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ABSTRACT This paper proposes the design of Discrete Centralized Optimal Quadratic Automatic Gener-
ation Control (COQAGC) based on the functional minimization method (FMM) and optimal control theory
for interconnected power systems. The cost function and FMM design requirements are defined in terms of
area control errors, integral area control errors, and control signals. FMM is an optimal method, an easy and
systematic approach for constructing and selecting state and control weighting matrices. The performance of
COQAGC on discrete two-area interconnected power systems with identical _non-reheat thermal turbines
has been studied using 1% and 5% step load perturbations (SLPs) and sensitivity analysis. The study has been
extended to investigate the performance of COQAGC on discrete multi-area multi-source interconnected
power systems with wind turbines. The simulation results revealed that developed COQAGC-based FMM
improves the power system dynamics in terms of the steady-state performance and robustness against SLPs
and parameter variations in comparison with controllers from the literature. The developed method can be
extended and implemented on large complex multi-area power systems.

INDEX TERMS Automatic generation control, functional minimization method, interconnected power
systems, optimal LQR control, weighting matrices.

NOMENCLATURE AND ABBREVIATIONS
1Ptie12: Tie-line power deviation between control

areas 1 and 2.
1fi: Deviation in frequency for the ith area (Hz)

(i = 1, 2).
1PTi: The deviation in the power output of the

turbine for the ith area (pu.MW).
1PGi: The deviation in the governor valve position

for the ith area (pu.MW).
1PDi: The load input deviation for the ith area

(pu.MW).
IAEC i: The integral deviation of area control error

for ith area.

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

Tpsi: Power system time constant for the ith area (s).
Tti: Turbine time constant for the ith area (s).
TGi: Governor time constant for the ith area (s).
Tij: Tie-line synchronizing coefficient between the

ith area and jth area (pu.MW).
kpsi: The power system’s gain for the ith area.
ACE i: Area control error for the ith area.
Ri: Speed regulation due to the governor action for

the ith area (Hz.pu.MW−1).
Bi: Frequency biasing factor for the ith area.
x: = The states of the overall interconnected

power system.
L : The quadratic optimal control constant vector

for the control area.
ui: The control law signal for the ith area.
N: Number of interconnected power systems.
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COQAGC: Discrete centralized optimal quadratic
Automatic generation control.

FMM: Functional minimization method.
SLPs: Step load perturbations.
AGC: Automatic Generation Control.
PV: Photovoltaic.
ANFIS: Adaptive Neuro-Fuzzy Interference Sys-

tem.
FOBELBIC: Fractional order brain emotional learning

based intelligent controller.
FOPID: Hybrid type-2 fuzzy logic controllers

with fractional order proportional integral
derivative.

ADRC: Active Disturbance Rejection Control.
LQR: Linear Quadratic Regulator.
Q: State cost weighing matrix.
R: Control cost weighting matrix.
PSO: Particle swarm optimization.
ODEs: Ordinary differential equations.
I: An identity matrix a.
T : Sampling periods.
GCOAQGC: Continuous Global centralized optimal

quadratic automatic generation.
TLBO-PIDD: Teaching learning-based optimization

proportional integral double derivative.
FGSC: Fuzzy Gain Scheduling Controller.
POS: Peak Overshoot.
STs: Settling Times.
DRRT: Disturbance Rejection Response Time.
T12: Tie-line synchronization coefficient

between two area control interconnected
power systems.

α: The vector of participation factors.
Uth1,
Uhy, Uw
and Uth2: Control signals applied to non-reheat

thermal 1, hydro, wind turbine, and non-
reheat thermal 2 plants respectively.

GRC: Generation Rate Constraint.
OFSFC: Optimal Full-State Feedback Control.
LFC: Load Frequency control.
LFC-MGOA: LFC-based Modified Grasshopper Opti-

mization Algorithm.
PUS: Peak Undershoot.
CSLPs: Concurrent Step Load Perturbations.
ess(∞) : Steady state error.
ITAE: Integral Multiplied Time Absolute Error.
1Phy : Deviation in hydro unit output (pu).
1Xh : Deviation in an intermediate state of the

mechanical hydraulic governor.
1Prh : Deviation in intermediate state of hydro

turbine governor for the third area.

I. INTRODUCTION
Automatic Generation Control (AGC) is a very important
control method for maintaining the active power balance

within the desired limits in the multi-area power system [1].
The main objectives of AGC control are to maintain the
frequency deviations at nominal value, keep the tie-line power
changes between areas at a scheduled value, and ensure that
the frequency variations are returned to zero [2], [3]. The
variation of the daily load and integration of the newly dis-
tributed resources, i.e., wind farms and photovoltaic (PV),
into the main grid, makes this control even more complex and
challenging.

Various control strategies have been developed over the
years to solve AGC problems. For example, control strate-
gies such as classical linear control methods problems [4],
[5], A fractional PIλD control [6], Adaptive neuro-fuzzy
interference system (ANFIS) [7], [8], Robust control meth-
ods such as Active disturbance rejection control (ADRC)
[9], Variable structure control [10], and H-infinity robust
control [11]. For a three-area hydro-thermal power system
integrated with distributed energy resources, a Fractional
order brain emotional learning-based intelligent controller
(FOBELBIC) was proposed to suppress frequency and tie-
line deviations [12]. Hybrid type-2 fuzzy logic controllers
with fractional order proportional integral derivative (FOPID)
have recently been developed to enhance the frequency and
tie-line deviations of two control areas under different per-
turbations [13]. Most of these control methods are designed
in the continuous time domain and may be implemented in
the discretized time domain. In other words, the measure-
ments of tie-line power and frequency are implemented and
delivered as discrete signals to the system control center via
communication channels, even though the system is devel-
oped based on continuous time modeling [14]; this, however,
shows that the AGC controller operates in the discrete-time
domain, but the power system operates in the continuous
time domain [15]. As a result, the closed-loop performance is
poor, which degrades the power system stability. Therefore,
a flexible and robust discrete-mode AGC scheme is required,
capable of keeping the closed-loop stable and considering
the sampling period characteristics of both the AGC con-
troller and the interconnected power system during the design
phase [14].
AGC based on modern optimal control theory has been

investigated in the literature as one of the control strate-
gies to provide robustness against load disturbances, model
uncertainties, and physical constraints. The first optimal AGC
control was introduced for two-area interconnected power
systems [16], [17]. Reference [18] used hybrid bacteria forag-
ing oriented particle swarm optimizationwith linear quadratic
regulator (LQR) design for interconnected power systems
with hydro turbines to test the robustness of the designed
controller against step load disturbances, nonlinearities, and
parametric variations. The authors in the literature have
applied the optimal control theory to control the active power
balance of two microgrids interconnected systems with two
AC tie-lines [3]. It was proved that optimal AGC control
based On LQR can achieve good performance in terms of
large stability margins, robustness, and reliability in terms
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of nonlinearities in multi-area interconnected power sys-
tems [3], [19].

Despite the advantages of optimal AGC-based LQR men-
tioned above, its performance depends on selecting the state
cost weighing matrix (Q) and control cost weighting matrix
(R) to obtain the best control efforts and closed-loop per-
formance [18], [20]. State and control signals are penalized
when the R and Q value increases. Choosing a large number
for the R matrix shows that the designers intended to keep
the system stable using less energy (cheap control technique).
However, choosing a small number for R implies that the
designers are not adjusting the regulator output (cheap control
strategy). A more significant Q value means settling the
system with the most minor state variation possible, whereas
a smaller Q value implies less concern about state deviations.

Several ways for determining state and control weighting
matrices have been presented to solve these challenges. The
Q and R identity matrices of appropriate dimensions were
employed in earlier LQR research. Because of this deci-
sion, LQR’s control efforts were limited; thus, LQR provided
limited action to obtain the best AGC performance [21],
[22]. The weighting matrices were selected based on the
participation factor analysis, in which states with the most
significant participation in relevant modes were given higher
weights [23]. Reference [24] calculated the weighting matri-
ces Q and R for LQR using hybrid bacteria foraging-oriented
Particle Swarm Optimization (PSO) for hydro system auto-
matic generation control. In another study, weight matrices
were chosen based on the controllability and observability
indices, and the power system’s state matrix was transformed
into a diagonal matrix form using the Eigenvalues and Eigen-
vectors decomposition approach [25]. Most of these methods
require an observer to estimate the closed-loop states. Fur-
thermore, state and control input weighting matrices have
been constructed using the Functional minimization method
(FMM) [25], [26]. In this approach, optimal LQR AGC is
designed based on minimizing the cost function for two-area
interconnected power systems. The weighting matrices Q and
R were defined for the dynamic system under the study by
considering the excursion of area control errors, the excursion
of the integral of area control errors, and the excursion of the
control vector about the steady state. Despite FMM being
constructed in the time domain, it provides more realistic
responses in a real-time environment for two-area control
with communication delays [26]. It is systematic and easy to
construct. In addition, because it uses a few numbers of the
state variables to construct weighting matrices, it eliminates
the need for an observer to estimate the power system states.
Therefore, this paper aims to develop a discrete centralized
optimal quadratic automatic generation control (COQAGC)
for discrete interconnected power systems using optimal
control theory, sampling period, and discrete functional min-
imization method (FMM).

The problem of COQAGC for a discrete two-area inter-
connected power system based on discrete functional cost

minimization is developed in this paper. Moreover, it is com-
pared with existing controllers from the literature.

The main contributions of this paper are as follows:

1. The cost functionalminimization is systematically used
to select weighing matrices in discrete forms for two
control areas, each with identical non-reheat thermal
turbines as well as multi-area multi-source power
system

2. The discrete cost function requirements are defined in
terms of area control errors, integral area control errors,
and control energy expenditure so that the function of
the criterion can be minimized.

3. Discrete centralized optimal quadratic automatic gen-
eration control (COQAGC) is designed based on opti-
mal control theory framework and discrete, functional
minimization approach for discrete two-area intercon-
nected power systems with load disturbances.

4. The performance of the discrete COQAGC on power
system dynamics has been studied with step load
perturbations (SLPs) and area control errors by consid-
ering two identical control areas.

The paper is organized as follows: Section II presents the
model of two control areas and the design of the COQAGC
controller. Section III describes the developed functionalmin-
imization approach in a general framework for N control
areas. The results and discussion are described in Section IV,
and Section V concludes the paper.

II. PROPOSED DISCRETE CENTRALIZED MODEL OF AGC
Two identical control areas with non-reheat thermal turbines
in each area are considered for the study. The proposed
discrete centralized optimal closed-loop system of two area
interconnected power system is shown in Fig 1. For zero
steady-state error, the derivatives of Area Control Areas
(ACEs) are augmented in the model of two area intercon-
nected power systems. The Integral Area Control Areas
(IACEs) act as local controllers.

A. DYNAMICS OF TWO-AREA POWER SYSTEM
The state-spacemodel of an interconnected power system can
be described [27], [28]:

ẋ (t) = Ax (t) + Bu (t) + 0w(t)

y = Cx (t) + Du(t) (1)

where x(t) ∈ Rn×1 is the state vector, u(t) ∈ R2×1 is the
control input vector, and w(t) ∈ R2×1is the load distur-
bances input vector, whereas A,B,0, andC are the respective
matrices with appropriate dimensions. The first Ordinary
Differential Equations (ODEs) for the different state variables
shown in Figure 1 can be derived as follows [28], [29]:

ẋ1 = 2πT 12x2 − 2πT 12x5 (2)

ẋ2 = −
kps1
Tp1

x1 −
1
Tps1

x2 +
kps1
Tps1

x3 −
kps1
Tps1

1PD1 (3)
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FIGURE 1. Two area control closed-loop system controller.

ẋ3 = −
1
TT1

x3 +
1
TT1

x4 (4)

ẋ4 = −
1

TG1R1
x2 −

1
TG1

x4 +
1
TG1

u1 (5)

ẋ5 = −
a12kps2
Tps2

x1 −
1
Tps2

x5 +
kps2
Tps2

x6 −
kps2
Tps2

1PD2 (6)

ẋ6 = −
1
TT2

x6 +
1
TT2

x7 (7)

ẋ7 = −
1

TG2R2
x5 −

1
TG2

x7 +
1
TG2

u2 (8)

ẋ8 = x1 + β1x2 (9)

ẋ9 = −x1 + β2x5 (10)

where,

x1: Tie-line deviation between areas 1 and 2
x2 and x5: the deviations in frequency (Hz) for areas 1

and 2 respectively.
x3 and x6: the deviations in the power output of

the turbine (pu.MW) for the areas 1and 2
respectively.

x4 and x7: the deviations in the governor valve position
(pu.MW) for areas 1 and 2 respectively.

References [28], [30] discussed the derivation procedure of
the state space equation of interconnected power systems.
As a result, the state space matricesA, B, 0, andC for the two
control areas with identical non-reheat turbines in each area
can be derived as (11), shown at the bottom of the next page,
where the state variables are chosen as the tie-line deviation
in the tie-line flow (x1 = 1Ptie12), deviations in frequencies
(x2 = 1f1, x5 = 1f2) in area1 and area2 respectively, the
deviation in the power output of turbine1 in area1 (x3 =

1PT1), and the deviation in the power output of turbine 2 in
area 2 (x6 = 1PT2), the deviation in the power output of
governor1 in area1 (x4 = 1PG1), and the deviation in the
power output of governor 2 in area 2 (x7 = 1PG2) such

that the state, control input, and disturbance input vectors are
presented as

xT =
[
1P tie12 1f 11 PT11PG1 1f 21 PT21 PG2

]T
uT = [u1 u2]T

pT = [1Pd1 1Pd2]T

yT =
[
P tie121f 1 1f 2

]T (12)

The linear model of the Tie-line power deviation between
areas 1 and 2 can be obtained as follows:

1P tie12 (s) =
2πT12

s

[
1f 1 − 1f 2

]
(13)

B. DESIGN OF DISCRETE COQAGC CONTROL
A linear discrete-time state space equation of the block dia-
gram shown in Fig 1 is given by

x (k + 1) = Akx (k) + Bku (k) + 0kw(k)

x (k0) = x0, x
(
kf

)
= xkf ) (14)

where x(k) is nth order state vector, u(k) is rth order control
vector and Ak and Bk are the time-varying matrices of n × n
and n× r dimensions, x(k0) and x(kf ) are the initial and final
state conditions respectively ,w(k) is mth order, and 0k ∈

Rn×r are input load changes vector and a load disturbance
matrix respectively.

The steady-state optimization problem of an intercon-
nected power system is to find a control law u, which
minimizes a cost function, is given.

minJ =
1
2

∞∑
k=k0

xT (k)Qkx (k) + uT (k)Rku (k) (15)

Subject to the equality constraint discrete state space model
in equation (5).

This optimal feedback gain matrix L can be found by
solving the steady-state Riccati matrix equation as follows
[30], [31]:

L = [Rk + BTk PkBk ]
−1
BTk PkAk (16)

where Pk is the steady-state Riccati Equation Matrix can be
defined as

Pk = Qk + ATk

{
P− P

[
BTk PBk + Rk

]−1
BTk P

}
Ak (17)

Substituting the optimal feedback control law in the dis-
crete centralized model of the interconnected power system,
the optimal closed-loop system with perturbations is given as
follows:

x (k + 1) =

[
Ak − Bk (

[
Rk + BTk PBk

]−1
BTk PAk )

]
x(k)

(18)

the closed-loop system will be stable if the real
parts of the Eigenvalues of the closed-loop matrix[
Ak − Bk [Rk + BTk PBk ]

−1
BTk PAk

]
are located in the left half

plane of the complex plane.
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The flowchart of the COQAGC controller algorithm is
shown in Fig. 2. The following steps summarize the detailed
methodology of the proposed COQAGC algorithm:
Step 1: Develop and obtain mathematically the state space

model of multi-area power systems.
Step 2: Input the model parameters and data for power

system simulation.
Step 3: Compute the augmented continuous time matrices.
Step 4: Obtain the discrete-time and augmented matrices

obtained in step 3 using Euler’s discretization criteria.
Step 5: Initialize the steady Recatti matrix, select the iter-

ation length (M) and select weighting matrices.
Step 6:Calculate the discrete optimal feedback gain matrix

and the discrete optimal control law.
Step 7: Initialize the state variables and solve the

closed-loop closed loop iteratively using the control law
derived in step 6.
Step 8:Using MATLAB, simulate the multi-area intercon-

nected power system with COQAGC.
Step 9: Calculate the dynamic response to step load pertur-

bations (SLPs).
Step 10: Repeat step 9 to evaluate the dynamic responses

for robustness (parameters uncertainties) and GRC.

III. FUNCTIONAL MINIMIZATION METHOD
In this section, the functional minimization approach will
be considered for developing the state and control-weighting
matrices (Qk and Rk ). It is a systematic approach consisting
of three main steps, namely,

1. The definition of the cost function in terms of the design
requirements: Area Control Errors (ACE), integral of
ACEs, and the summation of the individual control
efforts [27].

2. Apply the concept of the partial derivatives with respect
to each state and each control effort and

3. Combine all first partial derivatives of all states to
form the state weighting matrix, and in a similar way,
we combine all the partial derivatives of the control
efforts to construct the input weighting matrix.

In this approach, the design requirements are transformed
to the cost function so that ACEs, the integral of ACEs, and
the control vector u(k) from the steady state are minimized.
The steady-state values of ACEs are to be zero, while the
steady-state values of the integral of IACEs and the control
vector u are to be constant.

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2πT12 0 0 −2πT12 0 0 0 0

−
kps1
Tp1

−
1
Tps1

kps1
Tp1

0 0 0 0 0 0

0 0 −
1
TT1

1
TT1

0 0 0 0 0

0 −
1

R1TG1
0 −

1
TG1

0 0 0 0 0

−
a12Kps2
Tps2

0 0 0 −
1
Tps2

Kps2
Tps2

0 0 0

0 0 0 0 0 −
1
TT2

1
TT2

0 0

0 0 0 0 −
1

R2TG2
0

1
TG2

0 0

1 β1 0 0 0 0 0 0 0
−1 0 0 0 β2 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

B =



0 0
0 0
0 0
0 0
0 0
1 0
TG1
0

0

0 0
0 0

0
1
TF0



, 0 =



0 0

−
Kps1
Tps1

0

0 0
0 0

0 −
Kps2
Tps2

0 0
0 0
0 0
0 0



, C =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 (11)
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FIGURE 2. Flowchart of COQAGC algorithm.

A. DEVELOPMENT OF STATE MATRIX Qk
Considering the above design requirements: area control
errors, integral of area control errors, and control signals of
two control areas, the cost function can be defined as

J =
1
2

∞∑
k=k0

(
{
(AEC1)

2
+ (AEC2)

2
}

+


 ∞∑
k=k0

AEC1

2

)

(+

 ∞∑
k=k0

AEC2

2
 + ∝

{
u21 + u22

}
) (19)

where constant ∝ is the coefficient that is generally used to
limit the control action, in this paper the value of ∝ is unity,
i.e., ∝ = 1. Reference [27] defines the area control errors
(ACE1 and ACE2) and the integral of area control errors
(IACE1 and IACE2) of the two control areas, respectively as
follows:

ACE1 = β11f1 + 1Ptie12

ACE2 = β21f2 + a121Ptie12 (20)

and

IACE1 =

∞∑
k=k0

(β11f1 + 1Ptie12)

IACE2 =

∞∑
k=k0

(β21f2 + a121Ptie2) (21)

SubstitutingACE1,ACE2, IACE1 andIACE2) to Equation (19)
from Equations ((20) and (21)), the cost functional can be
given by:

J =
1
2

∞∑
k=k0

((β11f1 + 1Ptie12)2

+ (β21f2 + a121Ptie12)
2
+

{
(IACE1)

2 )

(+ (IACE2)
2
}

+ ∝

{
u21 + u22

}
) (22)

where β1and β2 are the frequency bias for both areas respec-
tively, 1Ptie12 is the tie-line deviation, and a12 = −1, is the
constant coefficient that changes the sign of the tie-line power
towards area 2.

Presenting the function of the cost function as a function
of the design requirements (ACEs, IACEs and u), and taking
the partial derivatives of the obtained function with respect to
state variables, the state weighting matrix Qkcan be derived
based on the functional minimization method by combining
all states partial derivatives as follows [30]:

Qk

=



(
1 + a212

)
β1 0 0 a12β2 0 0 0 0

β1 β2
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a12β2 0 0 0 β2
2 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


B. DEVELOPMENT OF CONTROL WEIGHTING MATRIX Rk
A similar functional minimization method can be applied
to control energy expenditure where the first-order par-
tial derivatives with respect to control input signals can be
obtained, and control weighing matrix Rk can be constructed
as

Rk =

[
1 0
0 1

]
The power systemmatrices and state and control weighting

matrices (Qkand Rk )are used further to calculate the o the
Optimal Quadratic AGC controller matrix using the Equa-
tions (16)-(18).

IV. RESULTS AND DISCUSSIONS
This section tests the developed optimal quadratic AGC con-
troller using MATLAB/Simulink simulation, considering 1%
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TABLE 1. The parameters of the two-area thermal power system.

step load perturbation (SLPs) at t = 0 s, 5% concurrent step
load perturbation at t = 5 s intervals and sensitivity analysis.
the power system parameters of the two-area thermal power
system given in Table 1 are used to develop the discrete
model of two-area power systems considering area control
errors (ACEs) and MATLAB program is written to obtain the
optimal feedback gain matrix L.

A. CALCULATION OF THE DISCRETE MATRICES OF
TWO-AREAS POWER SYSTEM
The one-step Euler discretization procedure and sampling
time (814 ms) are used to convert the continuous time matri-
ces Aa, Ba and 0a to the discrete-time matrices Akand Bk
given below [32], [33]. The continuous-time and Discrete-
time matrices are related with the formulas below in this
procedure.

Ak = (I + T × Aa)

Bk = (T × Ba)

0k = (T × 0a) (23)

where Aa and Ak are augmented continuous and discrete state
matrices, respectively, Ba and Bk are augmented continuous
and discrete control input matrices, respectively, 0a and 0k
are augmented continuous and discrete disturbance input
matrices, respectively, I is an identity matrix, and T is the
sampling period.

B. SIMULATION RESULTS OF CONTROLLED SYSTEM
Referring to Equations (20) to (21), and if β1 = β2 =

0.425 and a12 = −1, ACEs, IACEs and for both areas, and
the cost function can be obtained. As a result, the function of
the cost function can be defined, and the discrete state and
control weighting matrices Qk and Rk are obtained based on
the functional minimization procedure next, as shown in the
equation at the bottom of the next page.

Then, based on Equation (16), the constant feedback gain
matrix value for the closed-loop system at the steady state is
found, as shown in the equation at the bottom of the next page.

To assess the feasibility of the proposed controller, the sim-
ulation results are compared with other controllers published

TABLE 2. Developed controller vs literature control methods in terms
peak overshoot (POS) and settling time (STs).

in the literature, such as Continuous Global Centralized
Optimal Quadratic Automatic Generation (GCOQAGC),
Teaching Learning-Based Optimization Proportional Integral
Double Derivative (TLBO-PIDD) and Fuzzy Gain Schedul-
ing Controller (FGSC) for the same interconnected power
system [27], [34], [35].

The dynamic responses of the frequency and tie-line devi-
ations for cases 1 are shown in Figs 3-4. The numerical
values of Peak Overshoot (POS) and Settling Times (STs) for
frequency deviations (1f1 and 1f2), and tie-line deviations
(1Ptie12) are given in TABLE 2 fort 1% at t = 0 s. The POS
values of (frequency deviations (1f1 & 1f2) of FGSC and
TLBO-PIDD controllers are (0.0005 & 0.001) and (0.13 &
0.043) respectively and the peak overshoot of tie-line devi-
ations (1Ptie12) is 0.0004. Meanwhile, the POS values of
the developed COQAGC controller of frequency deviations
and tie-lie deviations are 0.0276, 0.0281 and 0.0002 respec-
tively. The developed control method can reduce the POS of
frequency deviations by up to 79%, 81%, and 50% respec-
tively when compared to TLBO-PIDD controller. On the
other hand, the FGSC controller is effective more than the
developed COQQAGC control method in terms of POS of
frequency deviations (1f1 & 1f2) by up to 82% and 96 %
respectively. In terms of peak undershoot values, the devel-
oped COQAGC control method can reduce peak undershoot
of frequency deviations (1f1 & 1f2) of GCOQAGC and
tie-line deviations of TLBO-PIDD by up to 100%, 35%,
and 100% respectively when compared to GCOQAGC and
TLOBO-PIDD control methods.

In case1 of settling time, the settling time of frequency
deviations (1f1 & 1f2), and tie-line deviations (1Ptie12)
using FGSC, TLBO-PIDD, GCOQAGC controllers are (0.7s,
1.2 s & 0.027 s), (6.8 s, 3.9 s & 6.5 s), and (4 s, 8 s &
8 s) respectively. On the other hand, the settling time of the
developed control method is 4 s foreach frequency and tie-
line deviations. The developed COQAGC control method is
able to improve the settling time by up to (83%, 70%& 99%),
(41%, −3% & 39), and (0%, 50% & 50%) when compared
to FGSC, TLBO_PIDD and GCOQAGC controllers respec-
tively. It can be noted that the developed COQAGC control
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FIGURE 3. Dynamic responses of two control areas for 1% SLP at t = 0 s.

method is slightly less capable i.e., 3% than TLBO-PIDD
control method in terms of frequency deviations of con-
trol area 2, while the developed COQAGC and GCOQAGC

FIGURE 4. Tie-line power deviations response for 1% SLP at t = 0 s.

control methods achieved the same settling time in terms of
frequency deviation of control area1.

Aak =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1.0000 0.0171 0 0 − 0.0171 0 0 0 0
−0.192 0.9984 0.892 0 0 0 0 0 0

0 0 0.8953 0.1047 0 0 0 0 0
0 − 0.1635 0 0.6075 0 0 0 0 0

0.892 0 0 0 0.9984 0.1892 0 0 0
0 0 0 0 0 0.8953 0.1047 0 0
0 0 0 0 − 0.1635 0 0.607525 0 0

0.0314 0.0133 0 0 0 0 0 1 0
−0.0314 0 0 0 0.033 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bak =



0 0
0 0
0 0

0.3925 0
0 0
0 0
0 0.3925
0 0
0 0


, 0a =



0 0
−6.024 0

0 0
0 0
0 − 6.024
0 0
0 0
0 0
0 0



Qk =



2 0.425 0 0 − 0.425 0 0 0 0
0.425 0.18063 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−0.43 0 0 0 0.181 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, Rk =

[
1 0
0 1

]

L =

[
9.3508 9.8614 7.9663 1.3717 − 1.4092 − 0.6593 − 0.0174 17.0789 0.2613
−9.3508 − 1.4092 − 0.6593 − 0.0771 9.8614 7.9663 1.3717 0.2613 17.0789

]
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FIGURE 5. Frequency deviations response of COQAGC for two area power
systems when SLP of 5% is applied at t = 5 s in intervals.

FIGURE 6. Tie-line deviations response between two control areas when
SLP of 5% is applied at t = 5 s intervals.

It can be ((((observed concluded that COQAGC is the best
controller in terms of POS and STs values when compared to
TLBO-PIDD and GCOQAGC, while FGSC is best among all
controllers in terms of POS and STs values for case1 relating
to frequency deviations (1f1 and 1f2).
In case 2, the performance of the proposed controller is

studied when concurrent SLPs is applied at t = 5 s intervals.
Figs 5 and 6 show the plots of the frequency deviations
(1f1 and1f2), and tie-line deviations (1Ptie12). The numer-
ical values of POS, STs and Disturbance Rejection Response
Time (DRRT) relating to a two non-reheat power system for
COQAGC controller are also presented in Table 3, Case 2.
In Table 3, the peak overshoot values of (1f1and 1f2), and

tie-line deviations (1Ptie12) using GCOQAGC controller are
0.22, 0.03 and −0.003. The proposed control method is able
to reduce the POS frequency deviations by up to 87% and 1%
respectively. Meanwhile, the settling time values of (1f1and
1f2), and tie-line deviations (1Ptie12) usingGCOQAGCcon-
troller are 5 s each. The DRRT values of the of (1f1and 1f2),
and tie-line deviations (1Ptie12) using the proposed COQAG-
Care 3 s, 3 s, and 2.5 s respectively. The proposed controller
able to achieve better disturbance rejection response time
(DRRT) for frequency deviations and tie-line deviation by
up to 40% and 50%. As result, the COQAGC controller
is best in terms of lowest STs, POS and DRRT compared
to the GCOQAGC controller. Hence, it can be concluded

TABLE 3. Developed controller vs GCOQAGCC from literature in terms
peak overshoot (POS) and settling time (STs).

FIGURE 7. Sensitivity analysis response of frequency deviations for
variations in tie-line synchronization coefficient.

FIGURE 8. Sensitivity analysis response of tie-line for variations in
operating load condition.

that the discrete-time COQAGC controller is more capable
of providing the lowest POS and STs and is robust against
disturbance rejection for the frequency deviations (1f1and
1f2), and tie-line deviations (1Ptie12) .

C. SENSITIVITY ANALYSIS
Sensitivity analysis is carried out to test the robustness of
the proposed controller at nominal values across variations in
operating load conditions and tie-line synchronization coef-
ficient (T12). The SLPs and T12 are varied from their nominal
values by ±25% of their nominal value.
The dynamic responses of the frequency deviations (1f1)

and tie-line deviations (1Ptie12) for sensitivity analysis are
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TABLE 4. Developed controller vs FGSC controller [35] for sensitivity
analysis in terms of peak OS.

shown in Figs 7-8. The performance of the developed con-
troller is compared to Fuzzy gain Scheduling controller from
the literature [33]. This comparison will be done in terms of
peak overshoot The numerical values of POS for frequency
deviations (1f1), and tie-line deviations (1Ptie12) are given in
TABLE 4. It can be observed that both controllers are compet-
itive to each other. In Table 4, the peak undershoots numerical
values of the frequency deviation (1f1) of the nominal,+25%
and −25% of T12 using FGSC controller are −0.034. −0.04,
−0.05 respectively. Meanwhile, peak undershoot of the nom-
inal, +25% and −25% of T12 using the proposed control
method are all −0.03. The proposed control method is able
to reduce the peak undershoot of frequency deviation (1f1)
of the nominal, +25% and −25% by 12%,25% and 40%
respectively. On the other hand, FGSC is able to reduce peak
undershoot (PUS) of tie-line deviation of the nominal value
by 99%. As result, COQAGC is the best controller in terms
of PUS for variations in tie-line synchronization coefficient,
while the FGSC controller is the best in terms of the variations
in operating loading conditions. The simulation results in
Figs 6 and 7 revealed that COQAGC is robust against the
parameter variations.

V. EXTENSION TO MULTI-AREA MULTI
SOURCE POWER SYSTEM
To demonstrate the ability of the proposed discrete COQAGC
controller, the study is further extended to a multi-area
multi-source interconnected power system with renewables
as depicted in Figure 9 [30]. Area 1 comprises non-reheat
thermal and hydro plants. Area 2 comprises a wind power
plant and non-reheat thermal plant. A wind power plant’s
linear model includes the pitch actuator’s transfer func-
tion, the lag mechanism’s transfer function that matches the
model’s phase/gain characteristic, and a blade characteristics
block [36]. The typical parameters of non-reheat thermals
plants are taken from TABLE 1, while wind turbine param-
eters are adopted from work conducted by Arya & Kumar
[37], and Sahu, Griot & Panda [34] and where Tp1 = 6;
Tp2 = 0.04, kp2 = 1.25, kp3 = 1.4,Tg2 = 0.08, kbc =

08, Rw = 2.4 and βw = 0.425. On the other hand, the
hydro plant parameters are adopted from the work conducted
by Parmar, Majhi, & Kothar [38], where Tw = 1 s,TRH =

0.3 s,TRH = 28.75 s,TR = 0.11 s, kr1 = 0.3,Tgh = 0.2 s,,
Tr1 = 1 s. Note, kps = kps1 = kps2 = 120, β1 = β2 =

βhy = βw = 0.425,Tps = Tps1 = Tps2 = 20, and R1 = R2 =

Rw = Rhy = 2.4for both case studies. The system in Figure 9

has 15 states variables where x1 = 1f1, x2 = 1PGN1, x3 =

1Pv3, x4 = IACE1, x5 = 1PGH , x6 = 1XH , x7 = 1PRH ,,
x8 = 1Ptie12, x9 = 1f2, x10 = 1D, x11 = 1H , x12 = 1H1,
x13 = IACE2, x14 = 1PGN2, x15 = 1Pv4.

Reference [30] developed the state, control input, and
disturbance vectors, the continuous state matrix Am, the
input matrix Bm, and the disturbance matrix 0m of a linear
state-space model for two area multi-source power systems.
Based on the functional minimization method (FMM) in
section III, the state and control weighting matrices (Qm and
Rm) were formulated for a multi-area power system model
with renewable energy sources [30]. In this case, the cost
function developed by Esmail and Krishnamurthy [30] is
considered for the comparison.

J =
1
2

∞∑
k=k0

[
B2
1x

2
1 + 2β1x1x8 + x28

]
+

[
B2
2x

2
9 − 2β1x9x8 + x28

]
+ (x4)2

+ (x13)2 + α[U2
th1 + U2

hy + U2
w + U2

th2] (24)

where α is the vector of participation factors, Uth1, Uhy, Uw
and Uth2 are control signals applied to non-reheat thermal 1,
hydro, wind turbine, and non-reheat thermal 2 plants, respec-
tively. Similarly, Eq (16) calculates the numerical values of
the optimal feedback gains matrix. To study the dynamic
response of multi-source power system under COQAGC con-
troller, and step load perturbations (SLPs) the following cases
are considered.

• Performance comparison with step load perturbations
(SLPs) 0f 0.01 pu with and without generation rate con-
straints (GRC) in the model of multi-area multi source
power systems.

• Sensitivity analysis to assess robustness of the
controllers against ±30% uncertainty in parameter
variations.

• Performance comparison with concurrent step load per-
turbations (CSLPs) at 5 s intervals

• Cost function performance comparison with step load
perturbation (SLPs) of 1% in Area 1 at t= 0 s along with
no SLP in Area 2.

A. EFFECT OF GENERATION RATE CONSTRAINT (GRCS)
To study the effect of GRC on dynamic response, 1% SLPs
are applied at t = 0s [37]. In this test, a GRC for a single
non-reheat thermal plant of 10%/min (0.0017pu/s) and aGRC
for the hydro plant of 270%/min (+0.045pu/s) for a rising
generation, and 360%/min (−0.06pu/s) for a lowering gener-
ation for the hydro plant are considered. The system dynamic
response is shown in Figs. 10-12. The proposed controller’s
GRC results, are compared with Optimal full-state feedback
control (OFSFC) from the literature [39]. It can be seen from
Figs.10-12 that the proposed discrete COQAGC controller
gives better dynamic responses, having a relatively smaller
peak overshoot and lesser settling time than the Optimal
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FIGURE 9. Transfer function model of multi-source power system [30].

FIGURE 10. Frequency deviation response to 1% SLP in multi-source
power system with and without GRC for Area 1.

full state feedback controller. However, OFSFC is somewhat
better than COQAGC in terms of peak undershoot.

B. ROBUSTNESS ANALYSIS AGAINST PARAMETER
VARIATIONS
In addition to the perturbation of 2% applied in each control
area at t = 0 s, some parameters are varied to analyse the
robustness of the proposed controller. For this purpose, the
uncertainty of the −30%, nominal, and +30% was applied
to the significant parameters of the system, such as con-
ducted in the literature [39]. Then, the peak overshoot, peak
undershoot, and settling time were evaluated. Figs. 13-15
presents the dynamic response of the proposed controller
for frequency and tie-line deviations in terms of nominal
parameters and parameter uncertainty of ±30%. The results
of the proposed controller and LFC-basedmodified grasshop-
per optimization algorithm (LFC-MGOA) for nominal and
varied parameters considering frequency deviation of area
1 are presented in TABLE 5.

The peak overshoot values of nominal parameters, −30%
and +30% of nominal parameters using LFC-MGOA are
0.0004, 0.00002, and 0.0005 and undershoot values are
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FIGURE 11. Frequency deviation response to 1% SLP in multi-source
power system with and without GRC Area 2.

FIGURE 12. Tie-line deviations response to 1% SLP in multi-source power
system with and without GRC.

−0.022, −0.027, and −0.022. The application of the pro-
posed method is able to reduce the peak overshoot, and
peak undershoot by up to (100%, 100%, and 100%), (9%
and 41%). LFC-MGOA controller able to reduce the peak
undershoot by 15% in comparison to COQAGC. Meanwhile,
the settling time of nominal parameters, −30% and +30% of
nominal parameters using LFC-MGOA are 10,866 s, 18,01 s,
and 22,21 s respectively. The application of COQAGC con-
troller able to reduce settling time by up to 36%, 63%, and
62% respectively. As a result, the proposed controller gives
better dynamic performance than LFC-MGOA regarding set-
tling time (STs) and peak overshoot (POS) of all cases.
However, if we considered only the instances of nominal and
−30%, the peak undershooting value obtained by the pro-
posed controller was also smaller than that of LFC-MGOA by
0.002 Hz and 0.011 Hz, respectively. However, LFC-MGOA

FIGURE 13. Frequency response of area 1 for nominal and uncertainty of
±30%.

FIGURE 14. Frequency response of area 2 for nominal and uncertainty of
±30%.

gives better undershooting performance for uncertainty of
+30%.

C. PERFORMANCE ASSESSMENTS FOR CONCURRENT
STEP LOAD PERTURBATIONS
In this section, concurrent step load perturbations with
interval of 5 s and amplitude of 0.01 pu are applied in
areas 1 and 2. The dynamic response of the frequency devia-
tions and tie-line deviations are presented in Figs 16 and 17
respectively.,

The simulation results for frequency deviations and tie-lie
power deviations of both areas are summarized in Tables 6.
It is observed that the discrete COQAGC controller achieves
almost the same frequency deviation responses of peak over-
shoots when the concurrent Step Load Perturbations (SLPs=

0.01pu) are applied at t = 5 s intervals. The area 2 has 18 %
difference of peak overshoot compared to that of area1. The
settling time of area 2 is smaller than the settling time of area
1 with zero steady state errors in both cases. The settling time
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FIGURE 15. Tie-line deviation response between areas 1 and 2 for
nominal and uncertainty of ±30.

TABLE 5. Results of developed controller vs MGA from literature in terms
peak overshoot (POS), peak undershoot (PUS) and settling time (STs).

FIGURE 16. Frequency deviation results of two areas 1 and 2 with
simultaneous SLPs.

and peak overshoot are same for the tie-line power devia-
tions. The tie line deviation has lesser disturbance rejection
time response when compared to disturbance rejection time
response of the frequency deviations.

D. APPLYING SLP OF 1% IN AREA 1 AT T = 0 S ALONG
WITH NO SLP IN AREA 2
Step load perturbations (SLPs) of 1% is applied in area 1 at
t = 0 s with no SLP in area 2 to evaluate the performance

FIGURE 17. Tie-line power deviation result in both areas with
simultaneous SLPs.

TABLE 6. Performance of COQAGC in terms of POS, TS, DRRT) and Steady
state error (ess(∞)) with concurrent SLPs.

TABLE 7. Comparative performance of cost function and settling time for
multi-area multi-source power systems.

of the cost function. Two types of cost functions are com-
pared, namely, based on Integral Multiplied Time Absolute
Error (ITAE) and functional minimization method. The cost
function values for COQAGC and TLBO-PIDD controller
from the literature are presented in Table 7. From Table 7 it
can be observed that minimum FMM values is obtained with
the developed COQAGC controller (FMM = 0.00067) when
compared to TLBO-PIDD (ITAE = 0.4543). Further, it can
be clearly seen from Table 7 that the frequencies and tie-line
deviations are improved with COQAGC compared to TLBO-
PIDD. It can be concluded that is better than TLBO-PIDD by
up to 69%, 68% and 73% in frequencies and tie-line devia-
tions respectively as well as by up to 99% in cost function
performance.
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VI. CONCLUSION
The optimal control theory and Lagrangian traditional mul-
tipliers method have been utilized to develop discrete time
centralized optimal quadratic automatic generation control
(COQAGC) for a discrete-time two-area power system and
multi-area multi-source power systems. The model of a
two-area power systemwith two identical non-reheat turbines
has been considered. For zero steady-state errors, the deriva-
tives of area control errors have been added to the state vector
of the model of the considered interconnected power systems.

The functional minimization method is utilized to develop
discrete COQAGC by considering area control errors, inte-
gral of area control errors, and control energy expenditure.
In return, COQAGC minimizes the cost function, and the
power system closed loop of the interconnected power sys-
tem. The functional minimization method is a systematic
approach, optimal, and easy to derive for constructing the
state and controlling weighting matrices.

The simulation results revealed that the discrete centralized
optimal quadratic AGC controller based on functional cost
minimization is robust against disturbance and sensitivity
analysis compared with controllers from the literature

The developed control method is based on well-known
quadratic optimal control theory and its application can be
extended to solve AGC problems in more complex intercon-
nected power systems.
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