
IEEE RELIABILITY SOCIETY SECTION

Received 17 January 2024, accepted 29 January 2024, date of publication 1 February 2024, date of current version 12 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361281

Reconstruction of 3D Non-Rigid Moving Human
Targets Based on Reliable Estimation of
Contour Deformation Degree
YAN ZHANG1, MOHAMED BAZA 2, AND HANI ALSHAHRANI 3, (Member, IEEE)
1Sports Department, Zhongnan University of Economics and Law, Wuhan 430000, China
2Department of Computer Science, College of Charleston, Charleston, SC 29424, USA
3Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

Corresponding author: Mohamed Baza (bazam@cofc.edu)

This work was supported by the Deanship of Scientific Research at Najran University for funding this work under the Research Groups
Funding Program Grant Code NU/RG/SERC/12/27.

ABSTRACT The human body is a typical non-rigid object, and its 3D reconstruction is a classic problem
in the field of computer vision. Due to the inherent complexity and dynamism of the human body, it is not
suitable for existing non-rigid 3D motion reconstruction algorithms that assume that the number of shape
bases of non-rigid bodies is known. The number of shape bases is very important for 3D reconstruction
methods. If the number of shape bases is estimated incorrectly in contour deformation estimation, it can
lead to unreliable or even complete failure of the reconstruction algorithm. Therefore, this paper designs
a 3D non-rigid motion human object reconstruction algorithm based on reliable estimation of contour
deformation degree. This algorithm leverage Scale Invariant Feature Transform (SIFT) to obtain non-rigid
moving human target features. Firstly, the contour appearance model of the moving human sequence is
used to extract the contour feature sequence, which is preprocessed based on the contour appearance depth
feature; Furthermore, the deformation degree of the contour is reconstructed and the calculation process
of the number of shape bases was optimized, which is no longer simply defined as known. This method
optimizes and solves the problem of missing data, improves the reliability of estimating the degree of contour
deformation, and completes target reconstruction. The experimental results show that the three-dimensional
reconstruction algorithm can accurately reconstruct the changes in the movements of athletes’ shots; The
accuracy of 3D reconstruction can reach 95.98%; Moreover, PSNR, SSIM, and MSE indexes performed
well with smaller fluctuation range, and the distribution of three-dimensional reconstructed scattering points
is very close to the three-dimensional position distribution of real scattering points, and the three-dimensional
reconstruction effect is good with strong reliability.

INDEX TERMS 3D reconstruction, reliability, non-rigid motion, exercise the human body, bilateral filtering,
outline appearance.

I. INTRODUCTION
The three-dimensional image reconstruction of non-rigid
objects is a classic problem in computer vision [1], and
it is also a fundamental problem in constructing artificial
intelligence vision systems. The research results of target
reconstruction algorithms for moving human bodies can
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endow them with the ability to capture dynamic objects,
thereby achieving true environmental interaction. In addition,
the research on 3D non rigid motion human target recon-
struction has important value in many application scenarios.
Through three-dimensional non rigid motion human target
reconstruction, precise tracking and recognition of human
targets in monitoring scenes can be achieved, improving
the intelligent performance of video monitoring systems.
It can quantitatively analyze the process of humanmovement,
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help athletes improve their skills, prevent sports injuries,
and be used in daily rehabilitation, posture assessment, etc.
in the medical field. At the same time, it can achieve
real-time recognition and tracking of human posture and
movements, for applications such as human-computer inter-
action, gesture control, and virtual character control. It can
achieve motion capture and restoration of actors, and be
used for character animation production and special effects
design in movies, TV dramas, games, etc. And with the
continuous development of research and technology, there
may be more new application scenarios in the future. Due to
the high complexity of human motion and the strict quality
requirements for 3D reconstruction in related industries, the
reliable reconstruction of 3D human bodies has always been
a challenging research hotspot in the fields of computer
graphics and computer vision. Therefore, the research on 3D
reconstruction algorithms for non-rigid moving targets has
important theoretical significance and application value in the
field of pattern recognition.

Numerous scholars have conducted extensive research
on issues in related fields. Li, C, and others conducted
research on 3D reconstruction algorithms based on the
ant hill model [2]. However, this method uses a dynamic
radius sphere to roll along the fiber axis to construct a
closed 3D surface, which suffers from unstable path tracking
and results in inaccurate 3D reconstruction results. Liu,
Z et al. studied a multi degree of freedom human motion
pose multi-objective image reconstruction algorithm [3].
However, when this method uses the roulette wheel selection
method to achieve chromosome hybridization and mutation,
unreasonable hybridization and mutation strategies can lead
to strong local search ability, which limits the improvement of
image reconstruction ability. Coenen et al. proposing a stereo
image vehicle pose estimation and 3D reconstruction based
on subcategory perception shape priors [4]. However, this
method is affected by factors such as lighting and complex
background segmentation, and the reconstruction reliability
is not strong. Kim et al. proposed a two-dimensional TEM
image reconstruction method to find the optimal affine
transformation between images [5]. Due to the involvement
of multiple continuous images in registration, this method
also adopts hierarchical registration, but the operation of this
method is relatively complex, which affects the reliability
and applicability of the algorithm. Mejri proposed a 3D
motion recovery method for non-rigid objects based on noise
measurement [6]. This method assumes that the motion of
the object is not fully known and considers it as an unknown
input to the perspective dynamic system, which leads to
blurring in the reconstruction effect of this method. The
3D reconstruction effect is not ideal and the reliability is
reduced. Han et al. proposed a method for reconstructing
the three-dimensional structure of blood cells based on
two non-orthogonal phase images [7]. They developed
a four-step processing process that includes registration,
detection, segmentation, and reconstruction to achieve the
3D reconstruction. However, the matching process of this

method has too many constraints, and the reliability of image
feature reconstruction is low. Knudsen et al. proposed a direct
regularization reconstruction method for three-dimensional
features [8], which directly performs reconstruction through
inverse imaging. This method is robust and reliable against
small perturbations in data, but its depth and accuracy
decrease with increasing distance, and its reliability also
decreases.

Based on the shortcomings of the above methods, this
paper designs an object reconstruction algorithm for 3D non-
rigid moving human based on reliable estimation of contour
deformation degree. The specific research path is as follows:

(1) Extract features of non rigid moving human targets
using scale invariant feature transformation methods.

(2) Construct a contour appearance model of a moving
human body sequence, extract a two-dimensional sequence
of contour features, and use it to recognize and reconstruct
human motion targets.

(3) Convert the 2D contour appearance depth data informa-
tion into 3D point cloud data, extract 3D features, and then
use bilateral filtering methods to filter them.

(4) Simultaneously considering noise and data loss factors
to improve the shape reconstruction effect of motion image
sequences.

(5) By solving the problem of missing data and optimizing
the reliability of estimating the degree of contour deforma-
tion, the three-dimensional reconstruction of the target has
been completed.

II. METHOD DESIGN FOR RECONSTRUCTING 3D
NON-RIGID MOVING HUMAN OBJECTS
A. ACQUISITION OF HUMAN MOTION SEQUENCE DATA
1) OBTAINING FEATURE EXTRACTION MAP OF MOVING
HUMAN OBJECTS BASED ON SIFT
Using SIFT to recognize moving human target image
databases and extract features from image sequences. The
SIFT algorithm can extract key feature points and local
feature descriptors from images, which can reflect the shape
and structural information of human moving targets in
different poses. By extracting these features, the appearance
of the motion posture contour of human motion targets
can be described and represented, and the shape, posture,
rotation and other features of the targets can be captured. The
moving image sequence with this optical feature can show
the characteristics of constant translation, constant scale, and
constant selection [9], which enables better results to be
achieved when matching moving human targets from various
perspectives. This feature also can identify the target object,
which is determined by selecting the extreme points of the
Gaussian difference function in the scale space. The process
of extracting the feature is as follows:

At the initial stage of the reconstruction algorithm, the
Gaussian scale space of the input image is established, and
the original image is obtained through the Gaussian function
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convolution to obtain the Gaussian difference function:

D (x, y, σ ) = L (x, y, kσ) −L (x, y, kσ) (1)

where, k represents the scaling factor, L (x, y, kσ) represents
a humanmotion image, where I (x, y) represents the Gaussian
function G (x, y, kσ) result of convolution is:

L (x, y, kσ) = G (x, y, kσ) ∗ I (x, y) (2)

Among them, ‘‘∗’’ represents the convolution operator.

G (x, y, kσ) =
1

2πσ 2 exp
{
−
x2 + y2

2σ 2

}
(3)

With the gradient and direction of the human motion
image L at different scale levels after convolutional difference
calculation, image features of different important parts are
extracted [10], [11]. The gradient size Mij and direction Rij
of different pixels Lij obtained by image differentiation are:

Mij =

√(
Lij − Li+1,j

)2
+
(
Lij − Lj+1,i

)2 (4)

Rij = tan−1 Lij − Li+1,j

Li+1,j − Lij
(5)

2) DESIGN OF CONTOUR APPEARANCE MODEL FOR
CONSTRUCTING MOVING HUMAN TARGET SEQUENCES
Based on the features of human motion targets obtained
in the previous section, extract contour feature sequences
using the contour appearance model of the moving human
sequence [12], [13]. The linear time series model mainly
focuses on the changes in data over time, ignoring the
spatial information in the image. For moving images, the
pixel positions in each frame of the image will change over
time, and linear time series models cannot meet the changes
in spatial relationships. Therefore, non-linear time series
methods are used for modeling and analysis. The nonlinear
time series of the motion image is as follows:

xi+1 = h (xi) + u (6)

where, xi+1 = (x1, x2, · · · ,xT) represents the observed
sequence of human motion images; h represents a nonlinear
function; u represents the noise model. Modeling the current
dynamic model through kernel functions by using xϕ

i+1 =

(ϕ(x1), ϕ(x2), · · · , ϕ(xT)) on human motion sequence xi+1
for investigation, the mapping of features from Rd to H is
represented based on Eq.7.

xϕ
i+1 = TϕXϕ

1 + µϕ
+ vϕ (7)

Then the kernel function of the relevant dynamic kernel
model is obtained, where Tϕ represents the state transition
matrix, µϕ represents a translation vector, vϕ

∈ H represents
the Gaussian white noise.

The maximum probability direction for detecting human
motion contour targets is at the extreme value of the
correlation probability density function f (P, x, y,A,B).
Therefore, the position between the hidden variable and the
observed variable is set as the probability density function

f (P, x, y,A,B). The direction of the human motion target
contour is described by x [14], the direction and speed of
detecting human motion are described by y, the appearance
mold of the humanmotion target is represented by Ai, and the
detected appearance mold is represented by Bi, This method
is similar to graph model learning. The use of probability
graph models in human motion target detection is to establish
probability relationships between different variables and
provide a formal representation method for modeling and
inferring human motion targets. The construction of the
probability graph model is shown in Figure 1.

FIGURE 1. Probability model of moving human target sequence network.

The overall variable P and the direction and speed of
human body movement (xi, i ̸= k) determine the direction
and speed of the k -th action xk. The direction and speed of
human body movement xk affect the detected direction yj,
and the appearance mold Ai of the human body movement
determines Bj. The joint probability formula obtained from
the probability model is shown in Eq.8.

f (P, x, y,A,B) = f (y |x,B ) f (B |A ) f (A) f (P) f (x |P ) (8)

where, f (P) represents the observation probability of dif-
ferent human body movements. The human body during
the movement process does not have prior knowledge,
so the probability of the existence of different human body
movements should be set to be non-interference with each
other, as follows:

f (P) =

M∏
i=1

f (Pi) =

M∏
i=1

Pσi
i

(
1 − Pj

)1−σi (9)

Among them, Pi represents the SIFT feature probability of
the ith motion action in the human motion image frame, and
the value of Pi is obtained through learning data f (x |P ) =∏M

i=1 f (xi |Pi ); σi represents the mean square deviation. Due
to the limitations of mutually independent settings, setting
motion labels is uniformly assigned f (xi |Pi = 1 ) = 1/N,
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where N is the preset threshold. If no motion action I is
detected, the value of xi is ignored, and f (xi |Pi = 0 ) = 1/N
is selected, so we have Eq.10.

f (x |P ) = (1/N)M (10)

The Gaussian distribution is the detection of its orientation
and velocity modeling to obtain the appearance model of
human motion contour, with the formula:

f (B |A ) = g (bSD = aD) (1/V)N−|f| (11)

Among them, 1/V is the foreground detection threshold;
g (bSD = aD) is the Gaussian distribution weight; D is the
update rate; SD is the pixel; b is the Gaussian distribution
priority; a is a user-defined parameter that completes the
acquisition of appearance sequences.

B. DEEP FEATURE EXTRACTION AND PREPROCESSING OF
MOVING HUMAN TARGET SEQUENCES
Based on the two-dimensional contour sequence of the
moving human target obtained in section II-A2, convert it into
three-dimensional features, and use bilateral filtering method
to filter the pixel interference of the collected contour.

In order to separate the background from the human
body, the two-dimensional contour appearance depth data
information is first converted into three-dimensional point
cloud data [15]. Set the coordinates of a point in the contour
depth map of a moving human body as (u, v), and its depth
value is d(u, v). After passing through the internal parameters
K of the depth sensor mapped to the three-dimensional spatial
coordinate V, the formula is expressed as:

V(x, y, z) = d(u, v)K−1[u, v, 1]T (12)

where, K =

 f
/
dx 0 u0
0 f/dy v0
0 0 1

 represents the camera param-

eter matrix, (u0, v0) represents the center coordinate of the
image, f is the camera focal length, dx and dy are the unit pixel
size of the camera sensor on the u and v axes, respectively.
After converting all the depth data, the point cloud data of the
depth map can be obtained. As the point cloud data contains
a large amount of background data, which is not what this
article wants, it is necessary to filter the point cloud to remove
the background and extract the human body part.

The characteristic of bilateral filtering is that it can preserve
the edge features of moving human target images, and the
filtering process is as follows:

Given the pixel (x, y, z) and its pixel value f (x, y, z),
the output pixel value g (x, y, z), depends on the weighted
sum of neighboring pixel values. If the intensity value of a
pixel is similar to the intensity value of surrounding pixels,
the corresponding weight is larger; On the contrary, if the
intensity value of a pixel differs significantly from that of
surrounding pixels, the corresponding weight is smaller. The
formula can be expressed as:

g (x, y, z) =

∑
k,l f (x, y, z)w (u, v, l, k)∑

k,lw (u, v, l, k)
(13)

where, (l, k) represents the neighboring pixels of (u, v),
w (u, v, l, k) represents the filtering kernel function, and
w (u, v, l, k) depends on the domain kernel functions
x (u, v, l, k) and y (u, v, l, k), which can be obtained as
follows:

w (u, v, l, k) = wx (u, v, l, k) ∗wy (u, v, l, k) (14)

wx (u, v, l, k) = exp

(
−

(u − k)2 + (v − l)2

2σx

)
(15)

wy (u, v, l, k) = exp

(
−

(f (u, v) −f (k, l))2

2σy

)
(16)

Among them, σx and σy are the Gaussian kernel standard
deviation, wx (u, v, l, k) represents the Gaussian filtering
kernel function, wy (u, v, l, k) represents the range kernel
function.

Due to the filtered depth image features obtained contain
depth data of the background, and for the reconstruction of
non-rigidmoving human targets, without depth data about the
human body, it is naturally useless. Therefore, it is necessary
to separate the human body from the depth map containing
the background. This article uses threshold segmentation
method for background removal processing.

The threshold segmentation method, as the name suggests,
is based on a set threshold for segmentation. If it is greater
than the threshold, it is retained, and if it is not, it is removed.
The threshold values set for the three coordinate axes x, y, z
of point cloud data form a range box. If the point is within
the box, it is retained, and if not, it is removed [16]. For the
collected data, since the extracted contour appearance pixels
have no other objects, the threshold segmentation method is
very suitable for processing the contour appearance data of
the moving human body. The process is as follows:

If a three-dimensional point is p, the threshold is ∂ , and
T (p) represents point cloud data, then it can be determined
whether to retain the point.

T (p) =

{
p, f(p) ≤ ∂

0, f(p) > ∂
p ∈ R (p) (17)

where, f (p) represents the threshold judgment function for
the point.

C. RELIABILITY ESTIMATION OF NON-RIGID BODY
DEFORMATION DEGREE
The feature points in motion image sequences exhibit motion
and deformation, especially the shape of non rigid moving
human targets may undergo drastic changes. Based on the fil-
tered features, while considering noise and data loss factors,
to improve the shape reconstruction effect of motion image
sequences.In the process of non-rigid motion reconstruction,
the coordinates of the moving image are transformed so that
the origin of the image coordinate system is located at the
centroid of the object, eliminating the translation vector, and
the measurement matrix W̄ = M2F×3KB3K×P. Obviously,
the rank of the measurement matrix W̄ is not greater than
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3K (assuming 2m > 3K, n > 3K). Therefore, the K is of
great significance for shape reconstruction of motion image
sequences and is an important parameter reflecting the degree
of non-rigid body shape deformation [17]. The reconstruction
of the degree of deformation of non-rigid bodies is an
estimation of the K. The presence of noise causes random
changes in the position of measured feature points, which in
turn affects the perception of K. In addition, when feature
point data is lost, it is necessary to restore the lost feature
points in order to further estimate the K. Otherwise, the K
cannot be estimated, which will affect the reliability of the
algorithm. To address these issues, a K estimation method is
proposed that considers both noise and data loss factors, and
the reconstruction process is completed as follows:

The purpose of reconstructing the noise covariance matrix
is to better handle and estimate shape deformation. The
presence of noise can cause random changes in the position
of measurement feature points, which can affect the accurate
estimation of shape deformation. By reconstructing the
noise covariance matrix, it is possible to more accurately
understand and predict the impact of noise on the position
of measurement feature points, thereby estimating shape
deformation more accurately. The coordinates representing
the shape of an object can be regarded as a random
process [18], [19]. Representing the coordinates of all feature
points in the ith frame of the image as a column vector Ŵi =

[ūi1, . . . ,ūiP, v̄i1, . . . ,v̄iP]T. So, there we have:

ŴT
i =

[
ωi1R

1
i , . . . ,ωiKR

1
i , ωi1R

2
i , . . . ,ωiKR

2
i

]


S1
... 0
SK

S1

0
...

SK


+ ξT (18)

Further simplify equation (18) for ease of calculation and
optimization. In complex motion reconstruction processes,
simplifying matrices can reduce computational complexity
and improve algorithm efficiency. expression:

Ŵi = [M′

1×6KB
′

6K×2P]
T

+ ξ = B′TM′T
+ ξ (19)

where, R
1
i and R

2
i are the first and second lines of Ri

respectively, ξ is the noise of characteristic points, which
can be seen as a random process with zero mean value.
It is obvious that the shape basis B′ of the image sequence
is unchanged, which is also the root cause of the reduced
reliability. Therefore, the correlation coefficient matrix of Ŵ
can be reconstructed as follows:

RŴ = E
[
ŴŴ

T]
= B′TE

[
MTM

]
B + Cξ (20)

where Cξ is the noise covariance matrix.
Then, How to reconstruct this matrix is discussed.

In principle, the noise covariance of the feature points is
a function of the tracking algorithm and its parameters

and the brightness change characteristics near the tracking
feature points. The tracking point position error introduced
by the tracking algorithm is non-uniform and correlated,
which depends on the structural characteristics of the local
image. For example, uij and vij tracking of corner j has
high reliability [20], [21]; For point j on a line, the tracking
reliability in its gradient direction is very high (normal flow),
and the tracking reliability in its tangent direction is very low,
which is directional error. For xij of a given Ii array image,
we have Eq.21.

xij =

[
uij
vij

]
, i = 1, · · · ,F, j = 1, · · · ,P (21)

The noise covariance of the jth feature point in the ith frame
image can be estimated by the inverse of the Hessian matrix,
that is

Qij = E
[
1xij1xTij

]
=

 ∂2I(uij,vij)
∂x2

∂2I(uij,vij)
∂x∂y

∂2I(uij,vij)
∂y∂x

∂2I(uij,vij)
∂y2

−1

=

[
σ 2
ij1

σ ′

ij
σ ′

ij σ 2
ij2

]
(22)

The elements of the Hessian matrix are the second
derivative and partial differential of the image brightness
in the x and y directions [22]. Formula (22) multiplied by
a scale factor is approximately equal to the actual noise
covariance, and the scale factor will not have any impact on
the application. Therefore, the noise covariance matrix can be
obtained by the following formula [23]:

Cξ =
1
F

F∑
i=1



σ 2
1i1

0
. . .

0 σ 2
Pi1

σ ′

1i 0
. . .

0 σ ′

Pi

σ ′

1i 0
. . .

0 σ ′

Pi

σ 2
1i2

0
. . .

0 σ 2
Pi2

1


2P×2P

=

[
C1 C2
C3 C4

]
(23)

The inverse C−1
ξ reconstruction of the noise covariance

matrix is as follows:

C−1
ξ =

[
(c1 − c2c

−1
4 c3)−1

−c−1
1 c2(c4 − c3c

−1
1 c2)−1

−c−1
4 c3(c1 − c2c

−1
4 c3)−1 (c4 − c3c

−1
1 c2)−1

]
(24)

Combining (22) and (23), it can be concluded that:

RŴC−1
ξ = B

′TE
[
MTM

]
BC−1

ξ + I2P×2P (25)

where, RŴ =
1
F

∑F
i=1 ŴiŴT

i .
Generally, for 3D motion, the maximum rank of

B
′TE[MTM]B is 6K. Then, µi(H) is used to represent the ith
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eigenvalue of matrix H, then{
µi (H) = µi

(
B

′TE
[
MTM

]
BC−1

ξ

)
+1, i = 1, · · · , 6K

µi (H) = 1, i = 6K + 1, · · · , 2P

(26)

Therefore, matrix H has 6K eigenvalues greater than 1.
If the number of eigenvalues of the matrix greater than 1 is
counted, the estimated value of K can be obtained by dividing
by 6. K is the dimension of the shape space representing
the deformation feature point sequence and the number of
shape bases indicating the simulation feature point sequence.
Therefore, K can be used to reconstruct the deformation
degree of the shape sequence. Therefore, the reconstruction
of the deformation degree of the 3D scene after translation
and rotation can be defined as:

Deformation Degree =
Count(eigenvalues of H > 1)

6
(27)

D. IMPROVEMENT OF DATA LOSS
Based on the image sequence considering noise and data
loss factors mentioned above, a filter is used to restore its
feature points to improve the phenomenon of data loss.For the
actual image sequence, some feature points will be occluded,
resulting in data loss, which affects the reliability of the
algorithm. Due to inertia and high acquisition speed, the
motion of feature points between frames of sequence images
is usually smooth, so this paper uses α − β − γ filter to track
the movement of feature points [24]. The α − β − γ filter is a
constant coefficient Kalman filter, which be used to simulate
and predict the movement of the target when the velocity and
acceleration are constant within the sampling interval. The
mathematical expression of this filter is as follows:

xp(t) =xs(t − 1) + Tvs(t − 1)+
T2

2
as(t − 1)

vp(t) =vs(t − 1) + Tas(t − 1)
ap(t) =as(t − 1)
xs(t) =xp(t) + α(xm(t) − xp(t))

vs(t) = vp(t)+
β

T
(xm(t) − xp(t))

as(t) = ap(t) +
γ

2T2 (xm(t) − xp(t))

(28)

where, xp(t) is the location of the target at the predicted
time t, vp(t) is the speed at the predicted time t, ap(t) is the
acceleration at the predicted time t, xs(t) is the location at the
smoothed time t, vs(t) is the speed at the smoothed time t, as(t)
is the acceleration at the smoothed time t, xm(t) is the location
at the measured time t. T is the measurement time interval, α
is the position filter parameter, β is the speed filter parameter,
γ is the acceleration filter parameter. filter α, β, γ parameter
optimization selection: β = 2 (2 − α) − 4

√
1 − α

γ =
β2

α

(29)

The α − β − γ filter is used to predict the next ‘‘x’’ and
‘‘y’’ coordinates of the specified feature point. The tracking
process is the continuously executing the cycle of ‘‘predict
match update’’. At time t, the position of each tracking point
at time t + 1 is predicted. Next, check whether there are
matching feature points near the predicted location. If the
matching is successful, update the parameters of the filter
[25]. After the motion of feature points is tracked by the
α − β − γ filter, the motion trajectory of feature points can
be obtained. When a feature point data xij is lost, use the
position prediction value to recover its position information
and define the covariance of the recovered feature point as:

Qij =
Qij−1Qij+1

2
(30)

III. EXPERIMENTAL ANALYSIS
In order to verify the effectiveness of the algorithm proposed
in this paper, an experimental system was established to
test the aforementioned 3D reconstruction algorithm. The
experiment selected the MPII Human Pose public dataset
to obtain human motion image sequences, with a resolution
of 768 × 576 and a frame rate of 25 frames per second,
to test the above algorithm. There are a total of 20000 pieces
of data. There are three training sets in total, among which
Training Set 1 contains a large number of shooting actions,
involving coordinated movements of arms and wrists. In the
training set, you can find shooting action image sequences
from different angles and postures, which are used to train
the model to recognize the features of shooting postures.
Training set 2 includes a large number of passing movements,
involving hand and armmovements. The training set contains
image sequences of different passing methods, such as chest
passing, overhead passing, etc., which are used to identify
the passing posture of the training model. Training set
3 includes a lot of dribbling exercises, involving control of
hands and arms. The training set contains image sequences
of different dribbling methods, such as two handed dribbling,
one handed dribbling, etc., used to train the model to
recognize dribbling postures. And divide it in an 8:2 ratio to
obtain the training set, validation set, and test set. Based on
this data environment, a simplified camera model was used,
assuming that the center of gravity of all points is at the center
of the image, and that the internal parameters of the camera
remain unchanged during the projection process. The partial
reconstruction results in the dataset are shown in Figure 2.
This image displays the original images of three images,
as well as the reconstruction results of the corresponding
front view, side view, and top view. From Figure 2, it can
be seen that this method can accurately reconstruct the
three-dimensional structure of non rigid bodies in dynamic
scenes and accurately reflect the changes in human motion.
The reconstruction results can be used for image recognition
and other purposes.

As can be seen from Figure 2, the operation process
of 3D reconstruction of athletes’ related actions through
the algorithm in this paper is relatively simple, and the
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FIGURE 2. 3D reconstruction of basketball players’ shooting actions.

FIGURE 3. Analysis of pre-treatment effect.

3D reconstruction effect is ideal. It can accurately track
the changes of athletes’ actions without blurring and other
phenomena. The reconstruction results are clear and robust.
Randomly select a squat image for basketball training, apply
the algorithm in this paper to filter it and preprocess the
segmentation of foreground moving human objects, and the
3D reconstruction results are shown in Figure 3.
From Figure 3, it can be seen that the image obtained

after basketball training squat filtering is based on the actions
shown in Figure 2. Through comparison, it can be found that
the algorithm in this article has significantly improved the
reliability of the image detail information processed. There
is no shape deformation or missing shape information in the
image, indicating that the filtering process effectively helps

to restore the shape of the image and fill in the missing
information. And highlight the detailed information in the
image.

A. RECOGNITION ERROR (%) OF 3D RECONSTRUCTION
RESULTS
In order to verify the optimization performance of the
algorithm in this paper for the three-dimensional reconstruc-
tion of non-rigid moving human objects, we collected about
40 basketball body sequences of 2015 freshmen from a sports
college, with 4 basketball positions sampled for each subset,
and 10 positions for various positions.We used the algorithms
in [4], [5], [6], [7], and [8] as the comparison algorithms
of this algorithm, and used six algorithms to reconstruct the
human body targets of basketball players in four movements,
namely shooting, running, jumping, and passing. Combined
with the convolutional neural network action recognition
model, the reconstruction results of different algorithms
are identified, and the action recognition errors of the
reconstruction results of different algorithms are counted.
The expression is:

R =

√
1
N

∑
∥P−P′∥

2 (31)

where, N is the number of samples, P is the position vector
of the true results, P′ is the position vector of the predicted
outcome.

The test results are shown in Table 1.

TABLE 1. Recognition error (%) of 3D reconstruction result of
athletes’human body targets using diffenent methods.

It can be seen from Table 1 that after 3D reconstruction
of the human body targets of athletes performing four
kinds of basketball movements by different algorithms,
the recognition error of the reconstruction results of the
algorithm in Ref.4 is the highest. When the basketball
athletes jump, the recognition error rate reaches 28.96%,
and the recognition effect is the worst. It is said that
the algorithm in Ref.4 has poor reconstruction effect on
the human body targets performing jump movements, the
convolutional neural network action recognition model is
difficult to accurately identify actions; The recognition effect
of the reconstruction results of the algorithm in Ref.5 and
the algorithm in Ref.6 is not much different. Although the
recognition error rate is lower than that of the algorithm
in Ref.4, there is still a high error recognition rate, which
indicates that there is little difference in the reconstruction
effect of the moving human body target between the two
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algorithms; The recognition error rate of the reconstruction
results of Ref.7 algorithm and Ref.8 algorithm is about
25%, and the recognition effect is improved. However,
when compared with the recognition error rate of the
reconstruction results of this algorithm, it can be clearly seen
that the recognition error rate of the reconstruction results
of this algorithm is the lowest. When basketball athletes
are running, the error recognition rate of the reconstruction
results is only 20.51%. The experiment uses the convolutional
neural network action recognition model to verify the three-
dimensional non-rigid reconstruction of the human target of
the algorithm in this paper. The implementation results show
that the algorithm can accurately reconstruct the movement
of different basketball movements, which is convenient for
the action recognition model to accurately identify specific
actions, and has good reliability.

B. COMPARATIVE TEST OF 3D RECONSTRUCTION
ACCURACY
1) PIXEL FEATURE MATCHING ACCURACY TEST
In order to prove that the 3D reconstruction of non-rigid
moving human objects in this algorithm has better pixel
feature matching accuracy, six algorithms are used to match
the feature pixels in Figure 4. The comparison results are
shown in Table 2.

TABLE 2. Comparison results of 3D reconstruction accuracy.

FIGURE 4. Reference image.

It can be seen from the analysis of Table 2 that the pixel
feature matching degree of the Ref.4 algorithm is low, and the
3D reconstruction accuracy of the non-rigid moving human
target is low, and the reliability is poor; The reconstruction
accuracy of the algorithms in Refs.5-6 is 75.94%, which
is obviously low. The 3D reconstruction effect of non-rigid
moving human objects is not ideal, and the reliability is poor;
The pixel matching degree of the algorithm in Refs.7-8 are

more than 81.69%, and the reconstruction accuracy is about
85%. The 3D reconstruction effect of the non-rigid moving
human target has improved, while the pixel matching degree
of the algorithm in this paper can reach 96.53% at the highest,
and the reconstruction accuracy is 95.98%, which shows that
the 3D reconstruction effect and reliability of the algorithm in
this paper are the best for the non-rigid moving human target.

2) ALGORITHM COMPARISON RESULTS OF IMAGES FROM
DIFFERENT FRAMES
In the acquired sequence images of basketball movement, the
images of the 50th frame, 100 frame and 150 frame were
selected, and the different methods in the literature and the
algorithm were compared to test the reconstruction results of
different methods, and the experimental results were obtained
as shown in Figures 5-7.

FIGURE 5. Reconstruction results of 50th frame in action ‘‘Pass.’’

FIGURE 6. Reconstruction results of 100th frame in action ‘‘Pass.’’

The experimental results fromFigures 5-7 reveal that under
the conditions of reconstructing different frames of images
using different methods, the approach in Reference [4]
frequently exhibits the phenomenon of missing information
in certain body parts. This may be attributed to the method’s
inability to completely capture certain body part information
during rapid human movement or complex postures, leading
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FIGURE 7. Reconstruction results of 150th frame in action ‘‘Pass.’’

to occlusion or partial information loss and consequently
resulting in poor reconstruction effectiveness.

The method in Reference [5] encounters the issue of non-
rigid deformation, as the human body typically presents
non-rigid changes during motion, such as joint bending
and muscle stretching. This non-rigid deformation poses a
challenge to the reconstruction of three-dimensional nodes,
and it is possible that the method in Reference [5] did not
consider non-rigid change scenarios, resulting in deformation
and deviation in the reconstruction results.

The method in Reference [6] may have registration issues
due to the assumption that the object’s motion is not
completely known, leading to inaccurate matching of feature
point positions from different perspectives or the failure to
accurately integrate information from certain regions into the
overall reconstruction process, thus affecting the accuracy of
the three-dimensional reconstruction.

The method in Reference [7] produces incongruent or
unreasonable reconstruction results due to the presence of
numerous constraints during the matching process. Particu-
larly, in the reconstruction results of the 150th frame, it is
evident that this method may have been affected by noise
interference, resulting in biased reconstruction nodes and
decreased reconstruction accuracy.

Furthermore, the method in Reference [8] exhibits scat-
tered points or deviation during the reconstruction process,
possibly due to its heavy reliance on inverse imaging, which
introduces excessive nodes and leads to overfitting, resulting
in unnecessary details in the reconstruction and lowered
algorithm accuracy.

C. PEAK SIGNAL-TO-NOISE RATIO CONTRAST RESULTS
Peak Signal-to-Noise Ratio (PSNR) is a specific form of
signal-to-noise ratio that is commonly used to measure the
quality of distorted images, with the maximum possible pixel
value of the original image serving as a reference. The
calculation formula is follows:

PSNR =

(
dx, dy

)
fmax(x, y)[

f(x, y) − f(xi+1, yi+1)
]2 (32)

where, f(x, y) is the raw sequence images, fmax(x, y) repre-
sents the maximum gray value of the image.

PSNR can be used to compare the differences between
the reconstructed image and the original image, thereby
assessing the fidelity of the reconstructed image. In general,
a higher PSNR value indicates a smaller difference between
the reconstructed image and the original image, and thus,
a higher fidelity. Due to the fact that the magnitude of PSNR
values can intuitively reflect the quality difference between
the reconstructed image and the original image, it provides
comparability and intuitiveness for the effects of different
reconstruction algorithms and parameter settings. Therefore,
PSNR is chosen as the indicator for comparative testing
with different methods in the literature, and the experimental
results were obtained as shown in Table 3.

TABLE 3. Comparison results of PSNR.

According to Table 3, the PSNR values of References 4-8
are not significantly different at the same frame rate, indi-
cating that their reconstruction effects are relatively similar.
The proposed method exhibits significantly higher PSNR
values at all frame rates, indicating its significant advantage
in image reconstruction. By comparing the PSNR values of
different methods, it can be found that the proposed new
method has significant advantages in image reconstruction
quality. Therefore, it can be concluded that the proposed
method has higher fidelity and better performance in image
reconstruction. In practical applications, it is demonstrated
that the proposedmethod can demonstrate better performance
and higher quality in the fields of video reconstruction and
image processing, which is of great significance for scientific
research and engineering applications.

D. STRUCTURAL SIMILARITY CONTRAST RESULTS
Structural similarity index (SSIM) for the brightness, contrast
and structure of the image, so that it can be effective to
evaluate the different types of distortion may occur in the
process of image reconstruction, SSIM is more sensitive to
the loss of uniform and heterogeneous areas in the image,
and can better reflect the details of the image. The calculation
formula is follows:

SSIM =

[(
Ix, Iy

)
+ C1

] [(
σx, σy

)
+ C2

](
Ix, Iy

) (
σx, σy

) (33)

where,
(
Ix, Iy

)
,
(
σx, σy

)
represents the respective the bright-

ness and contrast of pixels (x, y), and both C1 and C2
represent constant terms that ensure that the denominator is
not zero.
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The larger the SSIM, the higher the visual perception
quality such as brightness, contrast, and linear correlation,
indicating the better the reconstruction of the algorithm. The
experimental results were obtained as shown in Table 4.

TABLE 4. Comparison results of SSIM.

According to Table 4, different methods exhibit different
trends in SSIM values at different frame rates, while the
proposed method exhibits significantly higher SSIM values
at all frame rates, indicating better performance in visual
perception quality such as image brightness, contrast, and
linear correlation. The SSIM values of references 4 to
8 are not significantly different at the same frame rate,
while the proposed method has significantly higher SSIM
values at all frame rates than the references, indicating that
the new method has significant advantages in evaluating
image structure similarity. By comparing the SSIM values of
different methods, it is evident that the proposed new method
has significant advantages in image reconstruction quality.

E. MEAN SQUARE ERROR CONTRAST RESULTS
Mean Square Error (MSE) is a commonly used evaluation
metric in image reconstruction, which can intuitively express
the degree of difference between the reconstructed image and
the original image, quantifying the differences between the
reconstructed image and the original image. The calculation
formula is follows:

MSE =
1(

dx, dy
) f(x, y) − f(xi+1, yi+1) (34)

Generally, a larger MSE usually indicates a significant
difference between the reconstructed image and the original
image.The experimental results were obtained as shown in
Table 5.

TABLE 5. Comparison results of MSE.

According to Table 5, it can be seen that the methods
in references 4 to 8 have relatively large mean square
error (MSE) values at different frame rates, indicating a
significant difference between the reconstructed image and

the original image. The MSE values of the proposed method
are significantly lower than those of the reference at all
frame rates, indicating that the new method can better
maintain the consistency between the reconstructed image
and the original image during the image reconstruction
process. Different methods show significant differences in
MSE values at different frame rates, while the proposed
method has significantly lower MSE values at all frame rates
than the reference, indicating its significant advantage in
image reconstruction quality.

F. RELIABILITY OF THE 3D RECONSTRUCTION
In order to further verify the reliability of the algorithm in
this paper for 3D reconstruction of non-rigid moving human
objects, the deflection angle range of the center axis of the
non-rigid moving human object relative to the radar line
of sight is θ : 3 ∼180; Uniform sampling, the target axis
deflection angle between two adjacent frames is 1θ : 1 ∼8;
Sampling frames: F > 3; SNR of image: 0dB∼30dB. The
position distribution results of the reconstructed scattering
points and the real scattering points are shown in Figure 8.

FIGURE 8. 3D reconstruction effect of non-rigid moving human object.

As can be seen from Figure 8, after 3D reconstruction
of non-rigid moving human target by the algorithm in
this paper, the best estimate of the center position of the
reconstructed scattering points is obtained. The distribution
of 3D reconstructed scattering points of non-rigid moving
human target is very close to the 3D position distribution of
real scattering points, which proves that the 3D reconstruction
of non-rigid moving human target by the algorithm in this
paper has good reliability.

The Procrustes distance (Pro-D) is used as the evaluation
index for 3D reconstruction of non-rigid moving human
targets in this algorithm, and the algorithm in this paper
is tested under different imaging frames F and SNR,
respectively. The impact of these two parameters on the
3D reconstruction performance of non-rigid moving human
targets is statistically obtained. The smaller the Pro-D, the
better the reliability of 3D reconstruction of non-rigid moving
human targets. The verification results are shown in Figure 9.

It can be seen from the analysis of Figure 9 that under
each signal to noise ratio, with the increase of the number
of two-dimensional image frames F used for 3D reconstruc-
tion, the error distance of the obtained three-dimensional
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FIGURE 9. Influence of image frame number and SNR on 3D
reconstruction.

reconstruction of the non-rigid moving human target shows
a trend of decreasing; In the same case of F, with the increase
of image SNR, the error distance of 3D reconstruction of
non-rigid moving human objects also decreases, that is, the
larger the F and SNR, the better the 3D reconstruction
performance of non-rigid moving human objects. However,
no matter what the SNR value is, when F is 100, the Pro-D
value is below 10-3, indicating that the SNR value has
little impact on the reconstruction effect of moving human
objects in this algorithm, it has good reconstruction effect and
reliability.

IV. RESULTS AND DISCUSSION
In this paper, a reliable 3D non-rigid motion human body
target reconstruction method based on the estimation of
contour deformation degree is proposed. In the experimental
process, recognition error, reconstruction accuracy, PSNR,
SSIM,MSE, etc., are used as evaluationmetrics for algorithm
performance to verify the performance results from multiple
aspects. Based on the experimental results obtained, the
following in-depth analysis will be conducted to explore
and clarify the performance advantages of the proposed
method in the process of non-rigid motion human body target
reconstruction.

(1) From the reconstruction error results of the algorithm,
it can be seen that compared to various methods in the
literature, the reconstruction error of the algorithm in this
paper is the lowest. In general, image reconstruction error
is mainly related to image acquisition noise and data
quality.

In the process of collecting image data in this paper, motion
human body target features were obtained based on SIFT.
In practical applications, for non-rigid motion human body
targets, the movement of the body may lead to the appearance
of features of different scales in the images. The scale of
human body motion data is large, and due to the non-rigid
nature of human body motion, the human body image
targets in different frames may undergo rotation or positional
changes. The SIFT algorithm has good stability and can
be used to extract complex non-rigid targets, accurately

matching different feature points, thereby ensuring that the
original image features are extracted with as little noise
interference as possible, ensuring the data quality in the
images.

Meanwhile, in the subsequent processing, a bilateral
filtering method is used to filter out the interference of
the collected appearance contour pixels. This approach can
retain the edge features of the motion human body target
image while removing potentially interfering background
data, further improving data quality.

(2) Using the accuracy of pixel feature matching as an
evaluation criterion and comparing it with different methods
in the literature, the reliability of the method designed in this
paper is verified under different motion conditions.

Experiments have shown that the method designed in
this paper achieves the highest accuracy in pixel feature
matching after reconstructing images from different frames.
The reconstructed nodes are reasonable, without deformation
or deviation, resulting in good coherence in the reconstructed
images, making them suitable for non-rigid deformation of
human motion targets.

The accuracy and effectiveness of pixel feature matching
are influenced by various factors, including noise and
distortion in the images, occlusion, and partial visibility.
In the process of 3D target reconstruction, this paper first uses
threshold segmentation to remove background interference
and eliminate irrelevant background data in the images,
thereby reducing the impact of noise and distortion on
the matching results and improving the authenticity of the
images. This helps in retaining valid target-related features
and reducing interference from irrelevant information in the
matching process.

Moreover, considering noise and data loss factors, a K-
value estimation method is proposed to address inaccurate
matching resulting from noise and data loss. Estimating and
correcting the data can improve the problems caused by data
loss, ensuring the integrity and accuracy of the data.

Finally, by introducing non-uniform and correlated track-
ing point position errors, it is possible to better simulate
complex scenarios in real situations, thus improving the
robustness and usability of data processing. Continuously
engaging in the cycle of ‘‘prediction-matching-updating’’
helps to improve the robustness and accuracy of thematching,
enhancing the usability of the data, ultimately ensuring the
precision of the image reconstruction.

(3) Metrics such as PSNR, SSIM, and MSE provide
evaluations of image reconstruction effectiveness at different
levels. Upon obtaining evaluation results based on these
metrics, it was found that compared to methods in different
literature, the performance indicators PSNR, SSIM, andMSE
of the method in this paper were better, consistently optimal,
and exhibited smaller fluctuations. This indicates that the
stability of the designed algorithm is relatively high, resulting
in good reconstruction effects. This is mainly attributed to the
consideration of a reliable estimate of contour deformation
levels in the method proposed in this paper.
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Reliable estimation of contour deformation levels can
assist in shape matching between different images, especially
for objects or organizational structures with complex mor-
phologies. The research target of this paper is the non-rigid
motion human body, which exhibits dynamic deformation
characteristics during motion with continuously changing
positions. So reliable contour deformation levels can better
capture the dynamic changes of the human body and provide
a quantitative evaluation method to assist in the registration
and alignment of dynamic human body target images.
This enables better correspondence and matching of images
collected from different viewpoints or at different times, thus
facilitating the precise reconstruction of three-dimensional
non-rigid motion human body targets.

Prior to reliability assessment, this paper constructs a
probabilistic graphical model that takes into account the
contour, orientation, and speed of human body motion to
obtain observational probabilities for different human motion
actions. This helps in achieving more accurate estimation
of human body posture and motion states, understanding
the spatial structure of human motion, capturing details
and features during motion, and providing a fundamental
guarantee for reliable estimation of contour deformation
levels.

(4) In order to further verify the reliability of the algorithm
for reconstructing non-rigid motion human body targets, the
distribution of reconstructed scatter points and real scatter
points was used to evaluate the reconstruction effectiveness.
By comparing the distributions of the reconstructed scatter
points and the real scatter points, analyzing the proximity
can help to determine the effectiveness of the reconstruction
algorithm. If the reconstructed results closely match the
real distribution of points, this will demonstrate the high
reliability and effectiveness of the algorithm in capturing
the shape and position information of the target. Therefore,
especially in dealing with non-rigid motion targets, analyzing
the distribution of reconstructed scatter points and real scatter
points helps identify errors and biases in the reconstruction
process, determining the accuracy and realism of the
reconstruction results.

The experiment shows that the algorithm proposed in
this paper provided the best estimate of the center position
of the reconstructed scattered points after performing 3D
reconstruction of non-rigid moving human body targets.
Furthermore, the distribution of the reconstructed scattered
points closely matches the actual distribution of the scattered
points.

This result confirms the favorable reliability of the
algorithm for 3D reconstruction of non-rigid moving human
body targets. It indicates that the algorithm can effectively
capture and reconstruct themorphology and positions of body
targets, thereby producing reconstruction results that closely
resemble or match real scene.

Meanwhile, with an increase in the number of 2D image
frames utilized for 3D reconstruction, the error distance of the
reconstructed body targets show a continuous decrease. This

suggests that with an increased number of 2D image frames,
the 3D reconstruction effect for non-rigid moving targets
will improve, as more perspectives and information can be
utilized for reconstruction, thereby enhancing the accuracy
and reliability of the reconstruction. This demonstrates that
the algorithm can maintain good reconstruction results under
relatively high signal-to-noise ratio conditions, exhibiting a
certain degree of robustness.

(5) The acquired appearance contour sequence of the
moving human body target is a 2D sequence, but this paper
transforms the 2D contour appearance depth data into 3D
point cloud data. Then, the bilateral filtering method is used
to filter the collected appearance contour pixel interference,
achieving the purpose of separating background from the
human body.

In this process, recovering 3D spatial information from
separate 2D information can help better capture the shape and
details of the human body surface. At the same time, by using
the bilateral filtering method to filter the interference of
appearance contour pixels, noise and irrelevant information
can be effectively removed, thereby achieving effective
separation of the background from the human body, enabling
more accurate modeling and reconstruction of the human
body in subsequent processing.

Combining the methods section of the article and the above
analysis, it can be seen that this paper is dedicated to reducing
noise, avoiding interference, and improving data integrity.
Furthermore, it considers non-uniformity and correlation
when processing data, and designs a reliable estimation
method based on the degree of contour deformation for
reconstructing non-rigid 3D human motion targets. This
method aims to enhance the accuracy of image feature
matching and the authenticity of reconstruction results.

V. EXPERIMENTAL ANALYSIS
To obtain the features of human motion sequence data
through SIFT, and to ensure the continuity of feature
sequence extraction for moving human targets and the
reliability of the algorithm, a probability model of contour
appearance sequence for moving human targets is estab-
lished; On the basis of completing image preprocessing,
the improved algorithm for 3D reconstruction of non-rigid
moving human targets proposed in this paper has a relatively
simple process, which can effectively calculate the number of
shape bases and accurately track the movements of athletes.
The 3D reconstruction effect is good, with strong robustness
and reliability. At the same time, the 3D reconstruction effect
of non-rigid moving human targets in this paper is less
affected by signal-to-noise ratio.
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