘‘No,’’ signi-
fying insufficient resources, the SDN controller

initiates an alternative course of action. It directs
the request to the VNF sender (VM3) (1), which
then transfers the request to the adjacent MEC
server directly connected to the specific MEC
server where the VNF sender is integrated (7).

- - When the Decision Maker’s response identifies
a DDoS request, the SDN controller routes the
request to the VNF deception processor (VM5)
for in-depth analysis and establishment of the
deception interaction procedure (5 and 6). In this
context, two scenarios arise:

* If the database (DB) in the VNF deception
processor is empty, indicating no recorded
DDoS GET requests, the deception processor
conveys the request to the SDN controller, which
forwards it to the VNF processor for further
scrutiny. The analysis involves generating an
augmented reality version of the requested video,
as described in [20] for fake video generation.
We assume that the decision maker’s strategy
for HTTPS GET and POST DDoS attacks
detection has been previously described in [21].
Subsequently, the SDN controller relays the
analysis results to the deception processor. The
deception processor archives this information
in the DB for future reference, using either
randomization or uniform distribution to select a
status code for the GET response. This response
is transmitted to the SDN controller, which
forwards it to the malicious device.

* If the DB within the VNF deception processor is
not empty, upon receiving the request from the
SDN controller, the processor checks if there is
any correspondence within the DB correspond-
ing to the specific user. If such correspondence
is identified, the processor applies the previously
described scenario until the request received
from the malicious device no longer matches
the one stored in the DB. Regarding the POST
request, a similar process is implemented, except
that the request is sent to the VNF processor
for analysis, as a POST request pertains to an
upload process. The handling process is detailed
in Algorithm 1.

• The cloud server plays a pivotal role in data storage,
housing the information and analytical outcomes pro-
duced by the MEC server. It offers extensive storage
capabilities, serving as a potential redundancy system
for MEC Edge Servers.

• The VNF deception processor serves as the mechanism
for redirecting malicious traffic. Within this architec-
tural framework, the SDN controller functions as a
gateway, rerouting unauthorized inbound traffic towards
the deceptionMEC server. This component accumulates
extensive data on potential attackers, leveraged for
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FIGURE 1. Our proposed MEC architecture.

decision-making within the MEC server. The aim is to
diminish future attacks within the MEC server.

1) CYBER DECEPTION STRATEGY
Our deception strategy involves the application of either the
Uniform distribution or Randomized strategy. These employ
a predefined set of status codes to formulate responses
following a DDoS attack on the MEC server. The status
codes represent the response options utilized by the deception
processor, with the choice between the Uniform distribution
approach and the Randomized strategy approach determining
their application. A comprehensive list of the status codes
utilized is provided in Table 2.

2) UNIFORM DISTRIBUTION APPROACH
The interaction involves the MEC server representing the
system, and the attacker acting as the malicious device.
The primary objective of the MEC server is to generate
responses that are indistinguishable as fake by the attacker.
To achieve this goal, a specific strategy has been deployed:
the initial step involves the implementation of a Uniform
distribution approach among the response categories, each
associated with distinct status codes. This approach guar-
antees an even distribution of response selections across
various status codes, amplifying the appearance of random-
ness. Consequently, this makes it more difficult for the
attacker to differentiate between authentic and counterfeit
responses.
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TABLE 1. Input values for algorithm 1.

3) RANDOMIZE APPROACH
Regarding the Randomize strategy approach, each response
has a random chance of being chosen among the set of
responses. This selection method enhances the attacker’s
uncertainty. To simulate the scenario inwhich theMEC server
randomly selects a response from a set of responses to send
to an attacker, depending on the GET or POST request.

4) ATTACKER AND DECEPTION PROCESSOR VIEW
The scenario outlined in this paper enables users to engage
in both data downloading and uploading activities, primarily
involving video content. This step presumes that the trust-
worthiness of the request has already been established by the
Decision Maker, determining the presence of DDoS attacks.
The subsequent handling process is articulated as follows:

• VNF deception view:

- - In the context of GET requests, the deception
processor initiates a validation process to ascertain
the status of the user’s session. Upon detecting
an active session and additional request data in
the local database, the server presents two dis-
tinct approaches for consideration: the randomize
approach and the uniform distribution approach.
Subsequently, the server adjusts the status code
within the corresponding response before formally
crafting and transmitting it back to the user.
Simultaneously, the requested data is relayed to the
VNF processor, facilitating augmented reality com-
putations within the specified video and thereby
introducing an element of heightened uncertainty
for potential attackers. If the user’s session has

Algorithm 1 Storage and Computing Resources
Handling Process

Input : Table 1
Output: RT tjfEi

, RT tjtEi
1 Insert T tjEi in LT
2 R

T
t
jtEi
← null

3 R
T
t
jfEi
← null

4 R
T
t
jEi
← null

5 CREi ← CREi +�T tjEi
6 SREi ← SREi + λT tjEi
7 Djpos ← CheckPosition(Dj,Ei)
8 RfilterT tjEi

← Filter(T tjEi )

9 if RfilterT tjEi
= false then

10 Insert T tjEi in LTf
11 T tjfEi ← T tjEi
12 if GET request then
13 T tjfEi ← Sent-Resp(T tjfEi ,Dj)
14 sent to deception processor
15 else
16 sent to deception processor

17 Store T tjfEi in the deception database
18 else
19 Insert T tjEi in LTt
20 T tjlEi ← T tjEi
21 if Djpos is coverage zone (Ei) then
22 if CRt ≤ CEi − θEi , SRt ≤ SEi − δEi then
23 RT tjEi

← compute(T tjEi )

24 else
25 Forward T tjEi to the cloud server and

wait for the response
26 while RT tjEi

= null do

27 RT tjEi
← Result − cloud − server(T tjEi )

28 T tjtEi ← T tjEi
29 Forward RT tjtEi

to Dj
30 Store RT tjtEi

to cloud server

31 else
32 Forward T tjtEi to the next MEC server

33 CRf ← CRf +�T tjfEi
34 SRf ← SRf + λT tjfEi
35 CRt ← CRt +�T tjtEi
36 SRt ← SRt + λT tjtEi
37 remove T tjtEi from LTt
38 remove T tjfEi from LTf
39 remove T tjEi from LT

expired, access is temporarily restricted until the
initiation of a new session.
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TABLE 2. Frequent status code used for GET, and POST https requests.

- - For POST requests, a process similar to that of
GET requests is implemented, with a notable
exception: the deception processor refrains from
forwarding any requests to the VNF processor.
Instead, the deception server is solely dedicated to
structuring the responsewith the requisite fields and
determining the status code—a decision governed
by either the randomization or uniform distribution
method.

• Attacker’s view:
In this situation, malicious actors implement a DDoS
tactic involving the indiscriminate flood of requests
originating from various user sources. These attackers
work with a predetermined number of requests to
release. On the receiving side, users continuously
initiate requests, pursuing their intended goals, which
might entail obtaining a status code of 200 for
POST requests or successfully retrieving the specific
data they’ve requested in the case of GET requests.
In this context, the structure of the requests plays a
crucial role, encompassing essential elements such as
header details, content, status codes, and other vital
particulars.

C. BASELINE WORKS
The referenced baselines within this study delineate two dis-
tinct approaches: one devoid of decision-making technology
and deception, and the other lacking an MEC server:
• Approach Without Decision-Making Technology and
Deception: This methodology utilizes the internal MEC
architecture depicted in Figure 1 but excludes both
the deception Network Function Infrastructure (NFI)
and decision-making technology. Consequently, there
exists no filtration mechanism for end-device requests.
All incoming requests are processed either within the
current server or rerouted to the subsequent MEC server
if the user’s location falls outside the coverage zone of
the current server. In caseswhere the end device is within
the server’s coverage but local resources in the MEC are
inadequate to handle the request, computation occurs in
the cloud server, as outlined in [15].

• Approach Without MEC Server: This approach rep-
resents the conventional cloud setup devoid of an
MEC server in close proximity to the data producer.
In this scenario, all user requests undergo processing
exclusively within the cloud server.

D. SFC GRAPH AND NETWORK SLICING IN THE
PROPOSED ARCHITECTURE
1) SFC GRAPH
Service Function Chaining (SFC) stands out as a vital tech-
nology that serves to decompose complex network services,
known for their resource demands, into a series of intercon-
nected virtual network functions [22]. This integration carries
substantial benefits, primarily marked by a reduction in end-
to-end latency—a central QoS metric that we emphasize.
When woven into the fabric of SDN and NFV technologies,
SFC excels at facilitating the efficient orchestration and
deployment of service functions. This empowers the catego-
rization and enforcement of policies, allowing for the routing
of data flows based on specific service requirements and the
current network status. Ensuring the streamlined provisioning
of SFC requests holds paramount importance, particularly
in facilitating the operation of ultra-low latency applications
while minimizing the consumption of physical resources.
Telecommunication service providers distinctly favor the
optimization of existing physical network resources—
bandwidth, CPU, and RAM memory—within the network
architecture over the acquisition of supplementary physical
network resources. For a more visual representation, refer
to Figure 2 depicting the SFC architecture within our MEC
framework.

As highlighted by the authors in [23], an SFC graph
essentially comprises two integral components: the SFC data
plane (SFC-DP) and the SFC control plane (SFC-CP). These
two facets are interconnected through four distinct interfaces,
although in our specific case, only three of these interfaces are
relevant:
• Interface C1, linking SFC-CP and SFC-Cl, is primarily
designated for the management of SFC classification
rules within classifiers or decision-making components.

• Interface C2, facilitating communication between
SFC-CP and SFF, is primarily employed to exchange
necessary data related to SFC forwarding decision-
making, as well as to collect state information
concerning SFPs and other relevant details.

• Interface C3 serves as the bridge between SFC-CP
and SFC-aware SF and is chiefly used for functions
such as gathering output data generated during packet
processing within the SF.

Our MEC architecture integrates the SDN controller,
which assumes the role of the SFC controller within the
proposed SFC graph. It is situated inside VM1, as illustrated
in Figure 1. Additionally, the SFC Classifier functions as a
VNF that resides in VM1. Its primary responsibility in our
architectural framework involves filtering incoming traffic
originating from the SFC controller and then, based on the
type and legitimacy of the request, directing it to SFF1, SFF2,
or SFF3. When the task originates from the flow end devices
or VM3 in Figure 2, the SFC Classifier labels the flow for
routing to SFF1 or SFF2. In contrast, tasks originating from
flow 3 are tagged by the SFC Classifier for forwarding to
SFF3.
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FIGURE 2. Our service function chain process handling.

Our SFC graph comprises three SFFs: SFF1, SFF2, and
SFF3, respectively situated in VM1, VM4, and VM5. When
SFF1 receives a task from the SFC Classifier, it forwards it
using the VNF Sender function. If the task reaches the VNF
Receiver, it is subsequently directed to SFF2. In the case of
illegitimate tasks, after filtration, they are forwarded to SFF3.

Within SFF2, tasks arriving from SFF1 are immediately
forwarded to the SFC controller via interface C2. Conversely,
when tasks arrive from the SFC classifier, the SFF2 makes
routing decisions based on task parameters, subsequently
directing them either to the VNF Checker or the VNF Proces-
sor. Upon processing, the VNF Checker/Receiver transmits
the results to the SFC controller through interface C3.

Finally, tasks received by the SDN controller via interface
C2 are relayed to the SFCClassifier using interface C1.When
tasks are sourced from C3, the SFC controller performs a
check to determine if they originate from the VNF Processor
or the VNF Checker. In the former case, the SFC controller
issues a response to the requesting end device, while in the
latter case, the task is routed to the SFC Classifier through
interface C1. VM4 utilizes interface C2 to communicate with
the SDN controller.

2) NETWORK SLICING APPROACH
Network slicing, a concept in network architecture, involves
dividing a single physical network infrastructure intomultiple
isolated virtual networks or ‘‘slices,’’ each customized
for specific applications or services. These slices provide
tailored resources like bandwidth, processing power, and
security features to suit diverse use cases such as IoT,
autonomous vehicles, and ultra-low-latency communication.
It’s a fundamental part of 5G networks, enabling efficient
resource allocation, end-to-end control, and flexibility in
service delivery for optimal performance and security.

Leveraging network slicing technology within an MEC-
SDN-NFV-DecisionMaker architecture is crucial for enhanc-
ing QoS. However, it comes with challenges such as

interoperability, mobility considerations, orchestration effi-
ciency, and tailored business models, depending on specific
application needs [24]. The cloud SDN controller holds a piv-
otal role in this, responsible for establishing logical resource
slicing and meeting QoS criteria for each slice, as outlined
in [25]. It dynamically adjusts QoS parameters based on
unique slice requirements, communicating decisions to the
MEC SDN controller for physical resource management and
user scheduling.

The network slicing approach here alignswith [15] require-
ments, delineating communication channels among various
components: end devices, end devices-MEC servers, MEC
servers-cloud data centers, and interconnections between
MEC servers. This strategy introduces two specialized slices:
the low-latency slice for rapid communication between end
devices and MEC servers and the high-latency slice for
MEC servers’ communication with cloud servers. Mobility
considerations for end devices are accounted for in the low-
latency slice, allowing for flexible path alterations based on
specified proba bilities [15]. We employed the Manhattan
mobility model for simplicity in depicting these movements.

In contrast, the high-latency slice handles communication
betweenMEC and cloud servers, optimized for higher latency
without compromising connectivity strength. Actions include
storing computation results on cloud servers (as indicated
in line 30 of Algorithm 1) or transmitting network maps
between cloud and MEC servers. These interactions rely on
the bandwidth fraction γ introduced in Section III-E2. The
allocation of this fraction is managed by the cloud SDN
controller based on overall network traffic volume, ensuring
secure data transfers.

E. RESOURCE MANAGEMENT FOR COMPUTING
AND STORAGE
1) COMPUTING AND STORAGE MANAGEMENT
In a network setup, there’s a cloud data center hosting a
single server denoted as C , several MEC servers labeled as
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TABLE 3. Notation list.

Ei (where 1 ≤ i ≤ m), and a set of end devices termed Di
(where 1 ≤ i ≤ n). The network provides a total available
bandwidth β within a radius R. Each MEC server, Ei, has its
computing resources (Ci), storage capacity (Si), and a unique
coverage zone defined by ri.
In this network structure, the notation T tDiEi represents a

request initiated by end device Di directed towards MEC
server Ei at a specific time, denoted as t.
The goal of managing computing and storage resources

encompasses two primary objectives. First, it aims to ensure
prompt processing of incoming requests to the MEC server.
Second, it aims to efficiently transmit computation outcomes
back to the requesting end device, minimizing latency.
To achieve these goals, the solution needs to route tasks
to the nearest MEC server with adequate resources for
computation and storage. Within MEC server Ej, two crucial
parameters come into play: θEi and sEi , representing the
internal computing and storage resources required to process
and store requests not directly associated with end device
processing and communication respectively. The available
computing and storage resources within the MEC server
must exceed or equal the cumulative resource requirements
of all processed tasks, encompassing both external requests
and internal operations. Additionally, computation can only
commence if the originating end device falls within the
coverage radius of the MEC server. It can be observed that
integrating the decision maker into this architecture results
in a reduction of both computing and storage resources,
in contrast to an architecture lacking request filtering within
the internal structure of the MEC server. Now, assuming
there are k legitimate requests and q illegitimate requests
denoted as Tm for malicious requests and T n for normal
requests, the allocation of computing resources, as expressed
in Equation 1, needs to consider that only GET requests

directed to the MEC server for data download require
significant computing resources. Since we’ve assigned this
computational task to the VNF processor, it demands sub-
stantial computing resources. Conversely, for POST requests,
the complexity primarily involves formalization and can be
approximated with a constant time complexity.

k∑
z=1

αT nz +

q∑
p=1

αTmp ≤ CEi + θEi (1)

k∑
z=1

αT nz +

q∑
z=1

αTmz ≤

k∑
z=1

αT nz +

q∑
z=1

αT nz (2)

q∑
z=1

αTmz ≤

q∑
z=1

αT nz

→

q∑
z=1

αTmz +

k∑
z=1

αT nz ≤

q∑
z=1

αT nz +

k∑
z=1

αT nz (3)

The same process is applied to the storage resources, and
we have observed a similar pattern of efficient utilization.

q∑
z=1

λTmz ≤

q∑
z=1

λT nz →

q∑
z=1

λTmz +

k∑
z=1

λT nz ≤

q∑
z=1

λT nz +

k∑
z=1

λT nz

(4)

2) BANDWIDTH MANAGEMENT
In our network slicing approach, effective bandwidth man-
agement is crucial to ensure that each slice has a sufficient
share of bandwidth resources to handle its respective
request load, meeting the QoS requirements, especially low
latency. Equation 5 introduces a bandwidth constraint by
considering the total available bandwidth, denoted as β, and
the bandwidth required to process each incoming request.

m∑
i=1

ni∑
j=1

bj ≤ γ + β (5)

Here, m represents the count ofMEC servers, n symbolizes
the number of tasks assigned to MEC server Ei, and bj
signifies the bandwidth requirement for task Tj, specifically
for ensuring a low-latency transmission of the processing
results. Additionally, γ denotes the bandwidth essential for
facilitating data exchange between MEC servers and the
cloud server, particularly for transmitting non time-sensitive
data, such as storing task results in the cloud server or sharing
network map updates with MEC servers.
The allocation of bandwidth is proportional to the quantity

of requests eachMEC server must handle. To avoid situations
where some MEC servers have unused allocated bandwidth
while others struggle due to resource limitations, the Cloud
SDN Controller employs a predictive machine learning
model. This model anticipates the optimal allocation of
bandwidth resources for each MEC server by leveraging data
on end device movements over a specific time interval. The
prediction model utilizes lists of MEC servers and stored
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results to forecast the future flow of end devices. This
prediction process utilizes link quality estimation techniques
outlined in [26]. Based on these predictions, bandwidth
allocation is carried out for each MEC server, considering
the parameter γ to comply with the constraint specified in
Equation 5.

F. CYBER DECEPTION STRATEGY: IMPACT ON
NETWORK SECURITY
Cyber deception involves deploying deceptive elements like
decoys, false data, and altered environments to mislead
attackers, diverting unauthorized access attempts. Imple-
menting a cyber deception strategy has multifaceted impli-
cations for network security, covering crucial aspects:

• It introduces proactive measures that actively mislead
and redirect potential attackers, bolstering existing secu-
rity measures and reducing the network’s vulnerability
to a wide range of cyber threats [27].

• Deception tactics effectively mitigate advanced threats,
diverting assailants away from critical assets and
into fabricated environments, thus safeguarding against
targeted intrusions and sophisticated malware.

• By luring attackers into false environments, organiza-
tions gain invaluable insights into adversarial tactics,
fostering a deeper understanding of evolving cyber
threats and enabling proactive adjustments in defense
strategies.

• The proactive nature of cyber deception aids in early
threat detection, reducing dwell timewithin the network.
It provides opportunities to neutralize potential breaches
before they escalate, averting data compromises [29].

• Ultimately, cyber deception strengthens network
resilience by misleading adversaries, minimizing the
impact of successful cyberattacks, and enabling swift
recovery measures to maintain network integrity and
functionality. This is particularly crucial in mitigating
threats like DDoS attacks, a primary concern addressed
in this work.

IV. SIMULATION RESULTS
In this section, we present the results and analysis of
simulations conducted to assess the efficacy of our proposed
cyber deception-based architecture. These simulations were
executed using the EdgeCloudSim simulator, with an HTTPS
service installed via Python scripts to launch GET and
POST DDoS requests. EdgeCloudSim is an open-source
simulation platform tailored for Edge Computing scenarios,
enabling experimentation involving both computational and
network resources. Windows 11 served as the operating
system for these simulations. A comprehensive overview of
the parameter values used in the simulations is provided in
Table 4.

The primary objective of these simulations is to demon-
strate that our architecture, which integrates a decision-
making approach, leads to more efficient utilization of

TABLE 4. Setting parameters.

FIGURE 3. The computing resources evaluation.

network resources compared to scenarios lacking decision-
making technology. Additionally, the simulations illustrate
how our approach facilitates information collection about
malicious devices while enhancing their level of uncertainty.

A. COMPUTING AND STORAGE RESOURCES EVALUATION
To evaluate the efficiency of Algorithm 1 concerning comput-
ing and storage resources, we analyzed resource utilization in
two scenarios: one integrating decision-making technology
and another without it. In the approach lacking a decision-
making system, no filtration process or deception component
is employed. All requests are handled by solely verifying
resource availability on the MEC server. In Figure 3, our
focus was on CPU resource assessment. We observed that
with an increasing number of end devices, the average
computing resources also rose. This increase can be attributed
to the fact that the decision-making-absent approach involved
numerous operations before responding to both DDoS
requests and legitimate requests, resulting in higher CPU
usage. For instance, with 250 devices, the average computing
resources used were 8900 MIPS and 9001 MIPS for the
methods with and without decision-making, respectively.
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FIGURE 4. The storage resources evaluation.

FIGURE 5. Average RAM used.

Furthermore, we assessed RAM utilization as depicted in
Figure 4. Interestingly, unlike the CPU evaluation shown
in Figure 3, the proportion of resources used was lower
when processing incoming requests from end devices on the
MEC server. Upon comparison between the two methods,
the one lacking decision-making consumed more RAM.
This increase was due to the average internal operations
performed by the virtual machine before responding to
the end device. The disparity in RAM consumption stems
from the filtration and correspondence matching processes
executed by the decision-making technology in the method
integrating decision-making.

Additionally, the evaluation of storage resources in
Figure 5 demonstrated that, across all instances, the average
storage resources were higher in the approach without
decision-making compared to the one integrating decision-
making. Upon our assessment of computing and storage
resources, we noted that none of the MEC server resources
were fully utilized when processing end device requests
in any of the scenarios. This observation validates our
conclusion that the constraints specified in Equation 1 were
satisfied.

B. END DEVICES’ REQUESTS PROCESSING LOCATION
In Figure 6, a noticeable trend emerges: as the number of
users increases, there’s a simultaneous rise in the average

FIGURE 6. Analyzing variations in request processing locations.

FIGURE 7. The latency evaluation.

number of requests processed by both external MEC servers
and the cloud server. Similarly, there’s an observed increment
in the average number of tasks computed by the local MEC
server. This behavior is driven by the fluctuating volume
of requests from illegitimate sources, showing temporal
variability over time. Moreover, the surge in requests handled
by external MEC servers directly correlates with the mobility
of end devices within the network. Consequently, requests
that require treatment in the deception NFI, demanding
higher resources, are rerouted to the cloud. This is especially
impacted by the influx of illegitimate requests.

C. LATENCY EVALUATION
Our method demonstrates significantly lower latency com-
pared to the MEC server’s internal architecture without a
decision-making system, as illustrated in Figure 7. This
reduction in latency offers a twofold advantage. Firstly,
it results in notably faster response times—a critical factor
for real-time applications like video conferencing and
autonomous vehicles, where rapid data processing is essential
for both safety and user satisfaction. Secondly, the decreased
latency not only enhances the overall user experience but
also streamlines network efficiency, ensuring that vital data
and commands promptly reach their intended destinations.
Consequently, this leads to more seamless and responsive
MEC services.
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FIGURE 8. Number of request and Botnets size variation.

Furthermore, it’s essential to note that these latency
improvements stem from the assumption that all requests are
trustworthy. In scenarios where decision-making technology
is unnecessary, and there’s no exchange between the latter
and the SDN controller, our method excels in reducing
latency. However, it’s crucial to emphasize that our proposed
architecture shines in scenarios involving security violations
and the necessity to verify legitimacy, making it a critical
solution in such contexts.

D. NUMBER OF REQUEST AND BOTNETS SIZE
Displayed in Figure 8, regardless of the botnet’s size,
there’s a notable increase in the number of attackers’
requests when utilizing the random choice method compared
to the deception status code selection based on uniform
distribution within the status code set. This observation
suggests that the random choice strategy heightens the
uncertainty associated with malicious devices, encouraging
persistent request launches.

In scenarios where sufficient information about attackers
is available, the decision-making system can be expanded
and improved. For example, in Figure 8, when the botnet
size is 100, the number of requests stored in the deception
processor’s database is 506 and 616 for the uniform
distribution and random choice methods, respectively. This
contrast highlights the effectiveness of the random choice
approach in inducing uncertainty among attackers in a real-
world context.

E. ARRIVAL TIME AND NUMBER OF REQUESTS
In Figure 9, we depict the dynamic correlation between
the number of requests and their arrival time. This feature
enables the defender to monitor the system’s capability to
accumulate requests as simulation time advances, offering
valuable insights into the progression of request activities.
Our observations consistently demonstrate an upward trend,
signifying an increasing volume of requests over time. This
pattern highlights the persistent engagement of malicious
devices in initiating DDoS requests and their resolute pursuit
of objectives, whether it involves obtaining specific data or
reaching a particular request threshold.

FIGURE 9. Number of requests variation over simulation time.

EXPLORING REAL-WORLD APPLICATIONS AND
DEPLOYMENT SCENARIO
• Context:

- - Student Computing Needs: The University relies
on computational resources for diverse tasks con-
ducted by students, encompassing activities like
machine learning and data processing, predomi-
nantly occurring within the campus environment.

- - Server Infrastructure: Campus servers cater to
student requests, operating within specific coverage
zones, interconnected with Amazon Cloud’s data
center to supplement resources during peak demand
periods.

• Key Components:
- - Student Devices: Including computers and smart-

phones, serving as endpoints for accessing compu-
tational resources.
* Normal Devices: Representing students engaged

in legitimate server usage.
* Malicious Devices (Botnet): Signifying groups

aiming to instigate DDoS attacks.
- - MEC Server Segments:

* SDN Controller and Decision Maker: Super-
vising decision-making processes and request
management.

* Processor Component: Executing computation
tasks.

* Receiver and Sender: Handling incoming and
outgoing requests.

* Checker: Verifying resource availability for pro-
cessing requests.

* Deception Component: Identifying and respond-
ing to potential DDoS threats.

- - Cloud Integration: Utilized as a supplementary
resource pool when local MEC server capacities are
exceeded.

• Processing Student Requests:
- - Request Handling: Upon request receipt, the

decision-making module assesses legitimacy.
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TABLE 5. Comparison between our proposed work and existing ones.

- - Legitimate Request Flow:
* Rigorous checks ensure resource adequacy; if

available, the processor manages computation.
* Post-processing, responses are relayed via the

SDN controller to students, mirrored in Amazon
Cloud.

- - Resource Insufficiency or Coverage Gap:
* Excess requests beyond local resources are

redirected to Amazon Cloud.
* Requests from areas beyond server coverage

redirect to the nearest connected server.
- - Detecting and Mitigating DDoS Threats:

* DDoS threats detected by the decision maker
redirect to the deception component.

* The deception component formulates responses,
prevents attacks, and logs details for reference.

- - Deception Component’s Role: Subsequent requests
cross-check against the database to identify and
prevent potential future attacks.

This comprehensive exploration delves into the intricate
functionalities of secure MEC systems, emphasizing their
adaptability in legitimate resource utilization by students and
robust defense mechanisms against emerging threats.

DISCUSSION
As illustrated in Table 5, we conducted a comparative analysis
between our proposed architecture and two existing ones.
Significantly, our architecture distinguishes itself as the
sole framework to incorporate software-defined networking,
Network Function Virtualization, Service Function Chaining,
Network Slicing, cyber deception, and QoS evaluation
concurrently. This distinctive amalgamation of features offers
insightful perspectives into the outcomes derived from our
simulations, contributing significantly to a comprehensive
understanding of our approach.

V. CONCLUSION
In this research, we introduced an innovative MEC
architecture that integrates SDN, NFV, SFC, NS, and
decision-making technologies to bolster the QoS provided
to end devices. Our approach incorporates a deception VNF
aimed at countering cyber threats from malicious entities.
We meticulously modeled MEC server resources, including
computing, storage, and bandwidth, to ensure their efficient
utilization. Additionally, we developed a cyber deception

framework for engaging with malicious devices, employing
both uniform distribution and random selection methods.

The newly proposed MEC architecture centers around
the MEC server, offering a detailed delineation of its
internal components, emphasizing SDN, NFV, SFC, NS,
and the decision-maker. Subsequent simulations, executed
using EdgeCloudSim and HTTPS services, simulated DDoS
request-response scenarios within the cyber deception frame-
work. The simulation results unequivocally demonstrate
our architecture’s effective management of computing and
storage resources, leading to a substantial reduction in end-
to-end latency for communications. Moreover, our proposed
architecture successfully upholds QoS standards while intro-
ducing a crucial filtration component to mitigate potential
security threats. The cyber deception approach not only
boosts the volume of collected requests from attackers but
also sheds light on the evolution of request volumes over
time, which could significantly enhance decision-making
technology.

FUTURE DIRECTION
While our simulations offer promising insights, several chal-
lenges require further exploration. It would be particularly
valuable to conduct a comprehensive assessment of the secu-
rity risks inherent in interactions between end devices and
the MEC server. Additionally, the practical implementation
of our proposed architecture represents a crucial direction
for our future work. Deploying this architecture within
a real-world testbed environment will mark a significant
step forward. Such real-world implementation will initiate
a series of projects focused on MEC architectures, centered
on integrating SDN, NFV, SFC, NS, and decision-making
technologies. This will allow us to validate and refine the
proposed framework’s practical utility.
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