
Received 13 January 2024, accepted 23 January 2024, date of publication 1 February 2024, date of current version 7 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3360883

2D Particle Filter Accelerator for Mobile Robot
Indoor Localization and Pose Estimation
OMER TARIQ AND DONGSOO HAN
School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Yuseong, Daejeon 34141, South Korea

Corresponding author: Omer Tariq (omertariq@kaist.ac.kr)

This work was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency For
Defense Development (ADD) funded by the Defense Acquisition Program Administration (DAPA) in 2023 under Grant 912906601.

ABSTRACT Particle filtering is a reliable Monte Carlo algorithm for estimating the state of a system
in modeling non-linear, non-gaussian elements for estimation and tracking applications in various fields,
including robotics, navigation, and computer vision. However, particle filtering can be computationally
expensive, particularly in high-dimensional state spaces, and can be a bottleneck for real-time applications
due to high memory consumption. This paper proposes a particle filter accelerator that employs a cellular
automata-based pseudo-random number generator and an improved systematic resampler based on the Vose
Alias method. The particles are distributed across several sub-filters, performing concurrent resampling
and importance weights computations. The proposed accelerator leveraged the inherent parallelism and
pipelining stages of FPGAs to perform the resampling stage in a parallel fashion, significantly enhancing the
particle convergence time. The proposed accelerator deployed on the Zedboard (ZC7020) system-on-chip
achieves a low execution time of approximately 4.63µs, 21.3 % speedup, and 3.1 % area reduction compared
to the recent particle filter accelerator. The proposed design also demonstrates modularity, achieved through
multiple parallel hardware subfilters that provide high throughput for real-time sensor data processing.
Furthermore, the proposed accelerator performs a high sampling frequency of 216kHz, making it suitable
for high throughput and real-time applications.

INDEX TERMS Pose estimation, particle filter (PF), mobile robotics, localization, pseudorandom number
generator (PRNG), cellular automata, field programmable gate arrays (FPGA), very large scale integration
(VLSI), Monte Carlo Markov chain (MCMC), sampling importance re-sampling (SIR).

I. INTRODUCTION
The autonomous mobile robot is a system that works in
an unexpected and partially unknown environment through
a cluster of sensors installed on the platform to find an
optimal path, localize itself, and navigate. However, the
global localization issue in the mobile robot system is
challenging due to the unknown initial pose. One of the
primary techniques for sampling from complex probability
distributions and guessing a dynamic system’s state from
sensor readings is the Markov Chain Monte Carlo (MCMC)
algorithm. Monte Carlo integration using Markov chains
selects samples from a complex distribution and averages

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

them to approach expectations. Particle Filters (PF) are
Markov Chain Monte Carlo (MCMC) techniques extensively
employed in Bayesian inference to generate samples from
complex and high-dimensional posterior distributions. These
samples estimate integrals necessary for parameter inference,
prediction, and model comparison [1]. The robustness of
the MCMC algorithms might lead to slow convergence,
as the exploration of the relevant space with significant
probability mass can take a long time due to the simulation’s
tendency to make local jumps near the current position. It is
logical to explore methods for expediting the convergence
of MCMC algorithms to its stationary distribution, hastening
the convergence of MCMC estimates to its expectation,
and enhancing the exploration of a given MCMC algorithm
within the support of the target distribution.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18473

https://orcid.org/0000-0002-1771-6166
https://orcid.org/0000-0002-9872-1695

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

However, a trade-off exists in developing ultra-performance
accelerators versus constrained resources in FPGAs, which
means deploying real-time localization tasks on mobile
robots is limited despite the added advantages of modularity
and accuracy [2]. It is advantageous to optimize performance
and hardware utilization to employ resource-constrained
devices like field programmable gate arrays (FPGAs) that
facilitate parallelism and pipelining in the operations.
Using FPGAs makes it feasible to introduce parallelization,
enabling real-time hardware implementation for complex
Bayesian algorithms while maintaining scalability. State
space models in the context of robot localization tasks
are the most popular models for modeling the relation-
ships between hidden states and observations defined by
unknown parameters, integrating additional complexity
into the inference process. A simple example is a robot
localization task where the robot has to localize itself
and simultaneously map the surroundings in an unknown
environment. Since there are numerous domains to which
PFs can be deployed, defining and implementing a generic
and efficient architecture for all state estimation methods
is time-consuming. Conventional resampling approaches are
a significant bottleneck for a pipelined system, increasing
overall latency [3]. Nevertheless, the Markov Chain Monte
Carlo (MCMC) resampling method assists in avoiding
the expensive resampling step required by traditional
resampling-based solutions.

Our research proposes a scalable and robust source
localization model using a mobile robot based on
noise-corrupted input sensory measurements. We employed
a hardware-efficient Sampling Importance Resampling (SIR)
PF technique to elevate the robustness and accuracy of
the pose estimation of the robot and its positioning. The
issues associatedwith reducing the computational complexity
of PFs are addressed in this research work by adding the
memory-efficient cellular automata-based Pseudorandom
Number Generator (PRNG) [4] and improved systematic
resampler integrated into the SIR particle filter algorithm.
The Vose alias-based enhanced systematic resampler is
integral to particle filtering by enabling the constant-time
generation of sample particles post-alias table initialization,
thereby reducing the number of arithmetic operations needed.
Furthermore, the inherent parallel architecture improves
the performance gains by utilizing multiple processing
units simultaneously. It also requires less memory to store
precomputed probabilities, making it more efficient for
resource-constrained FPGAs. The proposed design achieves
higher accuracy while using less execution time and
power, making it a potential solution for real-time state
estimation robotics applications. The performance of the
design is evaluated, compared, and validated using simu-
lations and state-of-the-art implementations. The primary
contributions of this paper encompass the following key
points:

1) We propose a hardware-based circular buffer mecha-
nism for particle routing between subfilters, a feature

that enhances the design’s modularity and facilitates
seamless data transfers.

2) We implemented a novel area-efficient 32-bit PRNG
based on cellular automata, a design that minimizes the
utilization of on-chip memory resources.

3) We enhance the systematic resampling process of the
particle filter stage by implementing the Vose Alias
method to mitigate particle degeneracy issues and
exploit the inherently parallel design of Vose Alias on
hardware to increase the resampling step’s throughput.

4) We implemented the proposed design on a SoC
platform, thereby augmenting the system’s sampling
rate and reducing the overall execution time for
processing a substantial number of particles (2k). The
proposed architecture is implemented on the low-
cost Zynq-7000 SoC. The empirical results of these
implementations attest to their efficiency in the context
of localization and pose estimation.

The remainder of the research paper is structured as
follows: Part II discusses the foundations of Bayesian
Inference and Particle Filters, Part III highlights the most
recent literature review of particle filter hardware implemen-
tation, followed by Section IV, which describes the research
methodology. Part V depicts the experiment’s outcomes, and
Section VI summarizes the paper.

II. BAYESIAN INFERENCE AND PARTICLE FILTERS
Bayesian inference serves as a recursive framework for
estimating the probability distribution of unknown variables
in a probabilistic model utilizing known data. At its
core, Bayesian inference involves calculating the posterior
distribution of the unknowns given the data. This process
is achieved by multiplying the prior probability of the
hypothesis by the likelihood of the data given the hypothesis.
The result is then normalized by the marginal probability of
the data, yielding the inferred distribution [5]. Generally, the
system’s state in a discrete-time state-space model is defined
as:

xk = fk (xk−1, vk−1) (1)

where, xk is system’s state at k time step and vk−1is noise
measurement and fk is some non-linear and time dependent
function. The latent variable xk is assumably hidden and can
be calculated by the noisy measurement model defined by
equation 2.

zk = hk (xk , nk) (2)

where, hk is describing the measurement model based on a
time-dependent function, and nk is a noisy vector. The overall
aim is to formulate the posterior p(xk |z1:k) of the state space
xk based on the measurement model z1:k till time k, and
it is done using prediction and update stages. Using the
Chapman-Kolmogorov equation, the prediction probability
density function (PDF) of the state at time step k can be

18474 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

calculated as follows:

p(xk |z1:k−1) =
∑
xk−1

p(xk |xk−1)p(xk−1|x1:k−1) (3)

where p(xk |xk−1) is the motion model defined by the
system (1). The PDF acquired from the prediction stage is
updated with the range sensor data zk at time k in the update
stage using the Bayesian theorem to develop the posterior
distribution:

p(xk |z1:k) =
p(zk |xk)p(xk |z1:k−1)∑
xk p(zk |xk)p(xk |z1:k−1)

(4)

where p(xk |zk) is described as the likelihood function, and
the steps of prediction and update are done recursively while
acquiring new measurement data zk .
Bayesian inference rests on conceptual foundations,

including prior probability distribution that represents the
degree of belief about the parameters before any observa-
tion. The choice of the prior distribution can significantly
impact the posterior distribution and the resulting inference.
Secondly, the likelihood function describes the probability
of observing the data given the model parameters. The
likelihood function reflects the data generation method
and updates the prior distribution to produce the posterior
distribution. Lastly, the posterior probability distribution
reflects the updated degree of belief or uncertainty about the
parameters [6], [7], [8].

Determining the posterior using the Bayes rule is amethod-
ological perspective analytically determined using standard
Kalman filters. Nevertheless, in the case of non-Gaussian
settings, obtaining a precise analytical solution becomes
intricate. As a result, approximation-based algorithms like
Particle Filters (PFs) are utilized to generate an estimated
Bayesian outcome. Particle filtering is a generic Markov
Chain Monte Carlo sampling technique for inference in
state-space models. The system’s state updates over time,
and knowledge about the state is gained through noisy
measurements taken at iterative time steps.

A. SAMPLING IMPORTANCE RESAMPLING PF
One of the most optimal variant of PF is SIR algorithm [1]
where, the proposal distribution p(xk |xk−1, zk) is assumed to
be equivalent to the state transition distribution p(xk |xk−1)
and then the re-sampling step is done recursively. Therefore,
the update equations in the SIR particle filter are reduced to:

x ik ∼ p(xk |x ik−1), (5)

wik ∼ p(zk |x ik). (6)

The issue of weight degeneracy can be addressed by
iteratively duplicating particles with higher weights and
discarding particles with lower weights. Following the
resampling step, the particles exhibit a uniform weight
distribution approximately that aligns with the desired target
distribution p(x0:k |y1:k). In the subsequent time step k + 1,
an additional state variable, denoted as xk+1, is introduced

Algorithm 1 SIR Particle Filter Algorithm
Data: xk−1, zk
Result: xk
Initialize: For i = 1, . . . ,N , set normalized

importance weights, w̃(i)
0 ∝

p(x(i)0)

q(x(i)0)
with

∑N
i=1 w̃

(i)
k = 1

for i = 1 to K : do
Propagation: for i = 1 to N : do

particles[i] = sample from p(xk |x
(i)
k−1) setting

new dimension to particle x(i)0:k = x̃(i)0:k−1, x
(i)
k

end for
Weight Normalization: for i = 1 to N : do

w̃(i)
k ∝

p(yk |x
(i)
k)(p(x(i)k |x

(i)
k−1))

q(x(i)0)
× w(i)

k−1

end for
Estimation stage: E (SIR)

k
∑N

i=1 f (x
(i)
0:k)w

(i)
k

Resampling stage: if Neff ≤ cN then
resample x̃(i)0:k with replacement from x(i)0:k set
w̃(i)
k =

1
N such that (x̃(i)k , w̃(i)) = 1

N
else

x̃(i)0:k , w̃
(i)
k = x(i)0:k ,w

(i)
k

end if
end for

to the particles by sampling from a conditional importance
distribution qk+1(x

(i)
k+1|x

(i)
0:k). Particle filters permit the option

of performing resampling optionally. This means that resam-
pling occurs whenever the effective sample size Neff is less
than or equal to a specified constant c out of the total number
of particles being employed.

Particle filters commonly use c = 1, which triggers
resampling at each step. However, an alternative value can
have advantages, as resampling introduces extra variability
into the estimates. When the importance weights exhibit
minimal degeneracy, introducing this extra variance through
resampling becomes unnecessary. During each iteration,
essentially there are two particle approximations: one rep-
resented by the set x(i)0:k ,w

(i)
k before resampling and other by

set x̃(i)0:k ,w
(i)
k = 1/N after resampling. Although both yield

unbiased estimates, the estimator exhibits lower variance
before resampling.

The pseudo-code for the SIR particle filter is illustrated in
Algorithm 1.

III. RELATED WORK ON PF IMPLEMENTATIONS
Particle Filter-based Monte Carlo Localization (MCL) meth-
ods have been extensively employed in robotics to handle
the localization problem over the previous decade, as they
are regarded as one of the most efficient algorithms to deal
with non-linear and asymmetric probability densities [6].
A growing interest in recent years has focused on developing
hardware accelerators to speed up particle filter computations

VOLUME 12, 2024 18475

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

in recent years. One of the earliest works in the domain
of hardware prototypes for particle filters was illustrated by
Athalye et al. [9]. They developed a generic architecture for
sampling and resampling in particle filters on FPGA without
exploiting the parallelization capacity of the hardware. With
the growing interest in edge computing, it would be beneficial
to assess the accelerator’s sampling rate and its comparison
with other hardware accelerators.

Ye and Zhang [10] proposed an improved FPGA par-
ticle filter implementation for radar tracking applications
and presented experimental results on a synthetic radar
dataset. Although the paper explained the hardware archi-
tecture, it did not address comparing the performance of
the proposed FPGA architecture with other works and
its implementation on actual radar data to evaluate its
generality. Mountney et al. [11] presented an FPGA-based
implementation of a particle filtering algorithm for Brain
Machine Interfaces (BMIs). Their algorithm added strategies
to parallelize the state vector and probability estimates, but
the evaluation of the proposed design was constrained to
a small set of experiments. The paper does not compare
the proposed architecture with other existing particle fil-
tering implementations nor present a comprehensive anal-
ysis of the proposed approach’s performance in various
settings.

The paper by Agrawal et al. [12] proposed an FPGA
implementation of particle filter-based object tracking in
video. While the paper extensively explains the hardware
design of the PF-based tracking algorithm, it fails to include
a comparison between the suggested FPGA implementation
and a software version of the same algorithm. More-
over, evaluating the proposed implementation on different
video sequences would be interesting to understand its
performance under different conditions and its generality.
Miao et al. [13] presented an FPGA-based implementation
of Bayesian tracking algorithms for multiple sources of
neural activity. The proposed approach is based on a PF
algorithm designed to track the locations of multiple neural
sources efficiently. They suggested a parallel implementation
strategy that uses numerous processing elements (PEs) and
a primary central unit (CU). CU handles the resampling
process, while PE handles sampling and weight updating.
On the other hand, the architecture could be more scalable
for large-scale particle processing since the communication
overhead between the PE and the CU increases linearly with
the number of PEs. Schwiegelshohn et al. [14] introduced
the FPGA optimized resampling to parallelize the resampling
stage. The architecture design process, including the specific
decisions made on the design parameters, algorithms, and
implementation details, has to be thoroughly described in the
article. Even if the suggested architecture is assessed using
a benchmark dataset, it is essential to show its success in a
real-world scenario.

Sileshi et al. [15] presented two methods for incorporating
PFs on an FPGA: a combined hardware/software approach
that utilized a soft-core processor and a dedicated hardware

design aimed at reducing execution time. However, the
research did not examine how the design variables influenced
the performance of the suggested hardware accelerator.
Also, the paper mentions that the proposed accelerator uses
fixed-point arithmetic but does not investigate the impact of
quantization on the accelerator’s performance.

Krishna et al. [16] suggested an FPGA implementation
of a particle filter that uses parallel processing to process
many particle filters concurrently using an additional particle
routing step, enabling fast and effective computation. The
authors suggest a new resampling method to lessen the com-
puting resources. Although the authors successfully reduced
the execution time of the SIR operations by incorporating
the multiple sub-filters in their design for 1000 particles, the
hardware cost increased significantly. Furthermore, the
authors recommended parallel implementation of the sys-
tematic re-sampler in the particle filtering step; nonetheless,
it remains a black box with an abstract-level explanation only.
While recent implementations in the field have been executed
on hardware using a variety of frameworks, many of them
exhibit notable limitations. Hence, there is a pressing need to
develop dedicated hardware solutions equipped to efficiently
process a substantial number of particles within predefined
time constraints to meet the demanding speed criteria of
real-time applications. This paper addresses this critical issue
by introducing a high-speed architecture characterized by a
high degree of parallelism and easy scalability, enabling it to
handle a substantial quantity of particles effectively.

IV. METHODOLOGY
This section summarizes the measurement model regarding
the robot localization framework, the architecture and
hardware design of the FPGA design, the pseudo-random
number generator (PRNG) implementation, the algorithm’s
improved re-sampling approach, and the integration with the
robot localization system.

A. MEASUREMENT MODEL OF PF
The particle filter technique on the mobile robot platform
demands dynamic mobility between the onboard sensors and
the platform itself [17]. The position of the mobile robot X̂Robk
is explained by the Cartesian coordinate system in the two-
dimensional (2D) plane at time instant k:

X̂Robk = [XRobk , Y Robk]. (7)

The pose of the mobile robot along the longitudinal axis is
represented byØkRob that is the expected bearing of the robot.
The range sensor data zk at k time steps, in binary form,
is provided to the measurement model through block random
access memories (BRAMs) of the FPGA. Then, given the
measurement model (2), it can be integrated with the range
sensor data as:

zk = m(xk) + vk . (8)

18476 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

FIGURE 1. FPGA architecture for SIR particle filter.

The expected bearing data of the mobile robot at time step k
in the measurement model is given by:

m(xk) = tan−1(
Yk − Y Robk

Xk − XRobk

), (9)

where, Yk and Xk are the coordinates of the source sensor in
a two-dimensional world. The tangent inverse tan−1 function
is implemented by hardware efficient CORDIC algorithm for
vector rotations, which significantly reduces the number of
iterations. To fully harness the FPGA’s parallel computing
abilities and high-speed architecture, our proposal involves
employing four SIR particle filter sub-implementations (sub-
filter F=4) simultaneously on the FPGA, with each sub-
implementation processing 512 particles concurrently. This
approach is crucial because the accuracy of the particle
filter algorithm relies on the number of particles sampled
from the distribution. The initial sampling and importance
weights computation stages are essentially parallel since
the two stages have no functional dependency. However,
the re-sampling stage is sequential as it needs information
on all the particles at previous and current time stamps.
This sequential nature poses a substantial bottleneck when
parallelizing particle filters on FPGA.

To address this challenge, we proposed a particle routing
and exchange operation to facilitate the parallelization of
the resampling step by efficiently exchanging ‘‘s’’ particles
between multiple subfilters. The algorithm initializes a set
of subfilters, each containing a collection of particles. It also
accepts two parameters: the number of particles to exchange,
denoted as s, and the circular buffer size, represented by B.
Circular buffers are set up for each subfilter, each having a

capacity of B to implement the algorithm. The central part
of the algorithm is the particle exchange loop. For every
particle marked as ‘‘s’’ for exchange, particles are removed
from each subfilter and placed into their corresponding
circular buffers. Simultaneously, particles are dequeued from
the circular buffer of each subfilter and added to the next
subfilter circularly. This process efficiently transfers particles
between subfilters while preserving the order. Following the
particle exchange loop, each subfilter is updated to contain
particles from the circular buffers. The algorithm replaces
each subfilter’s oldest ‘‘s’’ particles with the particles from
their respective circular buffers to ensure that each subfilter
now contains particles exchanged between them, as shown in
algorithm 2.

B. ARCHITECTURE OVERVIEW OF SIR PARTICLE FILTER
This section presents novel FPGA architecture for the SIR
particle filter shown in Figure 1, which exploits the inherent
parallelism in each module integrated into the algorithm. The
performance of the SIR PF is influenced by different factors,
such as the number of particles used, the dimensionality of
the state space, and the complexity of the measurement and
motion models. Typically, the computational effort of the SIR
PF rises linearly with the quantity of particles. If there are N
particles, the computation time for each filter iteration will
be directly proportional to N. Consequently, the space and
time complexity of the SIR particle filter can be expressed
as O(NM), where N represents the number of particles
and M denotes the complexity of the measurement and
motion models. A trade-off between accuracy and computing
efficiency will determine the number of particles utilized.

VOLUME 12, 2024 18477

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

Algorithm 2 Particle Routing Stage
Data: Particle subfilters

[Subfilter1,Subfilter2, . . . ,SubfilterM],
Number of Particles to Exchange ‘‘s’’,
Circular Buffer Size B

Result: Updated Particles after Particle Exchange
for i = 1 to M do

Initialize circular buffer for Subfilteri with size B.
end for
for t = 1 to s do

for i = 1 to M do
Dequeue s particles from Subfilteri and add
them to the circular buffer.

end for
for i = 1 to M do

Dequeue s particles from the circular buffer of
Subfilteri and add them to Subfilteri+1.

end for
end for
for i = 1 to M do

Replace the oldest s particles in Subfilteri with
particles from the circular buffer.

end for
Output Updated Particle Subfilters:
[Subfilter1,Subfilter2, . . . ,SubfilterM]

1) CELLULAR AUTOMATA-BASED PRNG
In the domain of VLSI design, a fundamental aspect of
cellular automaton (CA) registers involves the utilization
of n-bit configurations. Within this context, a critical
component is a flip-flop at the index denoted as j. This
flip-flop is subject to the influence of a next state (NS)
logic, which derives its input from neighboring flip-flops.
These neighboring flip-flops are strategically positioned at
indices j2, j1, j + 1, j + 2, and the flip-flop is located at
index j. The collective behavior of this intricate system
is intrinsically governed by a specific CA rule, which
prescribes its dynamics. In Field-Programmable Gate Array
(FPGA) implementations, a cellular automaton-based PRNG
exhibits a noteworthy design, as shown in Algorithm 3. This
design incorporates 140 lookup tables (LUTs) and 83 slice
registers, significantly reducing the area (LUT + FF) and
mitigating reliance on BlockRAMs for storing variables. This
particular design strategy in Fig. 2 imparts several advan-
tages, notably low-latency access. Such an attribute enhances
critical timing path performance and ensures operations
synchronization.

The proposed design of CA operates in two phases: the
initialization phase and the update phase. The algorithm
begins by initializing the PRNG with the provided seed and
the PRNG output sequence as empty. It then proceeds to
evolve the CA for 32 generations. In each generation, the state
of the CA is updated based on the 8-bit address array for
the Rule 30 cellular automaton rule [18], which determines
the state transition of each cell based on its neighbors. The

Algorithm 3 32-Bit CA-Based Automata
Data: Initialize PRNG with a 32-bit seed

write_data[31 : 0], address[7 : 0], 8-bit update
rule

Result: read_data[31 : 0] PRNG sequence
Function GeneratePRNG write_data, address,
update_rule:

Data: Initialize state[31 : 0] with
write_data[31 : 0]

Data: Initialize read_data[31 : 0] with 0
for gen← 1 to 32 do

for i← 1 to 31 do
state[i]← UpdateRule30(state[i−
1], state[i], state[i+ 1], update_rule)

end for
state[0]←
UpdateRule30(state[31], state[0], state[1],
update_rule)

read_data[gen− 1]← state[31]
end for

Function UpdateRule30(a, b, c, rule):
return rule[4 · a+ 2 · b+ c]

rule evaluates the three neighboring cells to compute the next
state for each cell. The CA evolution process continues for
32 generations, and in each generation, the leftmost cell of
the current state is added to the PRNG output sequence. This
process is repeated until all 32 generations are completed,
resulting in a 32-bit PRNG sequence. The central element
of this algorithm is the UpdateRule30 function, which is
responsible for applying Rule 30, a widely recognized
cellular automaton rule. Within the UpdateRule30 function,
the computation of a cell’s new state is determined by
considering the values of its three neighboring cells and
adhering to a deterministic pattern. The resulting PRNG
sequence, which is stored in read_data[31 : 0], consists of
32-bit pseudo-random numbers.

2) SAMPLING MODULE
The sampling module creates new particles{xk}Mi=1 from
a proposal distribution {xk−1}Mi=1that approximate the true
posterior distribution of the state variable given the range
sensor measurement data. Moreover, the particle samples
{xk−1}Mi=1are further employed to generate another set of par-
ticles {xk+1}Mi=1of the next time step k+1. Therefore, access-
ing and storing two set of particles {xk}Mi=1 and {xk−1}Mi=1
simultaneously requires efficient memory storage element
with depth M. In this research, we propose implementing a
single dual-port random access memory (DPRAM) for parti-
cle storage with depth M, lowering the total memory needed
for particle storage. The particles that are updated throughout
the re-sampling procedure are the subsets of the sampled
particles. A single DPRAM with pointer variables would be
ideal for accessing the particles and reading and writing their

18478 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

FIGURE 2. Top-level block diagram of CA-based PRNG.

Algorithm 4 Sampling Module of PF for FPGA

Data: Particle from k − 1, Previous Position [x ik−1,
yik−1], and PRNG Seed

Result: Particle at k time xk (as 32-bit array indices)
Initialize grid parameters: Ngrid (Number of grid cells
in the x and y directions) σ (Standard deviation for
random increments) xmax and ymax (Maximum
values for x and y)
for i = 1 to N do

Generate random integer values rX and rY from
PRNG Convert rX and rY to float values in the
range [0, 1]

Calculate the increments: dX = σ × (2× rX − 1)
dY = σ × (2× rY − 1)
Update the particle position: xk = xk−1 + dX yk =
yk−1 + dY
Map xk and yk to grid indices: xindex =
round(xk ×

Ngrid
xmax

) yindex = round(yk ×
Ngrid
ymax

)
Store xindex and yindex as 32-bit array indices

end for

indices without repeatedly accessing the replicated particles’
memory addresses. An interleaved addressing scheme is
employed to access individual particles or state variables
within particles. Interleaved addressing distributes particles
across memory locations, allowing multiple processing units
to access particles concurrently, thereby increasing paral-
lelism and reducing the likelihood of memory contention,

potentially improving overall system performance. However,
the interleaved addressing scheme requires additional logic to
map particles to memory locations, adding complexity to the
implementation. The pseudo-code for the sampling module is
explained in Algorithm 4.

This module operates by taking into account essential
parameters, including Ngrid (the number of grid cells in
the x and y directions), σ (the standard deviation for
random increments), and xmax and ymax (the maximum
values for x and y). At the algorithm’s core is a loop
iterating through each particle i from 1 to N , representing
the total number of particles in the filter. For each particle,
the algorithm generates random integer values rX and rY
from a pseudo-random number generator (PRNG), which is
fundamental for ensuring stochasticity in the process. The
random integer values rX and rY are subsequently converted
into float values within the range [0, 1]. This conversion is
critical for constraining the increments to the desired range,
ensuring a consistent transition from discrete to continuous
space. The increments dX and dY are computed based on the
generated random values. These increments are drawn from a
normal distribution with a mean of 0 and a standard deviation
of σ . The random values rX and rY are employed to determine
the direction of the increments, effectively mapping them to
values between −1 and 1. Particle positions at time k are
updated based on the calculated increments as xk is updated
as (xk−1+dX) and yk is updated as (yk−1+dY). To integrate
these updated positions into the grid-based framework, the
algorithm maps the continuous positions xk and yk to discrete
grid indices.

VOLUME 12, 2024 18479

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

Algorithm 5 Importance Weights Module

Input: Sensor measurements [z1k , z
2
k , . . . , z

N
k], Particle

set Sk = {(x ik , y
i
k , θ

i
k , x

Rob
k , yRobk ,wik)}

for each particle (x ik , y
i
k , θ

i
k , x

Rob
k , yRobk ,wik) in Sk do

Normalize the particle’s weight:

wik =
wik∑
i w

i
k

Calculate the angle θk between (x ik , y
i
k) and

(xRobk , yRobk): θ ik = arctan 2(yRobk − yik , x
Rob
k − x ik)

end for
for each particle (x ik , y

i
k , θ

i
k ,w

i
k) in Sk do

Compute the sector index: idx(θ ik) =
⌊
4·(θ ik−φRobk)

π

⌋
Compute the weight of the particle based on the
measurement and sector index:
wik =WeightComputation(zk , idx(θ ik))

end for
Output:Weighted particle set Ŝk (updated weights)
for eachparticle (x ik , y

i
k , θ

i
k ,w

i
k) in Sk do

Store the generated weights wik in the weight
memories of the FPGA:
WriteToBRAM(wik ,Address

(i))
end for

This mapping ensures that the particles are aligned with
the grid cells. Moreover in mapping, the xindex is computed
by rounding xk and scaling it to the grid size of round(xk ×
Ngrid
xmax

). A similar calculation is performed for the y-coordinate
to obtain yindex. Finally, the calculated xindex and yindex are
stored as 32-bit array indices, effectively incorporating the
particles into the grid-based representation.

3) IMPORTANCE WEIGHTS COMPUTATION MODULE
The importance weights computation module’s role is to allot
weights to particle samples depending on the probability of
that particle representing the real state of the system based on
sensor readings zk .

wk = wk−1 p(zk |xk). (10)

This is accomplished by comparing the sensor’s range data
to the projected range values for each particle. The more
the weight attributed to a particle, the closer the projected
range measurements are to the actual range measurements.
In equation (10), the term p(zk |xk) is calculated using a
custom CORDIC module that estimates the rotation angle
(θk) of all the particles by calculating an arctan function
tan−1of the particles’ position and robot position in a
two-dimensional Cartesian coordinate plane.

θk = tan−1
(
Yk − Y Robk

Xk − XRobk

)
. (11)

In equation (11), the CORDIC implements the arctan
function [19]. Tuning the configuration of coarse rotation

FIGURE 3. Importance weights computation module.

module in IP settings, the input vectors of particles coordi-
nates (Xk , Yk) and robot position(XRobk , Y Robk) are rotated
in the range of full circle until the Y component converges
to 0. The importance weights computation module is shown
in Figure 3. The range sensor vectors are provided to
the Importance weights computation module through an
AXI-stream interface with a data width of 32 bits. The range
measurement data is fed to the sequence generator block to
calculate the angle between the particles relative to the robot’s
pose along the longitudinal axis in radians. Mathematically,
it can be calculated as follows:

idx(θk) =

[
4×

(
θk − φRobk

)
π

]
rad . (12)

All the particles’ relative weights (wk) are generated by com-
bining the idx(θk) values and range sensor measurements zk .

4) IMPROVED SYSTEMATIC RE-SAMPLER
Re-sampling is a statistical approach that may be used
to address the degeneracy problem. It plays a vital role
in particle filtering as it enables the particle set to be
refreshed for a more accurate representation of the pos-
terior distribution of the state, considering the available
measurement data. Murray et al. [20] introduced systematic
re-sampling approaches that computed the cumulative total of
particle weights and subsequently reduced the multiplication
of the particle count and their cumulative weight. This
approach eliminates the need for data dependency within
the loop. In this study, we employed the improved version
of systematic re-sampling (ISR) based on the evidence [21]
that it is most optimal for FPGA-based implementations of
MCMC applications requiring a large number of particles.
It is also preferred due to the ability to minimize Monte
Carlo variations while effectively monitoring the effective
sample size (ESS), which measures the diversity and quality
of the particle set. The weights and total of all particle
weights generated by the particle weights computation
module remain un-normalized for ISR to process. The output
of the re-sampler is the total number of offspring particles
of the parent particle (offsi, i = 1, . . . , N), i.e. the ratio of
replication of particle i. The re-sampling goal is to guarantee
that the offspring vector offsi meets the two requirements (13)

18480 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

and (14).

N∑
offsi = N
i=1

. (13)

Exp(offsi) =
N (wi)
Sum (w)

. (14)

These equations assure that the total quantity of particles (N)
remains constant and that the expected value Exp(offsi) of
the replicated particles is proportional to the weights. The
pseudo-code for the improved systematic re-sampler is shown
in Algorithm 6. The ISR approach requires an initial step
that computes the weights’ cumulative sum using a parallel
cumsum block, pcumsum. Although sequential processing
is simple, parallelizing it in hardware is challenging due to
output data dependence. The three-step recursive doubling
approach is more hardware efficient and requires fewer
resources for processing large quantities of particles. The
algorithm’s core principle is to divide the computation into
smaller sub-problems that may be solved separately on
different processing elements. The architecture relies on
several parallel pipelined adders that continuously input new
weights in each cycle. An accumulator is positioned after
the main data processing path to consolidate the values of
each set of weights. P1-1 uniform adders are also required
for CUMSUM to create P1 outcomes for each weight set,
with P1 denoting the parallel degree for cumulative sums.
Meanwhile, the CUMSUM module’s overall execution time
may be improved from N + latcumsum in sequential flow to
N/P1+ latcumsum cycles in parallel flow (i.e., latcumsum is the
latency of CUMSUM datapath).

This approach is entirely parallelizable since there is no
requirement for random number generation (PRNG) during
this stage, and data dependencies are eliminated throughout
loop iterations. The only drawback is that a small amount
of extra memory is necessary to store the combined sum
of particle weights. The parallel cumsum’s output is the
number of offspring of each particle at prior time steps k
(offsi, i = 1,. . . , N), i.e., the particles’ replication count,
which eventually generates the indices of the re-sampled
particles after going through a re-sampler to store in DPRAM.
DPRAM provides the advantage of simultaneous read and
write operations, which can facilitate parallel processing
and efficient access to the particle data as state vector
representations.

The algorithm first uses the parallel cumsum technique
to compute the normalized cumulative sum of the weights.
Then, it initializes an empty array called offspring indices
of length N (line 2). It sums up and divides each element
by the weights to acquire normalized weights. The array
partial_sums of length N/2 is initialized with the partial
sums of normalized weights in successive pairs. It uses
the parallel cumsum technique to iteratively compute the
cumulative sum of the partial sums until it produces a single
value, the total of all the normalized weights. It stores the
intermediate cumulative sums in a temporary array called

Algorithm 6 Improved Systematic Resampler
Data: Particle weights at k[wk],N ,PRN
Result: offs[i] offspring indices vectors of length N
⇒Normalized cumsum of weights
cumsumw = p_cumsum(wk)
initialize offs[i] = 0
Aw = sum[wk] /wk [N]
partial_sums[] =

∑
Aw

tempcumsum = sum(Aw)
Create ind[i] ϶ i[1 . . .N/2] −→ ind[i] = i2
prefixsum[i] = tempcumsum[2i]
cumsumalias=cumsumw
Normalize cumsumalias
Create prob[i], alias[i] arrays
for i = 1 to N do

PRNfp=PRN[i]×N ⇒fp =
floating point

prob[i]=floor(PRNfp)
if cumsumalias[offs[i]]≥prob[i] then

alias[i]=offs[i]
else

alias[i]=j ∀ cumsumalias[j]≥prob[i],
⇒j is smallest index

end if
end for
if offs[i]==alias[i] then

keep[i]=1
else

keep[i]=0
end if
flip[i] = keep[i]
for i = 1 to N do

if keep[i] == ‘0’ and keep[alias[i]] == ‘1’ then
set flip[i] = ‘1’

end if
end for
Generate binary array flip[2i]
for i = 1 to N do

if flip[i] == ‘1’ and flip[2i] == ‘1’ then
offs[i] = alias[i]

else
if flip[i] == ‘1’ and ‘0’ then

offs[i] = i
end if

end if
if flip[i] == ‘0’ then

offs[i] = i
end if

end for

temp_cumsum. It creates an array called indices of lengthN/2,
where indices[i] = i2. It creates an array called prefix_sums
of length N/2, where array prefix_sums[i] is equal to
temp_cumsum[2i]. It recursively computes the cumulative
sum of prefix_sums using the parallel cumsum method until

VOLUME 12, 2024 18481

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

FIGURE 4. Improved systematic resampler.

it gets the array cumsum. It then duplicates cumsumw as
cumsumalias and normalizes cumsumalias by dividing each
element by the sum of all elements.

It leverages a cellular automata PRNG with the random
seed to createN random integers between 0 and 1. It generates
two N-dimensional arrays called prob and alias. It multiplies
the ith random number by N for each i from 1 to N to
get the floating-point value PRNfp. It obtains the integer
floor of PRNfp using floor(PRNfp) and puts it in the ith

member of offspring indices. The residual fraction of PRNfp
is then computed by subtracting floor(PRNfp) fromPRNfp and
stored in the ith element of prob. If the value of the array
cumsumalias[offs[i]] exceeds prob[i], the variable alias[i] is
assigned the value offs[i]. Conversely, if cumsumalias[j] is
greater or equal to prob[i] for the lowest index j, alias[i]
is set to j, and this value is stored in the ith element of the
array alias (line 17). Subsequently, an array keep of length
N is generated, where keep[i] is 1 if offs[i] equals alias[i],
and 0 otherwise, designating duplicates as flips. For each i
from 1 to N, if keep[i] is 0 and keep[alias[i]] is 1, flip[i]
is set to 1. Employing the pseudorandom number (PRN)
with a specified random seed, a binary array named flip2 is
constructed with a 0.5 probability for each member being 0 or
1. If flip[i] equals 1 and flip2[i] equals 1, offs[i] is set to
alias[i] for each i from 1 to N. Conversely, if flip[i] equals
1 and flip2[i] equals 0, offs[i] is set to i. If flip[i] equals 0,
offs[i] is set to i. Lastly, the method generates the offspring
indices containing the particle indices chosen as offspring.
The initialization time complexity of theVoseAlias technique
isO(n), while the cost of sampling once is constantO(1). The
block diagram of ISRmodule is shown in Figure 4. In contrast
to other variants of resampling methods, such as roulette
wheel selection, stratified and rejected, offspring evaluation
can be readily done in parallel with the proposed method.

5) MEAN ESTIMATION MODULE
The SIR particle filter’s mean estimation module is used to
estimate the mean of a target distribution using a set of parti-
cles. To generate the summation, particle locations from the
resampler module are input in parallel and aggregated over F
cycles (F=4, sub-filters in parallel for implementation). This

sum is divided by the entire quantity N of particles by right
shifting log2(N) times to obtain the average [22]. The particle
filter iterates to update the estimate as newer data become
available. The mean estimates the location of the robot source
P(x, y, θ). Overall, the SIR particle filter’s mean estimate
module is a practical algorithm for calculating the mean of
a target distribution using a set of particles, allowing for
accurate and robust estimation of the posterior distribution
of a system state in Bayesian filtering. For mobile robot pose
estimation, using quaternions to represent particle orientation
allows a more accurate and efficient estimation of the robot’s
pose. The approach can better capture the uncertainty in
the robot’s position and update the belief distribution over
time by employing a population of particles with associated
quaternions. This pipeline leads to more robust and accurate
localization and posture estimation, especially in noisy and
unpredictable situations. The particle’s weights with their
computed quaternions from the CORDIC IP are summed and
normalized to estimate the robot’s orientation. This estimate
represents the weighted average of the orientations of all the
particles, with the weights given by their importance weights.

V. RESULTS AND DISCUSSION
This section will address the utilization of hardware resources
of the proposed SIR particle filter on ZC7020, considering the
power constraints of the mobile robot system and real-time
localization application.We will also compare our findings to
those of cutting-edge research works and implementations.

A. TIME EXECUTION ANALYSIS
We utilized four simultaneous SIR filters (F = 4) to process
512 particles (N = 512) each for hardware implementation
on ZC7020. Because the sampling and important weights
computation blocks have mutually dependent functions,
these modules were pipelined at the architectural level to
reduce time execution and latency while increasing design
throughput. Although employing pipeline structures requires
more hardware resources and increases the design’s com-
plexity, it considerably improves efficiency by dividing data
processing into stages; each stage may operate independently
on a subset of the data. Since the sampling and importance
weights computation stage are pipelined, their combined
execution time is N/(F + lats + latimp), and the vose
alias-based ISR resampler takes two times more clock cycles
to execute 2N/(F + lats + latimp). The total clock
cycles for ISR resampler with parallel degree P1 is N/P1 +
latadd log2 P1 + latadder + lataccum where, latadd , lataccum
are the latency of adder and accumulator in the ISR resampler
and lats, latimp,and latr represents the startup latency
of sampling, importance weights computation and improved
systematic resampling modules. The total time execution
of SIR particle filter to process N particles is estimated to
be:

Tsimpr = (
3N
F
+ lats + latimp + latr)Tc (15)

18482 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

FIGURE 5. Proposed design time execution.

where, Tc is the clock period of the proposed design of the
SIR filter. To perform a single iteration of the proposed SIR
particle filter, the operation takes Tsimpr time to complete,
as shown in Figure 5.

Figure 6 illustrates the time execution of the proposed
SIR particle filter architecture concerning the number of sub-
filters (F=4) processing varying quantities of N particles
concurrently (N=128/256/1024/2048). If the particle count
is low, the particle filter may be unable to adequately
reflect the system’s potential states, resulting in poor location
estimation accuracy. Conversely, if particles are too large, the
particle filter’s computational complexity may become too
high, which is not an option for a low-constrained mobile
robot system [23]. Sampling larger particles represents a
broader range of possible states, which can help the particle
filter explore the state space better, reduce the variance
in the importance weights, and find the actual state of
the system. Therefore, considering the resource constraints
of the hardware, we employed the optimal quantity of
particles in our experimental study to keep the system
stable.

Adding parallelization to the proposed design by employ-
ing additional sub-filters (log2F) reduces execution time
remarkably, but at the cost of increased hardware resources
of the FPGA, as depicted in Figure 7. Each sub-filter
can independently process N/F particles, which allows
for parallelization and reduces the execution time notably
but comes at the cost of increasing hardware resources.
Nevertheless, there is a performance ttrade-offbetween the
execution time and resources utilized during architectural
synthesis.

The available onboard hardware resources restrict the
maximum number of sub-filters mapped on an FPGA,
limiting the maximum attainable speed.

FIGURE 6. Execution time of particle filter vs No.of sub-filters.

B. HARDWARE DESIGN AND RESOURCE UTILIZATION
The proposed architecture of the particle filter accelerator
is implemented on Zedboard embedded with a low-cost
SoC XC7Z020-CLG484-1, combining two A9 ARM Cortex
cores and Artix-7 programmable logic. Regarding computing
capability, the board has 85K Logic Cells for implementing
various logic functions and sequential logic functions like
state machines and counters, 53,200 look-up tables (LUT),
106,400 flip-flops, and 560kb of Block RAM, providing
ample onboard memory resources. It has 220 DSP slices
for signal processing, which is essential for speeding up
complex calculations. The FPGA design of the SIR particle
filter was implemented using a single precision floating point
arithmetic format in the high-level synthesis tool Vitis HLS
2022.1. Vitis HLS provides a higher-level design process
that can increase productivity, reduce development time,
and provide performance-optimized hardware designs. It is
essential to acknowledge that if the memory bandwidth is
not adequate to sustain a continuous flow of data to the
processing elements, the performance of the FPGA may be
limited when utilizing on-chip FPGA memory to handle a
maximum of 212 particles, with the particle weights stored
in the respective memories and the need to transfer these
weights to or from the memory. The DDR3memory interface
has a maximum operating frequency of 533 MHz with a
configured 32-bit data width. The particle transfer between
the particle filter accelerator module and DDR memory
is enabled by creating a block design. In order to create
the interface between the accelerator module and the CPU
through the DMA controller, an AXI DMA (direct memory
access) IP was used. The AXIDMAwas customized, with the
stream data width set to 32, aligning with the 32-bit interface
of the particle filter accelerator IP in this architecture. The
IP is linked to the MAXISMM2S interface through its saxis.
The Zynq PS (processing system) comprises the CPU and
DDR memory controller. For our proposed application using
a single precision floating point arithmetic datatype, the
amount of data that needs to be processed is:

12 B/particle × 2048 × 216 kHz = 5.3 MB/s. (16)

Figure 7 illustrates that with increasing the number of
sub-filters (F>1), the hardware resources, i.e., LUTs, slice
registers, and BRAM increased proportionally. The graph
in Figure 7 shows increased growth in the FPGA LUT
resources with increased sub-filter usage. After imple-
menting the proposed design on Zedboard, incorporating

VOLUME 12, 2024 18483

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

four sub-filters responsible for processing 512 particles
each, the utilization includes 10.634 thousand slice lookup
tables (LUTs), 8.75 thousand flip-flops, 78 digital signal
processors (DSP) employed for multiplication operations
during the sampling and weights computation stage, and
66 block random access memory (BRAM) units designated
for on-chip storage and expedited particle update, ensuring
swift access. Furthermore, our suggested design’s resource
consumption can be reduced to 1.598k registers and 1.228k
LUT with a single sub-filter; however, this would result
in a longer execution time. While maintaining four sub-
filters, the proposed design exhibits area efficiency by
utilizing only 20% of the accessible slice LUTs, 35% of
the DSP blocks, and 47% of the BRAM from the available
resources on a constrained device. A 16-bit fixed-point
representation has been employed for both particles and
their corresponding weights in our study. Bearing-related
data, encompassing the mobile robot angle and the angles of
particles utilized within the importance weights computation
block, are expressed using a 12-bit fixed-point representation.
A 1.228k Look-Up Table (LUT) suffices for processing
512 particles in a singular sub-filter configuration devoid of
parallelization. The temporal expenditure for SIR operations
approximates 463 clock cycles. Conversely, a more efficient
design employing four sub-filters demonstrates superior
efficiency, accomplishing SIR operations in 184 clock cycles
at a clock frequency of 100 MHz, yielding a sampling
frequency of approximately 543.48 kHz. However, this
enhancement comes at the expense of heightened resource
utilization, mandating the employment of 10.634k LUTs. The
execution time for one set of SIR operations was calculated
to be approximately 1.44 microseconds, showcasing the
design’s efficiency in handling parallelized particle filter
computations with high throughput and sampling rates.
In the FPGA implementation, the Cellular Automata-Based
Pseudo-Random Number Generator (PRNG) module con-
sumes 140 LUTs and 83 flip-flops (FF), contributing to
the overall hardware resource utilization. The Sampling and
ImportanceWeight Computation block, comprising pipelined
stages, also utilizes 4.524k LUTs and 3.5k FF. Furthermore,
the Vose Alias-Based Resampling block, executing over
two times the clock cycles of the aforementioned pipelined
stages, requires 5.97k LUTs and 5.167k FF. These allocations
collectively result in a total hardware resource utilization of
10.634k LUTs and 8.75k FF for the FPGA design.

C. RESAMPLING QUALITY AND LOCALIZATION
ESTIMATION
The root-mean-square error (RMSE) measure is used to
evaluate the resampling quality of our proposed design (19).
RMSE quantifies the average disparity between the predicted
state and the actual state of the system. Moreover, the
variance of weights quantifies the variability of the resampled
particles’ weights. A lower variance indicates that the particle
weights are distributed evenly, which is excellent for a
realistic resampling step. The simulated weights are created

FIGURE 7. Slice LUTs vs No. of sub-filters.

FIGURE 8. RMSE of the ISR resampler for various No. of particles at y=1.

FIGURE 9. Localization estimation error versus the No. of particles.

with different particle numbers N for experimentation, and
their relative variance y (y = mean(yest − yobs)) is computed,
where yobs is the observation value at time k and yest is the
estimated values of particles from the sampling module. The
RMSE calculations are done for varying quantities of particle
filters, i.e., N=24 to 212 with a relative variance of 1 (i.e.,
y=1). The resampling quality of the improved systematic
resampler does not change when the parallel degree P1 is
changed, and the RMSE values decrease as the number of
particles increases.

RMSE =

√√√√ 1
N

N∑
i=1

(
offsi
N
−

wi
sum(wk)

)2

. (17)

The estimation accuracy as a function of the number of
particles (N) evaluated using:

Estimation Error =
√
(Px − x)2 + (Py − y)2 (18)

where, Px and Py indicate the estimated location of the
mobile robot source obtained by the proposed SIR particle
filter, while x and y represent the robot’s real position. The
localization estimation error obtained by the proposed SIR
particle filter is illustrated in Figure 9. Increasing the number
of particles significantly reduces the error and converges to
an approximate value of 0.67.

18484 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

FIGURE 10. Source localization simulation on ROS.

TABLE 1. Comparison with SOTA particle filter implementations on FPGA and performance analysis.

The clock frequency fclkof the proposed design and the data
sampling frequency fsampdetermine the selection of additional
sub-filters used for FPGA implementation which is equal to
(fsamp = 1/Tsimpr). fclk is tuned according to the maximum
frequency attained by the design during the synthesis process
without producing any negative slack in the design.

D. SIMULATION ON ROBOT OPERATING SYSTEM
We model our design approach in C++ to evaluate our
proposed design for the mobile robot localization problem.
Furthermore, we use the likelihood fields model to simulate
the range sensors since it is more resilient and smooth
in cluttered surroundings. This method aims to project the
sensor reading endpoints into the coordinate frame of the
map. To validate the proposed SIR particle filter algorithm,
simulations with a differential drive mobile robot model
were run in Gazebo and RVIZ. We used Ubuntu 18 and
ROS melodic to simulate the 2D localization environment.
A Unified Robot Descriptive Format (URDF) file is created
to build a mobile robot. The simulation uses a custom
three-wheel mobile robot simulator with onboard laser range
sensors and a map. The robot’s initial pose is known in
the map, and we use the Gaussian distribution to sample
2000 particles. At time step T=1, the particles dispersed
over the map, approximating the mobile robot’s possible
position. The robot’s motion model forecasts its location
and orientation at each time step as it progresses across the
map. The large green arrow represents the heading pose of

the mobile robot calculating recursively, while the little pink
arrows represent the particle posewith arrows. The estimation
of the particle’s proximity to the accurate localization of the
robot within an occupancy grid map relies on correlating
the distances of close objects measured by sensor rays
with the distances from the particle to the occupied grid
cells, which are determined using geometric processes in the
measurement model [24]. The approach involves executing
the model for 100 time steps involving 4000 particles.
Simultaneously, the mobile robot moves towards the goal
specified by the user. By the 100th time step, the particles
converge on the robot, exhibiting a minimal estimation error
of 0.42, as shown in Figure 10.

E. SOTA COMPARISON
Table 1 compares our proposed architecture to recent state-
of-the-art particle filter implementations on FPGA. Most
particle filter designs addressed in the literature study
need to be more scalable and have limited parallelism,
e.g., Athalye et al. [9] architecture is generic. It does not
incorporate any parallelization in the design. It contains a
low sampling rate of about 16 kHz for 2048 particles, which
is approximately 93% slower than the sampling rate of our
design. Considering the other methods and applications that
are similar to ours, e.g., A. Krishna et al. [16], the state-of-
the-art existing methods are 0.8 times lower than our design.
Moreover, the resampling stage is the primary bottleneck
as it is essentially sequential and requires particle samples

VOLUME 12, 2024 18485

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

from the previous stages. We proposed a complete parallel
resampling stage utilizing parallel cumsum to evaluate the
cumulative sum of the particle weights. This operation is
extensively parallel and computed efficiently using FPGAs.
Our solution is robust, scalable, and has a reasonable
level of design complexity. However, most parallel systems
encounter issues with scalability because of the substantial
communication bottleneck among the concurrent processing
units. Our proposed algorithm has comparable hardware
resource utilization for additional sub-filters F=4 with a low
execution time of 4.63µs and achieves a sampling frequency
fs = 216 kHz. The proposed work shows competitive LUT,
FF, and BRAM utilization, indicating efficient resource
management. The highest sampling frequency among the
works indicates more frequent updates and better real-
time performance. Overall, the proposed work outperforms
most previous implementations regarding resource efficiency,
execution time, and sampling frequency.

The fundamental goal of developing a particle filter
accelerator is to use the design for real-time applications
requiring limited onboard resources and power. Acknowl-
edging the challenges associated with directly comparing
the proposed architecture to other recent implementations
due to differences in design strategies, application, hardware
specifications, particle numbers, and resampling approach,
our design overcomes these obstacles by achieving elevated
input sampling rates, particularly for an extensive number of
particles, through the configurable adjustment of the parallel
sub-filters. Nevertheless, it is imperative to emphasize that
our proposed design has shown impressive performance in
the context of a high sampling rate and low execution time to
ensure fair comparisons with the accelerator implementations
in recent works [9], [10], [12], [14], [15], [16]. While
employing a single particle filter reduces hardware resources,
there will be a trade-off between speed and hardware
resources used for a given application of a particle filter.

The proposed FPGA design for a particle filter achieves
high-performance benchmarks with a 216 kHz sampling
frequency, a low 4.63 microsecond execution time, and
optimal area utilization of 10.634k slice LUTs. This novel
contribution integrates the Vose Alias Resampling method
for efficient resampling, a Cellular Automata-based PRNG
for deterministic yet pseudo-random number generation, and
strategic parallel and pipeline techniques. These techniques
ensure parallel processing of particles, reducing execution
time and facilitating high-frequency sampling. The design
showcases a harmonized approach, leveraging FPGA capa-
bilities for real-time applications with superior throughput
and resource efficiency.

VI. CONCLUSION
This paper presents the novel particle filter accelerator,
which mainly consists of sampling, importance weight
computation, and an improved systematic resampler based
on parallel cumsum modules implemented on the ZC7020
SoC with a CA automata-based random number generator,

represents a significant achievement in the field of mobile
robot localization. This accelerator offers several advantages
over traditional software-based implementations, including
lower execution time, reduced area consumption, and higher
sampling frequency. Particle filters are more robust to
modeling errors and can handle time-varying and non-
stationary systems more effectively than traditional Bayesian
filters, i.e., extended Kalman filters. Nevertheless, when
dealing with a large number of particles, the computing cost
of the particle filter is high since it needs numerous iterations
to update the particle set at each time step. Therefore, the
use of particle filters for real-time mobile robot localization
is a computational bottleneck. Moreover, even the hardware
architecture of the particle filter on FPGA is partially
parallel due to the sequential processing of the resampler.
To overcome this issue, we proposed the modified version
of the standard SIR particle filter with a novel architecture
of the resampling module based on a parallel cumulative
summation block. The overall design employs additional
sub-filters working in parallel fashion to compute multiple
particles more efficiently, reducing the overall time execution
at the expense of some hardware cost. The low execution
time of approximately 4.63µs and low hardware resources of
10.634k LUTsmake it a highly efficient solution for real-time
applications with strict timing constraints. Additionally, the
cellular automata-based random number generator improves
the filter’s accuracy and stability, enhancing its overall
performance. The high sampling frequency of 216kHz
enables the particle filter accelerator to process large amounts
of data quickly and efficiently, making it ideal for high-speed
data processing applications. This research represents a
significant step in developing high throughput and efficient
hardware accelerators for particle filtering. It can potentially
revolutionize the field of accelerating Bayesian filters in the
future.

REFERENCES
[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ‘‘A tutorial

on particle filters for online nonlinear/non-Gaussian Bayesian tracking,’’
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[2] F. Gustafsson, ‘‘Particle filter theory and practice with positioning
applications,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp. 53–82,
Jul. 2010.

[3] S.-H. Hong, Z.-G. Shi, J.-M. Chen, and K.-S. Chen, ‘‘A low-power
memory-efficient resampling architecture for particle filters,’’ Circuits,
Syst. Signal Process., vol. 29, no. 1, pp. 155–167, Feb. 2010.

[4] M.Matsumoto and T.Nishimura, ‘‘Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,’’ ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998.

[5] G. Mingas, L. Bottolo, and C.-S. Bouganis, ‘‘Particle MCMC algorithms
and architectures for accelerating inference in state-space models,’’ Int.
J. Approx. Reasoning, vol. 83, pp. 413–433, Apr. 2017.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents Series). Cambridge, MA, USA: MIT
Press, 2010.

[7] H. Zhou and S. Sakane, ‘‘Sensor planning for mobile robot localization—
A hierarchical approach using a Bayesian network and a particle filter,’’
IEEE Trans. Robot., vol. 24, no. 2, pp. 481–487, Apr. 2008.

[8] C. Cheng, J.-Y. Tourneret, and X. Lu, ‘‘A Rao-Blackwellized particle filter
with variational inference for state estimation with measurement model
uncertainties,’’ IEEE Access, vol. 8, pp. 55665–55675, 2082.

18486 VOLUME 12, 2024

O. Tariq, D. Han: 2D PF Accelerator for Mobile Robot Indoor Localization and Pose Estimation

[9] A. Athalye, M. Bolić, S. Hong, and P. M. Djurić, ‘‘Generic hardware
architectures for sampling and resampling in particle filters,’’ EURASIP
J. Adv. Signal Process., vol. 2005, no. 17, Dec. 2005.

[10] B. Ye and Y. Zhang, ‘‘Improved FPGA implementation of particle filter
for radar tracking applications,’’ in Proc. 2nd Asian-Pacific Conf. Synth.
Aperture Radar, Oct. 2009, pp. 943–946.

[11] J. Mountney, I. Obeid, and D. Silage, ‘‘‘Modular particle filtering FPGA
hardware architecture for brain machine interfaces,’’ in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Aug./Sep. 2082, pp. 4617–4620.

[12] S. Agrawal, P. Engineer, R. Velmurugan, and S. Patkar, ‘‘FPGA
implementation of particle filter based object tracking in video,’’ in Proc.
Int. Symp. Electron. Syst. Design (ISED), Dec. 2012, pp. 82–86.

[13] J. J. Miao, C. Zhang, A. Chakrabarti, and A. Papandreou-Suppappola,
‘‘Efficient Bayesian tracking of multiple sources of neural activity:
Algorithms and real-time FPGA implementation,’’ IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 633–647, Feb. 2013.

[14] F. Schwiegelshohn, E. Ossovski, and M. Hübner, ‘‘A fully parallel particle
filter architecture for FPGAs,’’ in Applied Reconfigurable Computing,
A. R. Computing, K. Sano, D. Soudris, M. Hübner, and P. C. Diniz, Eds.
Cham, Switzerland: Springer, 2082.

[15] B. G. Sileshi, J. Oliver, and C. Ferrer, ‘‘‘Accelerating particle filter
on FPGA,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2016, pp. 591–594.

[16] A. Krishna, A. van Schaik, and C. S. Thakur, ‘‘FPGA implementation
of particle filters for robotic source localization,’’ IEEE Access, vol. 9,
pp. 98185–98203, 2021.

[17] J. L. Palmer, R. Cannizzaro, and B. Ristic, ‘‘LTER-based bearings-
only tracking algorithm,’’ in Proc. Australas. Conf. Robot. Autom.
(ACRA), 2015, pp. 2–3. [Online]. Available: https://www.araa.asn.au/
acra/acra2015/papers/pap170.pdf

[18] S. Wolfram. (1983). Rule 30. [Online]. Available: https://mathworld
.wolfram.com/Rule30.html

[19] Xilinx. (2082). LogiCORE IP Product Guide. [Online]. Available:
https://www.xilinx.com/products/intellectual-property/cordic.html

[20] L. M. Murray, A. Lee, and P. E. Jacob, ‘‘Parallel resampling in the particle
filter,’’ J. Comput. Graph. Statist., vol. 25, no. 3, pp. 789–805, Jul. 2016.

[21] S. Liu, G. Mingas, and C.-S. Bouganis, ‘‘Parallel resampling for particle
filters on FPGAs,’’ inProc. Int. Conf. Field-Programmable Technol. (FPT),
Dec. 2014, pp. 191–198.

[22] N. T. Briggs,W. H. Slade, E. Boss, andM. J. Perry, ‘‘Method for estimating
mean particle size from high-frequency fluctuations in beam attenuation
or scattering measurements,’’ Appl. Opt., vol. 52, no. 27, pp. 6710–6735,
2082.

[23] M. Ades and P. J. van Leeuwen, ‘‘The equivalent-weights particle filter in a
high-dimensional system,’’Quart. J. Roy. Meteorol. Soc., vol. 141, no. 687,
pp. 484–503, Jan. 2015.

[24] S. F. A. E. Wijaya, D. S. Purnomo, E. B. Utomo, and M. A. Anandito,
‘‘Research study of occupancy grid map mapping method on Hector
SLAM technique,’’ in Proc. Int. Electron. Symp. (IES), Sep. 2019,
pp. 238–241.

OMER TARIQ received the B.S. degree in elec-
trical engineering from UET, Pakistan, in 2014.
He is currently pursuing the Ph.D. degree with the
School of Computing, Korea Advanced Institute
of Science and Technology. Before this, he was a
Senior FPGA Design Engineer with the National
Space Agency and the Centre of Excellence
in Science and Applied Technologies (CESAT),
Pakistan, for seven years. His research interests
include parallel computing, deep learning, applied

algorithms, autonomous navigation, and FPGA design.

DONGSOO HAN received the B.S. and M.S.
degrees in computer science from Seoul National
University, Seoul, South Korea, in 1989 and
1991, respectively, and the Ph.D. degree in infor-
mation science from Kyoto University, Kyoto,
Japan, in 1996. He is currently a Professor
with the Department of Computer Science, Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea. He is leading the Intel-
ligent Service Integration Laboratory. His main

research topics are global indoor positioning, pervasive computing, and
location-based services (LBS).

VOLUME 12, 2024 18487

