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ABSTRACT Recently, systems for classifying gait disorders have been of great interest. However,
quantifying the progress of these disorders has been highly dependent on a physician’s judgement in
classifying sick and healthy subjects. We examine the effects of gait stability analysis on gait dysfunction
problems, which are impacted by the patient’s dynamic balance. The dataset in this study was collected and
labelled based on the opinions of physicians at Prague Hospital; it included 84 measurements of 37 patients.
A keypoint detector was applied to detect the skeletal keypoints of patients. We have prepared two different
datasets from the detection and tracking results. For the proposed feature selection method, we have used
statistical measurements such as the x and y coordinates for each keypoint, the distance, and the angle
between two selected keypoints. Using these statistical measurements, we have prepared different subgroups
with different numbers of features to examine.We have also applied ten different feature selection algorithms
to obtain data from different numbers of features automatically. Then, these datasets with high-level features
were used to train well-known networks, such as the long short-term memory (LSTM), gated recurrent unit
(GRU), andmultiple layer perceptron (MLP) networks. The study results showed that the 30 features selected
by the analysis of variance (ANOVA) algorithm and used to train the GRU network ranked among the best
features and resulted in a classification F-score of 85%. The results also prove that the data generated by the
detector method are more effective than the data generated by the tracking method due to the format of the
exercises in our dataset, which were designed by physicians. Moreover, the best feature selection approaches
have considerably improved the classification F-score compared to manual feature generation.

INDEX TERMS Classification, deep learning, feature selection, gait analysis, GRU, LSTM, MLP, pattern
recognition.
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LSTM Long Short-Term Memory.
MCRMCR Minimum Conditional Relevance-Minimum

Conditional Redundancy.
MLP Multilayer Perceptron.
MI Mutual Information.
MIFS Mutual Information-based Feature Selection.
MS-COCO Microsoft Common Objects in Context.
mRMR minimal-redundancy-maximal-relevance.
RBEFF Random Multi-subspace Based ReliefF.
RCNN Region-based Convolutional Neural

Networks.
ReLU Rectified Linear Unit.
ResNet Residual Network.
RNN Recurrent Neural Network.
SRCFS multi-Subspace Randomization and

Collaboration Feature Selection.
SURF Speeded Up Robust Features.
SVM Support Vector Machine.

I. INTRODUCTION
Visually based human motion analysis is a general method
of analysing and understanding people’s movements, as cap-
tured by a camera. It includes pattern recognition, biome-
chanics, machine vision, and artificial intelligence. It is a
challenging field with significant applications for businesses,
education, and society [1], [2]. Human movements are
conceptually classified by complexity into actions, gestures,
interactions, and activities. The method of recognition
involves tracking the human body in a video. The general
methods of recognition include 2D kinematics, 3D kine-
matics, and image models. Human motion recognition with
kinematic methods corresponds to human characteristics
such as the number of joints and the lengths of the limbs [1].
The recognition of human actions in a video has recently
become an interesting research area, and pose estimation,
including the detection of body parts, has received research
attention. Most studies focus on the motion analysis of
the human skeleton [3]. The analysis of human motion
with vision sensors is a new area of research, and much
effort has been expended on analysing human motion using
a Kinect camera [4]. Even after the Kinect camera was
introduced, many applications and studies still required
specialists to analyse the results. In this scenario, intelligent
systems can play an essential role by quickly and objectively
analysing human motion [4]. Methods for selecting features
are applied in many intelligent systems and applications,
such as machine learning, natural language processing, and
bioinformatics. The selection of features is usually performed
during data pre-processing, before the classifier is trained [5].
Feature selection not only identifies the essential features
and improves the quality of the dataset but also eliminates
undesirable features that impair the dataset’s quality. The
feature selection process selects the most significant features
for advanced processing [6]. In most feature selection
methods, a statistical measurement (the correlation) is used

to determine the relationships between the characteristics.
In other words, if one feature’s systemic change affects
another feature, then these two features are highly related.
Feature selection methods, such as mutual information
(MI), conditional mutual information (CMI), conditional
mutual information maximisation (CMIM), and double input
symmetrical relevance (DISR), can be used to predict the
relationship between linear and nonlinear features [6].

In [7], the analysis of variance (ANOVA) is used to
remove irrelevant and unwanted characteristics from data
before using the feature selection method. The study used a
hybrid model that combines ANOVA and whale optimisation
to improve the results of classifying different heart disease
datasets. First, ANOVA is used to select the relevant feature
sets, and during this period, the whale optimisation discovers
the best collection of features from the previous collection of
features [7]. Moreover, the authors of [8] used the ANOVA
feature selection method to reduce the number of features
to provide a better separation between COVID-19 features.
In [9], the authors propose an improved methodology for
classifying Arabic text using the selection of chi-square
features to improve the classification performance. They
presented improved methods for selecting the chi-square
feature method to minimise data and produce a greater
classification accuracy. The study claimed that the chi-square
method was very effective but still had some limitations,
such as the number of attributes that affect the classification
accuracy [9]. The authors of [10] proposed combining
the chi-square method with the long short-term memory
(LSTM), Bi-LSTM, and gated recurrent unit (GRU) models
for sentiment analysis and compared the metrics of two
benchmark datasets, YELP and American Airlines. They
stated that the combination of LSTM networks and the
feature selection method improved the accuracy of sentiment
analysis. In [11], chi-square feature selection and an ensem-
ble of classifiers, such as LPBoost, modified naive Bayes
(MNB), and the support vector machine (SVM), are applied
to improve an intrusion detection model. In experimental
evaluations, this method exhibited a high accuracy in
comparison with base classifiers [11]. The study presented
in [12] designed a simple and very efficient feature selection
method based on CMI. The authors showed that this
feature selection approach outperforms other conventional
techniques [12]. The authors of [13] also designed and
enhanced the MI method. They introduced the normalised
MI by eliminating a user-defined parameter. The authors
of [14] compared efficient feature selection methods such as
ReliefF, minimal-redundancy-maximal-relevance (mRMR),
Mutual Information-based Feature Selection (MIFS), min-
imum conditional relevance-minimum conditional redun-
dancy (MCRMCR), and CMIM on 15 public biological
datasets and two artificial datasets [14]. The study presented
in [5] introduces a nonlinear feature selection method that
uses MI and the maximum of the minimum principle to
mitigate the problem of overrating the feature significance.
The Double Input Symmetrical Relevance (DISR) was
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introduced by [15]; it is promising in high feature-to-sample
ratio classification tasks, such as those that involve gene
expression microarray datasets. The study presented in [16]
applied the efficient Kruskal-Wallis technique to select the
most prominent face features. The algorithm eliminated
redundant features and selected the most discriminative
face features to recognise face images. In [17], a dis-
tributed version of the ReliefF algorithm was presented
using the emerging Apache Spark programming model.
In [18], a novel method called Random Multi-subspace
Based ReliefF (RBEFF) is proposed and compared with
popular methods such as the ReliefF, MI, Fuzzy Joint Mutual
Information (FJMI), and multi-Subspace Randomization and
Collaboration Feature Selection (SRCFS) algorithms on
28 real datasets. In [19], MultiSurf algorithms were used to
carry out extensive experiments to obtain precise features
of structural information and made it possible to better
interpret the interaction between two- and three-way genes
using the average nearest neighbours. The authors of [20]
implemented a Relief-based algorithm training environment.
They implemented the ReliefF, Speeded Up Robust Features
(SURF), SURF*, MultiSURF*, and MultiSURF techniques.
The above-mentioned algorithms are simple and very effi-
cient feature selection methods, and they have shown that this
type of feature selection approach outperforms conventional
techniques. In this paper, we have used some of thesemethods
to perform feature selection among all the gait features
created to investigate the performance of the network on
different feature size inputs.

A. BIOMEDICAL BACKGROUND
Human balance relies on a multisensory system that includes
proprioception, the vestibular system, and vision to maintain
body and limb positions in space. Dysfunction in these
systems can lead to specific postural and gait issues.

Postural stability is vital for both static and dynamic
coordination during movement. Gait involves a sequence of
involuntary movements, which are analysed using spatiotem-
poral, kinematic, and kinetic features. Parameters like the
walking speed, step frequency, and stride length offer insights
into gait patterns [21].
A systematic gait analysis approach uncovers subtle

variations that are often missed when the focus is on
major features. Gait tracking diagrams record changes during
specific phases – the standing, swing, and limb phases.
These phases entail fulfilling unique demands for walking.
The step width measures the horizontal distance between
foot positions in an event, while the foot progression angle
quantifies the angle between the foot’s longitudinal axis and
the direction of progression.

Kinetic analysis studies motion-affecting forces, including
ground reaction forces on the hip, knee, and ankle joints.
Kinematic analysis describes movements independently of
forces, covering various planes and joints.

Clinical practice employs the rapid gait test, matching
movement patterns to stereotypes, although this requires

expertise. A pathological gait arises from orthopedic and neu-
rological diseases. Neurology, orthopedics, and neurootology
evaluations address postural and gait issues, complementing
equilibrium assessments. Questionnaires gauge the impact
of balance and gait on daily life and the quality of life.
Clinical tests, like the Timed Up and Go Test, Berg Balance
Scale, or Six-Minute Walk Test, assess dynamic stability
but have limitations [22]. They offer quick assessments but
lack quantitative processing andmay be subjective. Currently,
there is a gap in objectively evaluating the overall dynamic
stability in clinical examinations.

B. GAIT DISORDER ANALYSIS
Gait analysis is an effective medical tool that is used
for many applications involving the evaluation of progress
during rehabilitation, neurological disorders, and the risk of
falling. An effective gait evaluation tool that automatically
tracks patients’ skeletal keypoints can provide significant
information to medical professionals to evaluate rehabilita-
tion and carry out preventive analyses. Gait detection is a
crucial research problem because by identifying abnormal
and imbalanced gaits, weaknesses in given functions can
be discovered in the human body [23]. In abnormal gait
recognition based on skeletons, the use of original skeleton
data reduces the performance of the recognition because it
contains irrelevant information and noise, so features that
are extracted and selected from the skeleton data are usually
used [23]. A gait disorder is one indicator of neurological
disorders. Studies have shown that machine learning methods
can be applied to the classification of neurological disorders
based on gait data [24].
In several studies, some movement parameters are used

to distinguish between diseases. Unfortunately, the high
variability of motion caused by patients with a body function
deficiency increases the complexity of the classification.
Methods of feature selection that have a major impact
on enhancing the classification result have recently been
investigated [25]. Indeed, a particular subset of all extracted
features may be more suitable for determining a particular
disease. For instance, spatiotemporal variables, such as the
walking speed and step length, are the major indicators of the
severity of the deficit and functional ability. From this point of
view, combining the spatial and temporal data of movement
into a limited set of variables that distinguish healthy and
disabled subjects may be effective at informing medical
professionals outside the movement analysis laboratory [25].
The authors of [24] investigated one construction tech-

nique and three feature selection methods to analyse neu-
rodegenerative gaits. To evaluate the classification power of
these feature combinations, they developed an SVM-based
classifier.

The authors of [23] mentioned that it is hard to extract
meaningful patterns using the existing feature extraction
methods. They developed two recurrent neural network
(RNN)-based autoencoder methods to solve this problem.
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Their results indicate that the features extracted by their
methods were more easily classified than the original
skeleton-based features, and they yielded more accurate
classifications.

The authors of [26] used the Kinect system to collect
3D skeleton data for one normal gait and five pathological
gaits. They developed a GRU-based classifier to classify
the pathological gaits. They achieved promising results with
the GRU; the classification accuracy was around 90%.
They recommended that their method be used to support
experimental and examination decisions.

The authors of [27] used Kinect v2 to analyse three-
dimensional motion. They extracted the kinematics and
spatiotemporal parameters of ten healthy people while they
walked on a treadmill. Their results showed that the Kinect
sensor can be an effective assessment tool during the gait
cycle.

The authors of [28] used ground reaction forces (GRFs)
and the Gutenberg and GaitRec databases to assist physicians
in classifying gait patterns. In all, these datasets contain data
from 2645 gait disorder patients and around 560 healthy con-
trol patients. They applied three feature selection algorithms
for feature extraction and for removing highly correlated
features. They found that time-domain and wavelet features
are the most significant features for gait classification.

With the development of Kinect cameras and skeleton
detection algorithms, many skeleton-based methods for
classifying gait disorders have recently been proposed. These
methods performed well on simple gait patterns but were
unable to classify complicated gait patterns. In other words,
there is still a lack of a detailed analysis of the feature
extraction and selection problem and a lack of accurate gait
disorder recognition. In this study, we classify one normal
gait and two disorders by developing three well-known
deep neural networks: the LSTM, GRU, and multiple layer
perceptron (MLP). These three classifiers are developed to
classify gait disorders, and we compare their performances.
We collected skeleton data as a base feature dataset by using a
Kinect system. Furthermore, we extract meaningful features
from skeleton-based features and then consider various joint
groups from the total number of extracted features; we also
apply ten feature selection algorithms to collect different
joint groups to identify the essential features for gait disorder
classification. The main objective of the feature selection
technique is to reveal the most essential features that can
provide a superior classification performance. On the one
hand, selecting a few significant features may not yield
sufficient information to build an efficient model; on the other
hand, selecting a large number of features may also reduce
the classification accuracy, as it may involve unnecessary
features. Thus, it is necessary to select the best number
of features with sufficient meaningful information. For this
purpose, it is essential to develop a good feature selection
model that searches and evaluates all subgroups of the
features and identifies the important features by eliminating
inappropriate features.

C. MAIN AIMS
The goal is to generate and analyse a variety of datasets,
considering the number of features, and to develop detection
and tracking methods for the classification of walking
disorders to enable hospital and clinic doctors to visualise
the effects of selecting a specific number of features.
The development of the proposed framework involves the
pre-processing of image data logged by Kinect cameras.
Compared to existing evaluation methods, the proposed
framework can be used to create and select important features
that can improve classification results. These functions can be
generated by extracting skeleton keypoints from patients in
each image, including the angle and distance between specific
skeleton keypoints and the 2D pixel coordinates of these
points. Themain contributions of the proposed framework are
as follows:

1) We generated different groups of features with skeletal
keypoints from a clinician’s perspective.

2) We collected two different datasets from detection and
tracking methods.

3) We proposed the ten best feature selection algorithms,
which selected features from the total number of
features that we generated, to analyse different ranges
for the number of features.

4) We compared the performances of different well-known
deep learning algorithms, such as the LSTM, GRU, and
MLP algorithms.

II. MATERIALS AND METHODS
A. MEASUREMENT SCHEME
The whole process was approved by the Ethics Committee
of the University Hospital Královské Vinohrady Prague (EK-
VP/4310120), where the measurements were made. Each
patient signed an informed consent form that described the
research conditions. The process was described in [29].

B. DATASET
The dataset contains 84 successful rehabilitation exercises
performed by 37 patients (Table 1). All patients (23 males
and 14 females who were 21–77 years old) needed surgery
for vestibular schwannoma (24 left side / 13 right side; Koos
classification: 10 grade 1/10 grade 2/6 grade 3/11 grade 4a
tumours; International classification: 10 grade T0/9 grade
T1/8 grade T2/9 grade 3/0 grade 4/1 grade 5 tumours).

TABLE 1. Dataset overview.
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FIGURE 1. Distribution of classes in our dataset.

All patients had undergone standard neurootological tests to
quantitatively assess the brain deficit [30].
Figure 1 illustrates the distribution of labels (classes) in our

dataset. There are a total of 84 measurements (samples). Each
sample contains three exercises (the patients performed three
exercises by walking along a straight line in a hallway during
the examination). As can be seen from Figure 1, 47 samples
are labelled as class 1 (slight disbalance before surgery),
which is split into training and testing sets (34 samples for the
training set and 13 samples for the testing set). For classes 2
(heavy disbalance before surgery) and 3 (no disbalance before
surgery), there are 19 samples (13 samples for the the training
set and 6 for the testing set) and 18 samples (11 for the
training set and 7 for the testing set), respectively. As can
be seen in Figure 1, the distribution of labels (classes) in
our dataset is unbalanced: there are more patients in class 1
(light disbalance) than in the other classes (heavy imbalance
and no imbalance). To overcome this problem, we applied
the optimum weights technique to each class in the training
process, which is recommended in [31].
The patients were scanned during the exercises with a

Kinect v2 camera, which was installed on a mobile robotic
platform that was developed at UCT Prague [29]. Due to the
inability of Kinect v2 to create skeletons correctly in real
time, we employed the keypoint-RCNN detector from the
PyTorch library [30].

C. DATA PRE-PROCESSING
The most essential step in classification problems is to obtain
valuable data that can be used to train deep neural networks.
The selection of data for the analysis of gait disorders is
based on expert knowledge of the patient’s movements during
the evaluation. Before data are provided to the network, the
selection of important features helps to train the network to
distinguish between normal and imbalanced walking during
the evaluation and enables a better classification accuracy.

FIGURE 2. Data processing method.

Figure 2 demonstrates the construction of the proposed data
processing step before the model is trained. As can be seen,
we have images of three exercises in our illustration of the
data processing step: the reason for this is that the clinicians
made measurements and labelled the category by observing
these three exercises, so we have the exact measurements
for all three exercises in each class. First, different image
filters are applied to get a better image for detection. The
Equalhist, GaussianBlur, and applyColorMap filters from the
OpenCV library have been used to adjust the contrast of
the image, remove unwanted noise, and improve the visual
quality of the image to obtain better detection results. Then,
these filtered images are used as the inputs for detecting the
keypoints to extract the skeletal keypoints from the patient’s
images. To detect the skeletal keypoints, a keypoint-RCNN
detector using the Torchvision library has been used. The
model is built on top of the ResNet-50 FPN backbone [32];
in [33], the authors extended the model’s ability to detect
human skeletal keypoints. The keypoint-RCNN is trained on
the MS-COCO dataset [34]. If a patient is detected, then we
obtain 17 keypoints from the detector’s output [33], as shown
in Figure 1. In general, the detector model predicts 2D
confidence maps for the position of the body and a set of
related 2D vectors [33]; then, each confidencemap returns the
keypoints of the body part [35]. Through the observation and
visualisation of the performance of the proposed detector on
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FIGURE 3. Data collection process.

our data, we chose a window size of 100 sequences to collect
the extracted keypoints.

As we are going to investigate the detection and tracking
results, the Kalman filter [36], [37] is used to track only the
points missing from the detection results for the detection
dataset; this is needed because the resulting frames may
suffer from missing points. However, in the tracking dataset,
the Kalman filter is used to track and update five frames
of the patients’ movements, and the resulting frames may
suffer from a high coordinate variance due to even small
inaccuracies in the detection algorithm. A Kalman filter [36],
[38] is a regularly used estimation method: by using past
estimates of all the keypoints, it can predict the future state
of all the keypoints, which smooths the sequence of the
coordinates [38].
After this step, the extracted features are subjected to the

feature selection and feature engineering methods in each
exercise image and are then concatenated. The features are
concatenated to obtain more sequences of features. As can be
seen from Figure 2, the type of walking is slightly different in
different exercises (the patients walk with their eyes closed,
walk normally, and walk along a line). Therefore, combining
these data helps to provide a long sequence of motion patterns
in the training data. In the end, the datasets are split into
training and testing sets. Due to the smallness of our datasets
and in order to avoid overfitting, we use data augmentation
methods, as shown in Table 2, which is recommended
in [31]. Figure 3 exhibits the overall structure of our research
project.

TABLE 2. Data augmentation methods.

1) MANUAL FEATURE GENERATION
In the classification of gait disorders, all body-related features
are valuable. However, some features are more significant
than others [39]. The study presented in [40] found that the
swing of the arms is the most valuable feature. Researchers
or experts can find complex patterns even if they do not exist.
Thus, we can use feature creation to derive new features from
existing ones. Regarding feature creation, we have applied
the concepts of clinicians to categorise gait disorders, as they
focus mainly on the patient’s hands and legs during exercises.

Patients were required to carry out three exercises at a
leisurely pace with the feeling of balance and confidence
in a 5-meter hospital hallway. Also, patients trained for the
particular exercises before actually performing the recording.
Different exercises have different types of walking; for
example, in exercise 3, patients walk with closed eyes
and cannot walk straight, or they can balance their move-
ments with their hands. Analyzing these different types
of movements requires measuring several features, which
can be defined as kinematic and spatial-temporal features.
The spatial-temporal features are mainly associated with
measuring the distance between various body parts, whereas
kinematic features refer to the angular movement in the
body’s joints during walking. These variations, such as
posture instability, are very important to assess the evolution
of gait disorders. Due to these reasons, we have created more
features from skeletal points by measuring the distance of
the most effective parts of the body as well as the body
joint angle. Actually, these feature creations are the same as
physicians’ evaluationmetrics during the observation of these
exercises.

In this study, we have created 36 features to add to 34 base
features (x and y from 17 keypoints) to reach 70 features
in total. This total number of features is limited to the
17 keypoints that we have. In other words, we have tried
to find the most meaningful features that can be found
from the skeleton keypoints, and all of these measurements
are confirmed by clinicians before they are tested with
practical machine learning models. Figure 4 demonstrates the
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FIGURE 4. Skeleton keypoint information.

FIGURE 5. Concept of feature extraction.

numbering and keypoint marks. By observing the skeletal
keypoints from the patient walking in the hallway, we have
generated valuable features that can help to obtain the patterns
of gait disorders from the sequences of data that have been
collected. Figure 5 shows the skeletal keypoints and the
selected points for generating valuable features for training
the model. The blue curve shows the angle between two
selected bones, and the green arrows illustrate the distance
between two selected points.

These spatial features are determined from pixel coordi-
nates and are calculated from four statistical measurements
(i.e. x and y for each point, the distance, and the angle between
two selected points) as follows [38]:

di =

√
1x2i + 1y2i , (1)

FIGURE 6. Feature generation and selection steps.

α1i = arctan 2(1yi, 1xi), (2)

α2i = arccos(
v1i · v2i

|v1i| × |v2i|
), (3)

where di is the distance based on two keypoints, α1i is the
angle between two symmetric keypoints, and α2i is the angle
between two bones. The number of features generated in
each frame from these measurements is 70. This includes
34 features from the coordinates of 17 pixels, eight angle
variables from the horizontal green arrows that indicate
pairs of symmetric keypoints, eight angles from the blue
curves between selected bones, eight distance variables
from the horizontal green arrows that indicate pairs of
symmetric keypoints, and 12 distance variables between
keypoints connected by vertical green arrows. To analyse and
investigate each feature’s effect on the classification results,
these 70 features are also divided into six subgroups, as shown
in Figure 6. In group 1, there are 34 features that represent
only the values of the x and y coordinates of the keypoints.
In group 2, there are 36 features; in this case, the x and
y coordinates were removed from the total of 70 features.
Group 3 includes 58 features; 12 vertical distance features
were removed from a total of 70 features. Groups 4, 5, and
6 include 62 features from the total of 70 features: eight
horizontal distance features are removed in group 4, eight
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FIGURE 7. An example of the selection of the best features in a data file.

angles of symmetric keypoints are removed in group 5, and
eight angles between selected bones are removed in group 6.
Each data sample includes data from the three exercises and
the labelled class of the data. From our observations, we chose
a window size of 100 for each exercise to collect only
300 frames (100 × 3) for each labelled sample, so that the
file for each sample has 300 rows (sequences) and 70 columns
(features).

2) BEST FEATURE SELECTION ALGORITHMS
In the first step, we have already created 70 features from
kinematic and spatial-temporal features as base features
but may have a strong correlation between these patterns;
due to this reason, we also have applied some of the best
feature selection techniques to see the impact of reducing
features size to select features with less correlation. Most
of the feature selection methods in this section can be
found in the open-access repository of scikit-learn and scikit-
rebate. These methods have been selected because of their
computational efficiency and their popularity in the literature.
In addition, the selected methods are employed to order the
features according to their significance for the specific goal
of this paper [20], [41]. These methods select the best features
from the total of 70 generated features that we discussed in the
previous subsection, as shown in Figure 7. Figure 6 shows all
of the feature generation and selection steps for our datasets.
A detailed description of the methods used in this study is
provided below.

a: ANOVA
ANOVA is a feature selection method used to reduce
the number of features. ANOVA computes the importance
of each feature for analysing experimental data under
various conditions and then ranks the features. In other
words, it is used to decide whether a feature shows a
significant difference between two or more classes [42].
ANOVA has become a statistical method that can be used
to compare class means using a specific feature [7]. This
method ranks the features by determining the ratio of the
variance within groups [8]. Algorithm 1 shows the ANOVA
algorithm [7].

Algorithm 1 ANOVA Algorithm for Feature Selection
for each fi feature set do

i = 1, 2, 3, . . . ,G
calculate the value of MB
evaluate the value of MW
evaluate the F-statistic (Fi)
evaluate the p-value (pi) for each Fi
if pi < 0.001 then then

select the fi feature
append fi to a feature matrix GM

else
fi feature is discarded

end if
sort the feature set in ascending order of p
if size GM > defined-feature-size then

select only these top feature sets
else

keep the GM feature matrix as it is
end if

end for
return the GM feature matrix

b: CHI-SQUARE
The chi-square feature selection algorithm has been suc-
cessfully used in many recent problems for classification
and prediction [43], [44]. This method is used to minimise
the amount of data and generate a higher classification
accuracy [9]. The authors of [45] used chi-square feature
selection and a multi-class SVM to improve the training,
testing time, and performance of the classifier. The purpose
of selecting this method is to identify the optimal subset of
attributes based on statistical significance tests and select
the features that depend on class labels [11]. When there
is a high correlation between the features, overfitting will
occur. To overcome this problem, the chi-square method can
be used. The chi-square value is sensitive to the sample
size. The chi-square index shows a weaker fitting when the
correlation between the independent and dependent variables
increases [10]. The chi-square equation [43] is defined below:

X2
=

2∑
i=1

k∑
j=1

(Aij − Eij )
2

Eij
, (4)

where k is the number of classes, Aij is the number of
patterns in the ith interval and jth class, and Eij is the expected
frequency of Aij .

c: CMIM
CMIM is another method that can select the optimal subset of
features [14]. This method ensures a good trade-off between
the independent and dependent variables. This method does
not select features similar to the ones already selected, even
if a feature is individually powerful, because it does not
provide additional information about the expected class. This
estimation takes into account familiesM composed of unique
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features that have already been selected [12]. The CMIM
equation [15] is

XCMIM = arg max
Xi∈X−s

{min
Xj∈Xs

I (Xi;Y∥Xj)}, (5)

where Y is the output, Xi is the input, and Xj is a selected
feature.

d: DISR
The authors of [15] introduced a new effective feature
selection approach called DISR for classification with a large
number of input variables. This method has shown that the
information returned by a set of variables is greater than
the sum of the information of its individual variables. The
proposed method is competitive with existing methods. The
authors of [5] mentioned that the goal of DISR is to alternate
joint mutual information with symmetrical relevance. The
DISR equation [15] is

XDISR = arg max
Xi∈X−s

{

∑
Xj∈Xs

SR(Xij ,Y )}, (6)

SR(X ,Y ) =
I (Xij;Y )

H (Xij;Y )
, (7)

where SR(X ,Y ) is the symmetrical relevance of the two
random variables X and Y .

e: KRUSKAL
The authors of [16] mentioned that the Kruskal method is
a significant feature selection approach, and it is simple
and inexpensive to apply. They used it to reduce the data
dimensions to select the most important features. They
mentioned that in their algorithm, if the p-value is close
to zero, features are selected, as they have discriminative
information; otherwise, they are not selected. The Kruskal
equation [46] is

XKruskal =
12

n(n+ 1)

n∑
i=1

T 2
i

ni
− 3(n+ 1), (8)

where n is the total number of observations, while T and ni are
the sum of the ranks and the number of observations within
class i, respectively.

f: MIFS
Mutual information-based feature selection (MIFS) is a pow-
erful statistical technique used to identify the relationships
between sets of features. It is also called the elimination
method, and it is used to extract the mutual relations between
features and reduce the input size; however, it does not change
the most significant features of classification problems.
The feature selection method must select only independent
features that indicate no correlation, and this can be done by
determining the dependence between random features, which
must always be non-negative and symmetrical [47], [48]. This
method is fast and efficient and is used to select the best
features that do not exist in current individuals. However, its

performance decreases in the case of a group of features that
is relevant but does not include the individual features that
result in the group [13]. The MIFS equation [48] is

XMIFS = I (C;Xi) − β
∑

Xs∈Si−1

I (Xs;Xi), (9)

whereXi is any non-selected feature, Si−1 is the set of features
selected in the previous steps, and β is a parameter that can
be manually tuned.

3) RELIEF-BASED METHODS
a: RELIEFF
ReliefF is an extension of the Relief method, which is
designed to deal with multi-class data by using k > 1
neighbours [18], [49]. It is also capable of dealing with
incomplete and noisy datasets [17]. This method is more
accurate with smaller feature sets [50]. By defining a suitable
threshold and assigning weights to each feature, it can select
the quality features above the threshold [17]. Since it remains
small but not too small, it will be robust in terms of the number
of nearest neighbours [51]. Algorithm 2 shows the ReliefF
algorithm [17].

Algorithm 2 ReliefF Algorithm for Feature Selection
calculate the prior probabilities P(C) for all classes
set all weightsW [A] := 0.0
for i = 1 to m do

randomly select an instance Ri
find k nearest hits Hj
for all classes C ̸= cl(Ri) do

from class C , find k nearest missesMj(C)
end for
for A := 1 to a do
H := −

∑k
j=1 diff(A,Ri,Hj)/k

M :=
∑

C̸=cl(Ri)[
P(C

1−P(cl(Ri))∑k
j=1 diff(A,Ri,Mj(C))]/k

W[A] := W[A] + (H + M)/m
end for

end for
returnW

b: SURF
The SURF approach keeps most of the ReliefF method.
Unlike ReliefF, SURF eliminates the user parameters k and
uses distance thresholds T to determine which samples are
considered neighbouring samples. The thresholds have the
same magnitude for each target sample and are defined by the
average distance between all sample pairs in the data [20].

c: MULTISURF
MultiSURF is the newest Relief-based method: it determines
the target sample-centric neighbourhood to estimate the
features [19], [52]. The authors of [19] mentioned that a
large number of redundant features in the dataset reduce the
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performance of thismethod for selecting the relevant features.
This method uses a threshold or adaptive radius to verify
which samples are considered neighbours [53].

d: SURF*
The SURF* method gets the most out of the SURF approach.
Unlike SURF, SURF* considers the concept of samples
that are near versus far from the target samples. Using the
same threshold from SURF, any sample within the threshold
is considered near, and those outside the threshold are
considered far [20]. Figure 8 shows illustrations of the feature
selection processes of ReliefF-based algorithms [20].

FIGURE 8. Illustrations of ReliefF-based algorithms’ feature selection
methods.

D. CLASSIFICATION METHODOLOGY
1) MLP
The MLP is the most frequently used neural network. It has
the ability to represent nonlinear functions [54]. The universal
MLP consists of one input layer, one hidden layer, and one
output layer. An MLP with more than one hidden layer
is considered a deep neural network. Each hidden layer is
composed of a certain number of neurons. The output of
an MLP, as it is a classifier, defines the classes belonging
to the input data. Figure 9 shows the proposed MLP used
in this study; it is made of three hidden layers with the
ReLU activation function. Given a sequence of vectors
v1, . . . , vn, each including input features (x1, x2, . . . , xn), the
computation of an MLP sublayer on any vi is defined as

Outputj = ReLU (
n∑
i=1

wijxi + bj), (10)

where Wij and bj are the weight parameter from the input
to the hidden layer and the bias parameter, respectively,
and n is the number of features in the input vector
feature.

2) LSTM
The LSTM network is a modified version of the RNN that
adds memory cells and gate units to perform better in finding

FIGURE 9. Proposed MLP network.

FIGURE 10. LSTM cell architecture.

FIGURE 11. Proposed LSTM network.

the temporal dependency over a long period of time [30].
Figure 11 shows the proposed LSTM algorithm that was used
in this study. As shown in Figure 11, before input data xt
were fed into the LSTM network, a linear layer with a ReLU
activation function from time frame t was added; this layer is
given as follows:

at = ReLU (waxt + ba), (11)

where wa and ba are weights and biases, respectively. The
structure of each LSTM cell [30], [55] in Figure 11 is shown
in Figure 10. The outputs of the LSTM cell at time t are
determined [30] as follows:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [ht−1, xt ] + bc), (12)

ht = ot ⊙ tanh(ct ), (13)

where it , ot , ct , and ht are the input gate, output gate, state of
thememory cell, and hidden layer value, respectively. Finally,
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FIGURE 12. GRU cell architecture.

FIGURE 13. Proposed GRU network.

the predicted output vector is given by

output = Softmax(wf c · ht + bf c), (14)

where wfc and bfc denote the weights and biases of the
sublayers of the network.

3) GRU
The GRU is another RNN architecture that is useful for
handling data over a long period of time. It, like the LSTM
network, can deal with the problem of a vanishing gradient
in an RNN [26]. Like the proposed LSTM algorithm, in the
proposedGRUalgorithm, the input data xt are fed into a linear
layer containing the ReLU activation function. The structure
of each GRU cell [55] in Figure 13 is shown in Figure 12. The
outputs of the GRU cells at time t are determined [26], [55]
as follows:

ct = (1 − zt ) ⊙ ct−1 + zt⊙

tanh(Wc · xt +Wh ⊙ (rt ⊙ ht−1) + bc), (15)

ht = ct , (16)

where zt and rt are the update gate and reset gate, respectively.
When the last hidden cell is determined, it is fed into
a linear layer with a SoftMax active function layer for
classification [26]. Finally, the predicted output vector is
given by

output = Softmax(wf h · ht + bf h), (17)

wherewfh and bfh denote the weights and biases, respectively,
of the sublayers of the network.

III. RESULTS
The selected and modified deep learning classifiers (MLP,
LSTM, GRU) were trained to classify three labelled gait
disorders in our dataset. One hundred frames have been
selected for each exercise because of environmental noise
in some frames. For recorded exercises with less than
100 frames of detection results, zero padding was added
to make the time steps the same for all data. Twenty-six
of the 84 samples were randomly selected for the testing
set, whereas the remaining 58 were kept for the training
set (10% were randomly selected to be used for tuning the
hyperparameters in the validation process). Due to the fact
that the data are imbalanced, more samples in class 1 were
selected in both the training and testing sets. The 5-fold cross-
validation method is used for the training process to prevent
overfitting and validate unseen data. PyTorch [56], a free
open-source framework based on the Torch library written
in Python, is used for implementing deep neural network
algorithms. The system used to train the models consists
of an Intel(R) Core i7–CPU@2.60 GHz, 16 GB of RAM,
and an NVIDIA GeForce GTX 1660Ti. To obtain a fixed
initialisation for the network parameters, the random seed
was set to 21. Moreover, to accelerate the training process
and optimise the trained models, the Adamw optimiser [57]
was used in the training process. Furthermore, to validate the
performance and achieve the optimised validation accuracy,
the regularisation value 1e− 5 was added for weight decay.

FIGURE 14. Comparison of results on detection and tracking datasets:
training results.

A. MANUAL FEATURE EXTRACTION RESULTS
The number of data points in a single frame is 34 because
the 2D coordinates of 17 joints make up the skeleton. We add
36 features so that we have a maximum number of features
from our data of 70. Then, these 70 features are also divided
into six subgroups according to the concepts with which
they are generated. Figures 14 and 15 show a comparison
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FIGURE 15. Comparison of results on detection and tracking datasets:
testing results.

of the performance of the proposed classifier algorithms
on both detection and tracking datasets. As can be seen
from Figure 14, all classifiers were trained successfully on
a high number of features, except for 62rsa features, for
which the model training F-score dropped by around 20%.
Figure 15 shows the test results of the classifiers, where
the MLP and GRU show a better performance than the
LSTM network. In the GRU, the maximum F-score was
achieved with 70 features for the detection dataset, whereas
the maximum value for the tracking dataset was achieved
with 36 features. The MLP classifier attains its maximum F-
score with 34 features for the tracking dataset; the minimum
value is achieved for the tracking dataset with 36 features.
In contrast, the highest values for the detection dataset were
achieved with 62rsd and 70 features, respectively. In the
LSTM results, both the minimum and maximum values were
achieved with 58 features.

As is obvious from Figure 15, the MLP performs better
than the other algorithms. Furthermore, generally, we can say
that the proposed classifiers perform better on the detection
dataset than on the tracking dataset.

B. ALGORITHM-BASED FEATURE EXTRACTION RESULTS
We also extracted and generated features using the ten best
feature selection algorithms in a single frame, selecting
from 20 to 60 of the total number of features (70) we had
already generated. Figures 16 and 17 show the results of the
ten best feature selection algorithms on the detection and
tracking datasets, respectively. On both the detection and
tracking datasets, the features selected by different algorithms
have approximately similar information. As can be seen, the
results from using 20 and 30 features show the differences
between these algorithms clearly.

For instance, the results of the MIFS algorithm (shown
in brown) show that most of the best features are selected

FIGURE 16. Different numbers of selected features: detection results.

FIGURE 17. Different numbers of selected features: tracking results.

from the first feature points in the feature vector, whereas
the results of the Kruskal algorithm show that most features
are selected from the last feature points. The results of
the CMIM and DISR algorithms (shown in green and red)
show that the selected features are from the first and last
feature points in the feature vector. For the other algorithms,
we can say that the selected features are distributed among
the range of feature points in all feature vectors. In other
words, these algorithms select different points in most
frames.

Figure 18 shows the training classification F-score on the
detection dataset as the number of extracted features changes.
The results show that most algorithms worked well with the
GRU network, except the Kruskal algorithm. The F-scores
are mostly above 90% as the number of extracted features
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FIGURE 18. Results of three deep networks trained with best selected
features for the detection dataset: training dataset.

changes. The GRU network is followed by the MLP network,
where the number of features is 30 or more: approximately
half of the algorithms obtained F-scores above 90%, and the
others obtained F-scores above 80%. For the LSTM network,
the results show fluctuations in the algorithm training results
as the number of extracted features changes. Figure 19 shows
the test classification F-score on the detection dataset as the
number of extracted features changes. As can be seen, the
extracted features of the ANOVA method combined with
the GRU network show the highest classification F-score on
the testing set when the number of features is 30. In other
words, the results show that the features of the ANOVA
method can reduce the nonlinearity caused by the sequential
features of the gait data and can help the GRU network to
classify the gait data more easily. This network obtained an
F-score of around 85% during training but showed the best
test result. The reason for this could be that the optimal
training of the algorithm occurred rather than overfitting; the
other algorithms obtained high classification F-score results
in training but did not perform as well on the testing set.
The second-highest classification F-score is achieved by the
ANOVA and GRU combination; the F-score is above 70%
when the number of features is 60. This is followed by the
MLP network with the Kruskal and DSIR algorithms, which

FIGURE 19. Results of three deep networks trained with best selected
features for the detection dataset: test dataset.

both achieved a classification F-score of around 70% with a
number of features of 50 and 60, respectively. The test results
of the LSTM network with these 10 algorithms showed worse
results; the classification F-scores are mostly below 55%.
Generally, the features selected by most algorithms provide a
better performance; the classificationF-score is mostly above
60% with the MLP network.

Figure 20 shows the training classification F-score for
the tracking dataset as the number of extracted features
changes. The results have a trend similar to that of the
training performance of the three networks trained on the
detection data. However, as can be seen from Figure 21, the
test classification F-scores of these three networks for the
tracking dataset are mostly within the range 45% to 60%, and
there is no significant classification F-score result compared
with the results on the detection dataset.

As can be seen from Figure 22, the average value of the
proposed 10 algorithms for the detection results is better than
that for the tracking results. This is because the format of the
exercises in our dataset was designed by physicians. In other
words, the movement of patients who suddenly change the
positions of their hands or their legs results in the loss of
the proper tracking results, as tracking updates are configured
every five frames.
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FIGURE 20. Results of three deep networks trained with best selected
features for the tracking dataset: training dataset.

IV. DISCUSSION
In this section, we discuss the results of three classifiers
(MLP, LSTM, and GRU) on only the detection dataset using
the proposed manual feature selection method and also the
best feature selection techniques. We only show the results
on the detection dataset, as the above results on the tracking
dataset have shown that the three classifiers have a low
performance compared with the results on the detection
dataset. We compare our manually extracted features with
the best features selected by the algorithms in terms of the
classification F-score. Moreover, we compare our manual
feature extraction method with the automatically extracted
features obtained by using the 10 best feature selection
algorithms. In this study, as mentioned in the previous
section, using ANOVA to extract 30 features achieves
the highest performance. In the experiments, we have not
individually set the learning configuration of each model,
which consists of settings such as the number of training
epochs and the learning rate, because there are many models
that were trained sequentially using a single GPU. According
to the test results, the features of the GRU network achieve
the best performance in the classification of gait disorders.
The highest F-score is achieved when the features of the
ANOVA algorithm are fed into the GRU network. Feeding the

FIGURE 21. Results of three deep networks trained with best selected
features for the tracking dataset: test dataset.

FIGURE 22. Comparison of detection and tracking results: average values
for the 10 best feature selection algorithms.

ReliefF features into the GRU network achieves the second-
best results; however, these two selection algorithms have
quite a low performance when they are combined with the
MLP and LSTM networks. In most cases, the MIFS and
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TABLE 3. Detection results of LSTM classification for 10 methods.

ReliefF features achieve a better performance when they are
fed into the GRU and MLP networks compared to the other
features.

As shown in Table 3, the features of the ANOVA and chi2
algorithms show a much better performance than the other
feature selection algorithms for the LSTM network. These
algorithms achieved a classification accuracy of 62% and an
F-score of 56% with only 20 features. They are followed
by the Surf* algorithm with 60 features, which achieved an
accuracy of 62% and an F-score of 55%.With other numbers
of features, considering only the F-score results, the Kruskal
and ReliefF algorithms obtained an F-score of 52%, and in
two cases, ANOVA achieved an F-score of 51%. From the
results, it is clear that in most cases, with different numbers

TABLE 4. Detection results of GRU classification for 10 methods.

of features, the features selected by ANOVA perform better
than those selected by the other feature selection algorithms.

Table 4 shows the results of feature selection algorithms
combined with the GRU network. The 30 features selected
by ANOVA show a significantly better performance than
those selected by the other algorithms, with a classification
accuracy and F-score of 85%. The second-best F-score
(69%) was achieved with 60 features selected by ReliefF, and
the accuracy of this method was around 73%. This method
is followed by ReliefF and DISR, which both achieved a
classification F-score of 60% and a classification accuracy of
65%. The methods with other numbers of features obtained
F-scores below 60%.

As shown in Table 5, for the MLP network, the maximum
F-score value was achieved by the Kruskal algorithm when
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TABLE 5. Detection results of MLP classification for 10 methods.

50 features were selected, and its accuracy was around 60%.
The second-best F-score, 65%, was achieved by the DSIR
algorithmwith 60 features. It is clear that the top twoF-scores
were obtained by higher numbers of features, whereas other
methods obtained F-scores below 61%. From the three tables
mentioned above, the top two precision and recall values
were obtained by the GRU network with 30 and 60 features
selected by ANOVA and ReliefF, respectively.

Table 6 shows the results of using manually extracted
features to train the above-mentioned three deep learning
algorithms. The best F-score was obtained by the MLP
network trained with 62 features, where the symmetric
distance feature was removed from the total of 70 features.
This method obtained a classification accuracy of 58% and
an F-score of 65%. The best result achieved by manual

feature extraction is far from the results achievedwith the best
selection algorithms, as described above.

The corresponding confusion matrices of the three best
deep learning networks are shown in Table 7. The overall
classification F-score is higher for the GRU trained with the
30 features selected by ANOVA. This method has the best
results. It obtains 10 correct predictions from 13 samples
for class 1 and five correct predictions from six samples
for class 2, and it correctly predicts 100% of the samples
in class 3. Overall, the GRU was effective for class 1 and
class 3 for all feature selection algorithms. It shows a poor
performance for class 2, except when it is combined with
the ANOVA method; in that case, there is only one mistake
among six samples. The second-best result is obtained by
the MLP network, which also shows better prediction results
for classes 1 and 3. The LSTM results represent the worse
case: there are zero correct predictions in classes 1 and 3 for
some feature selection algorithms, such as the Kruskal and
Surf* algorithms. In other words, they show the highest
misclassification results, where samples from all classes are
predicted to be in class 1. In general, as can be seen, class
2 has the lowest accuracy; class 2 samples are misclassified as
class 1 samples inmost cases. Actually, both classes represent
abnormal cases, so they may have similar patterns.

To summarise, this study aims to compare the effects of
different feature sizes on the proposed networks. To prepare
the datasets, ten feature selection methods were used to
select five different numbers of features, and seven manual
features were added, which resulted in a total of around 114
(57 × 2) different datasets, including detection and tracking
data, being generated to train three deep network algorithms.
In other words, a total of around 342 (114 × 3) models
were trained. We have designed and modified three deep
neural network models, and all datasets were used to train
and test these networks. Therefore, the number of features
affects the training and test results, as the network structure
is fixed. In other words, the same network with different
datasets can illustrate the optimal, underfitting, or overfitting
process. Due to this, the limited number of input features,
and our tiny dataset, we observed overfitting and underfitting
phenomena for somemodels. As can be seen from the results,
both the quantities and qualities of selected features played an
essential role in the performance of the deep networks. The
datasets with proper features show a good performance for
the training and test results. The underfitted models might be
enhanced by increasing the number of layers and neurons in
the proposed networks. Furthermore, the overfitted models
might also be enhanced by decreasing the number of neurons
and layers. However, this is outside of the objectives and
contributions of this study. We used a system with only one
GPU, and for this reason, we limited our contributions to
applying different datasets to fixed-structure networks that
were trained sequentially.

Regarding the training algorithms, all the above-mentioned
datasets are prepared using manual features and the best fea-
ture selection methods. The data from detection and tracking
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TABLE 6. Detection results of manual features.

TABLE 7. Comparison of confusion matrices.

results are collected in separate folders. For best selection
algorithms, the scikit-learn and scikit- rebate libraries are
used. For deep network algorithms, we have used the torch
library, which contains the LSTM and RNN algorithms, and
we only extended them to include the proposed algorithms
described in section D. We have used the Pytorch-lightening
framework for training steps where the parameters and
hyperparameters are set in the configuration file. For training,
deep neural network algorithms run sequentially for each
dataset. The learning rate was initially selected as 2e− 2, but
it was reduced in the training steps after every 20 epochs.

To the best of our knowledge, this study is the first study
that creates 114 different datasets from 17 skeletal keypoints
by detecting and tracking samples. In addition, this study is
the first to apply different feature selection algorithms to gait
classification. Moreover, by providing different datasets and
applying three different deep neural networks, we reached
a classification F-score of 85%, which is promising for the
proposed tiny dataset.

V. CONCLUSION
In this study, we have used a dataset collected at UCT Prague
Hospital that includes a total of 84 measurements made
during three exercises designed by the hospital’s physicians
to classify three classes of gait disorders. The presented
method proceeded to perform feature extraction using the
10 best feature selection algorithms, as well as manual
feature extraction, on observations of patients’ gaits during
these three exercises. The base features were extracted from
the RCNN keypoint detector from the Torch library. Then,
we applied feature extraction to addmoremeaningful features
to the extracted base dataset. Furthermore, the base keypoint
features of the tracking algorithm were also collected to
investigate the impact of both types of extracted data.We have
trained three different deep learning models to determine the
best and most effective models. According to the results of
this study, when the 30 features selected by the ANOVA
algorithmwere used to train theGRUnetwork, the best results
were achieved, with both the F-score and the classification
accuracy reaching 85%. The results also show that the data
prepared with the detector approach were more effective than
the tracking data due to the nature of the designed clinical
exercises. Furthermore, the best feature selection algorithms
showed significant improvements in their F-scores compared
with manual feature extraction.

A. FUTURE WORK
In future work, we intend to collaborate with hospitals and
rehabilitation centres to collect more datasets, which will be
used to evaluate a GRU trained with 30 features, as it was the
best classifier in this study. Furthermore, to help physicians
to make clinical decisions, the proposed best classification
method will be used in smart home care systems. Further
studies may focus on in-home data collection, which may
improve the classification accuracy. Moreover, due to the
temporal nature of the data captured, some methods, such as
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dynamic time wrapping, may be explored in order to further
improve the classification accuracy. Finally, the investigation
of the possibility of the proposed method including other
movement disorders is another possible future study.
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