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ABSTRACT Open-set segmentation has caught the community’s attention only in the last few years, and
it is a growing and active research area with many challenges ahead. To better identify open-set pixels,
we address two known issues by improving data representation and ensuring semantic consistency in open-
set predictions. First, we present a method called OpenGaussianMixture ofModels (OpenGMM) that allows
for multimodal statistical distributions in known class pixels using a Gaussian Mixture of Models instead
of unimodal approaches, like Principal Component Analysis. The second approach improved semantic
consistency by applying a post-processing technique that uses superpixels to enforce homogeneous regions
to have similar predictions, rectifying erroneously classified pixels within these regions and providing better
delineation of object borders. We also developed a novel superpixel method called Fusing Superpixels
for Improved Semantic Consistency (FuSC) that produced more homogeneous superpixels and enhanced,
even more, the open-set segmentation prediction. We applied the proposed approaches to well-known
remote sensing datasets with labeled ground truth for semantic segmentation tasks. The proposed methods
improved the highest AUROC quantitative results for the International Society for Photogrammetry and
Remote Sensing (ISPRS) Vaihingen and Potsdam datasets. Using FuSC, we achieved novel open-set
state-of-the-art results for both datasets, improving AUROC results from 0.850 to 0.880 (3.53%) for
Vaihingen and 0.764 to 0.797 (4.32%) for Potsdam datasets. The official implementation is available at:
https://github.com/iannunes/FuSC.

INDEX TERMS Convolutional neural network, open-set, segmentation, remote sensing, semantic
consistency, superpixel, clustering.

I. INTRODUCTION
Remote sensing acquisition technologies have been in
constant development since the 1960s, providing sensors
with a myriad of new electromagnetic spectral encod-
ing capabilities and leading to a continuous increase in
the volume of daily collected data. The development of
these technologies and an increased capacity to produce
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relevant information for a wide range of applications
turned the automatic analysis of images into one of the
most actively researched fields within the remote sensing
community [1].

Since the Gestalt movement, it is known that image
segmentation and clustering play a relevant role in human
perception [2]. Many different applications can benefit from
semantic segmentation of remote sensing images, such as
urban planning/mapping and change detection [3], population
estimation [4], real-estate management [5].
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FIGURE 1. Overview of the proposed approach for Open Set Semantic Segmentation (OSS) with a
post-processing procedure. First, the open-set segmentation method processes the input image. Afterward,
the likelihood scores produced by the OSS method (e.g. reconstruction errors, likelihood scores, etc.) are
processed using a superpixel segmentation. Every pixel within a given superpixel is assigned its calculated
mean score. The final step includes thresholding the predictions according to some criteria – usually set
according to quantiles on the scores – to identify unknown superpixels. The FuSC box represents the Fusing
Superpixels for Improved Semantic Consistency method proposed in this work. The Segment averaging
diamond represents the averaging processing of the OSS output pixel scores using FuSC superpixels.

Traditional (closed-set) semantic segmentation (SS) for
images in general has become a complex, time-consuming,
and well-studied task. Many different methods have been
developed to solve this problem: Fully Convolutional Net-
work (FCN) [6], U-Net [7], SegNet [8], among others.
In recent years, many models have significantly improved the
quality of semantic segmentation [9], [10].

It is crucial to improve the semantic and spatial con-
sistency of the segmentation predicted by the SS model
to enable the use of such models in practical situations.
According to Sekkal et al. [11], the regions need to
remain coherent with the original content and a better
detection of contours leads to an efficient pseudo-semantic
representation.

In closed-set SS, both the training and test data share the
same label and feature spaces. However, in more realistic
scenarios, unseen classes may appear in the deployment
phase of the model. This is the case for most real-world
applications, such as autonomous vehicles, medical diagnosis
or treatment, and remote sensing tasks. The existence of

unknown classes undermines the robustness of the existing
closed-set methods, as stated by Geng et al. [12].

For the last couple of years, methods that extend traditional
closed-set SS were proposed to automatically recognize
samples from unseen classes. This new task, named Open Set
Segmentation (OSS), must be able to correctly segment pixels
of classes available during training (Known Known Classes
– KKCs), while also being able to recognize unknown pixels
that come from classes that were not present during training
(Unknown Unknown Classes – UUCs) [13].
The goal of the current paper is to improve the semantic

consistency of previously obtained results from OSS algo-
rithms for remote sensing images. For this, we introduce in
this work a novel method called Open Gaussian Mixtures
(OpenGMM), based on previously proposed frameworks for
Open Set Recognition (OSR) [13], [14]. Da Silva et al. [13]
employed Principal Component Analysis (PCA) in the
OpenPCS method as a generative model, assuming it would
be sufficient for the representation of the data. As data
from known classes in the real world can rarely be
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correctly represented by unimodal distributions, our proposed
approach adopts a Gaussian Mixture Model (GMM) [15],
[16] instead of PCA, allowing for modeling KKCs with
multiple modes and clusters in the feature space, aiming to
improve out-of-distribution (OOD) identification.

Simpler methods based on approximations of statistical
distributions followed by thresholding, such as OpenPCS or
OpenMax show poor performance in correctly delineating
object boundaries, making it difficult to use this type of OSS
approach in real-world scenarios. To address this issue and
improve the final prediction, we explored how to post-process
using Superpixel Segmentation (SPS) algorithms. Figure 1
shows an overview of the post-processing approach proposed
in this work. First, the superpixel algorithm and the OSS
method process the input image. Then, the outputs are
combined by averaging the open-set scores for each super-
pixel, producing a final open-set segmentation prediction
(FuSC refined open-set prediction) with better semantic
consistency. The lack of semantic consistency produced by
methods such as OpenPCS, especially in object borders, can
be seen in Open-set prediction.

Superpixels are a homogeneous and contiguous group
of pixels in an image, extracting perceptually rele-
vant regions [17]. Superpixel algorithms yield an over-
segmentation of an image and have played a relevant
role in the traditional segmentation pipeline. According to
Lin et al. [18], they can be considered low-level image
information subdivisions. As stated by [17], [19], [20], the
use of superpixels brings several advantages: it reduces the
size of the classification problem, since one cluster represents
many pixels; it allows for a richer feature representation; and
it produces homogeneous regions with additional semantics
despite being an over-segmentation.

Our framework employs a novel superpixel merge pro-
cedure using Malahanobis distance [21], called Fusing
Superpixels for Segmentation (FuSC). A graphical illustra-
tion of the inner workings of our pipeline can be seen in
Figure 1,
We tested our approach in OSS using three distinct

algorithms from the literature: Open Principal Component
Scoring (OpenPCS) [13], Conditional Reconstruction for
Open-set Semantic Segmentation (CoReSeg) [22], and the
newly proposed OpenGMM. Our pipeline seeks to improve
the semantic consistency of the results to make OSS models
more suitable for practical use. Our contributions can be
summarized as:

• The proposal of OpenGMM, a novel method aiming to
improve upon the previously proposed OSS framework
by Oliveira et al. [13];

• The proposal of a superpixel post-processing method
that yielded results with superior semantic consistency
and improved Receiver Operating Characteristic (ROC)
metrics in all tested scenarios;

• A novel superpixel segmentation fusion procedure using
Malahanobis distance [21];

• State of the Art OSS results for the Vaihingen and Pots-
dam datasets1 using our post-processing segmentation
technique.

This manuscript is organized as follows: Section I presents
the related work on superpixels for semantic segmentation;
Section II describes the proposed methods; Section III intro-
duces the experimental setup used for this work, along with
the employed datasets and metrics; Section IV presents our
ablation study executed on the Vaihingen dataset; Section V
presents the final OSS results obtained on Vaihingen and
Potsdam datasets; and, finally, Section VI discusses the
conclusions obtained from our experiments.

A. SEMANTIC CONSISTENCY IN SEGMENTATION
Semantic consistency is rarely explicitly addressed in
semantic segmentation papers. However, due to the inherent
difficulties of OSS scenarios in comparison to traditional
supervised SS, semantic consistency is a rather more
challenging aspect when there are unknown classes during
deployment. In the following lines, we present an overview
of the few existing trends in deep semantic consistency.

The method proposed by Ji et al. [23] improved the
performance and the spatial consistency of the resulting seg-
mentation for PASCAL VOC 2012, PASCAL-Context, and
Cityscapes datasets using an end-to-end trainable network
that combines two branches: one for edge detection and one
for traditional semantic segmentation.

PixMatch [24] uses heavy augmentation and a loss term
composed by a summation of two cross-entropy terms: the
first loss term is standard for SS, while the second term is
computed over a slightly perturbed image and mask. The new
loss enforces the notion of smoothness in the target domain
to enhance intra-object segmentation consistency.

Pixelwise Contrast and Consistency Learning (PiCoCo)
[25] seeks consistency in closed-set semantic segmentation
using a joint loss function that is the summation of a
supervised loss term, a contrastive loss term and a consistency
loss term. The supervised loss term is composed of a
Cross-Entropy and a Dice loss; for the contrastive loss term,
a selection of positive and negative samples enforce themodel
to improve its generalization capabilities; the consistency loss
term consists of a summation of cross-entropy and a dice loss
of heavily augmented pairs of input and labels to enforce
semantic consistency and robustness to the learning process.

The post-processing proposed by Ratajczak et al. [26]
combines an unsupervised colorization and a deep edge
superpixel segmentation to enhance the semantic segmen-
tation of panchromatic aerial images. The authors propose
to assess if applying a colorization algorithm could improve
the strength of the pairwise potentials used in a conditional
random field (CRF) post-processing. This method computes
intermediate Deep Edge Superpixels using Watershed [27]
in the intermediate activation maps obtained before each
pooling layer. The method uses the generated superpixels

1https://www.isprs.org/education/benchmarks/UrbanSemLab/
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with the mean value for intensity and a CRF to improve the
final semantic segmentation consistency.

The approach proposed by Zhang et al. [28] uses super-
voxels to improve the consistency of semantic segmentation.
The method used a 3D-CNN (3D Convolutional Neural
Network) to learn discriminative hierarchical features from
spatiotemporal volumes.

Our work introduces a superpixel post-processing for OSS
that improved the semantic consistency of the final segmen-
tation prediction for all tested scenarios. We also propose
a novel superpixel segmentation method, called FuSC, that
benefits from merging different input segmentations and
produces final superpixel segmentation with better results in
most tested scenarios compared to the same post-processing
with base superpixel algorithms.

B. OPEN-SET SEMANTIC SEGMENTATION
According to Scheirer et al. [29], an open-set scenario
happens when the model is not fed all classes during training,
allowing unknown samples to appear in the prediction phase.
This definition can be applied to each pixel in an image,
extending the traditional semantic segmentation to OSS.

OSS has only a handful of published works that use neural
networks. To better understand the OSS literature, we will
show the first attempts to perform open-set recognition from
a neural network proposed by Bendale and Boult [30]. The
first natural approach was to apply a threshold on the final
output probability, identifying low probabilities as unknown.
But, experiments showed that this strategy produced poor
results and was not well suited to handle the task. The second
approach was called OpenMax, which introduced a new final
layer to replace the traditional softmax during deployment.
OpenMax adds an Unknown output class and estimates the
probability of the input images to each of the C + 1 classes.

Based on OpenMax [30], OpenPixel [31] uses a patch-wise
strategy to classify the central pixel. OpenPixel is extremely
inefficient during the testing phase since each pixel in an
image generates a patch to be classified by the network.
The fully convolutional counterpart to OpenPixel, named
OpenFCN, was proposed by Oliveira et al. [13]. OpenMax-
based methods proved to have their effectiveness severely
limited in segmentation, resulting in false positive OOD pixel
predictionsmainly at object boundaries, where the activations
of the last layers are affected by the presence of neighboring
objects.

Given the limitations of OpenPixel and OpenFCN caused
by the last layers’ activations, Oliveira et al. [13] proposed
using intermediate multiscale features from the closed-set
FCNs coupled with low-dimensional principal component
analysis scores for OSS. The method, called Open Princi-
pal Component Scoring (OpenPCS), achieved consistently
better results on the Vaihingen, Potsdam, and Geoscience
and Remote Sensing Society (GRSS) 2018 Data Fusion
Challenge [32] datasets in comparison to OpenPixel and
OpenFCN.

Cui et al. [33] proposed a nonparametric statistical
OSS method that employs the Mann-Whitney U test on a
closed-set segmentation output to determine the existence
of unknown classes in each image. Furthermore, it uses an
adaptive threshold that identifies which pixels are unknown.

Proposed by Cen et al. [34], an open-world semantic
segmentation system used prototypes for the known classes
and a Deep Metric Learning Network (DML-Net) as a
feature extractor. This work used a Euclidean distance-based
probability loss to the predefined prototypes to identify
unknown pixels.

Nunes et al. [22] proposed a fully convolutional end-
to-end CoReSeg that tackles the OSS using two network
branches: a traditional closed-set segmentation branch and a
class-conditional reconstruction of the input images accord-
ing to their pixel-wise mask, using the reconstruction error
from the conditional reconstruction branch to identify the
OOD pixels.

The Generalized Open-set Semantic Segmentation
(GOSS) method proposed by Hong et al. [35] employs two
network branches trained together in parallel: the first branch
performs a SS for known classes and identifies unknown
pixels using Deep Metric Learning (DML) [34]; the second
branch is a pixel clustering that ignores the known classes
producing a new segmentation mask for the image. At last,
the fusion phase uses the pixels defined as unknown and the
clustering to identify different objects in the unknown areas.

This work proposes a novel OSS method called Open
Gaussian Mixture of Models (OpenGMM) that modifies
the OpenPCS framework and improves quantitatively and
qualitatively the final results.

C. SUPERPIXEL SEGMENTATION
SPS has been an active research area for decades, with many
methods proposed. Superpixels are groups of contiguous
pixels in an image, clustered according to some homogeneity
measure. As spatiality is crucial to any SPS, neighboring
superpixels should be perceptually different. Nevertheless,
non-neighboring superpixels may have similar values and
shapes. As examples of proposed techniques in the last
two decades: Felzenszwalb and Huttenlocher [17]; Quick-
shift [36]; TurboPixels [37]; Entropy Rate Superpixel (ERS)
[38]; Simple Linear Iterative Clustering (SLIC) [39]; Genera-
tive SuperpixelMethod [40]; Eikonal-based [41]; Superpixels
Extracted via Energy-Driven Sampling (SEEDS) [42]; Linear
Spectral Clustering (LSC) [43]; Waterpixels [44]; Boundary-
Aware Superpixel Segmentation (BASS) [45]; cale-adaptive
superpixels (SAS) [46]; Self-Organization-Map Superpixels
(SOMS) [20]; content-based [47]; Superpixel Spatial Intu-
itionistic Fuzzy C-Means Clustering (SPFCM) [48].
Among all possible choices of SPS algorithms, we chose

three algorithms that have fundamentally different strategies
to generate the superpixels: SLIC [39], Quickshift [36] and
Felzenszwalb and Huttenlocher [17]. In the following para-
graphs, we briefly present these three superpixel algorithms.
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Simple Linear Iterative Clustering (SLIC) [39] algo-
rithm groups pixels into perceptually meaningful contiguous
regions using a K-means algorithm [49]. It starts with
predefined n centers uniformly distributed in the image. Then,
it adjusts the centers’ positions to the local minimum of the
pixel intensity gradient to avoid centering the superpixel in
an edge.

Quickshift [36] is a fast mode seeking algorithm. Initially,
each pixel is a superpixel, and then neighboring pixels are
merged into the same cluster according to a predefined radius
distance. This method does not force pixels to be spatially
close to each other, which generates highly homogeneous
superpixels of different sizes and shapes.

Felzenszwalb algorithm [17] is a graph-based superpixel
segmentation algorithm where each vertex represents a pixel,
and each selected edge has some dissimilarity measured
as its value. Every pixel in the image is a vertex in the
graph, but only some edges are added according to a defined
neighboring criterion (e.g. K -nearest neighbors) to guarantee
the intended complexity for the algorithm (O(m log n), where
m is the number of edges and n the number of vertices).

In this work, we proposed an OSS superpixel post-
processing and a new superpixel merge procedure that
improved the quantitative results in all tested scenarios by a
large margin. The final refined open-set prediction presented
a segmentation perceptually closer to the ground truth.

II. IMPROVING OSS SEMANTIC CONSISTENCY
In the following section, we present our proposed method-
ology for improving the semantic consistency of OSS.
Firstly, in Section II-A, we present an extension of the OSS
framework proposed by Oliveira et al. [13], replacing the
unimodal dimensionality reduction of PCAwith a GMM [15]
capable of opening closed-set pretrained segmentation net-
works with a better segmentation quality. GMM’smultimodal
data representation should be better suited for modeling
real-world pixels thatmay not conform to the PCA’s unimodal
data representation, as illustrated in Figure 2. In Section II-B,
we propose a superpixel post-processing for generic OSS
methods capable of improving quantitative segmentation
metrics, as well as qualitative semantic consistency. At last,
in Section II-C, we introduce a novel superpixel merge
method that uses the Malahanobis [21] distance to merge
neighboring superpixels enforcing a minimum pixel count for
each segment.

A. OPEN GAUSSIAN MIXTURE OF MODELS
Open Gaussian Mixture of Models (OpenGMM) processes
intermediate feature maps with the last layers’ activation
maps of a deep neural network. Combining the activations
from earlier layers with final layers produces a tensor
that fuses low and high-semantic-level information. The
concatenated tensor may have hundreds or thousands of
channels, which are known to contain redundant informa-
tion [50], [51]. OpenGMM handles the concatenated tensor
size and redundancy by fitting a GMM on each known-class

FIGURE 2. This illustration shows how different objects from the same
class can be better represented by distinct distributions. Due to its
multimodal representation capability, GMM is better suited for
representing real-world data than Principal Component Scoring [13].

distribution. Each GMMmodel computes a score tensor with
the log-likelihood values for all pixels, which allows for the
computation of a final score tensor by combining all GMM
scores with the closed-set prediction. All pixels below a
certain threshold in the final score are identified as unknown.

We performed tests with three different backbones as the
closed-set segmentation method: Densely Connected Con-
volutional Networks (DenseNet-121, shortened as DN121)
[51],Wide Residual Networks (WideResNet-50, shortened as
WRN50) [52] and U-net [7].

Readers should notice that adapting any pretrained
closed-set semantic segmentation network to the OpenGMM
frameworks is relatively quick and straightforward and does
not require retraining the neural network. The only trainable
component in our framework is the GMM to fit into the
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data, which is considerably faster than retraining a neural
network. The plug-and-play characteristic of the method is
a great advantage when considering the problem of adapting
the solution to real-world applications and novel domains.

B. IMPROVING SEMANTIC CONSISTENCY WITH
SUPERPIXELS
Superpixels are commonly used in imaging processing as a
compact representation of the image, as part of the processing
pipeline, or even as post-processing refinement of an output.
Many methods use superpixels as part of the segmentation
pipeline [23], [24], [25], [26], [28].

To achieve better semantic consistency, we choose to apply
the superpixel segmentation to the scores produced by the
OSS methods. The output of the OSS method produces a
score tensor of dimensions H × W × 1, where H and W
are the height and width of the input image. We then apply
SPS to the output tensor, and all pixels of each superpixel are
set to the average score value of the segment they belong to.
Algorithm 1 details the use of superpixel over-segmentation
in the final step of the open-set segmentation just before the
open-set pixel identification step.

Algorithm 1 The Output of the OSS Method Is
Post-Processed Using the Superpixels Segmentation.
All Pixels of a Given Segment Assume the Mean Value of
All Pixels in That Segment
Require: scores ▷ pixelwise array
Require: segments ▷ list of segments
1: procedure post_process(scores, segments)
2: pred = zeros(scores.size)
3: for segment ∈ Segments do
4: pred[segment] = mean(scores[segment])
5: end for
6: return pred
7: end procedure

Since our post-processing scheme is agnostic to the
choice of superpixel segmentation algorithm, we evaluated
SLIC [39], Quickshift (QS) [36] and Felzenszwalb (FZ) and
Huttenlocher [17]. To reinforce the idea that post-processing
is robust and can deliver good results regardless of the
superpixel generation algorithm, we chose algorithms with
different generation strategies, assumptions, and internal
metrics.

The remaining steps of the open-set segmentation pro-
cess were kept as in each OSS method. Superpixel
over-segmentations are homogeneous and tend to respect
object borders. Applying the superpixels to the score image
smooths the segmented areas, aiding the OSS algorithm
in avoiding errors due to OOD pixels within the seg-
mented objects, which is a common source of segmentation
errors.

Each superpixel algorithm has its own generation char-
acteristics, and the final segmentation reproduces these

FIGURE 3. Illustration of the workflow to merge two different superpixel
segmentations. First, the input image x is processed by 2 different
superpixel segmentation algorithms (Alg. 1 and Alg. 2). Afterwards, the
generated segmentations s1 and s2 are merged into the final
segmentation sFuSC using the merging procedure described in
Algorithm 2.

particularities in the results. We can see in Figure 4 an
illustrative example of two SPSmethods that present different
characteristics and may represent better different scenarios.
In this example, the SLIC algorithm could better represent
textures, while the FZ algorithm could better identify borders.
None of the single superpixel segmentation algorithms could
represent the underlying image properly.

Algorithm 2 Pseudo-Algorithm for the FuSC Procedure
and the Auxiliary Procedure of Joining Segmentations. The
Complexity of the Procedure Is Pseudo-Polynomial With
Respect to the Number of Pixels in the Image and the
Minimum Size of the Superpixel (Appendix B)
Require: seg1, seg2 ▷ list of segments
1: procedure join_segmentations(seg1, seg2)
2: joint = []
3: for s1 ∈ seg1 do

▷ Selecting s2 ∈ seg2 where s2 ∩ s1 ̸= ∅

4: for s2 ∈ seg2.overlap_segments(s1) do
5: overlap_area = s1 ∩ s2
6: joint.add_new_segment(overlap_area)
7: end for
8: end for
9: return joint
10: end procedure
11:

12: procedure FuSC(seg1, seg2)
13: joint = join_segmentations(seg1, seg2)
14: for s ∈ joint do
15: if s.size < min_size then
16: closest = closest_neighbor(s, joint)
17: joint = merge_segments(joint, s, closest)
18: end if
19: end for
20: return joint
21: end procedure
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FIGURE 4. Comparison of the resulting segmentation from two SPS algorithms (Felzenszwalb [17] and SLIC [39]) and our proposed fusion
algorithm, FuSC. The first row shows the input image superimposed with the superpixel segments and the second row depicts the closer class fit of
each segment according to the real labels. Red arrows indicate areas where class boundaries failed when using one single SPS algorithm, while
gray arrows point to these same regions fixed after applying the FuSC algorithm.

C. FUSING SUPERPIXELS FOR IMPROVED SEMANTIC
CONSISTENCY
All superpixel segmentation algorithms share the same main
goals: generate homogeneous areas and respect boundaries
between objects. SPS algorithms aim to minimize the
intracluster/intrasegment variance while maximizing the
intercluster/intersegment variance.

Different superpixel segmentation algorithms use distinct
procedures and premises to produce the final segmentation.
From distinct superpixel segmentation construction pro-
cesses, each over-segmentation fails and succeeds in different
ways to achieve the intended representation.

The FuSC procedure fuses input segmentations from
multiple types of superpixel generation algorithms. Using
distinct family algorithms allows FuSC to take advantage
of the different generation characteristics, amplifying the
strengths and mitigating the weaknesses of each method.
Figure 4 exemplifies how each segmentation relates to the
ground truth and compares to FuSC joint segmentation.
We can observe through the qualitative result that the FuSC
improved the representation concerning the ground truth.

Figure 3 illustrates the merging of two different superpixel
segmentations, showing that FuSC respects segmentations’
borders, and each joint segment can better represent the
underlying region. FuSC is agnostic to the SPS algo-
rithm, being applicable to any set of distinct superpixel
segmentations. However, in practice, using more than two
segmentations yields exceedingly small segments, motivating
our experiments to focus only on pairs of segmentations.
Having exceedingly small merged superpixels prevents the
joint segmentation from taking advantage of the distinct gen-
eration strategies, favoring the prevalence of theMahalanobis
distance merging procedure over the original segmentations.

The first step of the fusion procedure is to generate
unique segments by superposing two different segmentations,
running the following steps:

1) generate a new segmentation from the intersection of
the input segmentations;

2) ensure that the final superpixel segmentation respects
the minimum size for each segment.

The first step have theoretical complexity linear on the
number of pixels of the image (O(n), where n is the number
of pixels). This initial merging procedure is prone to produce
some tiny segments.

To tackle the unwanted small segments side-effect, we use
the Mahalanobis distance [21] to fuse the closest neighbor
segments until there are no more segments below the
specified pixel minimum size. Algorithm 2 details the FuSC
procedure.

The final theoretical complexity of the FuSC procedure
is O(n × minimum_size2), where n is the number of pixels
and minimum_size is a constant parameter of the merge
procedure. Since the minimum_size is constant, the final
complexity of FuSC is O(n). The code in Python with the
depiction of the complexity analysis is in Appendix B. This
theoretical complexity makes the use of FuSC viable in
production scenarios.

III. EXPERIMENTAL SETUP
We used PyTorch [53] to implement all neural network
models and an NVIDIA Titan X with 12GB of memory. SPS
algorithms were implemented using the scikit-image2 library
and we used the GMM implementation from scikit-learn3.
The official implementation for FuSC is publicly available to
encourage reproducibility4.
We tested OpenGMM with 4, 8, and 16 components,

resulting in minimal performance differences across this
range of values. Thus, for simplicity, all OpenGMM’s
results reported in this section used 4 Gaussian components,
OpenPCS was trained with 16 components following the
experimental setup of [13].

2https://scikit-image.org/
3https://scikit-learn.org/
4https://github.com/iannunes/FuSC
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TABLE 1. Results aggregated by type of superpixel generation. Two types of generation were used, ‘‘single’’ and ‘‘FuSC’’. ‘‘Single’’ stands for a generation
using one superpixel method alone, while ‘‘FuSC’’ stands for the procedure presented in Section II-C. Columns min, avg. and max stand for the minimum,
average and maximum AUROC value among all superpixel configurations for each type of generation. The last block is the is the average value among all
tested UUCs.

A. DATASETS AND EVALUATION PROTOCOL
We employed the Leave One Class Out (LOCO) protocol
used by Oliveira et al. [13] to emulate an open-set scenario
on the two selected datasets. The LOCO protocol splits the
known classes and selects one class at a time to be ignored
during training allowing open-set methods to be evaluated
over the hidden class. Thus, we only backpropagate the loss
of pixels from the known classes, ignoring the background,
borders, miscellaneous and unknown classes.

We selected the Vaihingen and Potsdam datasets from
the International Society for Photogrammetry and Remote
Sensing (ISPRS5) for our experiments. The datasets used
have already had benchmarks established for OSS scenarios
by published papers [13], [22], [31].
Vaihingen images present a 9cm/pixel spatial resolution,

varying from 2000 to 2500 pixels per axis, while Potsdam
samples have a 5cm/pixel spatial resolution and 6000 ×

6000 pixels each. Both datasets contain six (6) known
known classes (KKCs): impervious surfaces, buildings, low
vegetation, high vegetation, car, and miscellaneous. Among
the KKCs, we removed the miscellaneous class from our
experimental procedure since it is mainly comprising areas
that exhibit image acquisition noise and objects unimportant
for practical remote sensing applications. We used the same
bands employed in previous works on OSS: Near Infra-Red
(NIR), Red (R), Green (G), and the Digital Surface Model
(DSM).

We separate the datasets into three sets each: training,
validating, and testing. For the Vaihingen dataset, the selected
patches were: 1, 3, 5, 7, 13, 17, 21, 26, 32, and 37 for training;
11, 15, 28, 30, and 34 for testing; and 23 for validation. For
the Potsdam dataset, the selected patches were: 2_10, 2_13,
2_14, 3_10, 3_12, 3_13, 3_14, 4_11, 4_12, 4_13, 4_14, 4_15,
5_10, 5_12, 5_13, 5_14, 5_15, 6_8, 6_9, 6_10, 6_11, 6_12,
6_13, 6_15, 7_7, 7_9, 7_11, 7_12 and 7_13 for training; 2_11,
2_12, 4_10, 5_11, 6_7, 7_8 and 7_10 for testing; and 3_11
and 6_14 for validation.

B. BACKBONES
All OSS models use closed-set segmentation backbones as a
starting point to identify the OOD pixels. Relying on previous
results [13], [31], we used three of the best-performing
backbones for our experiments: U-Net [7], WRN50 [52] and
DN121 [51]. For CoReSeg [22], we used only U-Net since it
naturally matches the architectural constraints of this method.

5https://www.isprs.org/education/benchmarks/UrbanSemLab/

C. METRICS
We use the Receiver Operating Characteristic (ROC) curve
and the Area Under the ROC (AUROC) improvements
as evidence that the proposed methods improve OOD
recognition. We employed Cohen’s kappa score [54] (κ) to
measure the performance for known and unknown classes at
the same time. The use of κ allows for the assessment of the
reliability of the process, since it measures the agreement of
the methods with the ground truth. We used the metrics to
compare the predictions with and without superpixel post-
processing.

D. POST-PROCESSING
As we used two distinct families of techniques, we have
different meanings for the scores: OpenGMM and OpenPCS
scores are log-likelihood values for each pixel, and CoReSeg
scores are the minimum reconstruction error across the
known classes for each pixel.

The post-processing technique can be applied at two
distinct points in the pipeline: at the final OSS prediction or
at the intermediate scores used to identify the OOD pixels.
In the first, with the OSS prediction, we use the superpixels
to perform a majority class vote detecting the predominant
class. In the second, we compute the mean or median of the
scores in each superpixel to apply the threshold identifying
the OOD superpixels.

E. SUPERPIXEL CONFIGURATIONS
To evaluate the effectiveness of FuSC, we choose three
completely different superpixel generation algorithms as
our base algorithms: SLIC [39], Quickshift (QS) [36] and
Felzenszwalb (FZ) and Huttenlocher [17]. The three selected
algorithms use completely distinct ideas to produce the
superpixels, and the final segmentations have segments with
different sizes, structures, and shapes.

We conducted experiments with 70 different superpixel
configurations for the Vaihingen ablation study. We selected
the six (6) best configurations on Vaihingen to run in
Potsdam, due to the greater computational cost.

The 70 used configurations were of 2 categories:

1) single – an execution with different parameters of one
of the three selected SPS algorithms;

2) FuSC – fusion of two different superpixel segmenta-
tions using the proposed procedure.

For the FuSC merging procedure, we tested both mean and
median when calculating the distance between neighboring
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FIGURE 5. Boxplot with the AUROC results for all configurations used for
the ablation study for CoReSeg in the Vaihingen dataset. The boxplot
shows both single superpixel algorithms (blue) and FuSC (yellow) for
individual UUCs and for the average.

superpixel regions. Furthermore, we tested two different
minimum sizes for the superpixels: 25 and 50 pixels.
By default the SPS algorithms use the mean to represent each
segment, or to define the SPS, so we tested the median to
discover if it could better represent the image bands.

In the Appendix A, we list the 11 superpixel generation
configurations reported in this work in Sections IV and V.
As a results of the Section IV, FuSC’s result reported in
Section V used the mean value for the scores of each
superpixel and the minimum superpixel size of 50 pixels.

IV. ABLATION STUDY
Besides the 70 superpixel generation configurations men-
tioned in Section III, we applied the superpixels in four
(4) distinct manners, adding up to 280 different super-
pixel post-processed results to evaluate. We performed the
ablation study for OpenGMM due to the computational
cost of running 280 tests for each method. To evaluate
the post-processing in a distinct methods family, we also
extended the ablation study for the Vaihingen dataset using
CoReSeg [22], which uses U-net as a fixed architecture.

We split the following section into two sets of experiments:
1) Superpixel generation (Section IV-A), and 2) Post-
Processing for OSS (Section IV-B).

A. SUPERPIXEL GENERATION STRATEGY
In this section, we intend to evaluate and compare the
single superpixel algorithms with the FuSC procedure

identifying the strengths and weaknesses between the
methods.

Table 1 and Figure 5 present the worst, best, and average
results aggregated by generation strategy for each UUC and
for the average.We can observe that the worst and best results
produced by FuSC are closer, achieving considerably stabler
results in all scenarios, while also producing better average
results. Figure 5 shows comparatively how FuSC results are
closer than SPS results in all cases.

Selecting the correct parameters is critical when using
superpixel generation algorithms to achieve a suitable image
representation. The construction of FuSC combines different
SPS algorithms, with the results suggesting that the selection
of parameters becomes less relevant to the process, validating
the conjecture that combining 2 different over-segmentations
generates a more reliable result.

Figure 6 presents the minimum, average, and maximum
results for the two distinct generation strategies. The error
bars show the confidence intervals given by a paired two-
tailed t-Student test with p ≤ 0.05 across all five (5)
tested scenarios. We can observe the better comparative
performance of FuSC in all three tested cases.

The ablation study indicated that the results using the
mean on all the superpixels pixels to represent them produced
slightly better results. The ablation results showed that using
50 pixels as the minimum size for the superpixels also
produced slightly better results. We can see in Table 8 in
Appendix A a list with the best 20 results among all executed
tests for this ablation study.

The collected results can be used as evidence suggesting
that FuSC ismore stable, less sensitive to parameter selection,
and produces better results on average.

B. POST-PROCESSING FOR OSS
The first ablation study pointed out that FuSC seems to be
better comparing all gathered results. In this section, we study
where to apply the post-processing and how represent the
superpixel.

Regarding the use of superpixel segmentation to improve
the results of the OSS methods, we tested four (4) different
strategies (a pair of strategies with two possible settings
each):

1) regarding to where to apply the superpixel
segmentation:
a) applying to the final closed-set segmentation;
b) applying only to the scores/reconstruction errors;

2) regarding to how to represent the superpixel:
a) using the mean to represent the score/

reconstruction error for the entire superpixel;
b) using the median to represent the score/

reconstruction error for the entire superpixel.
Table 3 presents the results aggregated by the strategies

used in the OSS post-processing. We observed the same
performance applying the produced superpixels on the
final tensor before predicting the OSS segmentation and
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TABLE 2. For each combination of backbone and OSS method the table shows the classwise AUROC and average (Avg.) AUROC in Vaihingen and
Potsdam. Numbered columns stand for: 0 - Impervious Surfaces, 1 - Building, 2 - Low Vegetation, 3 - High Vegetation and 4 - Car.

TABLE 3. The table shows the AUROC results by how the post-processing was used and the used value for the superpixel. The column ‘‘Superpixel All‘‘
indicates if the superpixel segmentation was applied to the final predicted segmentation or the OSS scores tensor instead, and the ‘‘Value Used’’ column
shows which value represents the entire superpixel.

FIGURE 6. Comparison of minimum, average and maximum AUROC for
all superpixel configurations generated for the ablation study on
CoReSeg [22] with the Vaihingen dataset. The barplot shows single
superpixel algorithms (yellow) and FuSC (blue) for the average across all
UUCs in the LOCO protocol. Confidence Intervals (CIs) according to a
paired two-tailed t-Student test with p ≤ 0.05 across the five (5) classes
are shown as error bars, highlighting the statistical significance of
employing FuSC instead of single SPS algorithms. For better visualization
of the CIs, we trimmed the lower y-axis to 0.5.

applying it to the OSS scores/reconstruction errors. Using
the mean value to represent the superpixel produced the
best results. As for applying the superpixel only to the
scores/reconstruction errors or along the closed-set final
tensor, the results show similar performance, implying that
the variations are equivalent. Due to the proximity of the
results presented in Table 3, we observe that the first and the
third lines produced equivalent results with the same scores.

V. RESULTS AND DISCUSSION
A. OPENGMM IN COMPARISON TO BASELINES
Table 2 compares OpenGMM, OpenPCS, and CoReSeg
results using the same closed-set backbones without any post-
processing. The results in bold are the best ones for each
closed-set backbone. Section V-Bwill present and discuss the
post-processing results.

For the Vaihingen dataset, we can observe that in all
scenarios, OpenGMM outperformed OpenPCS with the
same backbone. The Potsdam dataset yielded mixed results
for OpenGMM and OpenPCS, showing overall similar
performances. OpenGMM surpassed OpenPCS in 4 out of
6 direct comparisons.

We attribute the improvement shown by OpenGMM over
OpenPCS to its multimodal representation capability for
modeling real-world data, regardless of the number of
KKCs. The worse results in Potsdam are attributed mainly
to OpenGMM’s poorer performances on two UUCs: Low
Vegetation and High Vegetation. The instability of OSS
algorithms in these two particular classes is known from
previous work, possibly due to the large semantic intra-class
variability.

It is worth mentioning that our experimental procedure
is not the same used by Oliveira et al. [13]. Therefore, all
experiments were re-executed to ensure comparability, and
the results presented in this work differ from the original
publication of OpenPCS.

A remarkable advantage of OpenGMM is the promptness
of the method, meaning that adapting it to other backbones
is simple and does not require retraining the neural network.
The results achieved by OpenGMM improved the baseline
established by OpenPCS in most cases, and the best
OpenGMM results are close to CoReSeg’s results. Since
OpenGMM can benefit from networks producing better
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FIGURE 7. The figure presents qualitative results for an image from the Vaihingen dataset under different settings of UUCs and OSS methods. The w/
superpixels shows the results of the best post-processing for the image. The post-processing produced a segmentation reducing the usual mislabeling of
unknown pixels (colored in red) and better delineating the boundaries.

TABLE 4. The table shows Kappa scores with threshold values varying from 0.9 to 1.0 for the Vaihingen dataset with CoReSeg as the OSS method. The
second column indicates the usage of the FuSC post-processing. For the average rows, the † symbol indicates if the results have statistical significance,
according to a paired two-tailed t-Student test with p ≤ 0.05 across the five (5) classes.
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FIGURE 8. The figure shows the OSS predictions obtained using CoReSeg for an image of the Vaihingen dataset with all tested
UUCs. The last column presents the qualitative improvement achieved using the proposed superpixel post-processing method.
We can also observe the impact of the post-processing on the Reconstruction Loss.

data intermediate representations, further experiments are
expected to improve the results.

It is noticeable that OpenGMM obtained its best results
using DN121 as its backbone and that CoReSeg only used
U-net as its backbone, making the comparison between its
best results unfair to CoReSeg. Using DN121 instead of the
U-net as a backbone allowed OpenGMM to take advantage
of the greater representational ability of the backbone used.
However, we can say that CoReSeg also has an advantage
overOpenGMM, since the network is trained to identifyOOD
pixels, while OpenGMM is a module coupled to a network
trained only for closed-set segmentation.

B. SUPERPIXEL POST-PROCESSING RESULTS
Superpixel post-processing improved the average AUROC in
all tested scenarios, as shown in Tables 5 and 6, and also

produced better semantic consistency, as shown in Figures 7
and 8.

Tables 5 and 6 show the AUROC baseline results for
the OSS prediction and the improvement observed by
post-processing with a single SPS algorithm or using FuSC.
The tables present the results for all UUCs and the average
of the UUCs, sided by the medium size in pixels of the used
superpixel configuration.

We only observed a worsening after post-processing the
OSS predictions for the cases with poor closed-set results
for a certain UUC. The results suggest that if the baseline
OSS prediction presented little semantic consistency, the
post-processing could not consistently improve the results.
Whenever the baseline AUROC is close to or below 0.50 the
post-processing performance becomes unpredictable and
may worsen the final result.
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TABLE 5. The table presents results for the Vaihingen dataset ordered by the average AUROC for each pair Backbone/OSS Method. Each configuration of
the column Superpixel Config. is better detailed in the Appendix A. The column avg. AUROC shows the average AUROC among all UUCs; the column avg.
px/seg shows the average size of the segments produced by the superpixel configuration used to post-process. The † symbol marks when OpenGMM
produces better results than OpenPCS with the same Backbone-OSS method. In bold we can see the best results for each backbone.

TABLE 6. The table shows results for the Potsdam dataset ordered by the average AUROC for each pair Backbone/OSS Method. Each configuration of the
column Superpixel Config. is better detailed in the Appendix A. The column avg. AUROC shows the average AUROC between the UUCs; the column avg.
px/seg shows the average size of the segments produced by the superpixel configuration used to post-process. The † symbol marks when OpenGMM
produces better results than OpenPCS with the same Backbone-OSS method. In bold we can see the best results for each backbone.

However, when the baseline OSS model prediction with
no superpixel post-processing yields consistent segmenta-
tions, even with border issues or salt-and-pepper artifacts,
the superpixel post-processing is quite effective. In other
words, assuming that the superpixels are representative,
homogeneous, and respect the edges of the image, a better
base OSS result allows the superpixel post-processing to
correct mistakes inside the superpixels, as these mistakes are

usually the minority of pixels. The results suggest that better
baseline OSS prediction results would benefit more from the
superpixel post-processing. Corroborating that observation,
the AUROC results for the CoReSeg with U-Net as the
backbone and Car as the UUC improved from 0.854 to
0.913 for the Vaihingen dataset, and from 0.768 to 0.816 for
Potsdam. An improvement can be observed by analyzing
the average AUROC for the 5 UUCs, which improved from
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TABLE 7. The table shows Kappa scores with threshold values varying from 0.0 to 1.0 for the Vaihingen dataset with OpenGMM and OpenPCS as the OSS
method and WRN50 as the backbone. The third column indicates the usage of the FuSC post-processing. The last two rows of each OSS method block
show the average κ across all UUCs. For the rows with the average scores, the † symbol indicates if the results have statistical significance, according to a
paired two-tailed t-Student test with p ≤ 0.05 across the five (5) classes.

0.850 to 0.880 (3.53%) for Vaihingen and from 0.764 to 0.797
(4.32%) for Potsdam.

Tables 7 and 4 show the comparison of Cohen’s Kappa
(κ) scores between different thresholds in the OSS methods
tested. The κ score improved for all tested scenarios presented
in Table 4. Figures followed by † show statistically significant
improvements when using superpixel post-processing. For
CoReSeg, we observed statistically significant improvements
in 8 of the 11 scenarios, while for the OpenPCS and
OpenGMM results shown in Table 7, the improvements
were statistically significant for threshold values above 0.5.
The proposed post-processing was able to improve the
threshold independent AUROC score and the qualitative
results. Furthermore, the results for Cohen’s kappa score
reassure that the post-processing improves the reliability of
the predictions.

VI. CONCLUSION
This paper presented two approaches to improve known
open-set semantic segmentation benchmarks for the Vai-
hingen and Potsdam datasets. The first one is OpenGMM,
an extension of OpenPCS [13] that replaces the uni-
modal Principal Component model with a multimodal
Gaussian Mixture of Models. The second is a superpixel
post-processing pipeline capable of benefiting OSS predic-
tions based on single SPS algorithms, or a mixture of them in
a novel SPS fusion method named FuSC.

OpenGMM improved OpenPCS’ AUROC average results
for most of the UUCs and most of the tested backbones.

Furthermore, the superpixel post-processingmethod achieved
state-of-the-art results for both Vaihingen and Potsdam
datasets when applied to CoReSeg’s predicted segmentation.
The improvement produced by the post-processing was
statistically significant in most of the cases tested.

Our novel FuSC fusion scheme uses Malahanobis distance
to merge neighboring segments below the established min-
imum size limit. FuSC produced more stable and reliable
superpixel segmentation than the tested superpixel generation
algorithms individually. Furthermore, in 11 of 12 cases,
the best results were achieved using the final segmentation
generated by FuSC. The FuSC method also relieved the
burden of parameter selection for superpixel generation.

Our proposed superpixel post-processingmethod improved
the results in all tested scenarios and for all OSS methods
and backbones. This study shows that methods aimed
at improving semantic consistency can benefit from a
superpixel post-processing procedure, which helps in object
and boundary delimitation.

We believe that due to the improvements achieved using
post-processing in the segmentation pipeline, future works
should include evaluating other contour recognition post-
processing techniques. Besides, another approach to improve
the segmentation may use a deep neural network that
generates superpixels simultaneously with the semantic
segmentation task [55], possibly using conditional ran-
dom fields as the post-processing step at the end of the
networks. Since the tested open-set methods use closed-
set backbones, adapting different modern state-of-the-art
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TABLE 8. Top 20 average AUROC results for all five UUCs tested scenarios achieved with different superpixel post-processing methods for OSS, obtained
with CoReSeg [22] on the Vaihingen dataset. The first line shows the baseline result without post-processing. The first column presents the superpixel
segmentation config used, the second shows which value was chosen to represent the superpixel to calculate the distance between 2 superpixels, the
third the minimum pixel count for each superpixel, and the last column the average AUROC for the 5 tested scenarios.

segmentation backbones [56] may improve the results.
We can also conjecture that employing attention techniques
would further improve the open-set segmentation.

APPENDIX A
SUPERPIXEL CONFIGURATIONS
Table 8 is complimentary to Section IV and shows the top
20 results for Vaihingen dataset and CoReSeg [22] among
the 280 tests executed. The first line shows the baseline
without post-processing, and the subsequent lines are sorted
by Average AUROC. The second column stands for the value
used to represent the superpixel for post-processing, and
the third column shows the minimum pixel count of each
superpixel used by FuSC.

Below the list of all superpixels configurations used to
run all tests in this work presented in Sections V and IV
and in Table 8. FZ stands for the Felzenszwalb and Hut-
tenlocher [17] algorithm, QS stands for the Quickshift [36]
algorithm, and SLIC stands for the method with the same
name proposed by Achanta et al. [39]:

1) single01: FZ (scale: 100, sigma: 0.5, min_size: 50)
2) single02: FZ (scale: 200, sigma: 0.5, min_size: 50)
3) single03: SLIC (n_segments: n_pixels÷ 350, compact-

ness: 5, σ : 1)
4) single04: FZ (scale: 50, sigma: 0.5, min_size: 50)
5) single05: FZ (scale: 100, sigma: 0.5, min_size: 100)
6) fusc01:

• SLIC (n_segments: n_pixels ÷ 2000, compact-
ness: 5, σ : 1)

• FZ (scale: 200, σ : 0.7, min_size: 200)

7) fusc02:

• SLIC (n_segments: n_pixels ÷ 1500, compact-
ness: 5, σ : 1)

• FZ (scale: 100, σ : 0.7, min_size: 150)

8) fusc03:

• SLIC (n_segments: n_pixels ÷ 1000, compact-
ness: 5, σ : 1)

• FZ (scale: 100, σ : 0.7, min_size: 150)

9) fusc04:

• FZ (scale: 200, σ : 0.7, min_size: 200)
• QS (kernel_size: 5, max_dist: 50, ratio: 0.5)

10) fusc05:

• FZ (scale: 200, σ : 0.7, min_size: 200)
• QS (kernel_size: 4, max_dist: 50, ratio: 0.5)

11) fusc06:

• FZ (scale: 200, σ : 0.7, min_size: 200)
• QS (kernel_size: 3, max_dist: 50, ratio: 0.5)

APPENDIX B
FUSING SUPERPIXELS FOR SEMANTIC CONSISTENCY -
CODE
Listing 1 provides the complete code used for FuSC, imple-
mented in Python 3.8. The comments detail the functioning
of the method and the algorithmic complexity using big O
notation.
The official implementation of all proposed approaches is

available at https://github.com/iannunes/FuSC.
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LISTING 1. FuSC implementation. LISTING 1. (Continued.) FuSC implementation.
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LISTING 1. (Continued.) FuSC implementation. LISTING 1. (Continued.) FuSC implementation.
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