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ABSTRACT Creating a 3D shape design from free-hand sketches is a challenging task due to the sparse and
ambiguous information from sketches. In this work, we propose DualShape, a sketch-based 3D shape design
interface with part generation and retrieval. DualShape first decouples the model generation into two parts:
a composite part retrieval module using a sketch-based feature matching method and a sketch-based part
generation module using a deep learning approach with implicit function representation. We then propose
an assembly module for the obtained part models to accomplish the task of 3D shape generation from input
sketches. In addition, we provide an optimization module that allows users to optimize and manually adjust
the assembled model to achieve satisfying models. For the reconstruction interface, shadow guidance was
utilized to assist users with the retrieved 3D models matching the input strokes as background references in
real time. To verify the effectiveness of the DualShape system, we conducted the comparison experiments
and the user study. The results show that DualShape is more user-friendly and is able to generate 3D models
with richer details. We believe this work would provide a novel paradigm for hybrid 3D model generation
in computer graphics.

INDEX TERMS Sketch-based interface, shape generation, shadow guidance, user interface, part assembly.

I. INTRODUCTION
3D shape reconstruction is a significant and challenging
research topic in computer graphics, that has been widely
adopted in various applications such as entertainment and
architecture design. 3D modeling with conventional com-
mercial tools like Autodesk, AutoCAD, and 3ds Max is
usually laborious and requires professional knowledge and
specialized skills. One feasible solution to easily obtain a 3D
model is to capture and scan objects with scanning devices,
but the special devices are usually expensive and may have
difficulty reconstructing complex and detailed geometries.
Recently, deep learning-based approaches have emerged for
3D model creation [6]. However, a large amount of data is
required to train the learning model, and the generated results
may be unsatisfactory due to inadequate training data and
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the strategy of generative models. In this work, we aim to
provide a hybrid approach combining shape retrieval and
shape generation for model design tasks.

The motivation of this research is to support users in
designing models from free-hand sketches without pro-
fessional skills. The sketch-based methods for 3D model
reconstruction and designs can simplify the modeling process
with intuitive controls [1]. However, these methods may have
difficulty with inaccurate and sparse sketch inputs. To solve
this issue, it remains challenging to guide users performing
sketches for 3D modeling. User guidance with built-in
templates and pre-designed objects may require a significant
amount of extra time to modify models to achieve satisfying
results. While guiding through tutorials and step-by-step
instructions, the users cannot directly conduct modifications
in the modeling process. In this work, we provide a shadow
guidance method that guides users to draw sketches in real
time to assist in 3D model generation.

18888

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-1086-2081
https://orcid.org/0009-0007-7096-2802
https://orcid.org/0000-0002-6926-3082
https://orcid.org/0000-0001-6417-3750


X. Du et al.: DualShape: Sketch-Based 3D Shape Design With Part Generation and Retrieval

It is difficult to generate and design 3D models inter-
actively with fine details. Previous generative models like
MeshSDF [31] fail to achieve this goal, as shown in Fig. 1.
Take a 3D car model as an example, firstly, since a car shell
is composed of various parts such as the front cover, roof,
rear cover, doors, and frame, it is challenging and tedious
for common users to design these parts in detail with lots of
manual operations. Considering the complexity and diversity
of car shells, we observed that the generation approach
to generating the component models from sketch input is
more feasible than retrieval-based approaches. Secondly, the
four tires of a car are consistent with limited patterns and
symmetrical structures. We observed that the sketching and
generation of the four tires as the entire tire component
may reduce the effort of drawing these tires individually.
However, compared with the car shell, the car tires are more
detailed and have smaller sizes (as shown in Fig. 1(c)), and are
more difficult for users to draw. Therefore, the retrieval-based
approaches may obtain fine-detailed models for car tires even
using rough sketches. Moreover, the distinction between the
parts (e.g., the connection between the car shell and the car
tires) is usually clear, as shown in Fig. 1. With the help
of the assembly approach, it becomes possible to generate
a model with a clear connection structure, as depicted in
Fig. 1(a).

In this research, we propose DualShape, a novel 3D
shape design framework using hybrid shape representations,
as shown in Fig. 2. The proposed system uses user-drawn
sketches as input, combining the advantages of the implicit
representation of 3D shape as a signed distance function
(SDF) [29] and the explicit representation using the shape
retrieval approach. Therefore, we perform the task of
3D model generation based on SDF and also utilize a
data-driven retrieval approach to obtain component models
in the design process. In addition, to assist users in drawing
sketches corresponding to the model’s characteristics, the
design interface can retrieve multiple models that match
the characteristics of the user’s sketch in real time as
shadow guidance.We conducted the comparison experiments
and the user study to evaluate DualShape from objective
and subjective perspectives, respectively. The results of the
comparative experiments demonstrate that our system can
generate models with richer details. The results of the
user study show that our system is easy to use and user-
friendly. Most of the users were satisfied with the generated
results.

The main contributions of this work are listed as follows:
• A novel design framework for 3D models that takes
a hybrid approach with the generative model of
implicit shape representation and shape-based shape
retrieval.

• With a data-driven approach, we adopt the decomposi-
tion and assembly for the design of individual 3D model
parts based on their geometric features and design tasks.

• An interactive user interface based on the proposed
framework with user design guidance ensures that

FIGURE 1. The ground truth model and the model generated in
MeshSDF [31]. (a) The structure of the connections between the parts of
the ground truth model is clear. (b) The connection structure between
parts is blurred in the model generated by MeshSDF. (c) The ground truth
model of the car tire parts has a clear structure and distinct features.
(d) The detailed features of the car tires are blurred in the model
generated by MeshSDF.

FIGURE 2. The proposed DualShape adopts the hybrid 3D model
generation with part retrieval and generation.

common users can design 3D models efficiently, even
for novices.

II. RELATED WORK
A. IMPLICIT SURFACE REPRESENTATION
The implicit representation of the 3D model describes a
model surface with a zero-crossing point of a volume
function [32]. The advantage of this implicit representation is
that the surface of the zero point can change the topological
structure without explicit reparameterization. Representing a
3D shape as a set of level sets of a deep neural network and
mapping 3D coordinates to a signed distance function [29]
or occupancy field [24] can create a lightweight, continuous
shape representation with no resolution limits. However,
one major drawback of implicit representations is that they
require active sampling and querying of 3D coordinates to
construct the surface. For applications that require explicit
surface parameterization, the non-differentiability of the
standard level set extraction method [21] remains a barrier
to leveraging the merits of implicit representations. The
MeshSDF [31] recently overcame this problem by proposing
a differentiable method for generating explicit surface mesh
representations from signed distance functions. In this work,
we aim to adopt the signed distance function to generate the
3D model.

B. SKETCH-BASED MODEL RETRIEVAL AND MODELING
Sketch-based 3D object retrieval and modeling have been
explored extensively in the field of computer graphics [2].
Loffler et al. [20] introduced a system that allows users to
refine keyword-based initial searches using sketches of the
desired views. Meanwhile, Funkhouser et al. [7] proposed
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FIGURE 3. Workflow of the proposed DualShape which takes the hand-drawn sketches as input. After obtaining the corresponding part models
through the retrieval and generation modules, the part models are assembled into a complete model. Finally, users can perform optimization
adjustments based on the assembled model and output the refined result.

an image-based retrieval method. The shape search engine
they provide is an early example of a 3D search service.
It contains a drawing interface that allows users to upload the
projections of a shape. Ma et al. [23] proposed a sketch-based
retrieval method that uses stroke features detected by dense
sampling points on the stroke. Eitz et al. [5] used the BoF
feature function for sketch-based image retrieval. In this
work, we construct sketch-based shape retrieval based on
instance parts with the sketch features of the individual parts
rather than the whole object.

Compared to images with rich information, sketches are
often sparse and ambiguous. Igarashi et al. [14] introduced
an interactive drawing system that can generate 3D shapes
automatically in real time from 2D contours drawn by
the user. Recently, deep learning-based methods have been
proposed for the sketch-based modeling task. Lun et al. [22]
and Li et al. [17] suggested first converting the input
sketches to depth/normal maps and fusing them to construct
a complete 3D model. However, all these methods were
performed based on overall sketches, resulting in missing
details for objects. Han et al. [9] utilized deep neural networks
to predict potential codes of faces from 2D sketches to
generate detailed face models, while Nishida et al. [27]
trained networks to predict program model parameters to
produce detailed shapes from sketches. These methods can
produce complex, high-resolutionmodels, but only for shapes
that can be generated programmatically. To handle more
general shapes, Delanoy et al. [1] designed an end-to-end
convolutional neural network to generate the corresponding
3D shapes in a volume-based representation of a given input
sketch. However, this approach is limited to low-resolution
3D meshes. In this work, we propose a hybrid method
to perform the model generation task by combining two
components: a data-driven retrieval method utilized for parts
with high-quality details, and a generation approach applied
for the general parts.

Commercial modeling tools like Maya and 3ds Max allow
users to design objects using part-based modeling and assem-
bly, which are difficult for non-experts. For assembly-based
modeling, Li et al. [18] proposed learning part generation and
assembly for structural shape generation based on volume

representation; however, their method is based on semantics
and is not suitable for recovering shapes with complex
structures. To break out of the issue, Du et al. [3] decomposed
the generation task into modeling and shape assembly based
on parts. Based on the shape structure learning [25], [28] and
the densely partitioned dataset [26]. In this work, we also
divide the artificial objects into instance parts and then
perform sketch-based retrieval and generation to improve the
modeling effectiveness.

C. SKETCH GUIDANCE
Sketch guidance is used to guide users to update strokes
by providing drawing feedback. The interactive sketch-
ing interfaces, such as Teddy [14] and the 3D drawing
system [13], were designed to help users create better
drawings. However, these methods only offer low-level
feedback on information in terms of the basic shapes of
lines, curves, and polygons. The shadow guidance can be
calculated based on retrieving actual images from an image
repository [16]. It then merges the images retrieved as
shadows for the guidance of the drawing. Shadow guidance
has been used widely in sketch-based applications, such
as portrait drawing [10], anime creation [11], and motion
retrieval [30]. Limpaecher et al. [19] automatically corrected
the user drawings to draw variations of the same target
subject in real time based on previously collected data.
Iarussi et al. [12] provided a set of construction lines as visual
guidelines to assist users. Many current research models
assist users in drawing sketches from the image perspective.
In this work, we used blended 3Dmodels as shadow guidance
to help users intuitively understand the features and structures
of the model.

III. PROPOSED FRAMEWORK
In this work, we propose DualShape, a hybrid 3D shape
design framework based on the sketch. As shown in
Fig. 3, our framework is mainly composed of four modules:
the part retrieval module; the part generation module;
the part assembly module and the model refinement
module.
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FIGURE 4. Example of rotating the model to extract contours.

A. DATASETS
We adopted the approach of assembling complete models
based on instance parts. Because there is no suitable dataset
that meets our research purpose, we constructed both part
and contour datasets by partitioning the models according to
the part labels and extracting the contour images from each
instance part.

We observed that it is meaningful to split the 3D model
into structurally instance parts rather than the trivial small
components. Taking the car category as an example in the
dataset, a 3D car model can be split into two structural
instance parts, the car shell and the car tyres. The clear
hierarchical structure can make the model generation more
concise and reduce the complexity of the 3D model.
In addition, splitting the model into two main parts makes it
easier to reuse these parts in other scenarios and applications.
Overall, splitting the car model into two instance models,
the shell and the tyres, can improve the maintainability and
reusability of the models.

1) PART DATASET
The part dataset was constructed based on the ShapePFCN
dataset [15], where 3D models were collected ‘‘in the wild’’.
The car models were segmented into 4 labels (roof, hood,
frame, and wheels). In this work, we split the models into two
instance parts to simplify the user’s drawing process: the car
shell (made up of the roof, front cover, rear cover, and frame)
and the tires. These instance parts were saved separately as
model files. Thus, the part dataset has 1000 model instances,
500 car shells, and 500 tires.

2) PART CONTOUR DATASET
As the sketch input from the user interface, it is necessary
to extract the model’s contour data based on the obtained
instance parts. For the part generation, considering the
rough and concise situation of the lines drawn by the user,
we extracted the contours of the car shell through canny edge
detection. The extracted model contour is close to the user’s
hand drawing. As shown in Fig. 4, for extracting the car shell
contour, we have custom-set the model with the Y-axis in 3D
(x,y,z) coordinates as the center axis, and the rotation angle is
10 degrees each time; therefore, we can obtain the contour of
each model at 36 viewpoints. In this study, 18,000 contours

FIGURE 5. Examples from the car shell sketch dataset.

FIGURE 6. The tire model and the contour images extracted by different
methods: (a) the tire model, (b) the contour of the corresponding model
extracted using the OpenCV’s canny edge detection method, and (c) the
contour of the corresponding model extracted using the OpenSSE method.

of car shells were collected in our dataset. Examples of car
shell contour data are shown in Fig. 5.
For the part retrieval module, due to the data quality of

the split wheel tires, canny edge detection can not accurately
represent the characteristics of the tires. In addition, the
differences among contour lines of tires are small, and the
feature differences are not obvious. It is difficult to obtain
the correct model during the retrieval process. Fig. 6(b)
shows the tire model and the contour map obtained using
the canny method. To address the issue of feature blurring
when extracting tire contours, We adopt the open-source
sketch search engine for 3D object retrieval (OpenSSE) [4],
[33] (Fig. 6(c)). 102 viewpoint matrices are acquired from
102 uniformly distributed viewpoint directions and used to
capture the contour images of each model. In our dataset,
51,000 contour images were collected. The contour images
obtained by the OpenSSE method were more explicit in
representing the characteristics of the tires.

B. PART RETRIEVAL
To simplify the process of generating the entire 3D model
of cars, we utilized a data-driven retrieval-based approach
based on the symmetric structure of the overall tires and the
repetitive features of the tire pattern. Users can draw the tire
pattern to retrieve a matching model and apply the result
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FIGURE 7. Part retrieval module. By extracting the features of the sketch
drawn by the user through GALIF, querying the data with a high match in
the constructed visual vocabulary, and using the model of the highest
similarity data as the target part for retrieval.

to the complete model. Fig. 7 illustrates the basic functions
of the part retrieval module. Our shape retrieval method
mainly includes two parts: (1) coding the line drawing with
the bag-of-features (BoF) method to extract the features of
the contour database, and constructing the visual vocabulary
table; (2) extracting the features of the user-drawn sketches,
and searching according to the features. The BoFmethod was
utilized to extract features from 51,000 images in the tire
contour dataset. By randomly selecting interest points in the
images, the gradient direction histogram was calculated for
each interest point’s neighborhood. The main direction was
taken as the edge feature of the interest points, ultimately
forming a feature bag. A GALIF filter is applied to extract the
local features of these images.

The sketch drawn by the users is first processed to extract
the local features, and the features are converted into a
feature vector of smaller dimensionality. During the retrieval
process, the closest match of this vector is found in the visual
vocabulary constructed in advance. For the whole image,
multiple retrieved images with different degrees of similarity
can be obtained by calculating the occurrences of cluster
matches. We obtain the corresponding tire model based on
the image with the highest similarity and load this model into
the user interface. If the result does not meet expectations,
users can redraw the sketch and repeat the retrieval work until
a satisfactory tire model is obtained.

C. PART GENERATION
It is difficult to summarize and generalize the characteristics
of car shells as composite parts. With the help of implicit
fields of 3D shapes, such as SDF, geometric deep learning
methods allow for detailed modeling of surfaces with any
topological structure without relying on 3D Euclidean grids,
resulting in learnable resolution-independent parametriza-
tion. In this work, we adopted a differentiable method to
generate an explicit surface mesh representation from SDF
as MeshSDF [31]. Fig. 8 shows the network structure of our
generated components. We describe modeling shapes as the
zero iso-surface decision boundaries of the network trained
to represent SDFs. For a given spatial point x, the SDF
function for its distance to the closest surface is defined as
follows:

SDF(x) = s : x ∈ R3, s ∈ R (1)

FIGURE 8. Network structure.

The underlying surface is implicitly represented by the
surface of SDF(·) = 0. Given a sketch as input, it is expected
that the network can generate a suitable SDF, and we can
define the objective function as equation 2.

SDF = D(E(S),G) (2)

Here, S denotes the input sketch, E defines the encoder
that encodes the input sketch into latent code zs. G is the set
of features with the coordinates of the sampled points. The
latent code zs and featuresG are concatenated as latent vector
z input to the decoder D to generate the SDF. The decoder D
predicts the signed distance di for all coordinates pi ∈ G.
In our implementation, the encoder is similar to MeshSDF

[31]. It is composed of a ResNet18 network, and the input
sketch is conditioned with a depth-implicit field by a residual
image encoder that maps the input sketch to a latent code
vector. In addition, the construction of the auto-encoder
in DeepSDF [29] was utilized. The latent code vectors
obtained by the encoder were used to condition the multilayer
perceptron (MLP) architecture with the SDF.

D. PART ASSEMBLY
The retrieval and generation of parts only focus on retriev-
ing/generating appropriate 3D shapes without considering
global information. Since the obtained model does not con-
sider the placement, all object parts are modeled uniformly in
the center of the system (as shown in Fig. 9(a)), which does
not meet the objective of generating the model. We estimated
the distance and positional relationship between the complete
car models and their parts in the dataset, and calculated
the positional and proportionality relationships between
the car shells and tires according to the geometric center
point.

In the initial state of the assembly part, to achieve a
reasonable placement and splicing of car shells and tires,
we defined a set of rules based on prior knowledge that
estimates the location and proportional relationships from the
inter-model. The designated rules were set as follows:

• Keeping center alignment. For car shells A and tires
B, the x and z values in the coordinates (x, y, z) of each
part are set to 0 by default for quickly assembly. Only
the y coordinate values must be adjusted according to
the overlap to assembly. Fig. 9(a) illustrates the rule for
keeping the center alignment. It shows that the centers of
the bounding boxes of both the car shell and tire models
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FIGURE 9. The basic rule for keeping the center of the model in alignment
(a), and for maintaining a certain overlap ratio between part models (b).

FIGURE 10. The basic rules for maintaining proportionality between part
models.

are at the same position, i.e., the origin of the coordinate
axis (0, 0, 0).

• Maintaining proportionality.There are proportionality
relationships between car shells A and tires B, usually,
the car shells are larger in scale than the tires.
By calculating and maintaining fixed proportionality,
the size of one part can be adjusted according to the
fixed size of another part. Fig. 10 shows the proportional
ratio between two-part models. We set a as the diagonal
of the bounding box of model A and b for model B.
The proportional relationship between the aspect ratios
of the two models can be equated to the proportional
relationship between the diagonals of the models’
bounding boxes. Note that the center of the bounding
box for the car shell is the origin of the coordinate, the
center of the bounding box for the tire is (0, y′, 0), where

y′ is a specific value on the y-axis indicating that the
tire’s can be moved along the y-axis.
Specifically, the proportional relationship between the
models is calculated by comparing the diagonal lengths
of the bounding box of the models. The calculation of
the proportion relationship is defined as follows:

sr =
l(b)
l(a)

(3)

where sr represents the scale ratio between the part
models. The function l is defined to calculate the
diagonal length of the model’s bounding box:

l =

√
l2x + l2y + l2z (4)

where lx , ly, and lz represent the differences in the
corresponding vertex coordinates of the bounding box
on the three coordinate axes.

• Maintain a certain overlap ratio. Relative to the
complete car model O, the bounding box of car shells
A and tires B assembled together have a certain overlap
part. A fixed overlap ratio allows the parts to be placed in
the corresponding positions. Fig. 9(b) shows the overlap-
ping relationship between parts when they are assembled
into a complete model. According to fixed proportion-
ality, the overlapping relationship is simplified from
calculating the overlapped volume to calculating the
overlapped height. Specifically, Fig. 9(b)-(2) shows that
when car shells A and tires B are assembled into a
complete model O, there will be a fixed height overlap
between parts A and B, i.e., hAB. Fig. 9(b)-(3) shows
that the height of the overlapped parts needs to maintain
a certain proportional relationship with the height of
the complete model, and the proportional relationship is
expressed as the following equation 5:

or = h ·
hAB
hO

−
1
hO

(5)

where or indicates the overlap ratio of the overlapping
height in the height of the complete model. hAB
denotes the height of the overlapping part between
the two models, hO represents the height of the entire
overlapping area, and h represents the maximum height
of the two models (i.e., the height of the tallest point in
either model).

E. MODEL REFINEMENT
After completing the assembly stage, DualShape also helps
users adjust the assembly results freely if they are dissatisfied
with them. As shown in Fig. 11, it mainly includes two
functions: adjusting the model’s position and adjusting the
model’s scale size. This enables the user to perform manual
adjustments to obtain satisfactory results.

IV. USER INTERFACE
The interface of the DualShape system mainly consists of
four parts: the shadow guidance part, the sketch operation
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FIGURE 11. Two operation states when adjusting the model. (a) shows
the operation state when translating the tire model, and (b) shows the
operation state when scaling the tire model.

FIGURE 12. Overview of the user interface which is divided into 4 main
areas: (a) the basic operation area, which contains functions such as
drawing/deleting/downloading; (b) the drawing area, which is also the
display area of the background model; (c) the display and operation area
of the model, where the user can choose to enter the editing state and
adjust the model details; and (d) the preview area, which displays the
sketch of each part and its corresponding model.

part, the preview part, and the assembly part (Fig. 12). In the
shadow guidance part, DualShape can retrieve and combine
multiple models with similar contours in real time to provide
a reference to users. In the sketch operation part, users can
interact with the front-end system running in the browser to
create and draw the sketches of each part. In the preview part,
users can view the current models retrieved/generated based
on the input sketches. In the assembly, users can further adjust
the details based on the automatic assembly of parts.

A. SHADOW GUIDANCE
We implemented 3D object retrieval system based on contour
feature lines as input [5]. Especially, we utilized an open
source sketch search engine OpenSSE [33] for 3D object
retrieval based on sketch images as input. In addition, the
function of shadow guidance was implemented based on the
retrieved results.

DualShape uses 3D models as background references
to assist users in drawing model sketches. Specifically,
DualShape provides a background template to retrieve similar
models based on users’ sketches in real time. When the
user lifts the brush at the end of the sketch, we transfer the
current sketch as input into the search engine, which extracts
the sketch features and matches them with the features in
the contour database to obtain multiple approximate models.

FIGURE 13. With the changes of the user sketch, the 3D model used as a
background is also updated in real time. When strokes are added on top
of the sketch in (a), the model used as shadow guidance also changes to
the state of (b). When strokes are deleted from the base of the sketch in
(b), the 3D model as shadow guidance also changes from (b) to
(c) accordingly. Adding strokes to the sketch of (c) after deleting strokes,
the shading guidance models are also changed to (d).

The obtained multiple models are composited according to
the transparency ratio, which can provide a shadow-guided
3D model as output. The process can be represented by the
following formula:

Moutput =

n∑
i=1

αi ·Mi (6)

Here, Moutput is the final output 3D model, representing
the result obtained after processing the user-drawn sketch.
Mi is the i-th approximate model retrieved by the search
engine. αi represents the transparency ratio associated with
the i-th model, indicating its contribution to the final output.
n denotes the number of approximate retrieved models.
Shadow guidance allows users to adjust the angle to

observe the model before drawing the sketch. After the
observation, the angle is fixed, and DualShape moves into the
sketch drawing component. During the subsequent drawing
process, the real-time retrieved model will also be displayed
based on the previously determined observation angle. Fig. 13
shows how the background guidance changes with the sketch
lines during the drawing process.

B. SKETCH OPERATION
We divided the model generation into parts retrieval and
parts generation. The input sketch is also drawn in layers
according to the 3D shape of the parts. After the current
sketch is completed, users can create a new drawing layer.
In order to distinguish between the different drawing layers,
DualShape provides a dark (black) stroke to highlight the
current layer. The sketch contents of the different layers
can be fed to the back end of the part generator to obtain
the corresponding model. In addition, DualShape provides a
retrieval/generation method for users based on the distinction
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FIGURE 14. The state of the sketch area under different operations. (a1)
the black stroke emphasizes the first layer currently being drawn - the car
shell contour; (a2) the black stroke emphasizes the second layer currently
being drawn - the tire contour; (a3) with the preview function, selecting a
layer that needs to be edited again adds a selected state; (a4) a move
operation is performed in the editable state, for example, the sketch of
tires is moved from the position of (a3) to the position of (a4).

of the part features. Fig. 14 shows how DualShape interface
changes when sketching different layers.

C. PREVIEW FUNCTION
DualShape provides a real-time preview function for sketches
and parts, allowing users to keep track of the current progress
and expected results of model generation. At the same
time, users can click to select a preview layer, and the
corresponding layer in the drawing area will be highlighted
in the dark so that users can modify the current view. Users
can also perform panning, zooming, and adding and deleting
lines on the view.

D. MODEL ASSEMBLY
DualShape automatically performs the assembly of parts and
displays the assembled result in real-time when users finish
retrieval/generation tasks. If the user is unsatisfied with the
current assembly, DualShape provides a mode for editing the
assembled model. Users can select the parts they want to
adjust in the edit mode. Models can be moved or scaled along
X/Y/Z axis. Fig. 11 shows the translation and scaling of the
assembly model.

V. RESULTS
A. IMPLEMENTATION DETAILS
We implemented a real-time drawing user interface with
DualShape in Python on a Windows 10 platform, which
is equipped with a 3.60 GHz Intel Xeon W-2223 CPU,
GeForce RTX 3090 GPU. For the developed prototype,
the average generation time of the shadow guidance was
0.82 seconds and the average execution time of the retrieval
method was about 1.13 seconds. In contrast, the generation
method had an average execution time of 4.23 seconds.
This performance balance, where the system efficiently
manages both quick retrieval and computationally demanding
generation tasks, highlights the system’s ability to handle

FIGURE 15. Comparison among different generation results. (a) the
sketch inputs of the car shell and tires drawn by users, (b) the retrieved
results by retrieval-only method corresponding to the user sketches,
(c) the generated results from user-drawn sketches using generation-only
method, and (d) the models generated by our proposed hybrid approach.

diverse tasks, providing a stable user experience in both
retrieval and generation activities.

B. DESIGN RESULTS
We invited sixteen participants to use the proposed system
to design car models. Fig. 15 shows several examples of
designed car models by users. By comparing the results with
the same input sketches (Fig. 15(a)) in the retrieval-only
and generation-only methods, it is verified that our proposed
hybrid approach can preserve the structure of the connections
between the model parts (the car shell and the car tyres), and
also the richly-detailed features of the car tyres. Specifically,
the user first sketched the car shell and used the generation
method to generate different shells to satisfy the diversity
of shells in car model design. For the tire part, the users
simply drew the features of the tires and used the retrieval
method to obtain the tire model from the dataset. After the
initial automatic assembly according to the assembly rules
(Section III-D), the user can manually adjust the positions
and sizes of the parts to conform to the overall designs. It is
verified that the entire design process was simple and user-
friendly. The proposed system can reduce the complexity of
model design, especially for novices without 3D modeling
experience.

C. COMPARISON STUDY
To evaluate the effectiveness of DualShape, we conducted
comparison studies with the state-of-the-art sketch-based
modeling approaches: MeshSDF [31] and Sketch2Mesh [8].
MeshSDF takes the whole sketch as input and generates the
model from a global perspective without focusing on the
models’ details. The results generated by MeshSDF tend
to blur the details of the individual parts when they are
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FIGURE 16. The ground truth models(a), the generated models (b) using
MeshSDF with sketch inputs (c), and the model generated using our
system with the same sketch inputs (d).

TABLE 1. Evaluation metrics of model quality.

combined with each other. As shown in Fig. 16(b), since
the car shells and the car tires are generated as complete
units in MeshSDF, the connection structures between the
car shells and the tires are not obvious. In addition,
MeshSDF disregards the parts’ local features. The car
tires of each model almost do not have distinctive detail
features.

The generated models of DualShape are shown in
Fig. 16(d). In contrast to MeshSDF, DualShape considers
the model generation as an assembly of two parts: the car
shells and the car tires. This emphasizes the structural features
when the parts are combined, such as the car shell having a
distinct depression to fit the shape of the tires. These two parts
are independent of each other but can be assembled into a
complete model. Fig. 16(d) shows that the model generated
by DualShape also emphasizes the detailed features of
the tire parts. The tires have obviously distinguishable
features.

Sketch2Mesh uses potential parameterization to denote
and refine the 3D mesh to match its projection to the
external contours traced within the sketch. However, this
method ignores the fact that the model is an assembly
of parts, neglects the structure of connections between
components, and disregards the detailed features of the part
model. The car models generated by Sketch2Mesh are shown
in Fig. 17(b). We can observe that the generated model

FIGURE 17. Figure (a) represents the ground truth models; (b) represents
the model generated using Sketch2Mesh with the whole sketch in (c);
(c) is the sketch input into our system, including the sketch of the car
shell and the whole sketch with the tires added; and (d) is the model
generated using our system with the sketch in (c) as input.

lacks local details, indicating that this method may only be
capable of generating the general structure of the car model.
The tires and the car shell are integral parts, rather than
existing independently as parts in Sketch2Mesh. The feature
structures of the connection between the car shell and the tires
are blurred out. Meanwhile, the generated tire part has only
a general structure; the stylized features inside the tire are
not represented. The differences between the tires of different
models are relatively minor. Fig. 17(d) shows the model
generated by DualShape. Compared to the model generated
by sketch2Mesh, the structures of the connection between the
two parts of our car shell and tires are crisp. In addition, the
tires with different styles of models are clearly distinguished
from each other.

For the assessment of model quality, we utilized the 3D
Chamfer Distance loss (CD-l2) as a measure metric, where
lower values indicate superior performance. The l2 specif-
ically refers to the Euclidean norm, which quantifies the
dissimilarity by considering the squared distances between
two point clouds. This metric is computed by sampling N =

20000 points on the reconstructed mesh to create the first
point cloud C1, and N points on the ground truth mesh to
create the second point cloud C2. The CD-l2 is calculated as
follows:

CD-l2 =
1
N

∑
x∈C1

min
y∈C2

∥x−y∥2 +
1
N

∑
y∈C2

min
x∈C1

∥y−x∥2

(7)

Additionally, we adopted a normal consistency measure
(NC) metric, where higher values indicate better consistency.
The normal consistency is defined as the average of
the absolute dot product between normals in the recon-
structed mesh G and their corresponding nearest normals
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in the ground truth mesh R. The formula is defined as
follows:

NC(G,R) =
1

|R|

∑
r∈R,g∈G

|r · g| +
1

|G|

∑
r∈R,g∈G

|g · r| (8)

where G and R represent the normals in the reconstructed
and ground truth meshes, respectively. |R| and |G| represent
the number of normals in the ground truth and reconstructed
meshes, respectively. This formula calculates the average
absolute dot product between corresponding normals in
the reconstructed and ground truth meshes, providing a
measure metric of the consistency of normals between two
meshes.

As shown in Table 1, our method performs better compared
to MeshSDF (4.28) and Sketch2Mesh (3.09), with a value
of 2.53 in CD-l2 · 103. The lower value of CD-l2 indicates
better alignment between the resulted model and the ground
truth. Therefore, our method performs well in accurately
capturing the geometry of the object, leading to a reduced
Chamfer Distance. With respect to NC · 102, our method
achieves a value of 89.21, showing close competitiveness
with MeshSDF (90.68) and Sketch2Mesh (90.75), which
suggests that it maintains a high level of normal consistency.

VI. USER STUDY
We conducted a user study to evaluate the effectiveness of our
user interface. Sixteen participants (including ten male and
six female graduate students) were invited. They tested our
system to generate car models and conducted a questionnaire
after the experiment. The participants’ evaluations of the user
interface were analyzed statistically. Our questionnaire sur-
vey includes 3 aspects: overall evaluation, System Usability
Scale (SUS) evaluation, and user interface specific function
evaluation.

A. OVERALL EVALUATION
After the experiment, the participants are invited to rate,
‘‘system functional integrity’’, ‘‘user interface convenience’’,
‘‘generated results satisfaction’’, and ‘‘conformity to expec-
tations’’ by using a 5-point Likert scale (1=strongly disagree,
5=strongly agree). As shown in Fig. 18, we analyzed
the distribution of each indicator. The system’s functional
integrity is concentrated on rank 4, and the convenience of
the user interface is in the range of ranks 3-4. The satisfaction
with the results is also concentrated in rank 4, with most
users agreeing that the generated results conformed to their
expectations.

The mean value of users’ rating of the ease of use
of the interface is 3.88, and the standard deviation is
0.62. Most participants thought that our user interface was
intuitive. The mean value of the participants’ rating of the
functional completeness of the UI is 4.06, with a standard
deviation of 0.57. This shows that the functionality of our
system is relatively complete. The satisfaction of the model
obtained a mean of 3.94 and a standard deviation of 0.68.
Most participants were satisfied with the model obtained.

FIGURE 18. Overall evaluation results.

TABLE 2. Results of the post-experiment SUS metrics questionnaire. ⇑

indicates that higher scores are better; ⇓ for the other case. The total
score is 81.67 out of 100.

The mean value of ‘‘How well the resulting model met
expectations’’ was 3.25, and the standard deviation was 0.77.
Most participants agreed that the obtained model conformed
to their expectations.

B. SUBJECTIVE EVALUATION
In addition to completing the overall evaluation, participants
were invited to answer questions to evaluate DualShape based
on the System Usability Scale (SUS).

Table. 2 shows the results of the participants’ evaluations
of the SUS metrics. All participants indicated that the
overall interface is satisfying, they agreed that most users
would be able to learn to use the system quickly. 75%
of the participants commented that they would like to
use the system frequently to design car models. 77.6% of
the participants agreed that the interface functions were
easy to use. In addition, 81.2% of the participants and
77.6% of the participants respectively supported that our
system’s functionality was adequately integrated and that
they were confident while using the system. Within the
SUS metrics, our system is scored 80.94 out of 100, which
indicated that the overall usability of our user interface was
excellent.
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TABLE 3. Results of specific functions evaluation questionnaires.

C. SPECIFIC FUNCTIONS EVALUATION
In order to determine the usefulness and convenience of
the interface functions we designed, the participants were
required to evaluate the specific functions they used. The
evaluation is shown in Table 3.

We use a layer-by-layer part-sketching approach to gen-
erate parts, 71.2% of participants found this approach was
consistent with their drawing habits, which allowed faster
design. 75% of participants found that the 3D shadow
guidance was helpful in quickly sketching the outline of the
car, and 81.2% of participants indicated that our 3D shadow
guidance function was intuitive while providing the closest
reference model in real time.

In addition, 80% of the participants thought it was
reasonable to use the generation method for car shells,
and 68.8% of the participants thought the generated car
shell models basically met their expectations. Specifically,
85% of the participants acknowledged the usefulness of
the tire parts retrieval method, and 90% of them were
satisfied with the retrieved models. Meanwhile, for the
basic draw/delete/undo/download functions, respectively,
86.2%/47.6%/88.8%/95% of the participants thought they
were user-friendly. For the preview and re-edit sketch
functions, 82.4% of users thought the preview functions
observed the model generation process well, 81.2% of
participants acknowledged the necessity of the re-edit sketch
function, but only 55% of users were satisfied with the re-edit
function of the sketch.

For the ability to display the assembled model in real
time, 86.2% of participants thought positively. 93.8% of the
participants acknowledged the necessity and usefulness of

FIGURE 19. Examples of designed chair models. (a) and (c) represent the
chair sketches drawn by the user as input. (b) and (d) are the results
generated using the hybrid method for the user sketches (a) and (c),
respectively.

the assembled model details adjustment, and 72.6% of the
participants thought the function of model adjustment was
user-friendly.

VII. DISCUSSION
In this section, we discuss the feasibility of shape design with
the proposed approach, limitations, and future work og this
work. In the shape design section, we focus on the scalability
of the proposed system and the diversity of designable
models using our hybrid approach. In addition, we discuss
the limitations of the proposed method, and give some failure
cases to facilitate the observation of the limitations of the
system. In response to these limitations, we provide possible
solutions as future work.

A. SHAPE DESIGN
Our proposed framework can also be used in various shape
designs, and its extensibility can be scaled to multiple
model designs. We take chair design as a simple extension.
The designed chair models by users are shown in Fig. 19.
We partitioned the chair design into two parts: the body(back
and seat) and the legs. The user can draw a simple feature
sketch of the chair back and seat, and then retrieve the most
similar part from the dataset. The user can draw the chair
leg part and use the generation method to obtain the
corresponding part. The obtained results indicate that the
proposed system can be further extended to acquire various
categories of models. The extensibility and adaptability of
DualShape can be assured for the design of different models.

B. LIMITATIONS AND FUTURE WORK
One of the limitations of the proposed approach is to note
that during the initial automatic assembly of models, parts
of different kinds of models are required to be assembled
according to their particular prior knowledge. In the Shape
design section, when assembling the chair parts, we did
not set rules for the initial assembly between parts, and
the user need to manually adjusted the part positions and
sizes, as shown in Fig. 19. In order to address this issue,
we suggest adding a module that automatically learns the
positional relationship and the the proportional relationship
between shapes, which would then eliminate the need to
set up different assembly rules for the shape design of each
category object, and the automatic assembly between parts
can be fully realised.
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FIGURE 20. Part model generation/retrieval failure cases. (a) and
(c) represent the sketches drawn by the user as input, (b) is the failure
case generated by the sketch corresponding to (a) using the generation
method, and (d) is the failure case retrieved by the sketch corresponding
to (c) using the retrieval method.

Another limitation is that when the sketch is simple, the
generated shell part model may have bad retrieved results.
Some cases of generation and retrieval results are shown in
Fig. 20.When the features provided by the sketch for retrieval
are too sparse, the retrieval results may not satisfy the user’s
design intention. Therefore, it is a promising solution to add
a contour optimization module to get sketches with richer
structural features. Meanwhile, the sketch contour optimiza-
tion module would also improve the model search results.

In addition, our system currently supports the construction
of a specific category, (i.e., car models) that have limited
suitability. We plan to expand the categories of generated
artificial objects, such as airplanes, tables, and vases. The
generated model categories can be improved with other
complex structures, such as animals and human bodies.
We also plan to expand the dataset used to provide more
informative generation results. Finally, the models generated
by our hybrid approach may differ in resolution, which can
be solved by mesh optimization.

VIII. CONCLUSION
In this work, we propose a hybrid 3D part assembly-based
shape design framework, DualShape, which applies the
retrieval and generation method to obtain the corresponding
part models, and then assembles them into a complete model.
In addition, we adopted an assisted drawing method by
using 3D models as shadow guidance. Based on the above
framework and the assisted method, we have developed
and implemented a user interface in practice. The proposed
system can perform not only the generation tasks from
sketches but also the retrieved part models to preserve
the detailed model features. In addition to comparison
experiments, we also conducted a user study to verify the
effectiveness, usefulness, and convenience of the framework
and interface.
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