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ABSTRACT Data centers’ information systems typically encompass a variety of operational objects
including applications, systems, networks, and devices, which generate a large volume of indicator data
during operation. The traditional threshold-based indicator fault detection method has struggled to adapt
to the massive and heterogeneous nature of distributed architectures, resulting in numerous false positives
and negatives. Existing research has limitations in terms of the accuracy of fitting indicator operating
characteristics, as well as performance. To address the problem of fault detection for indicator data, this
article proposes a method based on periodic self-discovery and historical anomaly filtering. It achieves
periodic self-discovery based on Fourier transformation, significantly reducing the training cost such as
model parameter tuning. Additionally, it introduces a quadratic fuzzy filter based on periodicity to effectively
solve possible local misclassification issues while generating a baseband that is more suitable for indicator
operating characteristics, improving detection accuracy. Through experimental validation, the fault detection
method proposed in this article significantly improves the accuracy of indicator for operational objects.
Compared to directly using ARIMA and SARIMA models, this method has improved the MSE by up to
44% and 36%, respectively. This method has also been practically applied in multiple scenarios in a bank’s
production environment, increasing alert accuracy by 20% and achieving a ratio of 10:1 for alert convergence.
Compared to traditional methods, it significantly enhances the ability of fault detection for indicators.

INDEX TERMS Fault detection, periodic self discovery, historical anomaly filtering, dynamic baseline,
indicator.

I. INTRODUCTION
With the rapid development of business and the transfor-
mation of IT architecture towards distributed, the scale of
operation and maintenance objects is showing an explo-
sive growth trend. In the monitoring system [1] of the
data center, anomaly detection based on time series indica-
tors covers top-down monitoring of application transactions
and monitoring of basic components such as databases,
middleware, storage, networks, and operating systems. The
demand for refined services in upper-level businesses drives
the development of refined operations and maintenance
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in the lower-level. The granularity of controlled objects is
becoming smaller and the sampling intervals of monitoring
are becoming shorter, resulting in performance indicator data
with characteristics such as massive volume, diversity, per-
sonalization, and rapid generation. Realizing fast, accurate,
and refined detection of abnormal performance fluctuations is
an important guarantee for the stability of business operations
and maintenance [2], [3], [4]. Traditional indicator monitor-
ing methods based on fixed thresholds do not support the
fine-grained setting of various indicators, resulting in insuf-
ficient monitoring accuracy. Conventional machine learning
methods [5] are difficult to effectively fit the operational
characteristics of various indicators, and there are still short-
comings in accuracy, robustness, and performance. this paper
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proposes an indicator fault detection method based on peri-
odic self-discovery and historical anomaly filtering, which
significantly improves the algorithm parameter adaptation,
robustness, and algorithm performance compared to other
methods. This method combines multiple machine learning
models to achieve periodic self-discovery based on Fourier
transform, and adopts the isolated forest method based on
hyperspace partitioning as a preliminary screening method
for anomaly detection to quickly identify global anomalies.
It has the advantages of low time complexity, minimal depen-
dence on manual tuning parameters, and good algorithm
stability. On this basis, a quadratic fuzzy filter based on
periodicity is introduced to refine the screening process while
avoiding phase noise interference caused by operational devi-
ations, effectively solving possible local misclassifications.
This ensures real-timemodel updates, with good self-learning
and self-adaptive capabilities, resulting in a baseband that
is more suitable for the operational characteristics of the
indicator, improving detection accuracy.

II. RESEARCH BACKGROUND
A. THE CURRENT RESEARCH STATUS
Commonly used indicator fault detection methods can be
divided into supervised learning and unsupervised learning
methods based on whether the data has abnormal labels.
In data center operation and maintenance monitoring, the
original indicator data is massive and difficult to manually
label for anomalies, so unsupervised learning methods are
often used. The indicator fault detection methods for unsu-
pervised learning [6], [7] include statistical methods [8], [9],
distance-based methods [10], [11], [12], density-based meth-
ods [13], [14], and partition-based methods [15]. In recent
years, deep learning-based fault detection methods [16] have
become an academic hotspot, with strong abilities in extract-
ing complex features. Common models include RNN [17],
LSTM [18], VAE [19], GAN [20], [21], [22], and Trans-
former [23]. Focusing on the pain point of sparse fault
data, literatures [24], [25] applied VAE (Variable AutoEn-
coder) and its improved network models to fault detection.
Literature [25] proposed an anomaly detection method Bagel
based on CVAE (Conditional Variable AutoEncoder), which
can support time information (timestamps or seasonal char-
acteristics). Aiming at the fault detection tasks of server
underlying indicators such as input-output requests, lit-
erature [24] proposed a VAE anomaly detection method
Buzz based on adversarial training and data partitioning.
Literature [26] proposed an unsupervised learning method
SaVAE-SR (Self-adversarial Variational Autoencoder with
Spectral Residual) to address the pollution problem of normal
pattern learning caused by abnormal points and improve the
accuracy of anomaly detection. Literature [27] proposed a
reinforcement learning-based method PTAD (Policy-based
Time series Anomaly Detector) to solve the problem that
previous data needs to be based on specific domains and
strong assumptions, which cannot be adapted to real data,
and improve the recall and accuracy of anomaly detection.

The comparison of various detection methods is shown
in Table 1.

TABLE 1. Comparison of common indicator fault detection methods.

It can be seen that there are still gaps in detection accu-
racy, algorithm performance, and other aspects of the above
research that need to be further addressed.

B. ISSUES AND CHALLENGES
The commonly used methods for indicator fault detection
include traditional fixed threshold method, deep learning
approaches, and unsupervised machine learning methods.

The fixed threshold method lacks the ability to adapt to the
varying operational states of different indicators, leading to
inaccurate monitoring.

Deep learning methods, a research focus in recent years,
are not suitable for the single-dimensional indicator fault
detection scenario considered in this article. The reasons are
as follows:

High data and model requirements: Deep learning requires
a large amount of data for training, making it unsuitable
for small data set scenarios. Additionally, the structure and
parameter selection of deep learning models have a signif-
icant impact on the results, requiring fine parameter tuning
and model design.

High computational complexity: The computational com-
plexity of deep learning models is relatively high, requiring
high-performance computers or GPUs for training and infer-
ence. This makes it unsuitable for real-time monitoring
scenarios with high operational requirements.
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Poor interpretability: The black-box nature of deep learn-
ing models makes their results difficult to interpret.

Difficulty leveraging model advantages in single-
dimensional scenarios.

Unsupervised machine learning methods are more suitable
for the scenario considered in this article. However, current
approaches [28] still suffer from the following issues:

Difficulty in parameter tuning. To extract features specif-
ically for different systems and objects, algorithms require
significant parameter adjustment in application.

Sensitivity to noise. Historical outliers can interfere with
current detection, reducing algorithm accuracy and leading
to false alarms.

Insufficient algorithm performance. It is challenging to
support large-scale indicator detection due to the requirement
for separate modeling of different indicators in practi-
cal applications. This involves substantial model training,
becoming a performance bottleneck when using machine
learning methods. This leads to difficulties in large-scale
promotion and application.

In view of the above technical difficulties, the new model
method needs to achieve the following breakthroughs:

1) THE PARAMETERS OF THE ALGORITHM
ARE SELF-ADAPTIVE
The algorithm can be automatically adapted according to the
operation characteristics of the indicators, without manual
parameter adjustment, so as to improve the generalization
of the algorithm for different indicators. For example, the
indicators reflecting different business operation laws show
different periodicity, and the algorithm automatically and
accurately identifies and sets the periodicity parameters.

2) THE ROBUSTNESS OF THE ALGORITHM IS IMPROVED
The algorithm can automatically eliminate the interference of
noise data such as historical burrs during operation.

3) THE ALGORITHM PERFORMANCE IS IMPROVED
the training cost of single index is very low, and considering
the massive nature of the index, the big data technology stack
should be used for the engineering implementation of the
algorithm.

III. MODEL ARCHITECTURE
Aiming at the problem of pain points in the field of index
analysis and detection, this paper proposes an index fault
detection method based on periodic self discovery and his-
torical anomaly filtering to achieve parameter adaptation,
improve robustness and performance. The model architecture
is shown in Figure 1.

It mainly includes three modules:

A. PERIODIC SELF DISCOVERY
This module uses historical transaction monitoring data to
automatically learn the cycle parameters of each transac-
tion monitoring data to realize the mining of historical

data characteristics. This means that the system can inde-
pendently discover the cyclical rules contained in different
transaction data without relying on prior knowledge or man-
ually setting the cycle parameters. This automatic learning
process helps to extract important features of transaction data
and provides the basis for subsequent anomaly detection.

B. HISTORICAL ANOMALY FILTERING
In this module, the system automatically labels the abnor-
mal values in the historical transaction data and filters the
abnormal fluctuation data. Such preprocessing steps are cru-
cial to improve the accuracy of prediction. By removing
the abnormal interference in the historical data, the system
can more accurately capture the real abnormal situation in
future transactions, so as to improve the reliability of anomaly
detection.

C. DYNAMIC BASELINE DETECTION
This module relies on the output of the first two modules,
that is, the data after periodic self discovery and historical
anomaly filtering. Based on these data and corresponding
periodic parameters, the system uses time series algorithm to
generate dynamic baseline. Dynamic baseline is a reference
line that can be adjusted in real time with time for real-time
detection. By comparing with the dynamic baseline, the sys-
tem can quickly capture abnormal fluctuations in transaction
data and respond in time.

FIGURE 1. Model architecture.

IV. PERIODIC SELF DISCOVERY
Index dynamic baseline detection is a kind of time series
prediction. The common methods include autoregression,
moving average, ARIMA (auto regression integrated moving
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average) [29], prophet [30] and other models. Now there are
relatively mature software packages or tools, but the use of
these models need to set cycle parameters, such as week,
month, year or holiday. Taking the banking system as an
example, the different indicators of individual and corpo-
rate business systems reflect their business characteristics,
such as quarterly interest settlement, monthly credit card
repayment, corporate large amount payment, etc., showing
different periodicity. When facing the indicators of different
business systems, the above algorithm needs to manually set
the cycle and a lot of parameter adjustment work, so that
the model can adapt to the operating characteristics of the
indicators, which is time-consuming and labor-consuming,
affecting the generalization of the model. The cycle self dis-
covery module realizes the self discovery and self adaptation
of the cycle parameters of themodel, greatly reduces the work
of parameter adjustment, and compresses the cost of model
training.

For performance indicators, the change trend usually has a
certain cyclical rule, which is often related to the change of
the business load it carries. The operation and maintenance
index data is often represented as discrete signals, so discrete
Fourier transform (DFT) [31] can be used for processing.
DFT can convert time series data from the time domain to
the frequency domain. The fundamental idea is to decom-
pose the time series into multiple sinusoidal and cosinusoidal
waves of different frequencies, and analyze these waves in the
frequency domain to reveal periodic patterns and frequency
components in the time series.

The DFT function expression is as follows:

X (k) = DFT [x(n)] =
1
N

N−1∑
n=0

x(n)(cos(
2πkn
N

)

− i sin(
2πkn
N

)) =

N−1∑
n=0

·e−i
2πkn
N (1)

ReX (k) =

N−1∑
n=1

x(n) cos(
2πkn
N

) (2)

ImX (k) = −

N−1∑
n=0

x(n) sin(
2πkn
N

) k = 0, 1, n . . . ,N − 1

(3)

Specifically, each data point in a time series is consid-
ered as a vibrational vector, and these vectors accumulate
in the time domain to form a complex vibrational shape.
By decomposing this vibrational shape into the sum of mul-
tiple sinusoidal and cosinusoidal waves, we can obtain the
amplitude of each frequency component. These amplitudes
represent the contribution degree of each frequency compo-
nent in the time series in the frequency domain. The result
of DFT is usually presented as a spectrum of amplitude,
which displays the amplitude of each frequency component.
After extracting the amplitude spectrum, we need to perform
frequency analysis to identify the frequency components with

the largest amplitude and the corresponding periods. These
frequencies and periods represent the main periodic patterns
in the time series.

In practical applications, to achieve efficient computation,
fast Fourier transform (FFT) is commonly used to com-
pute DFT. After converting the time domain signal x(n)
into the frequency domain signal via FFT, the amplitude of
each frequency component can be calculated and arranged in
descending order. Among them, the first few frequencies with
the largest amplitude are the fundamental and key harmonic
frequencies fi that we are concerned about. By calculat-
ing the period Ti = 1/fi, the corresponding period can be
obtained.

Through the aforementioned process, the periodic
self-discovery module can effectively analyze the periodic
characteristics of performance index data, thereby adaptively
discovering periodic parameters withoutmanual intervention,
reducing adjustment efforts, optimizing model training costs,
and improving model generalization performance.

The novel features of this method include:

A. FREQUENCY DOMAIN ANALYSIS
By converting time series data from the time domain to
the frequency domain, the periodic patterns and frequency
components of the data can be more intuitively revealed, sup-
porting quantitative analysis. By comparing the amplitudes of
different frequency components, the main periodic patterns in
the time series can be further analyzed and mined.

B. NO PRESET PERIOD
Traditional periodicity detectionmethods usually require pre-
setting a period value, while Fourier transform does not
require preset period. By performing Fourier transform on
the entire time series, we can obtain the amplitude spectrum
of all frequency components, which contains all periodic
information in the time series.

C. EFFICIENT COMPUTATION
Especially in the implementation of FFT, the algorithm com-
plexity is reduced to O(N log N), supporting large-scale data
processing.

V. HISTORICAL ANOMALY FILTERING
First, the historical performance data is perused, and the
isolated forest [32] method based on division is applied to
quickly identify the globally suspected abnormal data points.
The isolated forest, an anomaly detection algorithm based on
ensemble learning, effectively locates the isolated abnormal
data points in the feature space without modeling the normal
data, thereby enabling a prompt identification of potential
abnormal data for subsequent processing.

The detection of global suspected abnormal data using
isolation forest algorithm is mainly divided into three steps.
The first step is data preprocessing, including converting time
series data into two-dimensional form and normalization. The
second step is to build isolation forest, which clusters the data
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Algorithm 1 Periodic self discovery algorithm
INPUT: indicator number L;

Indicator set kpiset={kpi_0, kpi_1,. . . , kpi_l},
where KPI_ L is the L-th index vector;
Index interval ts;
Indicator time length T2 (T2 is suggested to be
an integer power of 2, otherwise zero is added to
the integer power of 2);
Number of data points in the set n2=t2/ts

OUTPUT: periodic value set tset={t_0, t_1,. . . , t_l}
1. tset={}
2. for kpivector in kpiset do
3. FFT=Fast Fourier transform (kpivector)
4. eng=frequency amplitude energy (kpivector)
5. engmax=max (Eng)
6. FM=frequency of fundamental wave and key

harmonic (kpivoctor, engmax)
7. tset.apex (FM)
8. end for
9. return tset;

through constructing a series of decision trees.When building
the decision tree, the algorithm selects a feature to split until
the termination condition is reached. Each leaf node of the
decision tree represents a data point, and the path length of the
leaf node can reflect the abnormality degree of the data point.
The third step is to calculate the anomaly score: in isolation
forest, the anomaly score of each data point is calculated by
averaging the path lengths in all decision trees. The shorter
the average path length, the easier it is for the data point to
be isolated, so the higher the anomaly score. Typically, data
points with anomaly scores greater than 0.5 are considered as
outliers.

Subsequently, considering that the above suspected abnor-
mal data points may be misjudged, further analysis and
verification are needed to confirm whether they are truly
abnormal. for these suspected abnormal data points, the
cycle parameters are combined and a cycle-based secondary
fuzzy filtering approach is implemented to eliminate periodic
data points with significant normal fluctuations, obtain-
ing the final abnormal data result set. The employment of
cycle parameters aids in more accurately identifying periodic
anomalies and preventing the misclassification of normal
periodic fluctuations as anomalies.

Through the aforementioned preprocessing steps, the
abnormal data germane to the dynamic baseline prediction
of performance indicators is effectively screened out, and
appropriate corrections are made to the historical data. This
pretreatment process provides a more reliable foundation
for subsequent anomaly detection and real-time monitor-
ing, thereby optimizing the accuracy and precision of the
model and enhancing the reliability of dynamic baseline
predictions.

The novel features of this method include:

A. EFFICIENT AND FAST
Isolation Forest uses a random approach to construct the
tree structure, avoiding the problem of traditional clustering

or classification algorithms that require scanning all data,
thereby improving computational efficiency.

B. HIGH ACCURACY
Isolation Forest uses a random approach to split sample points
and detects outliers based on the depth of the sample and the
isolation probability, making it more accurate compared to
other algorithms. The two-pass filtering method compensates
for the local misclassification problem of Isolation Forest and
further improves accuracy.

VI. DYNAMIC BASELINE DETECTION
This module is used to generate dynamic baselines for
anomaly detection. Considering that the indicator fault detec-
tion in this article is mainly for key indicators of operation
and maintenance objects, its dimension is single, and deep
learning and other indicator fault detection methods are
more suitable for high-dimensional and complex feature data.
As a classic method, dynamic baseline has the advantages
of strong interpretability, low training overhead, and support
for large-scale data detection. Therefore, dynamic baseline is
selected for detection.

The module provides dynamic baseline detection function
to achieve accurate personalized real-time anomaly detection.
A classic method for forecasting periodic time series is
SARIMA model [33] (seasonal auto regressive integrated
moving average model), which can be adjusted by four inte-
ger parameters P, D, Q and S.

Where, P represents the auto regressive autoregressive part
of the model and is used to represent the lag number of the
time series data used in the prediction model; D represents
the integrated integration part of the model, which is used to
indicate that the time series data needs to be differentiated to
be stable; Q represents the moving average part of the model,
which is used to represent the lag number of the prediction
error used in the prediction model; S stands for the moving
average seasonal part of the model, which is used to represent
the period of time series data, with month as the dimension.
For example, if the period is quarter, the value of S is 4; If the
period is year, then the value of S is 12, and so on.

However, the original algorithm cannot be directly used
due to the possible problems of missing and abnormal histor-
ical data. Moreover, the period parameter must be an integer,
that is, the period must be greater than the month. In the
automatic discovery of performance data cycle, it is often
found that the cycle is in hours and days. Therefore, we need
to improve the original SARIMA model, reduce the impact
of missing data and abnormal data in the modeling process,
and introduce the historical impact attenuation factor to solve
the problem of performance drift [34].

VII. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
10 servers: Intel (R) Xeon e5-2650v2 CPU@2.60GHz Mem-
ory 32GB; Operating system: CentOS 7.3; Three Hadoop
standalone clusters are installed; Three deploy Kafka,
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Algorithm 2 Historical exception filtering algorithm
INPUT: indicator number L;

Indicator set kpiset={kpi_0, kpi_1,. . . , kpi_l},
where KPI_ L is the L-th index vector;
The periodic value set tset={t_0, t_1,. . . , t_l};
Preset height value H;
Preset deviation M

OUTPUT: historical exception filtered set kpiset ’={kpi_0’,
kpi_1’,. . . , kpi_l’}

1. abnormal POINTSSet={}//the abnormal value
data set is initialized to null

2. for kpivoctor in kpiset, Ti in tset do
3. APLS=isolated forest (kpivoctor)
4. abnormal points={}
5. for aPL in APLS do
6. if APL>H do
7. make this point KPI_ XK, the period Ti of the

indicator
8. newkpivoctor=time TJ and neighborhood

(TLJ, Tuj) corresponding to the previous P
cycles of the point

9. calculate KPI according to self discovery
rule_ Reference mean MK and reference
standard deviation sk of XK

10. if KPI_ Difference between XK and
MK>m∗sk, do

11. abnormal points.append (kpi_xk)
12. end if
13. end if
14. end for
15. abnormal points set.apend (abnormal points)
16. end for
17. kpisets’=kpiset - abnormal POINTSSet//

Calculate the filtered data set of historical
exceptions

18. return kpisets

Algorithm 3 Dynamic baseline algorithm
INPUT: indicator number L;

The filtered set of historical exceptions kpiset
’={kpi_0’, kpi_1’,. . . , kpi_l’};
The periodic value set tset={t_0, t_1,. . . , t_l};
Real time indicator set kpiset∗ ={kpi_0∗,
kpi_1∗,. . . , kpi_l∗}

OUTPUT: faultpointsset={kpif_0, kpif_1,. . . , kpif_l}
1. faultpointsset={}
2. for kpivoctor in kpiset, Ti in tset do
3. model=SARIMA (kpivector, Ti)
4. predictdata=model predictive value
5. baselinedata=(predictdata+3 times standard

deviation, predictdata-3 times standard deviation)
6. if kpi∗ >baselinedata do//the real-time value

exceeds the dynamic baseband range at that time
7. make this point kpif_ X
8. faultpointsset.append (kpif_x)
9. end if

10. end for
11. return faultpointsset

two deploy InfluxDB, one deploy MongoDB, and one deploy
model programs and front-end applications. See Table 2 for
details.

TABLE 2. Deployment environment configuration.

In the stage of Engineering landing, the model uses the
big data technology stack to adapt to the analysis of massive
indicators. The technical architecture is shown in Figure 2
and Figure 3. In the training phase, the algorithm package
is loaded from HDFS, the historical data of InfluxDB is read,
and themodel of each index is output based on batch fragmen-
tation and saved to MongoDB; In the reasoning stage, load
the indicator models ofMongoDB, read Kafka real-time data,
implement dynamic baseline detection, and save the results to
InfluxDB.

FIGURE 2. Model training based on batch processing.

B. DATA SET
The experiment consists of two data sets.

Dataset 1: QPS dataset of the test database used by a bank.
The acquisition frequency is 1 minute. See table 3 for specific
fields. The data size is 200, the training set is 150, and the test
set is 50.

Dataset 2: is a public dataset [35], which is the golden
indicator of business operation under the distributed micro
service architecture. The collection frequency is 2 minutes.
See Table 4 for specific fields. The data size is 1000, which is
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FIGURE 3. Model inference based on streaming processing.

TABLE 3. Database QPS dataset characteristics.

divided into training set 900 and test set 100. The accuracy of
the model is verified by fitting the average call duration (unit:
milliseconds).

TABLE 4. Microservice golden indicator dataset characteristics.

C. EVALUATION METRICS
Considering that temporal detection is essentially a regression
model, MSE is used as the model evaluation metric. MSE
stands for Mean Squared Error. It is a metric used in machine
learning, statistics, and other related fields to measure the
difference between the predicted value of a model and the
actual value, as shown in Equation 4.

MSE =
1
n

n∑
i=1

(yihat − yi)2 (4)

where: Yi is the true value of the ith sample, Yi_ Hat is the
predicted value of the ith sample, and N is the number of
samples.

The smaller the MSE value, the higher the accuracy of
the model prediction. When comparing different models, the
smaller MSE value indicates that the prediction result of the
model is closer to the real value.

D. EXPERIMENTAL PROTOCOL AND ANALYSIS
The above two data sets are used to divide the training set
and the test set. Based on the same data, ARIMA model,
SARIMA model and the model in this paper are used for
comparison.

1) EXPERIMENT OF DATASET 1
See Table 5, figure 4 and figure 5 for test results.

TABLE 5. Model test results about Dataset 1.

FIGURE 4. Model accuracy comparison about DATASET 1.

FIGURE 5. Model fitting results comparison about DATASET 1.

2) EXPERIMENT OF DATASET 2
The anomaly filtering of the model in this paper is shown in
Figure 6. There are 900 data points in the training set, and
116 global anomalies are detected using the outlier detection
method. Based on the periodicity of the second-order fuzzy
filter, there are 64 outliers. Therefore, after removing the
64 outliers, the actual training set consists of 836 points.

FIGURE 6. Historical anomaly filtering results(reduced misjudgment).

The test results are shown in Table 6, Figure 7 and Figure 8.
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TABLE 6. Model test results about Dataset 2.

FIGURE 7. Model accuracy comparison about DATASET 2.

FIGURE 8. Model fitting results comparison about DATASET 2.

In addition, due to the direct use of the SARIMA model,
it is necessary to determine the periodic parameters through
grid search, which is time-consuming and costly. This model
directly obtains the periodic parameters through an algorithm,
eliminating this time-consuming step. The following table 7·
compares the training time of each model.

TABLE 7. Comparison of the training time of each model.

As shown in the table, the training time of this model is
close to that of the ARIMA model, and it significantly com-
presses the training time compared to the SARIMA model,
reducing it from 85.6 minutes to 1.2 minutes.

3) CONCLUSION
Based on the test data, the method in this paper has improved
the accuracy of the original SARIMA and ARIMA models.
The results on Dataset 1 show that the MSE has decreased
from about 940 to 520, improving the accuracy by 44%. The
results on Dataset 2 show that the MSE has decreased from
a maximum of 88 to 56, improving the accuracy by 36%.
Additionally, the method automatically generates periodic
parameters, greatly reducing the search space for model
parameters and effectively reducing the cost of model training
time from 85.6 minutes to 1.2 minutes.

E. APPLICATION EFFECT ANALYSIS
The model and system based on this method have been
deployed in the actual production environment of a bank’s
distributed information system, and have performance indica-
tor data from multiple scenarios including servers, networks,
and application transactions. They provide real-time alerting
for indicator abnormalities and visual querying capabilities,
achieving good results.

1) SERVER PERFORMANCE MONITORING
The webpage shown in Figure 9 compares the original pro-
duction monitoring method using fixed thresholds with the
single dynamic baseline provided by this method, which
better matches CPU operation patterns, improving detection
accuracy and effectively reducing the number of microburst
alerts. By correlating with configurations, alerts can be aggre-
gated based on application and server type, increasing alert
accuracy by approximately 20% and reducing alert volume
by approximately 30%.

FIGURE 9. Server performance monitoring page.

2) NETWORK TRAFFIC MONITORING
The webpage shown in Figure 10 provides real-time mon-
itoring of core backbone network traffic and bandwidth
utilization of some device-level ports, effectively reducing the
number of microburst alerts.

FIGURE 10. Network traffic monitoring page.

3) APPLICATION TRANSACTION MONITORING
The webpage shown in Figure 11 focuses on monitoring
key performance indicators of payment applications, with an
increase in alert accuracy of approximately 20%.
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FIGURE 11. Application transaction monitoring page.

VIII. CONCLUSION
For the existing shortcomings of insufficient accuracy in
indicator fault detection, complex training parameter tun-
ing, and high performance overhead, this paper proposes
a method based on periodic self-discovery and historical
anomaly filtering for indicator fault detection. By combining
multiple machine learning models, the method significantly
reduces the training cost such as model parameter tuning
through the automatic discovery of periodic parameters,
ensuring real-time updates of the model and possessing good
self-learning and self-adaptive abilities. Using the isolation
forest as a primary screening method for anomaly detection,
it quickly identifies global outliers with low time complexity
and good algorithm stability. On this basis, a quadratic fuzzy
filter based on periodicity is introduced to refine the screen-
ing process while avoiding phase noise interference caused
by operational deviations, effectively solving possible local
misclassification problems. The generated baseband is more
suitable for indicator operational characteristics, improving
detection accuracy. Compared with directly using ARIMA
and SARIMAmodels based on two test datasets, this method
improves theMSE by up to 44% and 36%, respectively. Addi-
tionally, this method has been practically applied in multiple
scenarios in a bank’s production environment, increasing alert
accuracy by 20% and achieving a ratio of 10:1 for alert con-
vergence. This method significantly enhances the indicator
fault detection ability compared to traditional methods.
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