
Received 9 November 2023, accepted 12 January 2024, date of publication 2 February 2024, date of current version 12 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361748

Efficient Multi-Cloud Storage Using Online
Dynamic Replication and Placement
Algorithms for Online
Social Networks
ALI Y. ALDAILAMY 1, ABDULLAH MUHAMMED1,
NOR ASILAH WATI ABDUL HAMID 1, (Senior Member, IEEE),
ROHAYA LATIP 1, AND WAIDAH ISMAIL2
1Department of Communication Technology and Networking, Faculty of Computer Science, Institute for Mathematical Research, Universiti Putra Malaysia,
Serdang, Selangor 43400, Malaysia
2Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan 71800, Malaysia

Corresponding authors: Ali Y. Aldailamy (a.aldailamy7@gmail.com) and Abdullah Muhammed (abdullah@upm.edu.my)

This work was supported by the Malaysian Ministry of Higher Education under Grant FRGS/1/2021/ICT08/UPM/02/2.

ABSTRACT The provision of Storage as a Service (STaaS) in many geo-distributed datacenters by several
Cloud Storage Providers (CSPs) has made online cloud storage a great choice for replicating and distributing
objects that are accessed worldwide. Online Social Networks (OSN) such as Facebook and Twitter have
billions of active users worldwide accessing shared objects. These users expect to access these objects
within a tolerable time. To minimize users’ access latency time of these objects, OSN service providers must
host several replicas of objects in many datacenters. However, this replication process produces a higher
monetary cost. This paper addresses crucial issues, including how many replicas are required to fulfil the
expected workload of the object and the optimal datacenters to host these replicas to reduce latency time for
users and monetary costs for OSN service providers. Two online algorithms are proposed to determine the
suitable number of replicas for each object and the optimal placement of these replicas. The DTS algorithm
establishes the replication and placement of objects using deterministic time slots, while the RTS algorithm
is based on randomized time slots. Experimental results show the effectiveness of the proposed algorithms
for producing latency time below certain thresholds and reducing the monetary cost.

INDEX TERMS Dynamic replication, latency and cost optimization, multi-cloud, online placement
algorithm, online social network, storage as a service.

I. INTRODUCTION
According to the Digital report [1], in 2023, about 5.16 billion
people now have regular access to the internet, whereas
4.76 billion are active social media users. More than
3.5 billion of those social media active users are from
Facebook (2.96 billion active users every month) and Twitter
(556 million active users monthly). With this massive number
of users, Facebook generates about 4 petabytes of data
daily [2], and Twitter receives every day about 762 million
tweets [3]. This data is generated and shared by users around
the world.

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Guidi .

These users also require good Quality of Service (QoS)
from the Online Social Networks (OSN) service providers.
One of the most important QoS is the latency time of
accessing objects in the OSN. On the other hand, the
main goal of moving data into the cloud is reducing the
capital expenditures needed to build, develop, and maintain
the required hardware infrastructures and avoiding the
datacenters management complexities (IT maintenance cost).
Therefore, OSN service providers are constantly struggling to
reduce the expenses for hosting and managing these large-
scale data without affecting the QoS requirements of their
users.

Giant Cloud storage providers (CSPs) such as Google,
Amazon, and Microsoft have provided storage as a service

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

20409

https://orcid.org/0000-0003-0630-3486
https://orcid.org/0000-0001-8095-7678
https://orcid.org/0000-0002-6462-1944
https://orcid.org/0000-0002-0151-6469


A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

(STaaS) based on a pay-as-you-go model [4], [5], [6]. Using
STaaS is more cost-efficient than building a private storage
infrastructure. Moreover, the STaaS of giant CSPs has geo-
distributed datacenters around the world. Therefore, many
enterprises have moved and replicated their data among these
datacenters to increase availability and reduce access latency.

However, Milani and Navimipour in [7] andWu et al. in [8]
have stated that replicating objects among multiple datacen-
ters increases the overhead of replication management and
results in higher hosting costs. Using full static replication
of OSN objects worldwide to ensure high availability and
reduce access latency is exceptionally costly. For example,
generating a static number of replicas and distributing them
among selective datacenters that are scattered worldwide.
On the other hand, the local replication of OSN objects
can reduce the cost to a certain extent but increases latency
time worldwide. For example, replicating the object in
two datacenters of the same region where the object was
created will direct all the worldwide requests to this region.
Therefore, OSN service providers always consider the trade-
off between monetary cost and access latency to produce the
most affordable system.

The dynamic nature of objects in OSN has made it unfeasi-
ble to use static replication and placement strategies [9]. The
popularity of the object in the OSN also has this dynamic
nature. Hence, the popularity calculation process should be
invoked regularly to adjust the replication and placement of
the object in the OSN based on its current popularity. So,
when the object is in hot popularity in the OSN, it should
have many replicas to be capable of serving the expected
workload. However, when this object becomes cold, its
number of replicas should be minimized in order to save
cost. This adjustment process should take into consideration
the accepted latency time for the users of the OSN and the
monetary cost for the OSN service providers.

Gill and Singh in [10] and Sun et al. in [11] used only
the access rate to determine the suitable popularity of each
object at each specific time slot. This popularity is then used
to determine the appropriate number of replicas for the object.
However, Facebook and Twitter OSNs have more criteria that
are crucial in determining the popularity of an object. Besides
the access rate, these criteria include Shares, Comments,
and Likes numbers, which are called the engagement rate of
the object in the OSN. They are also considered as the Put
requests of the object.

On the other hand, users expect QoS from the OSN service
provider, which includes unnoticeable latency time. Users of
OSN expect to access the requested object and to see their
engagement within a certain threshold. Liu et al. [12] stated
that the typical latency time for data retrieval on the web
is 100MS. However, in OSN, latency time up to 250MS of
Put/Get requests is considered unnoticeable for the users [13].
Latency time of more than 250MS leads to users becoming
frustrated, and users are likely to leave the OSN [14].
Fulfilling users’ requirement of latency time and OSN

service provider’s requirement of monetary cost requires

optimization in the replication and placement of objects
to provide OSN that guarantees the expected latency of
users and produces the lowest possible monetary cost for
the OSN service provider. Therefore, a popularity-based
approach is required to consider the object’s popularity
to dynamically determine the suitable number of replicas
to produce the minimal size while fulfilling the expected
workload. Furthermore, a region ranking-based placement
that always places the object in the datacenters with the lowest
latency time and cost and dynamically changes this placement
according to the regions with the highest ranks of the object
is also required. To focus on these points, this study produces
the following key contributions:
• Proposing a region ranking-based strategy that opti-
mizes the placement of the object replicas based on
object access and engagement rates of the regions.

• Proposing two online algorithms to guarantee an unno-
ticeable latency time of less than 250ms for users of OSN
and producing the lowest monetary cost for OSN service
providers based on deterministic and randomized time
slots.

• Besides providing the mathematical model and anal-
ysis, a comprehensive performance evaluation of the
proposed algorithms using synthetical workloads based
on a real Facebook dataset is provided by the CloudSim
simulator.

The remainder of this paper is organized as follows.
In section two, the studies related to this work are reviewed.
Section three introduces the problem definition and math-
ematical models. The static replication and placement are
presented in section four. In section five, the latency and
cost optimization and the proposed online algorithms are
presented. Section six presents the simulation experiments
and performance evaluation of the proposed algorithms.
Finally, we conclude this study in the last section.

II. RELATED WORK
One of the challenging issues for OSN service providers is
delivering an acceptable access latency time for users while
minimizing the cost of hosting objects in the cloud. In recent
years, this topic has gained wide attention from researchers,
who proposed several replication strategies to enhance object
availability, placement strategies to host object replicas in the
appropriate datacenters, and retrieval techniques to decrease
access latency time. All these strategies can be classified into
the following categories.

A. FULL REPLICATION
This replication concentrates on replicating the objects in all
datacenters related to users or selective datacenters that are
scattered around the world. The full replication of the objects
of all friends in all user’s datacenters, as proposed in [15]
and [16] can reduce the latency time of users. However, it is
not feasible to replicate hot and cold objects in all datacenters
because of higher replication costs. Other researchers, such
as [12] selected specific datacenters scattered around the

20410 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

world to minimize inter-datacenter communications while
obtaining minimal latency time. Another research is [17],
in which a geo-partitioning strategy is proposed to reduce
cost while preserving latency time below thresholds in OSNs.
The replicas in the geo-distributed datacenters that satisfy
this threshold are kept while the others are deleted. These
strategies use static replication that replicates all objects,
whether they are popular or unpopular, and produce expen-
sive synchronization. Furthermore, using full replication for
OSN objects to reduce latency, guarantee availability, and
meet other requirements is incredibly expensive.

B. DYNAMIC REPLICATION
This replication focuses on deciding the suitable number
of replicas for an object based on certain criteria, such
as the access rate of the object. Khalajzadeh et al. [9]
introduced a graph partitioning algorithm that divides OSN
graphs into different partitions that connect friends. Although
the proposed algorithm can reduce user access latency,
it causes high storage and traffic costs. A two-layer Geo-
cloud-based dynamic replication algorithm in largeOSN such
as Facebook was presented by Ye et al. [18]. The algorithm
lowers the bandwidth consumption and the mean access
time by considering site capacity. It also ranks objects based
on popularity and replicates the most popular. A different
study by Mansouri et al. [19] proposed a data replication
technique based on the 80/20 principle that dynamically
replicates objects based on the number of accesses to enhance
data availability and latency time. Moreover, multi-objective
replication management using the immune algorithm is
designed by Long et al. [20] to optimize several factors,
including latency time, by deciding the suitable number
of replicas for each object. All these studies conducted
dynamic replication based on the access rate only. Contrary
to our research, the dynamicity used by all these studies to
determine the replicas’ number is solely based on the access
rate. In OSN, the access rate alone is insufficient to predict
the object’s future access, as the engagement rate also plays
an essential role.

C. COST-LATENCY TRADE-OFF
Full static replication of OSN objects around the world to
ensure high availability and reduce latency is prohibitively
expensive. The local replication of OSN objects can save
costs but increase the access latency for global requests.
To create a cost-effective system, OSN service providers
always examine the trade-off between monetary cost and
latency time. Matt et al. [22] proposed a storage service
ranking function focusing firstly on cost and secondly on
the latency of the download and upload requests. They used
the erasure coding replication, which is not cost-effective
when used with read-intensive objects, as illustrated in [23].
A placement that struggles to keep the latency time below a
predetermined threshold while optimizing the cost by taking
advantage of the dynamic set cover problem is proposed by

Khalajzadeh et al. [24]. Another study by Han et al. [25]
proposed an adaptive placement of objects in OSN hosted
by multiple CSPs to improve performance. The approach
makes decisions of intelligent migration of objects based on
their traffic to provide acceptable latency time. Furthermore,
to reduce transmission time and bandwidth cost, they pre-
sented a Lagrange relaxation-based data placement algorithm
that takes into consideration each datacenter capacity and the
load balance of the geo-distributed datacenters. By utilizing
the erasure coding replication method with a modified
Paxos, PANDO [26] focused on ensuring data consistency
and reducing read/write latency time across geo-distributed
datacenters. In general, these works can be orthogonal to
our work; however, the Cost-latency trade-off of some works
is considered to be offline as the workload of the object is
known in advance, while other solutions are based on access
rate only.

D. REDUNDANT REQUESTS
Another mechanism to reduce the latency time of requests
is to send multiple requests to all the datacenters that host
the replicas. CosTLO [27] generated two redundant requests
to the nearest datacenters to reduce object transmission
latency. The first request retrieves the object is the request
used. Using a greedy algorithm to decide the number of
redundant requests and their destinations based on historical
datacenter latency performance, Cui et al. [28] proposed
TAILCUTTER, a request scheduling mechanism to reduce
object request latencywhilemeeting the customers’monetary
cost limitations. Other researchers, such as [29] proposed a
redundant requests mechanism that issues multiple requests
until the fastest response is received with the ability to cancel
other requests. However, the cancellation of the running
requests produces significant delays. In general, generating
multiple redundant requests of objects to various datacenters
hosting replicas incurs additional transmission costs.

E. SPLIT REQUESTS
Partitioning the object on multiple datacenters and retrieving
the portions in parallel by splitting the request is another
strategy used to improve access latency. GeoCol [30]
optimized latency using the request split method to predict
the request latency time and storage planning method to
decide whether the object should be stored and which
storage type. A request splitting mechanism that decides
whether to split the request into two sub-requests based
on the latency performance of the last request to the same
datacenter proposed by Sun et al. [31]. Another research
by Hajjat et al. in [32] proposed Dealer, which builds a
global view by monitoring the latency performance and
reduces the latency time by dynamically choosing the best
combination of datacenters to serve user requests based on
this historical view. Different request splitting mechanism
by Hu and Niu [33] reduced the latency from the load
balancing perspective by adjusting the block placement based

VOLUME 12, 2024 20411



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

TABLE 1. Notation of symbols and their meaning.

on recent request history using controlled migration to reduce
the migration overhead. Nonetheless, dividing an object into
multiple portions hosted in multiple datacenters requires
reconstructing the object from multiple datacenters, which
incurs significant delays. Moreover, this technique does not
allow the utilization of the cheapest datacenter.

None of the studies reviewed above provides research that
dynamically decides the placement of the replicas based on
each region’s access and engagement rates to optimize the
access latency while reducing the monetary cost as much
as possible. As a result, we present two online algorithms
that employ dynamic replication and placement strategies to
determine the number of replicas of the object based on its
popularity in the OSN and the datacenters that should host
these replicas based on the region’s rank of the object at each
time slot of its lifetime in the OSN. Furthermore, simulation-
based experiments show that our suggested algorithms can
preserve the access latency below the maximum expectation

of the user without the requirement to have future access and
engagement in advance.

III. MODELS
OSN, such as Facebook and Twitter, has a vast number of
users scattered around the world, and large-scale data is
generated daily. Placing the object in specific regions with
static replication causes a higher latency time. For example,
if a user has posted an object, it will be replicated and hosted
in the same region as the user. As this object is accessible
to all other users around the world, it may be accessed from
another region more than the region of the object user. This
can cause a higher latency time.

Furthermore, creating many replicas of all objects is not
feasible as the overhead of maintaining a high number of
replicas increases, and the cost of replication rises above
what is reasonable. So, creating many replicas of all objects
is not a good idea. Thus, it makes sense only to calculate

20412 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

the popularity of each object based on its access and
engagement rate at each time slot of its lifetime in the OSN.
This popularity is used to determine the suitable number
of replicas for the object in the OSN. Additionally, the
popularity of the object in each region is used to decide the
suitable datacenters that host these replicas.

In this study, we tackle the issue of dynamic replication and
placement of OSN objects in geo-distributed datacenters with
the guarantee of latency requirements for OSN’s users and the
minimization of monetary cost for OSN’s service providers.
The dynamic replication is handled based on the object
workload, and the dynamic placement is conducted based on
each object’s popularity in each region. All these mechanisms
should be conducted online without prior knowledge of the
future workload for the object. For convenience, we list the
symbols for the notation used in this paper in Table 1.

A. SYSTEM MODEL
In this section, the objects, the datacenters, and the replica
existence matrix of each object in each datacenter are
introduced using the following definitions:
Definition 1 (Datacenters): Datacenters are represented

as a set of D, which are geographically distributed around
the world. Every datacenter d ∈ D is assigned to a region
g, where g ∈ G, every subset of datacenters is located in a
region g. For example, in Germany, Google Cloud has one
datacenter, Amazon S3 also has one datacenter, andMicrosoft
Azure has two datacenters. Therefore, in Germany region,
four datacenters belonging to different CSPs can be used to
host objects.
Definition 2 (Objects): The system model represents the

object as a set of A, where each object a ∈ A. Each object
has size SZati , number of Get requests GRati , Shares SR

a
ti ,

Comments CRati and Likes LRati at each time slot ti, where
ti ∈ [ts − tc]. In addition, at each time slot ti, object a has a
specific number of replicasRN a

ti hosted in certain datacenters.
Definition 3 (Objects Replica Existence): The replicas’

existence of the objects set A in the datacenters set D in time
slot ti is represented as a matrix of (A×D)ti as shown in Fig. 1.
The replica existence value in the matrix for object a at time
slot ti in datacenter d is denoted by REati (d) ∈ [0, 1]. Where
REati (d) = 1 indicates that object a has replica in datacenter
d at time slot ti. Whereas REati (d) = 0 indicates that object a
has no replica in datacenter d at time slot ti. The number of
replicas RN a

ti for object a in time slot ti is the summation of
the REati (d) of all datacenters.

RN a
ti =

D∑
d=1

REati (d) (1)

B. DYNAMIC REPLICATION MODEL
In order to determine the suitable number of replicas for
the object a in the current time slot tc, the object popularity
is required to be calculated using the decaying function
based on the four important tuples: numbers of Gets, Shares,

FIGURE 1. Illustration of the replicas existence in the matrix of the
datacenters and objects (A × D).

Comments, and Likes. This dynamic replication model is
presented using the following definitions.
Definition 4 (Exponential Decaying Function (EDF)):

EDFmeans that the value shrinks by a constant factor for each
time slot passed. It is defined over time slots with values in
the [0 − 1] range. EDF is used to calculate the exponential
decay in the access and engagement rates of the object a in
the current time slot tc using the numbers of Gets, Shares,
Comments, and Likes from the previous time slot tc−1 to the
start time slot ts.

EDF(tc, ts) = e−σ (tc−ts) (2)

where σ is used to decide how fast the decay happens with
time slots. The bigger the σ , the faster the decay rate. If (tc−
ts) = 0, then EDF(tc, ts) = 1. As the difference between
the current time slot tc and the first time slot ts increases,
this confirms that the EDF asymptotically approaches zero
at infinity.
Definition 5 (Exponential Decaying Access Rate): Access

rate represented as ARag is one of the factors that decide the
object’s popularity in the OSN. It is calculated using the
number of Get requests issued from all regions to the object
a from the time slot tc−1 to the first time slot ts.

ARatc =
G∑
g=1

ts∑
ti=tc−1

GRag(ti, ti−1)× EDF(tc−1, ti) (3)

Definition 6 (Exponential Decaying Engagement Rate):
Shares, Comments, and Likes are the main parts of the
engagement rate in the OSN. The engagement rate for object
a at the current time slot tc is denoted by ERatc . Similar to
ARatc , ER

a
tc is calculated independently using the number of

Shares SRga, Comment CRga, and Likes LRga issued from all
regions to the object a from the time slot tc−1 to the first
time slot ts using the EDF. However, according to Kim and
Yung [35], Share, Comment, and Like have different weights
in the determination of the object’s popularity. The weight
of one Share request is equal to two Comment requests.
At the same time, each Comment request equals seven Like
requests. Similarly, we assume that each Like is equal to
two access requests. These weight variations between Share,
Comment, and Like can be expressed as weight variables
for each type of request. Hence, we use βs, βc, and βl as
weight variables for the Share, Comment, and Like requests,

VOLUME 12, 2024 20413



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

respectively.

ERatc =
G∑
g=1

ts∑
ti=tc−1

(SRag(ti, ti−1)× βs + CRag(ti, ti−1)

× βc + LRag(ti, ti−1)× βl)× EDF(tc−1, ti) (4)

Definition 7 (Object Popularity): The popularity of object
a in the current time slot tc in the OSN is denoted byOPatc . The
object popularity in the OSN is measured by the amount of
access and engagement the object received in each time slot.
However, the Get request is served from one replica, while
the Put request is written to all object replicas. Therefore, the
object popularity is determined from the result of dividing the
access rate ARatc of the object a in the current time slot by the
number of replicas RN a

tc−1 from the previous time slot. This
result is then added to the engagement rate ERatc of the object
a in the current time slot.

OPatc =
ARatc
RN a

tc−1
+ ERatc (5)

Definition 8 (Replication Number): Replication number
RN a

tc is the value calculated from the object’s popularity value
to decide the number of replicas for object a in the current
time slot tc. The popularity of the hot object in the OSN is
always a large number, which is proportionally reduced to one
digit using logarithms. The base-10 logarithm of a number is
approximately equal to the number of digits in that number.
Therefore, it is calculated by taking the base-10 logarithm
using equation (6).

RN a
tc = log(

ARatc
RN a

tc−1
+ ERatc ) (6)

C. COST MODEL
The cost model is concerned with calculating the object
hosting cost in the STaaS. Each datacentre has a tuple of three
costs for hosting the replica of the object, as follows.
Definition 9 (Storage Cost): The storage cost of all

objects in the time slot ti is denoted by SCti and calculated
using equation (7), which uses each replica size SZati of
the object a and the price of storage for each size unit in
datacentre d represented by USP(d).

SCti =
A∑
a=1

D∑
d=1|REati (d)=1

(SZati × USP(d)) (7)

Definition 10 (Request Cost): It is the cost of the Get and
Put requests to all objects in time slot ti, and it is denoted
by RCti . It is defined by equation (8) using the number of
Get requests GRati and the number of the Put requests PRati ,
the object a received in the time slot ti multiplied by their
corresponding price of requests unit in datacentre d .

RCti=
A∑
a=1

D∑
d=1|REati (d)=1

(GRati×UGP(d))+ (PRati × UPP(d))

(8)

where UGP(d) is the price of the Get request in the
datacentre d and UPP(d) is the price of the Put request in
the datacentre d .
Definition 11 (Network Cost): It is the cost of the network

consumption by the Get and Put requests to all objects. This
cost is denoted by NCti and estimated by equation (9) using
the total retrieved data size DSCti (d) of the Get requests
issued to the datacenter d in the time slot ti and the price of
the size unit price UNP(d) in datacentre d .

NCti =
D∑
d=1

(DSCti (d)× UNP(d)) (9)

D. LATENCY MODEL
The latency model focuses on the calculations of each
request latency time, the region’s average latency time,
and the percentile latency time of all requests in the time
slot.
Definition 12 (Latency): Each user is assumed to obtain

the requested object from the closest datacenter. In the
cloud, [34], [36] illustrated that the latency time L of small-
size objects is always determined by the latency of the
network. Since the network’s distance significantly decides
the network latency, we used equation (10), which uses the
distance between the user region and datacenter to estimate
the latency time L in milliseconds (ms).

L(ms) =


50, user and datacenter are

in the same region.
Dist(KM )× 0.02+ 5, otherwise.

(10)

Definition 13 (Region Average Latency): The average
latency for all regions G from all datacenters D is
calculated for the purpose of replica placement based
on the latency limits. The average latency of regions
is represented as a matrix of G × D, which is
denoted by RLgd and it is calculated using equation (11),
where GR(g) is the number of requests issued from
region g.

RLgd =

∑G
g=1

∑D
d=1 L∑G

g=1GR(g)
(11)

Definition 14 (Time Slot Percentile Latency): The per-
centile latency of all requests to all objects A in all datacenters
D for time slot ti is denoted by TPLti and it is calculated using
equation (12).

TPLti =
P
100
× (LNti + 1) (12)

where p is the required percentile of the requests (e.g., 90%
or 99%) and LNti is the number of the measured latencies L
for all Get requests in time slot ti.

20414 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

IV. STATIC REPLICATION AND PLACEMENT
Static replication and placement are based on a static number
of replicas hosted on fixed datacenters. The number of
replicas and their placement are not adapted based on the
changes in the object popularity in the OSN. In the following
section, we present two static replication and placement
algorithms used as benchmark algorithms for the online
algorithms.

A. LOCAL REPLICATION AND PLACEMENT (LRP)
ALGORITHM
Considering that the majority of Get and Put requests come
from the same region as the object owner’s region, we propose
an algorithm that creates two replicas of each object and
hosts them in the same region where the owner of the object
is located. This algorithm hosts the replicas in different
datacenters that belong to two different CSPs. The reason
behind using two replicas hosted in two different CSPs is to
provide another replica when there is a heavy workload on
the object and to prevent vendor lock-in.

Let Anew be the new objects that must be replicated and
hosted. The region of the object’s owner is denoted by URa,
and the set of datacenters that are located in the same region
of the object owner are denoted by DCa. These datacenters
are selected based on the lowest cost produced in the region.

Algorithm 1 . LRP Algorithm
Input: Datacenters’ detail (locations, regions,. . ..), and

objects with their workload.
Output: The latency percentile (TPLti ) of all requests in
each time slot, and the total cost (TCti ) of all objects A in
each time slot.
RN a

t0 ⇐ 2;
for a = 1 to Anew do
URa ⇐ Find_User_Region(a);
DCa ⇐ Find_Region_Datacenters(URa);
Create_Assign_Replicas(DCa);

end for
for i = 0 to T do
Lti ⇐ Calculate_Each_GET_Latency(ti);
TPLti ⇐ Calculate_Latency_Percentile(Lti );
TCti ⇐ Calculate_Total_Cost(ti);
Return (TPLti ,TCti );

end for

The pseudocode of the LRP algorithm is presented in
Algorithm 1. LRP sets the number of replicas for each
object in the OSN to two replicas (line 1). In the first
loop, it iterates through all the newly created objects
Anew in the OSN (lines 2-6). Firstly, Using the function
Find_User_Region(a), it finds the owner region of the object
a (line 3). Then, LRP finds the cheapest datacenters that
should belong to different CSPs in URa using the function
Find_Region_Datacenters(URa)(line 4). Next, it creates
and assigns the replicas to the selected datacenter DCa
using the function Create_Assign_Replicas(DCa) (line 5).

TABLE 2. The details of datacenters selected for FDCL.

In the second loop, LRP calculates the latency time of
each Get request in the time slot ti using the function
Calculate_Each_GET_Latency(ti) (line 8). Then, it calcu-
lates the required percentile for the latency times of all
Get requests issued in the time slot ti using the function
Calculate_Latency_percentile(Lti ) (line 9). Next, the total
cost of hosting all objects in time slot ti is calculated using
the function Calculate_Total_Cost(ti) (line 10). Finally, LRP
returns the latency time of the required percentile and total
hosting cost in the time slot ti (line 11).

B. SELECTIVE DISTRIBUTED REPLICATION (SDR)
ALGORITHM
SDR is an algorithm that is also based on static replication and
placement mechanisms. SDR is proposed in [12] and [17] for
the optimal placement of objects in Facebook. It is designed
to use several datacenters selected carefully to be scattered
around the world so that any user in the world receives
the requested object from the nearest datacenter. Therefore,
it produces the lowest latency time for all users around the
world.

We use the same design of this replication with a slight
adaptation of the datacenters to cover most of the regions.
Thus, the datacenters used should belong to all regions in
Asia, north America, south America, Europe, Africa, and
Australia. Therefore, eleven datacenters from the three giant
CSPs are used for the SDR algorithm. The datacenters used
by SDR are predefined in a list denoted by FDCL. Table 2
presents these datacenters and their details.

Let Anew be the set of the new objects in the OSN
that need to be replicated and hosted in the FDCL dat-
acenters. The pseudocode of this algorithm is shown in
Algorithm 2. In the first loop, the SDR algorithm creates
the replicas of each newly created object in the OSN using
the function Create_Replicas(a) (line 2). Then, using the
function Assign_Replicas(FDCL), it hosts each replica in one
datacenter from the list FDCL (line 3). The second loop
performs the same functions as the LRP algorithm.

V. DYNAMIC ONLINE REPLICATION AND PLACEMENT
The optimization of this research is concerned with deter-
mining the appropriate number of replicas for an object at
each time slot so that the availability is adequate to fulfil

VOLUME 12, 2024 20415



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

Algorithm 2 SDR Algorithm
Input: Datacenters’ detail (locations, regions,. . .. ), full

datacenters list (FDCL), and objects with their workload.
Output: The latency percentile (TPLti ) of all requests in

each time slot, and the total cost (TCti ) of all objects A
in each time slot.

1: for a = 1 to Anew do
2: Create_Replicas(a);
3: Assign_Replicas(FDCL);
4: end for
5: for i = 0 to T do
6: Lti ⇐ Calculate_Each_GET_Latency(ti);
7: TPLti ⇐ Calculate_Latency_Percentile(Lti );
8: TCti ⇐ Calculate_Total_Cost(ti);
9: Return (TPLti ,TCti );
10: end for

FIGURE 2. Dynamic object replication and placement procedure.

the expected workload and the optimal placement of these
replicas to produce the lowest latency time for the user
of the OSN and the minimum monetary cost for the OSN
service providers. This optimization should be conducted
online without prior knowledge of future workload. In this
section, we present the optimization stages that trade off the
latency time andmonetary cost. These stages are then utilized
by two online algorithms that use different sizes of time slots.

A. OPTIMIZATION STAGES
The optimizations of object availability, latency time of
user requests, and monetary cost of OSN service providers
are conducted through five stages, which include: 1) Initial
replication and placement (IRP), 2) Dynamic replication,
3) Dynamic placement, 4) Updating object existence matrix,
and 5) Calculating latency and cost. The first stage is
conducted once at the beginning of the object’s lifetime in the
OSN, whereas the following four stages are repeated every
time slot, as shown in Fig. 2.

1) INITIAL REPLICATION AND PLACEMENT (IRP)
When an object is created in the OSN, and as there is no
known popularity of the object because there are no previous

access and engagement rates in the first time slot, we generate
two replicas of the object and host them in the most cost-
effective datacenters of the same region where the object is
created.

2) DYNAMIC REPLICATION
As the first time slot is passed and there is a previous
workload of the object, the dynamic replication strategy is
used to decide the popularity of the object in the OSN. The
current object popularity is calculated using the access and
engagement rates from the previous time slot tc−1 to the
first time slot ts using equations (2)-(5). Then, the number of
replicas for the objects in the current time slot tc is calculated
using its current popularity in the OSN by equation (6).

3) DYNAMIC PLACEMENT
The placement stage of the object replicas is conducted based
on each region rank for the object. The placement strategy
first identifies the regions that issued requests to the object.
The rank of each region of the object a in the current time slot
tc is denoted byRnkatc (g), and it is calculated using the number
of Get, Share, Comment, and Like requests issued from the
region g from the time slot tc−1 to the first time slot ts as in
equation (13)

Rnkatc (g)

=

ts∑
ti=tc−1

(GRag(ti, ti−1)+ SR
a
g(ti, ti−1)

× βs + CRag(ti, ti−1)× βc + LRag(ti, ti−1)× βl)

× EDF(tc−1, ti) (13)

The ranks of the regions are then sorted in descending order
to get the regions with the highest ranks for the object a. A list
Glatc of length RN a

tc is then generated for the regions with
the highest ranks, where Glatc ∈ G. The placement strategy
generates the required replicas according to the RN a

tc and
assigns them to the selected subset of the datacenters, which
are denoted by DCa

tc , where DC
a
tc ∈ D. These datacenters are

selected in the regions Glatc based on the satisfaction of the
latency limits and the lowest cost produced.

4) UPDATING REPLICA EXISTENCE MATRIX
After the number of replicas is decided and the object’s
replicas are hosted in the selected datacenters, the next stage
is to update the replicas’ existence matrix of the current time
slot (A×D)tc . This matrix is used as a reference for checking
the object replica’s availability and redirecting theGet request
to obtain better latency performance.

5) CALCULATING LATENCY AND COST
In this stage, the latency of each request is calculated based
on the distance between the region of the request and the
datacenter hosting the replica using equation (10). Then, the
required percentile latency of each time slot is calculated
using equation (12). Next, the cost of hosting all the objects in

20416 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

the selected datacenters is produced using equations (7)-(9).
Finally, the average latency time and total cost of all time slots
are produced to calculate the latency difference between all
algorithms.

B. PROPOSED ONLINE ALGORITHMS
We propose two online algorithms that are based on dynamic
replication and placement. They use the dynamic replication
model to decide the appropriate number of replicas for an
object at each time slot. The algorithms also optimize the
latency time by conducting region ranking-based placement
of the replicas at each time slot and the monetary cost by
selecting the datacenters with the lowest costs.

1) DETERMINISTIC TIME SLOT (DTS) ALGORITHM
DTS Algorithm is based on time slots of fixed size. This
algorithm focuses on determining the popularity OPatc for
object a in the current time slot tc based on the decaying
access and engagement rates from the previous time slot
tc−1 to the first time slot ts using the EDF according to
equations (2)-(5). Then, RN a

tc of the object a in the current
time slot tc is calculated using the popularity according to
the equation (6). The placement of these replicas is then
conducted using each region rank by equation (13).

Algorithm 3 DTS Algorithm
Input: Datacenters’ detail (locations, regions,. . .. ), regions-

datacenters latency matrix, and objects and their work-
load.

Output: Number of replicas RN a
ti for each object a in time

slot ti, replica existence matrix (A × D)ti , the latency
percentile (TPLti ) in each time slot, and the total cost
(TCti ) of all objects A in each time slot.

1: RN a
t0 ⇐ 2;

2: for a = 1 to Anew do
3: IRP(a,RN a

t0 );
4: end for
5: for i = 1 to T do
6: for a = 1 to A do
7: RN a

ti ⇐ Calculate_Replicas_Number(a, ti);
8: Glati ⇐ Find_Max_Region_Rank(a, ti,RN a

ti );
9: DCa

ti ⇐ Find_Datacenter(Glati );
10: Create_Assign_Replicas(DCa

ti );
11: Update_Replica_Existence_Matrix(a,DCa

ti );
12: end for
13: Lti ⇐ Calculate_Each_GET_Latency(ti);
14: TPLti ⇐ Calculate_Latency_Percentile(Lti );
15: TCti ⇐ Calculate_Total_Cost(ti);
16: Return (TPLti ,TCti );
17: end for

DTS algorithm, as shown in the pseudocode Algorithm 3,
firstly loops through all the newly created objects in the
OSN to conduct the IRP using the function IRP(a,RN a

t0 )
(Lines 2-4). In the nested loops, by using the function

Calculate_Replicas_Number(a, ti), it calculates the number
of replicas RN a

ti for each object using its popularity in
the OSN based on the equations (2)-(6) (line 7). Then,
it calculates the ranks of the regions for the object a based on
equation (13) and selects the regions with the highest ranks to
GLati based on the number of replicas RN a

ti using the function
Find_Max_Region_Rank(a, ti,RN a

ti ) (line 8). Based on the
set of regions in GLati , DTS determines the set of datacenters
DCa

ti with the lowest costs to host the replicas of the object
a in time slot ti using the function Find_Datacenter(Glati )
(line 9). Next, the function Assign_Replicas(DCa

ti ) assigns
the replicas of the object to the set of datacenters in
the DCa

ti (line 10). After that, it updates the replica
existence matrix (A × D)ti with the new placement of
the replicas of the object a in the time slot ti using
the function Update_Replica_Existence_Matrix(a,DCa

ti )
(line 11). Since the placement is conducted, the DTS
algorithm starts to measure the latency time of each Get
request using the functionCalculate_Each_GET_Latency(ti)
based on equation (10) (line 13). Using the function
Calculate_Latency_percentile(Lti ), it calculates the required
percentile of latency time for all Get requests issued from
all regions in the time slot ti (line 14). Then, it calculates
the total cost of all objects A in the time slot ti using the
function Calculate_Total_Cost(ti) (line 15). Finally, the DTS
algorithm returns the latency time percentile and the total cost
in the time slot ti (line 16).

2) RANDOMIZED TIME SLOT (RTS) ALGORITHM
There is a strong relationship between the object’s age and
its popularity in the OSN [37]. The workload of the object
is often heavy at the beginning of its lifetime. However,
this workload is reduced as time passes until the object is
cold. Therefore, we propose this algorithm that adapts the
availability of the object and the placement of its replicas at a
very early time of its lifetime in OSN. The RTS algorithm
is based on the Receding Horizon Control [38] with the
adaptation of random time units and exponential time slots.
The timeline of the object is divided into an increasing time
slot. The size of the time slot increases as the object becomes
colder.

According to EdgeRank Checker, a Facebook page ana-
lytic company, the average for receiving the majority of
object’s access and engagement happens within the first three
hours [39] in the OSN. Hence, we can assume that the time
unit can be in the range of [1-6] hours. In this algorithm, the
time unit defines the number of hours ha given for each object.
ha is determined by a random integer in the range of 1 ⩽
ha ⩽ 6. The window is represented by wati , which contains an
increasing number of time units. wati determines the time slot
size TPSati in hours for each object a. However, to prevent the
continuous increase of the time slot size, we define a time slot
size limit TL.

ha = Rand(1, 6) (14)

VOLUME 12, 2024 20417



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

wtati =

{
2i, if wtai−1 < TL
TL, wtai−1 ≥ TL

(15)

TPSati = wtati × ha (16)

Algorithm 4 RTS Algorithm
Input: Datacenters’ detail (locations, regions,. . ..), regions-

datacenters latency matrix, and objects and their work-
load.

Output: Number of replicas RN a
ti for each object a in time

slot ti, replica existence matrix (A × D)ti , the latency
percentile (TPLti ) in each time slot, and the total cost
(TCti ) of all objects A in each time slot.

1: RN a
t0 ⇐ 2;

2: for a = 1 to Anew do
3: ha← Rand(1, 6);
4: IRP(a,RN a

t0 );
5: end for
6: for i = 1 to T do
7: for a = 1 to A do
8: wati ⇐ Calculate_Window(a, ti);
9: TPSati ⇐ Calculate_Time_Period_Size(a,wati , ti);

10: RN a
ti ⇐ Calculate_Replicas_Number(a, ti);

11: Glati ⇐ Find_Max_Region_Rank(a, ti,RN a
ti );

12: DCa
ti ⇐ Find_Datacenter(Glati );

13: Create_Assign_Replicas(DCa
ti );

14: Update_Replica_Existence_Matrix(a,DCa
ti );

15: end for
16: Lti ⇐ Calculate_Each_GET_Latency(ti);
17: TPLti ⇐ Calculate_Latency_Percentile(Lti );
18: TCti ⇐ Calculate_Total_Cost(ti);
19: Return (TPLti ,TCti );
20: end for

The RTS algorithm is anticipated to outperform the DTS
algorithm in terms of latency time and monetary cost
optimizations. This is because the RTS algorithm starts the
optimization of object availability and replica placement
based on the first time slot whose size is in the range of [1-
6]. This small time slot allows the RTS algorithm to adapt
the number of replicas and the hosting datacenters based on
the regions’ ranks for the object so that the OSN can serve the
expected workload of the object within the acceptable latency
time.

The RTS algorithm’s pseudocode is shown in Algorithm 4,
where all the functions perform the same as in the DTS
algorithm except the function of the new objects for
calculating the random time units and exponential time slots.
The function Rand(1,6) finds the random value of the time
unit ha for each new object in the OSN (Line 3). Then,
by using the function calculate_window(a, ti), it calculates
the window of the time slot ti for object a (line 8). Since
the window of each object a is calculated, the RTS algorithm
then decides the time slot size TPSati using the function
Calculate_Time_Period_Size(a,wati , ti) (Line 9). The rest of

the functions perform similar tasks to the functions in the
DTS algorithm.

VI. EXPERIMENT AND PERFORMANCE EVALUATION
To evaluate the effectiveness of the proposed online
algorithm, we conduct extensive experiments using the
discrete event simulator CloudSim proposed in [40] and [41]
with a synthesized workload generated based on real
Facebook statistics.Wefirst discuss the time complexity of all
the algorithms. Then, the settings used in the implementation
of the experiments are presented. Next, we introduce the
evaluation methods. Finally, we compare and analyze all
algorithms’ latency and cost performance.

A. TIME COMPLEXITY
Algorithms 1 and 2 have the same structure and number
of loops. Hence, they have the same time complexity.
To calculate the time complexity, there are two loops in
each algorithm. The first loop takes the time complexity of
O(Anew). The time complexity of the second loop is O(T ).
Some of the functions inside the second loop have also loops
and produce considerable time complexity. These function
include Calculate_Each_GET_Latency(ti), which takes time
complexity of O(GR) and Calculate_Latency_Percentile(Lti )
that runs for L2 times. Therefore, each algorithm’s total time
complexity is O(Anew + T (GR+ L2)).
Similarly, the structure and number of loops of Algo-

rithms 3 and 4 are the same. Consequently, they have the
same time complexity. To determine the time complexity of
each algorithm, we first need to calculate the time complexity
of the first loop, which runs in O(Anew). The last two nested
loops repeat for T × A times, which takes a time complexity
of O(TA). It is worth mentioning that the second loop in
the nested loops iterates only through the active objects.
Active objects are the objects that still receive Get and Put
requests in the current time slot. Same as Algorithms 1
and 2, the functions Calculate_Each_GET_Latency(ti) and
Calculate_Latency_Percentile(Lti ) inside the last two nested
loops take GR+L2. Hence, the total time complexity of each
algorithm is O(Anew) + O(TA) × O(GR + L2) = O(Anew +
TA(GR+ L2)).

B. EXPERIMENTS SETTINGS
We use the following setup for the specifications of the
dataset, datacenters, the objects’ workload, and the experi-
ment’s parameters.

1) DATASET
objects’ long-term workload in OSN is classified as con-
fidential data. So far, there is no OSN service provider
has released such information. As a result, to evaluate our
proposed algorithms, we use an experimental dataset based
on real-world statistics of Facebook generated in [42].
The dataset was extracted from a real statistic of Facebook

pages [43]. Similar to the model proposed in [44], the
exponential distribution is used to construct the Get and Put

20418 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

rates synthetically. As revealed in the study, it is always
assumed that the number of GET requests in OSNs is
significantly more than that of PUT requests. Therefore, the
ratio of the Gets and Puts rates in the dataset is approximately
30:1. The dataset is a trace-driven of 1500 objects for the
period of 120 days with a total size of 5GB.

2) DATACENTERS
we utilize all the available public datacenters provided by the
three giant CSPs (Google, Amazon, and Microsoft Azure).
In order to provide more alternatives for the placement
strategy, we use 86 datacenters scattered in 20 regions around
the world. We use the prices of each CSPs’ datacenter as
specified in December 2022.

3) PARAMETERS
During the experiments, we calculate the latency of each
region for the duration of 120 days. The range of random time
units used in the RTS algorithm is [1−6], and one day for the
DTS algorithm. In the implementation of the RTS algorithm,
we set the TL = 16, which equals 48 hours. In the online
algorithms, any object’s minimum number of replicas is set
to RN a

tc = 2 at any time slot.

C. PERFORMANCE EVALUATION
The main goal of the proposed online algorithms is to
minimize the difference in the latency time produced between
the expensive SDR algorithm and the traditional static LRP
algorithm while producing possible cost savings. To examine
the effectiveness of the online algorithms, we compare
their performance to the performance of the SDR and LRP
algorithms in terms of latency time and cost savings. The
performance of the algorithms is evaluated in terms of three-
fold, which include: 1) the latency time produced in each time
slot by each algorithm using 90%ile, 95%ile, and 99%ile,
which correspond respectively to 90%, 95%, and 99% of the
requests, 2) the effect of the predefined latency limits on the
percentile latency time produced by each algorithm in each
time slot, and 3) the average percentage of cost savings using
the various latency limits achieved by the online and LRP
algorithms compared to the SDR.

For simplicity of the latency time results, we present the
results of the simulation experiments using two different
methods: 1) the latency time produced in each time slot by
each algorithm using the various latency limits, and 2) the
average percentage of latency time improvement of all time
slots achieved by each algorithm compared to the traditional
LRP algorithm. As there is a significant fluctuation in the
latency time produced by the time slots, we produce the
dotted line representing the linear trendline of the latency
times delivered in time slots for each algorithm.

1) LATENCY PERFORMANCE
We first present the latency performance of the DTS, RTS,
SDR, and LRP algorithms using the dataset without forcing
any latency limits. Fig. 3. illustrates the percentile latency

time produced by each algorithm in the 120 time slots.
Figs. 3a and 3d depict the latency times produced by all
algorithms using the 90%ile of all requests in each time slot.
It can be seen that DTS and RTS produce latency times
below the threshold of 250ms in all time slots. On average,
the latency time improvement for all requests by SDR, RTS,
and DTS are 85%, 17%, and 16%, respectively. Using the
95%ile as shown in Figs. 3b and 3d, the latency times
produced by RTS reach the threshold, while the latency times
of DTS exceed the threshold slightly. Because of this rise
in the latency times produced, the average improvement is
reduced to 84%, 16%, and 15% for the SDR, RTS, and DTS
algorithms, respectively. At the same time, Figs. 3c and 3d
present the 99%ile latency time produced by all algorithms.
For the online algorithms, it is evident that the produced
latency times in all time slots are higher than the 250ms
threshold. This exceeding of the threshold is due to the fact
that no latency limits are forced in the placement strategy.
However, there are increases in the average improvements of
SDR, RTS, and DTS to 87%, 26%, and 22%, respectively.
This is because of the significant increase in the latency times
produced by LRP.

For the online algorithms, we can see that the RTS
algorithm slightly overcomes the DTS algorithms in almost
all time slots using the various percentiles. This superiority
of the RTS algorithm increases slightly as the latency limit
increases. It is due to its early optimization of the placement
for the replicas. It is also apparent that as the percentile
increases, the produced latency times of the RTS, DTS, and
LRP algorithms increase. Due to its static placement and
the high number of replicas scattered around the world, the
SDR algorithm delivers the lowest latency time using all the
percentiles. In contrast, using the various percentiles, the LRP
algorithm produces the worst latency times in all time slots.
This happens because of the low number of replicas and the
static placement strategy that hosts the replicas locally to the
object’s owner.

2) LATENCY LIMITS EFFECTS
We extend our experiments to investigate the effect of latency
limits for the replica placement on the latency times produced
by each algorithm. Therefore, we run each algorithm on the
dataset using various latency limits, which include 50ms,
150ms, and 250ms.

Fig. 4 shows the latency time performance of all algorithms
using the latency limit of 50ms. The percentile latency times
of all algorithms in each time slot are shown in Figs. 4a,
4b, and 4c. While Fig. 6d presents the average latency
time improvement of the SDR, RTS, and DTS algorithms
compared to the traditional LRP algorithm. The 90%ile
latency times produced by each algorithm of all requests in
each time slot are illustrated in Figs. 4a and 4d. It can be
seen that our online algorithms delivered latency times below
the 250ms threshold. The average improvement of latency
time for the SDR, RTS and DTS algorithms compared to the
LRP algorithm are 85%, 56%, and 35%, respectively. Figs. 4b

VOLUME 12, 2024 20419



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

FIGURE 3. Latency time produced by all algorithms without latency limits for the 120 time slots.

FIGURE 4. Latency time produced by all algorithms for the 120 time slots with latency limits of 50ms.

and 4d present the latency times using the 95%ile. Although
there is an increase in the latency times produced by all
algorithms, the latency times of the RTS and DTS algorithms
are still below the 250ms threshold. The average latency time
improvement achieved by the SDR, RTS, andDTS algorithms

are 84%, 56%, and 32%, respectively. When the percentile of
the requests is increased to 99% as shown in Figs. 4c and 4d,
there is a significant increase in the latency times produced by
the LRP and online algorithms, leading the DTS algorithm to
reach the threshold. In contrast, the RTS algorithm preserves

20420 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

the produced latency times in all time slots below the 250ms
threshold. Moreover, this rise in the produced latency times
increases the average latency time improvement of the SDR
algorithm to 86%, while reducing the improvement to 35%
and 24% for the RTS and DTS algorithms, respectively.

Except for the SDR algorithm, the RTS algorithm
significantly delivers the best latency times in all time
slots compared to the DTS and LRP algorithms using the
various percentiles. This is a result of the exponential time
slots. In other words, time slots become more extensive
as time passes, so the RTS algorithm can collect more
information about the workload in the future, leading to
further optimization. Due to the latency limits applied to
the placement strategy, online algorithms, especially the RTS
algorithm, become more competitive to the SDR algorithm
which produces the best latency times and the most expensive
replication.

Fig. 5 illustrates the results obtained by all algorithms
under the latency limit of 150ms in each time slot.
Figs. 5a, 5b, and 5c show each time slot latency times
obtained by each algorithm using the various percentiles. The
average improvement of the SDR, RTS, and DTS algorithms
compared to the LRP algorithm is presented in Fig. 5d. Using
90%ile, as shown in Figs. 5a and 5d, it is apparent that the
SDR, RTS, and DTS algorithms produce latency times below
the 250ms threshold with an average improvement of 85%,
51%, and 20%, respectively. Figs. 5b and 5d depict the results
delivered using 95%ile. As the request percentile increases,
it can be seen that all algorithms produce an increase in the
latency times. However, the latency times produced by the
SDR, RTS, and DTS algorithms are still under the 250ms
threshold with a respective average improvement of 84%,
51%, and 19% compared to the latency time produced by
the LRP algorithm. When the percentile of the requests
increases to 99, as illustrated in Figs. 5c and 5d, the RTS
algorithm preserves the produced latency times below the
250ms threshold. In contrast, the DTS algorithm slightly
exceeds this threshold. The average improvement of time
latency obtained by the SDR, RTS, and DTS algorithms is
86%, 24%, and 21%, respectively.

As the latency limit is increased to 150ms, the online
algorithms become less competitive with the optimal SDR
algorithm. We can also observe that the RTS algorithm
produces the second-best latency time using various per-
centiles. This is because of its premature optimization for the
placement of the replicas according to the region ranks.

Fig. 6 depicts the performance of all algorithms using the
latency limit of 250ms in the 120 time slots. The latency
times of each percentile produced by all algorithms are
demonstrated in Figs. 6a, 6b, and 6c. The latency time and
the average improvement using the 90%ile and 95%ile are
shown in Figs. 6a, 6b and 6d. As the trendlines demonstrate,
the RTS and DTS algorithms produce nearly the same latency
time with a slight superiority of the RTS algorithm at the
beginning of the time slots. However, they produce almost the
same access latency at the end of the time slots. The average

improvement of the 90%ile achieved by the SDR, RTS,
and DTS algorithms are 85%, 21%, and 18%, respectively.
These values become 84%, 22%, and 18% with the 95%ile.
The 99%ile of the produced latency times and the average
improvement are presented in Figs. 6c and 6d. As illustrated
by the trendlines, the latency times delivered by the DTS
algorithm slightly exceed the threshold, while the produced
latency times of the RTS algorithm reach the threshold only.
The average improvements are increased to 86%, 25%, and
19% by the SDR, RTS, and DTS algorithms, respectively.

As the latency limit for the placement strategy is increased
to 250ms, there is a significant rise in the produced latency
times of the online algorithms. It is apparent that the latency
times produced by online algorithms overlap in many time
slots. This demonstrates that in some time slots, the RTS
algorithm overcomes the DTS algorithm and vice versa in
other time slots. The increase of the average improvement as
the percentile increases is because of the increased latency
times produced by the LRP algorithm. On the contrary, the
RTS and DTS algorithms almost achieve steady latency times
with 95%ile and 99%ile.

It is clear that the SDR and LRP algorithms produce
the same latency time using various latency limits. This is
because they are based on static replication and placement
strategies. Moreover, the SDR algorithm is not influenced by
the latency limits or percentiles because it has many replicas
placed almost locally to each user worldwide. The results also
reveal that the performance of the RTS and DTS algorithms
is more effective with low latency limits when compared
to their performance with high latency limits. Regardless
of the superiority of latency times achieved by the SDR
algorithm, which has expensive replication, it is also apparent
that the RTS algorithm produces the most effective latency
time compared to the DTS and LRP. Furthermore, it can be
observed that the RTS algorithm never exceeds the threshold
of 250ms, which is the maximum unnoticeable latency of
OSN users. Whereas the produced latency times of the DTS
algorithm reach or exceed this threshold using the 99%ile
through all various latency limits. For online algorithms,
As the latency limits increase, the fluctuation of the produced
latency times increases between time slots within the same
algorithm. The rationale is that more datacenters become
qualified to host the object replicas as the latency limit rises.

3) COST PERFORMANCE
In order to investigate the cost performance of the online
and LRP algorithms, we calculate the average percentage
of cost savings achieved by each algorithm compared to
the benchmark algorithm SDR. Table 3 shows the cost
savings percentage of each algorithm compared to the SDR
algorithm. The LRP algorithm produces steady cost savings
of 10% using the various latency limits. This is because of
the static replication and placement of the algorithm. For
the online algorithms, we can see that using the latency
limit of 50ms, the DTS and RTS algorithms cut the cost by
almost 20% and 19%, respectively. When the latency limit

VOLUME 12, 2024 20421



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

FIGURE 5. Latency time produced by all algorithms for the 120 time slots with latency limits of 150ms.

FIGURE 6. Latency time produced by all algorithms for the 120 time slots with latency limits of 250ms.

is increased to 150ms, the DTS and RTS algorithms slightly
increase the cost savings. Both reduce the cost by more
than 20%. It is obvious that the difference in cost savings
between the DTS and RTS algorithms is not that significant.
However, when the latency limit is increased to 250ms, the

RTS algorithm significantly overcomes the DTS algorithm.
The DTS algorithm obtains a cost saving of almost 23%,
while the RTS algorithm increases the cost saving to more
than 28%. This is because the latency limit of 250ms offers
more datacenters that can host the object replicas, allowing

20422 VOLUME 12, 2024



A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

TABLE 3. The average cost savings percentage achieved by each
algorithm using the various latency limits compared to the SDR.

the RTS algorithm to choose the datacenters with the lowest
costs.

In general, from the latency time and cost savings
results using various latency limits, it can be illustrated
that the RTS algorithm produces better latency time using
all required percentiles. Therefore, the latency results of
the RTS algorithm are the most competitive to that of the
SDR algorithm. Furthermore, latency times produced by
the RTS algorithm never exceed the 250ms threshold. For the
cost savings, it is obvious that the DTS algorithm slightly
outperforms the RTS algorithm by 1% under the latency
limit of 50ms. However, when the latency limit increases,
the RTS algorithm’s cost savings start to defeat that of the
DTS algorithm. Therefore, we can conclude that the RTS
algorithm produces better performance except for the cost
savings under the latency limit of 50ms. However, this slight
superiority of the DTS algorithm in cost savings can be
sacrificed for the sake of the better latency time performance
of the RTS algorithm in the latency limit of 50ms.

VII. CONCLUSION
Replicating the objects according to their popularity in the
OSN and migrating their replicas based on the ranks of
regions while utilizing the datacenters that produce the
lowest possible costs in these regions are addressed in this
paper. We use a dynamic popularity-based replication that
determines the suitable number of replicas for object and
region ranking-based placement that selects the optimal
datacenters to host these replicas to trade off the latency
time and monetary cost. The trade-off focuses on producing
an acceptable latency time for the users of the OSN and
the lowest monetary cost for the OSN service providers.
Two online algorithms that use this dynamic replication
and placement with deterministic and randomized time
slots without previous knowledge of the future workload
are proposed. The effectiveness of the proposed online
algorithms is investigated using a Facebook-based synthetical
workload. The results of the experiments show that RTS
and DTS algorithms can satisfy the latency time up to 99%ile
and 95% of the requests, respectively. For cost savings, RTS
and DTS algorithms can deliver cost savings up to 28% and
23%, respectively, when compared to the SDR algorithm.

Two advantages of the proposed algorithms include the
trade-off between the latency time of users and the hosting
cost of the OSN service providers, and the proposed
algorithms are online, which do not need prior knowledge
of the future access and engagement rates. On the other

hand, there are two disadvantages of the proposed algorithms.
Firstly, the effectiveness of the proposed algorithms is not
measured and examined using real CSPs. Secondly, the
proposed algorithms do not consider the object replicas’
consistency.

Some research tracks are possible to continue this work.
1) exploring different cost models, such as various storage
classes and policies provided by different CSPs. 2) study-
ing more factors that affect object popularity in OSNs.
3) measuring and examining the effectiveness of the proposed
algorithms in real multiple CSPs.

ACKNOWLEDGMENT
The authors would like to acknowledge the facilities provided
by Universiti Putra Malaysia for the execution, completion,
and publication of this article.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

STaaS Storage as a service
CSP Cloud storage service
OSN Online social network
QoS Quality of service
EDF Exponential decaying function
SDR Selective distributed replication
FDCL Full datacenters list
SDR Selective distributed replication
IRP Initial replication and placement
DTS Deterministic time slot
RTS Randomized time slot

REFERENCES
[1] S. Kemp. (2023). The Changing World of Digital in 2023.

We Are Social. Accessed: Feb. 16, 2023. [Online]. Available:
https://wearesocial.com/uk/blog/2023/01/the-changing-world-of-digital-
in-2023/

[2] M. Osman. (2022). Wild and Interesting Facebook Statistics and
Facts (2022). Accessed: Mar. 2, 2023. [Online]. Available: https:
//kinsta.com/blog/facebook-statistics/

[3] K. Smith. (2020). 60 Incredible and Interesting Twitter Stats and
Statistics. Accessed: Jan. 26, 2023. [Online]. Available: https://
www.brandwatch.com/blog/twitter-stats-and-statistics/

[4] D. Yuan, X. Liu, and Y. Yang, ‘‘Dynamic on-the-fly minimum cost
benchmarking for storing generated scientific datasets in the cloud,’’
IEEE Trans. Comput., vol. 64, no. 10, pp. 2781–2795, Oct. 2015, doi:
10.1109/TC.2015.2389801.

[5] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto,
and R. Buyya, ‘‘Big data computing and clouds: Trends and future
directions,’’ J. Parallel Distrib. Comput., vol. 79, pp. 3–15, May 2015, doi:
10.1016/j.jpdc.2014.08.003.

[6] W. Li, Y. Yang, and D. Yuan, ‘‘Ensuring cloud data reliability with min-
imum replication by proactive replica checking,’’ IEEE Trans. Comput.,
vol. 65, no. 5, pp. 1494–1506, May 2016, doi: 10.1109/TC.2015.2451644.

[7] B. A. Milani and N. J. Navimipour, ‘‘A comprehensive review of the data
replication techniques in the cloud environments: Major trends and future
directions,’’ J. Netw. Comput. Appl., vol. 64, pp. 229–238, Apr. 2016, doi:
10.1016/j.jnca.2016.02.005.

[8] Z.Wu,M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha,
‘‘CSPAN: Cost-effective geo-replicated storage spanning multiple cloud
services,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 545–546, Sep. 2013, doi: 10.1145/2534169.2491707.

VOLUME 12, 2024 20423

http://dx.doi.org/10.1109/TC.2015.2389801
http://dx.doi.org/10.1016/j.jpdc.2014.08.003
http://dx.doi.org/10.1109/TC.2015.2451644
http://dx.doi.org/10.1016/j.jnca.2016.02.005
http://dx.doi.org/10.1145/2534169.2491707


A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

[9] H. Khalajzadeh, D. Yuan, J. Grundy, and Y. Yang, ‘‘Cost-effective social
network data placement and replication using graph-partitioning,’’ in Proc.
IEEE Int. Conf. Cogn. Comput. (ICCC). IEEE, 2017, pp. 64–71.

[10] N. K. Gill and S. Singh, ‘‘A dynamic, cost-aware, optimized data
replication strategy for heterogeneous cloud data centers,’’ Future Gener.
Comput. Syst., vol. 65, pp. 10–32, Dec. 2016, doi: 10.1016/j.future.2016.
05.016.

[11] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W. Wang, ‘‘Modeling
a dynamic data replication strategy to increase system availability in
cloud computing environments,’’ J. Comput. Sci. Technol., vol. 27, no. 2,
pp. 256–272, Mar. 2012, doi: 10.1007/s11390-012-1221-4.

[12] G. Liu, H. Shen, and H. Chandler, ‘‘Selective data replication for
online social networks with distributed datacenters,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 8, pp. 2377–2393, Aug. 2016, doi:
10.1109/TPDS.2015.2485266.

[13] J. D. Brutlag, H. Hutchinson, and M. Stone, ‘‘User preference and search
engine latency,’’ in Proc. JSM Quality Productiv. Res. Sect., Alexandria,
VA, USA, 2008, pp. 1–13.

[14] R. Kuschnig, I. Kofler, and H. Hellwagner, ‘‘Improving Internet video
streaming performance by parallel TCP-based request-response streams,’’
in Proc. 7th IEEE Consum. Commun. Netw. Conf., Jan. 2010, pp. 1–5, doi:
10.1109/CCNC.2010.5421815.

[15] L. Jiao, J. Li, T. Xu, W. Du, and X. Fu, ‘‘Optimizing cost for online social
networks on geo-distributed clouds,’’ IEEE/ACM Trans. Netw., vol. 24,
no. 1, pp. 99–112, Feb. 2016, doi: 10.1109/TNET.2014.2359365.

[16] D. A. Tran and T. Zhang, ‘‘S-PUT: An EA-based framework for socially
aware data partitioning,’’ Comput. Netw., vol. 75, pp. 504–518, Dec. 2014,
doi: 10.1016/j.comnet.2014.08.026.

[17] L. Jiao, T. Xu, J. Li, and X. Fu, ‘‘Latency-aware data partitioning for
geo-replicated online social networks,’’ in Proc. Workshop Posters Demos
Track. Lisbon, Portugal: ACM, Dec. 2011, pp. 1–2.

[18] Z. Ye, S. Li, and J. Zhou, ‘‘A two-layer geo-cloud based dynamic replica
creation strategy,’’ Appl. Math. Inf. Sci., vol. 8, no. 1, pp. 431–440,
Jan. 2014, doi: 10.12785/amis/080154.

[19] N. Mansouri, M. K. Rafsanjani, and M. M. Javidi, ‘‘DPRS: A dynamic
popularity aware replication strategy with parallel download scheme in
cloud environments,’’ Simul. Model. Pract. Theory, vol. 77, pp. 177–196,
Sep. 2017, doi: 10.1016/j.simpat.2017.06.001.

[20] S.-Q. Long, Y.-L. Zhao, and W. Chen, ‘‘MORM: A multi-objective
optimized replication management strategy for cloud storage
cluster,’’ J. Syst. Archit., vol. 60, no. 2, pp. 234–244, 2014, doi:
10.1016/j.sysarc.2013.11.012.

[21] N. Mansouri, ‘‘Adaptive data replication strategy in cloud computing
for performance improvement,’’ Frontiers Comput. Sci., vol. 10, no. 5,
pp. 925–935, Oct. 2016, doi: 10.1007/s11704-016-5182-6.

[22] J. Matt, P. Waibel, and S. Schulte, ‘‘Cost- and latency-efficient redundant
data storage in the cloud,’’ in Proc. IEEE 10th Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2017, pp. 164–172, doi: 10.1109/SOCA.
2017.30.

[23] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, ‘‘CHARM: A cost-
efficient multi-cloud data hosting scheme with high availability,’’ Int.
J. Control Theory Appl., vol. 9, no. 27, pp. 461–468, 2016.

[24] H. Khalajzadeh, D. Yuan, B. B. Zhou, J. Grundy, and Y. Yang,
‘‘Cost effective dynamic data placement for efficient access of social
networks,’’ J. Parallel Distrib. Comput., vol. 141, pp. 82–98, Jul. 2020,
doi: 10.1016/j.jpdc.2020.03.013.

[25] S. Han, B. Kim, J. Han, K. Kim, and J. Song, ‘‘Adaptive data placement for
improving performance of online social network services in a multicloud
environment,’’ Sci. Program., vol. 2017, pp. 1–17, Aug. 2017.

[26] M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Madhyastha,
‘‘Near-optimal latency versus cost tradeoffs in geo-distributed storage,’’
in Proc. 17th USENIX Symp. Networked Syst. Design Implement., 2020,
pp. 157–180.

[27] Z. Wu, C. Yu, H. V. Madhyastha, and U. Riverside, ‘‘CosTLO: Cost-
effective redundancy for lower latency variance on cloud storage services,’’
in Proc. 12th USENIX Symp. Networked Syst. Design Implement. (NSDI),
2015, pp. 543–557.

[28] Y. Cui et al., ‘‘TailCutter: Wisely cutting tail latency in cloud CDNs under
cost constraints,’’ IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1612–1628,
Aug. 2019, doi: 10.1109/TNET.2019.2926142.

[29] K. Lee, R. Pedarsani, and K. Ramchandran, ‘‘On scheduling redundant
requests with cancellation overheads,’’ IEEE/ACM Trans. Netw., vol. 25,
no. 2, pp. 1279–1290, Apr. 2017.

[30] H. Wang, H. Shen, Z. Li, and S. Tian, ‘‘GeoCol: A geo-distributed cloud
storage system with low cost and latency using reinforcement learning,’’
in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2021,
pp. 149–159, doi: 10.1109/ICDCS51616.2021.00023.

[31] Y. Sun, Z. Zheng, C. E. Koksal, K.-H. Kim, and N. B. Shroff,
‘‘Provably delay efficient data retrieving in storage clouds,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 585–593, doi:
10.1109/INFOCOM.2015.7218426.

[32] M. Hajjat, P. N. Shankaranarayanan, D. Maltz, S. Rao, and
K. Sripanidkulchai, ‘‘Dynamic request splitting for interactive
cloud applications,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 12,
pp. 2722–2737, Dec. 2013, doi: 10.1109/JSAC.2013.131212.

[33] Y. Hu and D. Niu, ‘‘Reducing access latency in erasure coded cloud storage
with local block migration,’’ in Proc. IEEE INFOCOM 35th Annu. IEEE
Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[34] A. Qureshi, ‘‘Power-demand routing in massive geo-distributed sys-
tems,’’ Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Tech-
nol., Cambridge, MA, USA, Tech. Rep., 2012. [Online]. Available:
http://hdl.handle.net/1721.1/62430

[35] C. Kim and S.-U. Yang, ‘‘Like, comment, and share on facebook: How
each behavior differs from the other,’’ Public Relations Rev., vol. 43, no. 2,
pp. 441–449, Jun. 2013, doi: 10.1016/j.pubrev.2017.02.006.

[36] Y. Mansouri, A. N. Toosi, and R. Buyya, ‘‘Cost optimization for
dynamic replication and migration of data in cloud data centers,’’ IEEE
Trans. Cloud Comput., vol. 7, no. 3, pp. 705–718, Jul. 2019, doi:
10.1109/TCC.2017.2659728.

[37] S.Muralidhar,W. Lloyd, S. Roy, C. Hill, E. Lin,W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, and S. Kumar, ‘‘f4: Facebook’s warm BLOB
storage system,’’ in Proc. 11th USENIX Symp. Operating Syst. Design
Implement., 2014, pp. 383–398.

[38] D. Cheng, J. Rao, C. Jiang, and X. Zhou, ‘‘Resource and deadline-
aware job scheduling in dynamic Hadoop clusters,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp., May 2015, pp. 956–965, doi:
10.1109/IPDPS.2015.36.

[39] J. Constine. (2012). Study: Facebook Pages Shouldn’t Post More Than 1x
Every 3 Hours. TechCrunch. Accessed: Jun. 21, 2022. [Online]. Available:
https://techcrunch.com/2012/01/17/how-often-should-facebook-pages-
post/

[40] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exp., vol. 41, no. 1, pp. 23–50, Aug. 2011.

[41] T. Sturm, ‘‘Implementation of a simulation environment for cloud
object storage infrastructures,’’ Steinbuch Centre Comput., Karlsruhe Inst.
Technol., Karlsruhe, Germany, Tech. Rep., 2013.

[42] A.Y. Aldailamy, A. Muhammed, R. Latip, N. A. W. A. Hamid, and
W. Ismail, ‘‘Online dynamic replication and placement algorithms for
cost optimization of online social networks in two-tier multi-cloud,’’
J. Netw. Comput. Appl., vol. 224, Jan. 2024, Art. no. 103827, doi:
10.1016/j.jnca.2024.103827.

[43] S. Moro, P. Rita, and B. Vala, ‘‘Predicting social media performance
metrics and evaluation of the impact on brand building: A data mining
approach,’’ J. Bus. Res., vol. 69, no. 9, pp. 3341–3351, Sep. 2016, doi:
10.1016/j.jbusres.2016.02.010.

[44] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
‘‘Workload analysis of a large-scale key-value store,’’ ACM SIGMET-
RICS Perform. Eval. Rev., vol. 40, no. 1, pp. 53–64, Jun. 2012, doi:
10.1145/2318857.2254766.

ALI Y. ALDAILAMY received the B.S. degree in
information technology (IT) from the University
of Modern Sciences (UMS), Yemen, in 2009, and
the M.Sc. degree from the Faculty of Computer
Science and Information Technology, Universiti
Putra Malaysia (UPM), Malaysia, in 2017, where
he is currently pursuing the Ph.D. degree with the
Department of Computer networks. His research
interests include networks, in-memory data stores,
distributed systems, grids, and cloud computing.

20424 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.future.2016.05.016
http://dx.doi.org/10.1016/j.future.2016.05.016
http://dx.doi.org/10.1007/s11390-012-1221-4
http://dx.doi.org/10.1109/TPDS.2015.2485266
http://dx.doi.org/10.1109/CCNC.2010.5421815
http://dx.doi.org/10.1109/TNET.2014.2359365
http://dx.doi.org/10.1016/j.comnet.2014.08.026
http://dx.doi.org/10.12785/amis/080154
http://dx.doi.org/10.1016/j.simpat.2017.06.001
http://dx.doi.org/10.1016/j.sysarc.2013.11.012
http://dx.doi.org/10.1007/s11704-016-5182-6
http://dx.doi.org/10.1109/SOCA.2017.30
http://dx.doi.org/10.1109/SOCA.2017.30
http://dx.doi.org/10.1016/j.jpdc.2020.03.013
http://dx.doi.org/10.1109/TNET.2019.2926142
http://dx.doi.org/10.1109/ICDCS51616.2021.00023
http://dx.doi.org/10.1109/INFOCOM.2015.7218426
http://dx.doi.org/10.1109/JSAC.2013.131212
http://dx.doi.org/10.1016/j.pubrev.2017.02.006
http://dx.doi.org/10.1109/TCC.2017.2659728
http://dx.doi.org/10.1109/IPDPS.2015.36
http://dx.doi.org/10.1016/j.jnca.2024.103827
http://dx.doi.org/10.1016/j.jbusres.2016.02.010
http://dx.doi.org/10.1145/2318857.2254766


A. Y. Aldailamy et al.: Efficient Multi-Cloud Storage

ABDULLAH MUHAMMED received the bache-
lor’s degree in computer science from Universiti
Putra Malaysia, Malaysia, in 1998, the mas-
ter’s degree in computer science from Universiti
Malaya, in 2004, and the Ph.D. degree in computer
science from the University of Nottingham, U.K.,
in 2014. He is currently an Associate Professor
with the Department of Communication Technol-
ogy and Networks, Faculty of Computer Science
and Information Technology, Universiti Putra

Malaysia. His research interests include grid/cloud computing, wireless
sensor networks/IoT, heuristics, and optimization.

NOR ASILAH WATI ABDUL HAMID (Senior
Member, IEEE) received the Ph.D. degree from
The University of Adelaide, in 2008. She has
been a Visiting Scholar with the High Performance
Computing Laboratory, George Washington Uni-
versity, Washington, DC, USA, for two years.
She is currently an Associate Professor with the
Department of Communication Technology and
Network, Faculty of Computer Science and Infor-
mation Technology, Universiti Putra Malaysia,

Malaysia, and the Distributed and High-Performance Computing (DHPC)
Group, working on high-performance distributed and parallel computing
technologies and applications. She is also an Associate Researcher and a
Coordinator of high-speed machines with the Institute for Mathematical
Research (INSPEM), Universiti Putra Malaysia. Her research interests
include parallel and distributed computing, cluster computing, distributed
information systems, and other applications of high-performance computing.

ROHAYA LATIP received the bachelor’s degree
in computer science from Universiti Teknologi
Malaysia, in 1999, and the M.Sc. degree in
distributed systems and the Ph.D. degree in dis-
tributed database from Universiti Putra Malaysia
(UPM). From 2011 to 2012, she was the Head
of the HPC Section, UPM. She consulted the
Campus Grid Project and the Wireless for Hostel
in Campus UPM Project. She is currently an
Associate Professor with the Faculty of Computer

Science and Information Technology, UPM. She is also the Head of
the Department of Communication Technology and Networks and a Co-
Researcher with the Institute for Mathematical Research (INSPEM). Her
research interests include big data, cloud and grid computing, network
management, and distributed databases.

WAIDAH ISMAIL received the B.Sc. degree
(Hons.) from the University of Liverpool, U.K.,
the master’s degree from Universiti Teknologi
MARA, Malaysia, and the Ph.D. degree in
information system and computing from Brunel
University, U.K. She is currently a Lecturer with
Universiti Sains Islam Malaysia. She worked as a
Lecturer for 14 years. Prior to this, she worked in
the banking industry as a programmer, a system
analyst, and a security analyst, for 11 years.

Her research interests include optimization, classification, and grid/cloud
computing.

VOLUME 12, 2024 20425


