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ABSTRACT With an increasing number of people on the planet today, innovative human-computer
interaction technologies and approaches may be employed to assist individuals in leading more fulfilling
lives. Gesture-based technology has the potential to improve the safety and well-being of impaired people,
as well as the general population. Recognizing gestures from video streams is a difficult problem because of
the large degree of variation in the characteristics of eachmotion across individuals. In this article, we propose
applying deep learning methods to recognize automated hand gestures using RGB and depth data. To train
neural networks to detect hand gestures, any of these forms of data may be utilized. Gesture-based interfaces
are more natural, intuitive, and straightforward. Earlier study attempted to characterize hand motions in
a number of contexts. Our technique is evaluated using a vision-based gesture recognition system. In our
suggested technique, image collection starts with RGB video and depth information captured with the Kinect
sensor and is followed by tracking the hand using a single shot detector Convolutional Neural Network (SSD-
CNN).When the kernel is applied, it creates an output value at each of the m× n locations. Using a collection
of convolutional filters, each new feature layer generates a defined set of gesture detection predictions. After
that, we perform deep dilation to make the gesture in the image masks more visible. Finally, hand gestures
have been detected using the well-known classification technique SVM. Using deep learning we recognize
hand gestures with higher accuracy of 93.68% in RGB passage, 83.45% in the depth passage, and 90.61% in
RGB-D conjunction on the SKIG dataset compared to the state-of-the-art. In the context of our own created
Different Camera Orientation Gesture (DCOG) dataset we got higher accuracy of 92.78% in RGB passage,
79.55% in the depth passage, and 88.56% in RGB-D conjunction for the gestures collected in 0-degree
angle. Moreover, the framework intends to use unique methodologies to construct a superior vision-based
hand gesture recognition system.

INDEX TERMS Gesture recognition, video sequences, SVM, SSD-CNN, deep dilated mask.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xuewen Chen.

I. INTRODUCTION
Systems for recognizing hand gestures are at the leading
edge of human-computer interaction (HCI). We know
that vision-based technology for hand gesture detection
is critical in human-computer interaction. Historically,
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human-computer interaction was accomplished via the
use of a mouse and a keyboard. Gesture recognition is
also a critical component of human activity recognition,
which is concerned with deriving actions from a series
of observations. Many applications, including healthcare,
human-computer interaction, and video monitoring, rely on
vision-based gesture recognition [1]. Researchers in the area
of human-computer interaction pay close attention to voice
and gesture recognition.

Fahmid Farid et al. blur video frames to eliminate
background noise. After that, the images are transformed into
the HSV color mode. Through dilation, erosion, filtering,
and thresholding, they convert the image to black-and-white.
Finally, SVM was used to identify hand motions. Gesture-
based technology has the potential to aid both the disabled
and the general population in preserving their safety and
necessities. Due to the large variation in the parameters
of each motion with respect to different people, detecting
gestures from video streams is a difficult task [2], [3].
Raimundo F et al. and Roman et al. provide a convolutional

neural network-based approach for Hajj applications [4],
[5], [7], [10]. Some other different deep learning-based
approaches are also considered in the current trend of gesture
recognition arena [6], [8], [9], [11], [12].

In this previous work, image processing approaches
such as wavelets and empirical mode decomposition were
recommended for extracting picture functions in order to
recognize manual movements in two dimensions or three
dimensions. Additionally, CNN, a classifier of artificial
neural networks (ANN), was used for data training and
classification (CNN). They quantified three-dimensional
gesture discrepancies using left- and right-handed 3D gesture
movies [13].
The remaining sections of the paper are organized as

follows: Section II examines various works that are linked
to the first. Detailed explanations of the suggested approach
for hand gesture recognition may be found in Section III.
We describe in Section IV the experimental findings of our
technique, which are then compared to the results of an
existing state-of-the-art method. The following are the most
significant contributions made by the paper:

1. To the best of our knowledge, utilizing an SSD
convolutional neural network as an option for gesture
recognition is a suitable alternative solution.

2. Using SSD-CNN, we suggested a technique for hand
tracking that was both efficient and accurate.

3. In terms of accuracy, our suggested methodology
outperforms the best available techniques.

4. We have created our own gesture dataset on Different
Camera Orientations (DCOG)

II. RELATED WORKS
Hand gesture recognition is now a well-developed subject
of study. In this area, a lot of work has been done. Hand
segmentation is tough due to the variety of hand shapes

and skin colors. Usually appears considerably different
depending on the viewpoint; it might be open or closed,
partially obscured, or have varying finger placements, for
example.

Seniors who are deaf-mute utilize five separate hand
gestures to request items such as beverages, food, toilet paper,
help, and medicine. Due to the fact that elderly adults are
unable to function independently, their requests are sent to
their cell phones. The capabilities of the Microsoft Kinect
v2 sensor to extract real-time hand motions confines this
investigation to a small region [14].

Individuals with exceptional ability may use gestures
and voices with a minor loosening of the physical prox-
imity. It has always been critical to investigate effective
human-computer interaction (HCI) in order to create novel
ideas and techniques. Numerous approaches run into issues
such as occlusions, changing illumination, limited resolution,
and a high frame rate [15].

A workable prototype for performing gestures based on
real-time interactions is constructed, consisting of a wearable
gesture detection device equipped with four pressure sensors
and the necessary computing framework. To make the system
more viable, the hardware designmust be streamlined further.
Additional study is necessary to determine the optimal mix of
system resilience and sensitivity [16].

This paper proposes a lightweight model for gesture
identification that is built on the YOLO v3 and DarkNet-53
neural networks that do not need additional preprocessing,
image filters, or image enhancement. Even in a complex
environment, the proposed model was quite accurate, and
movements were efficiently detected even in low-resolution
picture mode rapid frame rate. The fundamental issue
of this application for real-time gesture recognition is
gesture categorization and recognition. Hand recognition is
a technique that is employed by a variety of algorithms
and concepts for comprehending the movement of a hand,
including image and neural networks [17].

In existing work, the purpose is to identify long-run spatial
correlations in cloud points by framing gesture recognition
as an irregular issue of sequence identification. To transport
information from the past to the future while keeping its
spatial structure, an innovative and effective PointLSTM
is presented. Dot clouds accurately capture the underlying
geometric structure and distance information for object
surfaces when compared to RGB data, offering additional
gesture detection markers [8].

A novel system for dynamic hand gesture recognition is
given, employing many architectures to learn how to divide
hands, local and global characteristics, globalization, and
sequence recognition features. To develop an efficient system
for recognition, the following issues must be addressed: hand
segmentation, local representation of hand shapes, global
corporate configuration, and gesture sequencemodeling [18].
The article detects and recognizes human hand gestures

using a classification method for neural networks (CNN).
This process flow involves segmentation of the hand
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region using a mask image, segmentation of the fingers,
normalization of the segmented finger images, and CNN
classification finger identification. To detect standard gesture
strategies, SVM and Naive Bayes classificatory algorithms
were utilized, which needed a huge quantity of data for
gesture pattern recognition [19].

In these articles, they provide an overview of contempo-
rary convolutional neural networks for action and gesture
recognition in visual frames. They present a framework
for addressing these challenges that incorporate both deep
learning and other handcrafted approaches. These recom-
mended architectures, fusion procedures, primary datasets,
and contests are all thoroughly explored. We summarize and
analyse the important ideas made so far, with an emphasis
on how they address the temporal component of data,
identifying potential and challenges for future research using
3D Models [20], [21], [22], [23], [24], [25], [26], [27], [28].

The previous section reviewed the evaluation’s findings,
accompanying issues, and future research prospects. In the
future, it is important to find viable solutions. We believe
that the discussions in this area of the work will uncover new
research gaps, allowing us to get closer to the much-desired
next-generation technologies [29], [30], [31], [32], [33].

Hybrid models that combine classic and new features
are predicted to gain traction. Similarly, we anticipate that
deep learning solutions for large-scale, real-time action and
gesture identification would be of interest to the community.
Action and gesture localization in enlarged, uncensored,
and realistic videos is also being worked on right now.
As a result, we predict that emerging issues including
early detection, multi-task learning, captioning, recognition
from low-resolution sequences, and lifelogging devices
will receive more attention in the next years [34], [35], [36],
[37], [38].

SSD partitions the bounding box output space into a
collection of default boxes with variable aspect ratios and
sizes for each feature map point. It illustrates a strategy for
detecting items in photographs using a deep neural network
with a single prediction time. The network calculates scores
for the presence of each item type inside each default box
and modifies the box’s shape to better reflect the object’s
form. Additionally, the network handles objects of changing
sizes automatically by mixing predictions from a variety
of different feature maps with differing resolutions. SSD
outperforms techniques that need object proposals because it
omits the proposal generation and subsequent pixel or feature
resampling stages and encapsulates all computations in a
single network [39].

III. PROPOSED ALGORITHM FOR HAND TRACKING
Image acquisition starts from RGB plus depth videos capture
using a Kinect sensor and then tracking the hand using SSD-
CNN, then doing the deep dilation to get deep dilated masks,
and then the features fed into the SVM classifier so that
the hand gestures can be recognized. It dilates the image

object, and the objects in the image get thinner after erosion,
blurring the image with the kernel size (5*5). We utilized
our suggested approach to recognize the hands from a video
stream and go through all of the files in order to accomplish
hand gesture identification using SSD-CNN.

We track the hand using SSD-CNN and store the centers of
the hands as a feature vector. We read the video by each frame
and detect the hand. After the hand is detected, we extract
the landmark. Then we draw the hand mask and save all the
masks in the directory. For a feature layer of size m × n
with p channels, the fundamental component for predicting
the parameters of a prospective detection is a 3 × 3 × p
tiny kernel that generates either a category score or a shape
offset relative to the default box coordinates. It generates an
output value at each of the m × n places when the kernel is
applied. The overall process and our experimental scenario
are depicted in figure 1.

From the figure, we can see very clearly that using the
SSD-CNN we started hand tracking from the video frames.
After getting the gesture detected frames we got the mask
of the detected hand by morphological operation. We merge
all the video frames into a single frame. Finally, using the
SVM classifier hand gestures are recognized. Figure 2 shows
sequentially how the hand tracking is done using SSD-CNN.
In this figure, we visualize how the hand tracking was done
using python programming. Using the pink dots we detected
points on hands and fingers. The accuracy of Hand tracking
varies based on the background and illumination conditions
of the gesture videos.

FIGURE 1. Proposed algorithm for gesture recognition using
SSD-CNN-based method.

IV. METHODOLOGY
In comparison to our previous paper, we have tried to replace
the hand detection part with SSD-CNN since CNN shows
significant results on other computer vision-related tasks [2],
[3]. We have used the Single Shot Multiple Box Detector
approach while detecting the hand [39], where it looks only
once at the image and tries to detect the object that is needed.
Once the hands are detected in each frame of the video,
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FIGURE 2. Hand tracking using SSD-CNN-based method.

we draw the mask for that frame, where the detected hands
are shown in white. However, the rest of the background is
drawn in black. In such a way, we can detect the hand gestures
and their trajectory from the video. However, for some of the
videos, we are not able to detect the hands in the majority of
the video frames. Therefore, the masks become more unclear.
That is why we concluded using a dilation morphological
operator to make the hand more visible in the mask. Once
we get clear deep dilated hand masks, we start building the
classifier. As a classifier, we have used SVM for flattened
images as a one-dimensional feature vector.

A. SVM CLASSIFICATION MATRIX FOR HAND GESTURE
RECOGNITION
The SVM classification matrix, also known as the confusion
matrix, provides a tabular representation of the performance
of a Support Vector Machine (SVM) model for gesture
recognition. It compares the predicted labels with the true
labels of the testing samples. Here is how we calculate the
elements of the classification matrix: Let’s assume we have
N classes or gestures in our dataset, labeled as G1, G2,
G3, . . . , GN.

1. Calculate the predicted labels: Apply the feature vectors
of the testing samples to the trained SVM model and obtain
the predicted labels for each sample.

2. Construct the confusion matrix: Create an N x N matrix
where each row represents the true labels and each column
represents the predicted labels. Initialize all the elements of
the matrix to zero.

3. Update the matrix: For each testing sample, increment
the corresponding cell in the confusion matrix based on the
true and predicted labels. For example, if a sample with the
true label G1 is predicted as G2, it would increment the
cell (1, 2) in the confusion matrix.

4. Interpretation of the matrix: The confusion matrix
provides a clear view of the classification results. Each
row of the matrix represents the instances in the true class,
while each column represents the instances in the predicted
class. The diagonal elements of the matrix represent the
number of correctly classified samples for each gesture. The
equation for the classification matrix can be represented
as:

FIGURE 3. Representation of the equation for the classification matrix.

In the equation, C(i, j) represents the cell at the intersection
of row i and column j, representing the count of samples
with the true label Gi predicted as Gj. By analyzing the
elements of the classificationmatrix, we can calculate various
evaluation metrics, which provide a more comprehensive
understanding of the performance of our SVM model for
gesture recognition.

V. IMPLEMENTATION
On theNVIDIAGEFORCEGTX1660TiGPU, deep learning
packages are employed. For deep learning, we utilized
OpenCV-python 3.4.11.43, NumPy 1.21.2, SciPy 1.21.2, and
matplotlib 3.4.3.

A. DATASET
We performed our experiment using the well-known SKIG
dataset. A total of 1080 RGB and depth videos are included
in the dataset. We grouped the whole dataset into three
sections. We classified the data randomly into three of these
categories. This dataset has ten unique gesture categories.
Circle (clockwise), triangle (anti-clockwise), up-down, right-
left, wave, ‘‘Z,’’ cross, come here, turn around, and pat are
just a few of the options. 10 unique hand postures were
used to collect these ten characteristics: fist, index, and
flat [40].

We have created our own Different Camera Orientation
Gesture (DCOG) dataset where we also have 10 types
of gestures such as Circle, Request for Coffee, Request
for Doctor, Request for Food, Request for Tea, Request
for help, Request Water, Right-Left, Triangle, and Capital
letter – Z. utilized two-thirds of the dataset for training and
the remainder for testing. Figure 7 shows the representation
of our own created dataset.
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FIGURE 4. Our own created gesture dataset in Different Camera
Orientation (DCOG).

B. CONVOLUTIONAL NEURAL NETWORK CONSTRUCTION
Lecun et al. recommended that convolutional neural networks
(CNNs) be used as one of the most effective pattern
recognition techniques [41]. This system extracts visual
information from the input picture using locally learned
filters. A convolutional layer, a pooling layer, and a fully
connected layer comprise CNN’s internal layer structure. The
whole CNN technique for gesture recognition, in general,
is shown in Figure 5.

FIGURE 5. The convolutional neural network architecture for gesture
recognition.

C. LAYERS OF CONVOLUTION
The more sophisticated feature representation is provided by
convolutional operations. The sophisticated functions can be
employed in the input picture thanks to a number of fixed-size
filters. The weights and biases of each filter are consistent
across the image. You may represent a whole picture using
the same characteristic by using the weight-sharing approach.
The area of a neuron’s local receptive field mirrors the
previous layer’s area. The filter size is used to determine the
receptive field size. Eq. 1 and 2 show the mathematical form
of the activation function. (1),

O0,0 = f

(
b+

c∑
t=0

c∑
r=0

wt,r i0+t,0+r

)
(1)

f (x) =

{
x x > 0
0 else

(2)

D. POOLING LAYER
Convolution and activation functions have been applied
to feature maps before they are employed in the pooling

technique. Because it reduces complexity while still keeping
crucial qualities, feature extraction efficiency is increased by
using the local average or maximum value [43].

E. FULLY CONNECTED LAYER
The convolutional and pooling layers alternately transmit the
image features, and the fully-connected layer then receives
the image feature as an input. It’s possible that the topmost
layer is just the surface of a much deeper structure. After
multiplying the weights by the preceding layer’s data, each
neuron adds a bias value to the connection weights. The
activation function is used to process the measured value
before it is passed to the next layer on how to solve a
problem (3). This layer displays the computations of neurons.
Where f denotes the activation function, w the weight
vector, O the qth neuron’s input vector, and b the bias value.

fc1 = f

b+

M∑
q=1

w1,q ∗ Oq

 (3)

VI. SSD-CNN BASED METHOD
A single-shot detector for multiple categories is quicker
than the prior single-shot state-of-the-art (YOLO) and
significantly more accurate, equal to slower approaches that
conduct explicit region suggestions and pooling (like Faster
R-CNN). The heart of SSD employs tiny convolutional filters
applied to feature maps to forecast category scores and
box offsets for a specific set of default bounding boxes.
To achieve high detection accuracy, they explicitly segregate
predictions by aspect ratio and construct predictions of
various scales from feature maps of various sizes. SSD can do
8732 detections per class, whereas YOLO can detect only 98.
In addition, the detection rates are for SSD at 59 frames per
second and YOLO at 45 frames per second.
The SSD is a popular convolutional neural network

architecture. It combines the strengths of deep CNNs for
feature extraction and efficient multi-scale object detection.
When configuring an SSD model, several parameters need
to be considered. Here are some important parameters for an
SSD-CNN model:
Backbone network: The backbone network is typically a

pre-trained CNN model that serves as the feature extractor.
Common choices include VGGNet, ResNet, or MobileNet.
The choice of backbone network affects the model’s capacity,
speed, and accuracy.
Input size: The input size refers to the dimensions (width

and height) of the input image. It is typically defined as a
square image, such as 300× 300 or 512× 512 pixels. Larger
input sizes generally allow themodel to detect smaller objects
but may require more computational resources.
Feature map scales: SSD uses multiple feature maps of

different sizes to detect objects at various scales. The scale
of a feature map determines the size of objects it can detect.
Common scales include 19 × 19, 10 × 10, 5 × 5, 3 × 3,
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and 1 × 1. These scales are defined based on the size of the
input image and the architecture of the backbone network.

Aspect ratios: SSD uses default anchor boxes, or priors,
to predict object locations and sizes. Aspect ratios determine
the width-to-height ratios of these anchor boxes. By using
different aspect ratios, the model can handle objects of
various shapes. Common aspect ratios include 1:1, 1:2, 2:1,
1:3, 3:1, etc.

Number of anchor boxes: The number of anchor boxes
per feature map location affects the model’s ability to
capture objects of different scales and aspect ratios. Typically,
multiple anchor boxes are defined at each location. The total
number of anchor boxes depends on the number of feature
maps and aspect ratios used.

Confidence threshold: During inference, the model assigns
confidence scores to each detected object. The confidence
threshold determines the minimum score required for an
object to be considered a valid detection. Adjusting this
threshold affects the trade-off between precision and recall.

Non-maximum suppression (NMS) threshold: To elimi-
nate duplicate detections, NMS is applied. It removes highly
overlapping bounding boxes by considering their confidence
scores. The NMS threshold defines the overlap threshold at
which boxes are considered duplicates and only the one with
the highest score is retained.

Loss functions: SSD uses several loss functions to train
the model, including localization loss (e.g., smooth L1 loss)
and classification loss (e.g., cross-entropy loss). The weights
assigned to these losses can be adjusted to balance the impact
of each loss during training.

The SSD is built on a feed-forward convolutional network
that generates a fixed-size collection of bounding boxes and
scores for the existence of object class instances inside those
boxes. A non-maximum suppression step is then used to
produce the final detections. The early layers of the network,
which we will refer to as the base network, are based on a
common design for high-quality image categorization (cut off
before any classification layers) [45] Then, we augment the
network with additional structure to produce detections with
the following critical characteristics:

A. MULTI-SCALE FEATURE MAPS FOR DETECTION
We add convolutional feature layers to the underlying
network’s final layer. These layers gradually diminish in
size and provide predictions of detections at numerous
sizes. Unlike Overfeat [46] and YOLO [47], which work
on a single-scale feature map, the convolutional model for
predicting detections is distinct for each feature layer in this
algorithm.

B. CONVOLUTIONAL PREDICTORS FOR DETECTION
Using a collection of convolutional filters, each additional
feature layer (or alternatively an existing feature layer from
the base network) may provide a defined set of detection
predictions. These are shown above the SSD network

architecture seen in Fig. 2. For a feature layer of size m times
n with p channels, the fundamental ingredient for predicting
the parameters of a prospective detection is a 3 × 3 × p tiny
kernel that generates either a category score or a shape offset
relative to the default box coordinates. At each of the m × n
sites where the kernel is applied, an output value is generated.
The output values for the bounding box offset are measured
relative to the default box position for each feature map point
(cf the architecture of YOLO [46] that uses an intermediate
fully connected layer instead of a convolutional filter for this
step).

C. DEFAULT BOXES AND ASPECT RATIOS
We connect a set of default bounding boxes with each feature
map cell for several top-level feature maps. The default boxes
tile the feature map in a convolutional fashion, such that the
location of each box relative to its associated cell remains
constant. At each feature map cell, we anticipate the offsets
relative to the default box shapes and the per-class scores that
signal the existence of a class instance in each of those boxes.
Specifically, we calculate c class scores and the four offsets
relative to the original default box shape for each box out of
k at a given position. This leads in a total of (c + 4)k filters
being applied around each feature map position, producing
(c + 4) kmn outputs for a m × n feature map. Please refer
to Figure 1 for a representation of default boxes. Our default
boxes resemble the anchor boxes used by Faster R-CNN [44];
however, we apply them to several feature maps with varying
resolutions. Allowing distinct default box shapes in multiple
feature maps allows us to discretize the space of potential
output box shapes in an effective manner.

VII. TRAINING
The primary difference between training SSD and training
a conventional detector that use region suggestions is that
ground truth information must be given to particular outputs
in the predefined set of detector outputs. This is also
necessary for training in YOLO [46] and the region proposal
phase of Faster R-CNN [44] and MultiBox [48]. After
determining this assignment, the loss function and back
propagation are applied end-to-end. Training also entails
selecting the collection of default detection boxes and scales,
as well as the hard negative mining and data augmentation
techniques.

A. MATCHING STRATEGY
During training, we must identify which default boxes
correlate to a detection of ground truth and train the network
appropriately. We choose default boxes for each ground truth
box that differ in location, aspect ratio, and scale. We begin
by matching each ground truth box to the default box with
the greatest jaccard overlap (similar to MultiBox [48]).
In contrast to MultiBox, we match default boxes to any
ground truth with jaccard overlap above a threshold (0.5).
This simplifies the learning issue by letting the network to
predict high scores for numerous overlapping default boxes,
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as opposed to having it to choose the one with the greatest
overlap.

B. TRAINING OBJECTIVE
The SSD training goal is based on the MultiBox objec-
tive [48], [49], however, it is expanded to cover several object
types. Let xpij = {1, 0} be the indication for matching the i-th
default box to the j-th ground truth box of the category p.
We can have

∑
i x

p
ij ≥ 1 in the above matching technique.

The total objective loss function is a weighted average of the
localization and confidence losses (loc, conf):

L(x, c, l, g) =
1
N

(Lconf(x, c) + αLloc(x, l, g)) (4)

in where N is the total number of selects. Whenever N
is zero, the loss should be zero regardless of whether or
not it is raining. The localization error is defined as the
discrepancy [47] between the expected (l) and observed (r)
box parameters (g). The default bounding box (d) has been
customized by setting offsets for its center (cx; cy), width (w),
and height (h), much as Faster R-CNN [44] (h).

Lloc(x, l, g) =

N∑
i∈Posm∈{cx,c y,w,h}

xkij smoothL1
(
lmi − ĝmj

)
ĝcxj =

(
gcxj − dcxi

)
/dwi ĝ

cy
j =

(
gcyj − dcyi

)
/dhi

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(5)

VIII. RESULTS AND DISCUSSION
In our experiment, we used 3 folds cross-validation. In folds
3 and 2, we both achieved the average accuracy of 94.78%
and 94.% respectively. Data from fold 3 is used for testing,
whereas data from folds 1 and 2 is used for training. Data
from fold 2 is used for testing, whereas data from fold 1 and
fold 3 is used for training. In fold 1, the average accuracy is
substantially lower, at 91.62%. The total average accuracy,
however, was 93.68. Table 1 contains all of this information
which is done in RGB passage.

TABLE 1. shows the results of accuracies in different folds using
SSD-CNN in RGB passage.

The upgraded version of our suggested gesture recog-
nition system now has higher average accuracy, and,
more significantly, this technique is substantially different
from previous hand-crafted methods. On the SKIG dataset,
a comparison of the RGB Channel’s categorization accuracy
(percentage). Figure 5 and 8 depict the feature representation
as well as graphically presenting training, testing, and
classification. Figure 6 shows a graphical representation of

FIGURE 6. Training, testing, and classification.

FIGURE 7. Feature representations with SSD-CNN (a) Pose: 3, action type:
2, 3 (b) Pose: 1, action type: 3 and 3 (c) different poses with action.

classification accuracies by comparison to the SKIG dataset.
Figure 9, 10, and 11 shows graphical representation of
classification accuracies by comparison on DCOG dataset in
0 degree, 45 degree and 60 degree respectively. In table 3
we have compared our proposed method with the other
state-of-the-art deep learning and machine learning methods
such as YOLO, RGGP, HOG, HOF, HMHI, and DBN in
RGB passage, Depth passage, and RGB – D conjunction.
We recognize hand gestures with higher accuracy of 93.68%
in RGB passage, 83.45% at depth passage, and 90.61% in
RGB-D conjunction on the SKIG dataset compared to the
state-of-the-art. In the context of our own created Different
Camera Orientation Gesture (DCOG) dataset we got a higher
accuracy of 92.78% in RGB passage, 79.55% in the depth
passage, and 88.56% in RGB-D conjunction for the gestures
collected in 0-degree. These are presented in Table 2.
Furthermore, In the context of our own created Different

Camera Orientation Gesture (DCOG) dataset we got an
accuracy of 89.62% in RGB passage, 80.55% in the depth
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TABLE 2. Shows the results of a comparison of classification accuracies
(%) on the DCOG in the 0-degree angle dataset.

FIGURE 8. Graphical representation by comparison of classification
accuracy on DCOG dataset (0-degree angle).

TABLE 3. Shows the results of a comparison of classification
accuracies (%) on the SKIG dataset.

passage, and 88.62% in RGB-D conjunction for the gestures
collected in a 45-degree angle. These are presented in Table 4.

In addition, with our DCOG dataset, we got an accuracy of
87.56% in RGB passage, 79.65% in the depth passage, and
85.67% in RGB-D conjunction for the gestures collected at a
45-degree angle. These are presented in Table 5.

All of these algorithms were applied to RGB dataset
alone, depth dataset only, and RGB-D feature concatenation
to produce the final findings in Tables 2,3,4, and 5.
Figure 4 shows the Graphical representation by compari-
son of classification accuracy on SKIG dataset. However,
figure 7,8, and 9 shows Graphical representation by compar-
ison of classification accuracy on DCOG dataset in 0-degree,
45-degree, and 60-degree respectively.

All these comparisons based on the data collected in
different camera orientations or at different viewpoints still

FIGURE 9. Graphical representation by comparison of classification
accuracy on SKIG dataset.

TABLE 4. With SSD-CNN in DCOG dataset in 45-degree angle: Comparison
with other algorithms.

FIGURE 10. Graphical representation by comparison of classification
accuracy on DCOG dataset (45-degree angle).

show that the accuracy never decreases much in our proposed
SSD-CNN-based algorithm.

On SKIG dataset the combined RGB and depth data
may also be used to train features for RGB-D fusion in
DBN. We can see from these findings that our SSD-CNN
approach greatly surpasses the most current handcrafted
and deep learning algorithms on both datasets, due to the
higher performance of ourmethod’s simultaneous description
and fusion of RGB and depth channels. As a result of the
feature learning mechanism’s implicit supervised nature, the
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TABLE 5. With SSD-CNN in DCOG dataset in 60-degree angle: Comparison
with other algorithms.

FIGURE 11. Graphical representation by comparison of classification
accuracy on DCOG dataset (60-degree angle).

features are better able to discriminate. To further highlight
our method’s superiority, we may purposefully compare it
against the whole system presented using the SKIG dataset.
This dataset is fed into our SSD-CNN, which is then used
to train our SVM classifier. Given that their approach is far
more complicated and uses advanced body joints and skeleton
models, ourmethod’s performance increase on raw video data
is substantial.

IX. CONCLUSION
Our proposed approach begins with RGB videos and depth
sequences from the Kinect sensor and then tracks the hand
using SSD-CNN. The dilatation is used to improve the
quality of the gestures in the image masks. For each video,
we only received one trajectory. These are the features
that we fed into SVM. Hand movements were eventually
detected using the SVM classification method. On the SKIG
dataset, we recognise hand gestures with 93.68, 83.45, and
90.61 percent accuracy on RGB passage, Depth passage, and
RGB-D conjunction, respectively, compared to the state-of-
the-art. Our method attempts to develop a better vision-based
hand gesture recognition system capable of providing a noble
solution to the issue. We enhanced the overall accuracy of
gesture recognition in our proposed technique by fusing RGB
and depth information. We built our own dataset, which
we also evaluated using our suggested technique. We also
want to utilise online gesture videos to benefit the computer
vision arena, where the majority of videos are still in RGB.

Our future goal is to use robot vision in combination with
gesture recognition to enhance our ability to monitor crowds.
Additionally, we want to create gesture-based monitoring
systems for constrained and densely populated spaces.
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