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ABSTRACT As the global migration to post-quantum cryptography (PQC) continues to progress actively,
in Korea, the Post-Quantum Cryptography Research Center has been established to acquire PQC technology,
leading the KpqC Competition. In February 2022, the KpqC Competition issued a call for proposals for PQC
algorithms. By November 2022, 16 candidates were selected for the first round (7 KEMs and 9 DSAs).
Currently, Round 1 submissions are being evaluated with respect to security, efficiency, and scalability
in various environments. At the current stage, evaluating the software through an analysis to improve
the software quality of the first-round submissions is judged appropriately. In this paper, we present
analysis results regarding performance and implementation security on based dependency-free approach
of external libraries. Namely, we configure extensive tests for an analysis with no dependencies by replacing
external libraries that can complicate the build process with hard coding. From the performance perspective,
we provide analysis results of performance profiling, execution time, and memory usage for each of the
KpqC candidates. From the implementation security perspective, we examine bugs and errors in the actual
implementations using Valgrind software, a Metamorphic Testing methodology that can include wide test
coverage and constant-time implementation against the timing attack. Until the KpqC standard algorithm is
announced, we argue that continuous integration of extensive tests will lead to a high-level clean code of
KpqC candidates.

INDEX TERMS Post-quantum cryptosystems, benchmarking, constant-time, cryptographic library, KpqC
competition, metamorphic testing, software validation.

I. INTRODUCTION
With the development of quantum computer technology, the
importance of post-quantum cryptography (PQC), which can
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replace public key cryptography in a quantum environment,
is being stressed. In 2016, the National Institute of Standards
and Technology (NIST) announced the PQC Competition
through an open competition such as AES and SHA3. Cur-
rently, four standardization candidates for Key Encapsulation
Mechanism (KEM) and Digital Signature Algorithm (DSA)
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have been selected, and NIST is conducting a competition
for additional standardization proposals for digital signature
algorithms. Unlike AES and SHA-3, the mathematical com-
plexity of PQC algorithms has increased, and they support
a wide range of key lengths and signature lengths, ranging
from bytes to megabytes. In addition, the performance of
each algorithm varies, and some algorithms are too slow or
faster than traditional public-key cryptography. The various
features of the PQC algorithms have made the selection
of candidates at NIST more difficult and task burdens the
community, research institutes, and industry in reviewing
and evaluating candidates. In other words, this meant that
candidates had to be integrated and tested on various
platforms and situations, and the importance of software was
emphasized here. In these difficulties, various community
and industry projects contributed to selecting NIST PQC
Competition candidates. These include PQClean [1], which
integrates reference C implementations in Intel, pqm4 [2]
for clean implementations on ARM Cortex-M4 platforms;
OQS OpenSSL [3], StrongSwan [4] integrating reference
implementations into security protocols and applications.
Based on this research, the implementation suitability of the
submitted software was evaluated on various platforms.

To enhance domestic PQC capabilities, a Korea Post-
Quantum Cryptography (KpqC) Competition was held. The
KpqC Competition requested to submit a development
roadmap until February 2022. Considering domestic technol-
ogy, and based on this, 18 candidates for Round 0 candidates
were selected. Through the Round 1 of public evaluation,
16 candidates have been selected, and the selection of algo-
rithms for standardization will be completed by September
2024. Afterward, it is expected that the selected algorithm
will be standardized for PQC and included in the algorithms
subject to KCMVP (Korean Cryptographic Module Valida-
tion Program) verification. The most important thing aspect
of this is the software implementation. Some candidates
generate errors and warnings when building, and it takes time
and effort repeatedly to get them to compile and run cleanly.
Unlike the NIST PQC Competition, where the suitability and
security of software are evaluated by participating worldwide,
there are limitations in software evaluation for KpqC
Competition candidates. Thus, to strengthen the clarity of
domestic candidates, it is necessary to verify candidates with
an extensive test framework through continuous integration
such as PQClean [1] and pgm4 [2].

As with NIST PQC Competition candidates, the KpqC
Competition required candidates to be developed by an
ANSI C software implementation, which also had to be
accompanied by a KAT (Known Answer Test) value to verify
implementation correctness. However, these candidates are
limited in verifying the correctness of the software imple-
mentation. First, the KAT test checks the output value for
a given input value, and it is challenging to find bugs in
the software implementation. For this reason, a new software
verification method called Metamorphic Testing, which can
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verify wide test coverage, has recently been proposed [5],
[6]. In IEEE/ACM MET WorkShop’19 [5], several bugs
in implementation were found by applying Metamorphic
Testing to the initial NIST PQC Competition candidates,
and in IEEE’18 [6], vulnerabilities in the hash function
that passed CAVP verification were found by applying
Metamorphic Testing. Thus, the application of Metamor-
phic Testing enables the identification of implementation
vulnerabilities in a wide range of software. In addition,
the second limitation is that there is no verification of the
constant-time implementation of the candidates. The most
important aspect of the NIST PQC Competition from the
second round is the countermeasure against side-channel
attacks. Although PQC may be mathematically secure in
a quantum computing environment, it is still vulnerable to
side-channel attacks depending on how it is implemented.
Furthermore, there are many studies to achieve constant-time
implementation of PQC [7], [8]. For this reason, constant-
time implementation is important for resisting side-channel
attacks in PQC. Constant-time implementations are not
completely defensible against side-channels, but they are
the basic side-channel response from an implementation
perspective.

In this paper, we present the evaluation for KpqC Round 1
candidates considering performance and implementation
security on an integration basis through extensive tests. From
a performance perspective, we examine the execution time,
memory usage, and profiling results for KpqC competition
candidates. From an implementation security perspective,
we validate KpqC competition candidates extensively,
from Valgrind validation to detect basic implementation
errors to Metamorphic Testing with wide test coverage.
Furthermore, side-channel vulnerabilities are analyzed by
checking whether they implement constant time through
Valgrind. Finally, we have removed dependencies on external
libraries that can complicate builds. We have put the
extensive test of the KpqC Competition for continuous
integration into the public domain and made it available at
https://github.com/kpqclib/kpqclib. The goal of this paper
is to develop a continuous integration test by collecting inde-
pendent C implementations of KpqC competition candidates
in various environments, such as PQClean [1] and pgm4
[2]. We expect to contribute to modifying the clarity of
the KpqC Competition implementation, which can lead to
“clean” code.

A. CONTRIBUTIONS

« Design of an extensive test to improve clarity of the
KpqC Competition candidates implementation
Recently, four algorithms have been selected as can-
didates for standardization in the NIST PQC Com-
petition. Various community and industry projects
contributed to the evaluation of NIST by reviewing
the software verification and applicability in various
environments for submitted software. In Korea, there is
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an ongoing KpqC competition led by the Post Quantum
Cryptography Research Center. However, verifying the
software of the KpqC competition candidates with the
same level of rigor as the NIST PQC Competition is
challenging. The key factor for migrating the public key
cryptography to PQC is the extensive verification of
software. Thus, we present the continuous integration
test for the KpqC Competition Round 1 candidate
considering performance and implementation security.
It’s not about improving the algorithm itself, but
rather designing tests to find possible bugs in the
implementation, measure performance/memory usage,
etc., to validate that the candidates’ implementation
is correct, while also allowing for benchmarking. The
source code for our extensive test is publicly available on
https://github.com/Unlimitosu/KPQClib. We aspire
that through verification of our continuous integration
test, the clarity of the software of KpqC Competition
candidates will be improved.

o Providing the analyses of three performance of
KpqC competition candidates: benchmark, memory
consumption, and profiling
We present the results of a detailed performance
analysis of Round 1 KpqC submissions from three
perspectives: benchmark, memory consumption, and
profiling. Benchmarks submitted by Round 1 candidates
perform reliably. However, it is difficult to expect
fair results because the benchmarking environment is
not the same. For this reason, we provide bench-
marking results for KpqC Round 1 candidates in a
typical CPU environment (Intel) for fair comparison.
In addition, we evaluate the applicability of KpqC
competition candidates in resource-constrained devices
by closely comparing memory usage. Some algorithms
may be difficult to apply in resource-constrained devices
due to excessive key and signature lengths, so their
applicability in resource-constrained devices should be
carefully analyzed. Finally, we present profiling results
for KpqC Round 1 candidates. Profiling may provide a
bottleneck point for each KpqC submission, suggesting
the direction of optimization research.

« Verifying implementation security of KpqC Compe-
tition candidates through extensive tests
We evaluate the implementation security of the KpqC
Round 1 candidate through extensive tests. For basi-
cally extensive test design, we have replaced working
dependencies in external libraries that can complicate
builds with hard coding. Implementation security can
be categorized into implementation errors and side-
channel vulnerabilities. In implementation errors, veri-
fying existing candidates was generally performed with
the KAT test, but it is limited to finding bugs and errors.
Thus, we verify them through Metamorphic Testing,
which can cover a wide range of basic verification
through the Valgrind tool to find bugs and errors. As a
result, memory errors were found in two candidates,
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TABLE 1. Difference between testing framework of KPQClean [9] and Our
Work.

Test KPQClean [9] KPQCLib(Our Work)
Benchmark Ryzer} 7 4800, Intel i7-13700K
Results Intel 15—8259U _
— 2 Environment — 1 Environment
. Eliminating Eliminating
g,e(g:::iincies the external library the external library
— OpenSSL — OpenSSL

Providing Stack Usage for
KpqC Round 1 candidates
Finding performance bottleneck
of KpqC Round 1 candidates
Providing testing framework
through Valgrind test and
Metamorphic Testing

Providing results on

- whether it is a constant-

time implementation

Memory Usage -

Algorithm Profiling -

Software Engineering -

Side Channel
Resistance

and no errors were found in Metamorphic Testing.
In addition, we present an implementation method to
solve the errors. In side-channel vulnerability analysis,
we checked the constant-time implementation, which is
a basic countermeasure of side-channel attack, for each
KpqC candidate via the Valgrind tool. As a result, all
of the KpqC Competition candidates achieved constant-
time implementation.

B. DIFFERENCES FROM THE EXISTING KPQCLEAN
PROJECT

In Cryptology ePrint Archive’23 [9], a KPQClean, which
integrates KpqC Competition candidates and provides bench-
marking results, has been proposed. They presented bench-
marking results in two general CPU environments (Intel and
Ryzen) for KpqC Round 1 candidates. The -O2 and -O3
options showed detailed performance comparison results.
In addition, accessibility was enhanced by removing external
library elements used in many of the KpqC Competition
candidates and replacing them with hard coding. In this paper,
we provide benchmarking results in only one environment
(Intel) but suggest the direction of applicability of the KpqC
algorithms in resource-constrained devices by comparing the
memory usage. Furthermore, extending the applicability by
removing the working dependency (external library) is the
same as the paper above [9]. Additionally, we verify KpqC
Competition candidates by applying Metamorphic Testing,
and a wide range of software verification techniques. Finally,
basic side-channel resistance is evaluated by checking
whether constant-time is implemented through Valgrind. The
detailed differences between KPQClean [9] and our test
framework are shown in Table 1.

The rest of the paper is summarized as follows. Section II
provides a detailed description of the KpqC Competition,
metamorphic test, memory leakage, and constant-time imple-
mentation verification through Valgrind, and the definition
of bugs and errors found. Section III presents related work
for software verification and side-channel vulnerabilities in
PQC. Section IV-A presents benchmarking results, Valgrind
testing results, and Metamorphic Testing results for KpqC
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Round 1 candidates. Finally, Section V provides the conclu-
sions of this paper and future work.

Il. PRELIMINARIES

A. KPQC COMPETITION OVERVIEW

Globally, there is active research and development of PQC to
achieve security in the era of quantum computing. In Korea,
efforts are being made to secure domestic PQC technologies
and promote policies applicable to the domestic landscape.
To pursue this goal, the KpqC (Korea Post-Quantum Cryp-
tography) Research Group has been organizing the KpqC
Competition since 2021. Unlike the NIST PQC Competition,
the KpqC Competition started from Round 0, considering
domestic PQC-related capabilities.

In Round 0, participants were required to submit
development proposals, including algorithm functionality,
underlying issues, design approach, and development plans.
Afterward, they were granted approximately 9 months for
the development phase. The submissions were evaluated
based on criteria such as algorithm excellence and originality,
soundness of security rationale, specificity, and feasibility
of development objectives, leading to the selection of
Round 0 candidates. In total, 18 algorithms were selected,
comprising 8 KEMs and 10 DSAs. Round 1 in KpqC
Competition is currently in progress, and KpqC Competition
plans to select Round 2 candidates in December 2023.
Round 2 will be conducted from February to September 2024.
The final algorithm selection is scheduled for September
2024. KpqC Competition is considering conducting Round 3
to prepare the necessary elements for implementing the
algorithms selected in Round 2. The classification of Round 1
candidates is shown in Table 2 and 3.

A summary of each algorithm is following:

1) PKE/KEM SCHEMES
o IPCC (Improved Perfect Code Cryptosystem) [10]
is a graph-based PQC that relies on the security of
the Perfect Code Cryptosystem (PCC) problem, which
determines the existence of Perfect Domination Sets
(PDS) in a graph. The PCC problem has been proven to
be NP-Complete, and generally, PCC-based encryption
schemes struggle to provide both security and efficiency.
However, IPCC is designed to operate efficiently for the
same k by utilizing multiple graphs. The key generation
and decryption processes follow the design principles
of traditional PCC-based encryption schemes. IPCC is
built upon the problem of determining PDS in 3-regular
graphs, where a 3-regular graph refers to a graph in
which all vertices have a degree of 3. PDS represents
a subset D of the set of all vertices V, where for each
vertex, the set of connected vertices is a subset of D. The
key generation function in IPCC takes the cardinality of
the sets of vertices in each graph as input and generates
the public and private keys accordingly. The private
key in IPCC is represented by the Perfect Domination
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TABLE 2. PKE/KEM algorithm classification of KpqC Round 1 candidates.

ine Based Problem Algorithm
ineine NTRU+
Lattice SMAUG
TiGER
ine Layered ROLLO-I
Code PALOMA
REDOG
ine Graph IPCC
ine

TABLE 3. DSA algorithm classification of KpqC Round 1 candidates.

ine Based Problem Algorithm

ineine GCKSign

HAETAE

Lattice NCCSign

Peregrine

SOLMAE

ine Code Enhanced pqsigRM

ine Polynomial MQSign
ine Isogeny FIBS
ine Zero-knowledge Proof AlMer

ine

Function (PDF), and the public key consists of sets of
graphs. PDF is a function that maps sets of vertices in
a graph to 0 or 1, under the condition that the sum of
connected vertices for each vertex is 1. The encryption
in IPCC involves generating an invariant polynomial fé‘
corresponding to the vertex set G and the maximum
degree k. This polynomial is then used for encryption.
Decryption is performed by applying the PDF function
to each element of the ciphertext. The sizes of IPCC’s
public key, private key, and ciphertext are 4,800 bytes,
400 bytes, and 92,000 bytes, respectively, for a security
strength of 80 bits.

o Layered ROLLO-I [11] is a code-based PQC scheme
based on the Rank Syndrome Decode problem which
is NP-complete. ROLLO, which is built upon the
Low-Rank Parity Check (LRPC) code, was submitted
to the NIST PQC Competition. However, it exhibited
lower decryption performance compared to lattice-based
PQC. To alleviate these performance limitations, it was
designed based on the ideal LRPC (BII-LRPC) code
with a modified structure. By multiplying low-rank
vectors into two polynomials, Layered ROLLO-I made
it challenging for attackers to exploit the cryptosystem’s
structural properties, thereby enhancing the security
strength. Layered ROLLO-I provides security levels of
128 (resp. 192 and 256) bits with 1,240 (resp. 1,699 and
2,571) bytes of the public key, 120 (resp. 120 and 120)
bytes of the private key, and 620 (resp. 850 and 1,286)
bytes of ciphertext.

o« NTRU+ [12] is a scheme that shares a similar design
rationale with NTRU, which was a Round 3 candidate
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in the NIST PQC Competition. The security of NTRU+
is based on the RLWE problem in the NTRU lattice.
One of the distinguishing features of NTRU+ is the
proposal of the Semi-generalized One Time Pad (SOTP),
an encoding method that ensures the upper bound of
the decryption error rate becomes negligible when an
attacker randomly selects the random values used in
encryption. SOTP operates on a message x € {0, 1}"
and another input value u = (uy, uz) € {0, 1}2", where
SOTP(x, u) = (x ® u;) — up. Additionally, NTRU+ uses
the NTT-friendly ring Z,[X1/(X" — X"/? + 1), where
n = 23 and ¢ = 3457, to perform all polynomial
multiplications using NTT. The advantage of using NTT
is that it reduces the time complexity of polynomial
multiplication into O(n log n). Furthermore, unlike some
other schemes, NTRU+ does not employ the Fujisaki-
Okamoto transform [13] in the IND-CCA. Instead,
it adopts a method of recovering and comparing the
random values used in encryption during the decryption
process. NTRU+ provides security levels of 576 (resp.
768, 864, and 1,152) bits with 864 (resp. 1,699, 1,296,
and 1,728) bytes of the public key, 1728 (resp. 2,304,
2,592, and 3,456) bytes of the private key, and 864 (resp.
1,152, 1,296, and 1,728) bytes of ciphertext.
PALOMA [14] is a PQC scheme based on Goppa
codes, which are used in classic McEliece-like cryp-
tosystems. It relies on the NP-hard Syndrome Decoding
Problem and involves shuffling the parity-check matrix
similar to the Niederreiter cryptosystem. However,
unlike the Niederreiter cryptosystem, PALOMA skips
the process of converting the message into a specific
Hamming weight for decryption. This omission reduces
the computational complexity of the encryption and
decryption processes, resulting in improved perfor-
mance. PALOMA used a binary separable Goppa code
C = |[nk,> 2t + 1]y, defined by the support
set L and the separable Goppa polynomial g(X). The
support set is derived from [«g, o, -+, a2 — 1] <«
SUFFLE (Fym), where L <« [ag, o1, -, 1], and
8X) « Hj"i,ﬁ X - ;). Goppa code can be generated
in constant time due to the reducibility and separability
of g(X) over F,13[X]. PALOMA provides different sizes
of public and private keys and ciphertexts based on
the security level: 128 (resp. 192, and 256) bits. It has
319,448 (resp. 812,032, and 1,025,024) bytes of public
keys, 94,496 (resp. 355,400, and 257,064) bytes of
private keys, and 136 (resp. 240, and 240) bytes of
ciphertexts.

SMAUG [15] is a scheme based on Module-
LWE/Module-LWR and shares a similar design ratio-
nale with RLizard and Lizard, which were submitted
to the NIST PQC Competition. SMAUG employs a
sparse secret key and predefines the Hamming weight of
the secret key for Module-LWE/Module-LWR, allowing
the extraction of a secret key that meets the specified
conditions. Additionally, SMAUG sets the values of p
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and g as powers of 2 to replace rounding operations
with bitwise shifts. It also avoids using NTT during the
multiplication process. SMAUG provides different sizes
of public and private keys and ciphertexts based on the
security level: 1 (resp. 3, 5) bits. For each security level,
it has 672 (resp. 992, and 1,632) bytes of public keys,
174(846) (resp. 185(1,177), and 182(1,814)) bytes of
private keys, and 768 (resp. 1,024, and 1,536) bytes of
ciphertexts.

TiGER [16] is a scheme based on the RLWE/RLWR in
the spirit of RLizard and Lizard, which were submitted
to the NIST PQC Competition. TiGER utilizes a sparse
secret key and predefines the Hamming weight of
the secret key to generate a secret key that meets
certain conditions. Additionally, TiGER employs Error
Correcting Codes during message encoding to recover
from errors. This ensures that the decryption failure
probability becomes negligible. The Error Correcting
Code options used are D2 [17] or XEf [18]. Another
characteristic of TiGER is the small size of ciphertexts
and public keys, which is due to the usage of a
1-byte value for ¢ = 256 in TiGER. In practice, TiGER
has ciphertexts and public keys of size 768 bytes and
480 bytes, respectively, for security level 1. Even at the
highest security level of 5, the sizes are 1,152 bytes and
928 bytes, respectively.

2) DSA SCHEMES
o AlIMer [19] is a zero-knowledge proof-based DSA that

utilizes the AIM (Arithmetic Inverse Mask) function,
which is a one-way function from the MPCinH [20]
zero-knowledge proof framework. MPCinH allows for
the efficient design of virtual zero-knowledge proof
protocols through Multi-Party Computation (MPC).
AIM function is a tweakable one-way function that
provides multi-target one-wayness. For an(/ + 1)-tuple
(e1, €2, -+ ,el, ex) and input and output size n, AIM
function AIM: Fyn x Fan — Fon is defined as follows:
AIM (iv, pt) = Mer[ey]oLin[ivloMer|ey, - - - , e;](pt)®
pt. Here, Mer is defined as Mer[e](x) = x~1 for
x € Fon, providing non-linearity. Lin is a linear
function composed of matrix multiplication over n x
In size matrix Ay = [Apil - |Awi] € EF"Y
and vector addition with b;, € IFn. AlMer uses
the Fiat-Shamir Transformation [21] to convert the
interactive zero-knowledge proof system based on the
BN++ proof system [22]. Using the transformed system,
digital signatures are generated based on the proof
produced, relying on the one-wayness property of the
AIM function. AIMer-1 (resp. III, V) provides NIST
security level 1 (resp. 3, 5) with 32 (resp. 48, 64) byte of
public key, 16 (resp. 24, 32) byte of secret key, and 5,904
(resp. 13080, 25152) byte of signature. The signature
size of AlMer is flexible according to the value of N
and t.
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« Enhanced pqsigRM [23] is a code-based DSA that

replaces Goppa code used in the original CFS (Courtois,
Finiasz, and Sendrier) algorithm with a modified
Reed-Muller code [24]. CFS algorithm suffers from
inflexibility in parameter extension and lacks security
against Existential Unforgeability under Chosen Mes-
sage Attack (EUF-CMA). Additionally, the signature
generation time in CFS relies on the factorial of the
error correction range of the Goppa code, denoted
as t!. To achieve faster signature generation, the
value of ¢ needs to be small, which, unfortunately,
compromises security and requires increasing the key
size for higher security strength. To mitigate these
drawbacks, Enhanced pqsigRM adopts the modified
Reed-Muller code. The Reed-Muller code offers fast
computations and simple decoding, but it is susceptible
to attackers leveraging the algorithm’s structure to gain
secret information. To address this issue, the generator
matrix G ) is modified by replacing, appending, and
padding certain parts, resulting in the generation of the
modified Reed-Muller code. The recursive definition
of Reed-Muller code is given as follows: RM(; ;) =
{(ulu+v)lu € RM¢ m—1), v € RM—1,m—1)}, RM@©,m) =
{0,---,0),(1,---, 1)}. Enhanced pqsigRM provides
NIST security level 1 (resp. 5). For each security level,
it has 474,445 (resp. 2,000,000) bytes of public key and
512 (resp. 1,024) bytes of signature.

FIBS [25] is a DSA based on isogenies, and it utilizes
CGL hash function [26] from the hash-based digital
signature schemes XMSS (eXtended Merkle Signa-
ture Scheme) [27] and WOTS+ (Winternitz One-Time
Signature+) [28]. CGL hash function is specifically
designed based on isogenies, enabling it to provide
security even in quantum computing environments. Both
XMSS and WOTS+ heavily rely on the security of the
hash function they use, and consequently, FIBS also
ensures security in quantum computing environments
by using CGL. In the FIBS scheme, a Pseudo-Random
Number Generator (PRNG) is employed to generate
random numbers, which are then used along with
the public key to produce WOTS+ signatures through
the CGL function. By repeating this process multiple
times, FORS signatures are generated. One notable
characteristic of FIBS is that it only offers a security
strength of 128-bit, which corresponds to NIST security
level 1. In contrast, other algorithms typically provide at
least two or more security levels. FIBS provides 32 bytes
of the public key, 64 bytes of the secret key, and 17,088
bytes of signature.

GCKSign [29] is a DSA that bears a resemblance to
Lyubashevsky’s lattice-based DSA scheme [30]. GCK-
Sign has a simpler structure compared to CRYSTALS-
Dilithium, one of the final algorithms in the NIST PQC
Competition, which allows it to mitigate the risks of
side-channel attacks and maintain a smaller signature
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size. To address the existing challenge of GCK-OW
(One-Wayness), GCK-TMO (Target-Modified One-
wayness) is introduced and applied to enhance security.
The security of GCKSign relies on this new notion.
For the signatures, s and s’ of the GCK (Generalized
Compact Knapsack) function to be different with high
probability, the secret key should satisfy 2!284" < (2n+
1)"™". Here, n represents the range of coefficients in the
secret key and should be chosen to be large, which leads
to an increase in the size of the signature. The probability
of having s # s’ when the above condition is met
is 1 — 27128 For NIST security level 2 (resp. 3, 5),
GCKSign requires 1,760 (resp. 1,952 and 3,040) bytes
for the public key, 288 (resp. 288 and 544) bytes for the
secret key, and 1,952 (resp. 2,080 and 3,104) bytes for
the signature size.

HAETAE [31] is a DSA that utilizes the Fiat-Shamir
with aborts scheme. To reduce the sizes of the public
key and signature, it introduces hyperball bimodal
rejection sampling. HAETAE selects a signature by
sampling a random variable y from a hyperball, which
follows a bimodal Gaussian distribution. A bimodal
Gaussian distribution means a Gaussian distribution
with two distinct modes. Unlike the BLISS algorithm
[32], which faces implementation challenges with rejec-
tion sampling, HAETAE adopts a simplified rejection
technique that offers implementation advantages. This
choice of rejection sampling allows it to maintain
a smaller signature size. HAETAE-II (resp. III, V)
provides security levels of 120 (resp. 180, 260)bits. The
sizes for HAETAE-II (resp. III, V) are as follows: a
public key of 2,529 (resp. 3,836 and 4,817) bytes, a
secret key of 1,056 (resp. 1,568 and 2,080) bytes, and
a signature size of 3,040 (resp. 4,064 and 5,792) bytes.

MQSign [33] is a multivariate quadratic-based DSA
that relies on the security of the Multivariate Quadratic
Problem and the Extended Isomorphism of Polyno-
mials Problem. It utilizes the Unbalanced Oil and
Vinegar (UOV) structure [34]. The UOV structure in
MQSign consists of two maps, F and 7. Among
them, F is defined as FO(X) = Eieo,jevoeg‘j)x,-xj +
Ei,jeV,iijﬁ,'(f;)xixj + Sicouvy,xi + 1®, where F® is
a quadratic polynomial composed of three components,
F‘(,k), Fg‘&, and Fikc) F‘(,k) and F(Ok& are quadratic
polynomials consisting of products of Vinegar x Vinegar
and VinegarxOil variables, respectively, while F ikc)
represents the linear and constant terms. On the other
hand, T is a random linear map T : ]F’q’ — IFZ chosen
over the finite field [F,, and the public key in UOV
is obtained by computing F o T. A notable feature of
MQSign is that the secret key can be selected based

on four combinations of F' ‘(,k ), F (Ok&, and F ékc) The F gg

component remains fixed, while the choice of F ‘(,k ) and

F, (()k& determines the specific combination used. MQSign
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provides NIST security levels 1, 3, and 5. The key
size and signature size depend on the combination of
polynominals.

« NCCSign [35] is a DSA that applies a non-cyclotomic
ring and is similar to the selected algorithm CRYSTALS-
Dilithium in the NIST PQC Competition. Traditional
lattice-based algorithms use a polynomial ring denoted
as Ry = Zg4lx]/ < x" + 1 >. In this case, using a
cyclotomic polynomial allows the use of NTT, which
offers advantages in computations. However, NCCSign
employs a non-cyclotomic polynomial ¢(x) = xP —
x — 1 for a prime number p. This allows for flexible
parameter selection by not requiring n = 2* as in the
case of cyclotomic polynomials. However, the drawback
is that NTT cannot be used, which leads to a limitation
in the polynomial multiplication process, necessitating
the use of the Toom-Cook and Karatsuba methods.
Apart from the transformation of the module structure in
Dilithium to a ring structure, the algorithm of NCCSign
remains the same as in Dilithium. NCCSign provides
security strengths at NIST security level 1 (resp. 3, 5).
The concrete parameters for NCCSign are as follows: a
public key size of 1,564 (resp. 1,997 and 2,663) bytes,
a secret key size of 2,266 (resp. 3,312 and 4,402) bytes,
and a signature size of 2,458 (resp. 3,605 and 5,055)
bytes.

o Peregrine [36]is a DSA based on the NTRU lattice, sim-
ilar to the selected algorithm FALCON in the NIST PQC
Competition. While FALCON requires floating-point
operations and utilizes Fast Fourier Transform (FFT),
Peregrine uses NTT in Z. Peregrine employs a round-
off algorithm, which offers ease of implementation and
faster speed but has the drawback of longer signa-
ture length and relatively lower security. Furthermore,
in contrast to FALCON, which uses precisely computed
Gaussian distributions for random variable distributions
for each basis, Peregrine uses binomial distributions that
do not require floating-point operations. Interestingly,
Peregrine’s signature verification algorithm is the same
as FALCON’s, which makes Peregrine and FALCON
share many similarities. The Peregrine family consists
of Peregrine-512 and Peregrine-1024, providing security
strengths at NIST security levels 1 and 5, respectively.
The public key, secret key, and signature lengths for
Peregrine-512 (resp. 1,024) are 897 (resp. 1,793) bytes
for the public key, 1,281 (resp. 2,305) bytes for the secret
key, and 666 (resp. 1,280) bytes for the signature.

o SOLMAE [37] is a DSA based on the NTRU Iattice,
similar to FALCON. In SOLMAE, a hybrid sampler was
used for sampling, which is the same sampler employed
in MITAKA [38]. By using the hybrid sampler, SOL-
MAE gains advantages such as faster speed, potential
for parallel implementation, and ease of implementation.
However, SOLMAE-1024 has a longer signature length
and lower security compared to FALCON-1024, which
is a drawback. One of the distinguishing features of
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SOLMAE is that it uses the Gaussian distribution
for the integer operations in the Z sampler and the
elliptical Gaussian distribution for operations in the
Fourier domain in the N sampler. This choice was
made because the compression technique intended to
be applied to SOLMAE works well with elliptical
Gaussian distributions. The SOLMAE family consists of
SOLMAE-512 and SOLMAE-1024, providing security
strengths at NIST security levels 1 and 5, respectively.
The public key and signature lengths for SOLMAE-512
(resp. 1,024) are 896 (resp. 1,792) bytes for the public
key and 666 (resp. 1,375) bytes for the signature.

B. VALGRIND

Valgrind is an instrumentation framework for building
dynamic analysis tools. Valgrind provides several tools for
memory debugging, memory leaks, and program profiling.
Representative tools include Memcheck, Cachegrind, Call-
grind, Massif, and Helgrind.

1) PROFILE MEMORY USAGE

It was tested using Massif, one of Valgrind’s tools. Massif
is essentially a heap profiler and performs detailed heap
profiling by taking periodic snapshots of a program’s heap.
This shows which part allocates the most memory by time
and how much is used.

2) SUITABILITY FOR RESOURCE-CONSTRAINED
IMPLEMENTATIONS

NIST has mandated the evaluation of candidates in the
“microcontroller” environment as part of the NIST PQC
process. This has prompted research into optimized imple-
mentations of PQC algorithm candidates within constrained
environments. Through this, the importance of extend-
ing cryptographic algorithms to embedded environments
becomes evident. NIST has selected the ARM Cortex-M4 as
the standard embedded platform. The Cortex-M4, renowned
for its cost and performance efficiency, finds widespread use
in various embedded contexts.

3) CONSTANT-TIME IMPLEMENTATION TEST

Timing attack, first proposed by Kocher in 1996 [39], is an
attack that finds secret information by analyzing execution
time. Variable timing means that the operation time of the
algorithm is different depending on the input value. A timing
attack using variable timing allows an attacker to extract
secret information such as a secret key or plain text. There are
various causes of variable timing. Typically, it is caused by a
difference in branching statement and memory access time.
If a specific condition of a branch statement is related to secret
information, secret information can be extracted through
various input values. In addition, if secret information is
stored in the cache and executed while minimizing memory
access, related information may be leaked due to the
difference in access speed. To avoid such attacks, constant-
time implementation would be a good countermeasure.
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A constant-time implementation means an implementation in
which variable timing does not occur for secret information.
Modern cryptography presents various methods for constant-
time implementation. Examples include replacing branches
with bitwise operations or not accessing array indices via
secret values. However, it is important to note that a
constant-time implementation is not a complete defense
against timing attacks. Modern side-channel attacks are very
complex, and even a constant-time implementation may still
have other vulnerabilities, such as exploiting differences
in the timing of accesses to the cache. However, constant
time is the most basic and essential goal to prevent timing
attacks. The KpqC Competition also requires a constant-time
implementation as a requirement for Round 2, which is
similar to the NIST PQC Competition. In this paper, we check
the KpqC candidates whether variable timing occurs in the
content related to secret information.

4) MEMCHECK IN VALGRIND

Memcheck of Valgrind is a tool that detects memory manage-
ment problems mainly for C and C++ programs. Memcheck
can detect the following targets: Memory leaks, use of
uninitialized values, access to disallowed addresses, free for
dynamic allocation, etc. Memcheck provides information
about the exact location in the code where these errors
occurred and the stack trace leading up to that point as soon
as such errors occur.

C. METAMORPHIC TESTING

Metamorphic Testing (MT) is a proposed method for
evaluating the implementation correctness of a newly devel-
oped program. MT efficiently detects bugs or unexpected
behaviors that may not have been found or are difficult
to discover within the program. Mouha et al. [40] applied
MT to candidates of the SHA-3 Competition and discovered
implementation defects in 41 cases, which proved to be
challenging for programmers to detect.

The process of MT is as follows: given a Program Under
Test (PUT) P and an input /, a follow-up case I’ is generated.
The follow-up case is created based on a concept called
Metamorphic Relation (MR), which is different for each
program. The verifier can define appropriate relations to
conduct Metamorphic Testing on PUT. Subsequently, for
each generated follow-up case, the program’s original output
O = P(I) and the output of the follow-up case O’ = P(I’) are
compared to check if they violate the Metamorphic Relation.
If a follow-up case violates the relation, it indicates the
presence of a bug in the program. The schematic overview
of this MT process is depicted in Figure 1.

Moubha et al. proposed four tests of MT: Bit Contribution
Test, Bit Exclusion Test, Update Test, and Combinatorial
Update Test. In this paper, the Bit Contribution Test and Bit
Exclusion Test are applied, along with two additional tests:
the Encrypt-Decrypt Test for KEM, and the Bit Verify Test
for DSA. Both are designed according to the characteristics of
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FIGURE 1. Overview of metamorphic testing.

KEM and DSA schemes. The Update Test is not used because
we used the same codes for hash functions that passed the
Update Test already.

Ill. RELATED WORKS

As the NIST PQC Competition progresses, there has been a
surge in active research and projects focused on NIST PQC
Competition candidates, including software implementation
verification and the application of various security proto-
cols. In EuroS&P’22 [1], an extensive testing framework
(continuous integration) called PQClean was introduced to
improve the software of NIST PQC candidates. PQClean
successfully integrated more than 230 implementations of
17 different parameter sets of NIST PQC candidates. The
testing framework conducted verification of NIST PQC
candidates based on various implementation criteria and
found a number of defects in candidates in most tests,
which significantly contributed greatly to improving the
quality of NIST PQC candidates. In eprint’19 [2], a C
reference implementation of NIST PQC candidates for ARM-
Cortex-M4 was integrated, and the results provided the
feasibility and performance of PQC solutions in embedded
environments. In NDSS’22 [41], real-time results for the TLS
1.3 handshake under actual network conditions for NIST
PQC candidates were presented. The adoption of at least
two types of PQ signature algorithms was shown to be
feasible without additional overheads compared to existing
legacy algorithms. Additionally, the proposal of PQ signature
algorithm certificate chains minimized the size of certificates,
thereby reducing TLS 1.3 handshake times. In ICISC’22 [4],
an in-depth performance analysis of NIST PQC candidates
applied to IPSec VPN was conducted. The evaluation was
based on StrongSwan, and the performance of IPSec VPN
was measured by applying NIST PQC KEMs to IKEv2.
Some NIST PQC candidates showed performance similar
to existing legacy algorithms. Until now, the NIST PQC
Competition has garnered significant attention worldwide,
and numerous verifications of the candidates have been
performed in various verification techniques and security
protocols. However, in Korea, S/W verification of KpqC
Round 1 candidate and verification in various environments
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TABLE 4. Benchmarking result of KEM (kilo clock cycles).

[ Algorithm [ keygen [ encap [ decap ]
Layered ROLLO-I-128 566 138 1,105
Layered ROLLO-I-192 923 291 1,607
Layered ROLLO-I-256 967 235 1,986

NTRU+-576 379 164 173
NTRU+-768 418 205 223
NTRU+-864 434 231 258
NTRU+-1152 961 305 342
PALOMA-128 811,949 1,045 80,723
PALOMA-192 937,006 922 160,819
PALOMA-256 1,107,190 960 164,153
SMAUG-128 132 84 53
SMAUG-192 197 74 105
SMAUG-256 288 166 140
TiGER-128 151 108 94
TiGER-192 213 137 96
TiGER-256 245 328 294

TABLE 5. Algorithms excluded from testing and reason.

Algorithm \ Excluded Reason ‘
KAT fails on Linux
IPCC (Success in macOS)
REDOG Implemented in Python

is challenging. Thus, in this paper, we present an extensive
testing framework such as PQClean and pqm4 to strengthen
the S/W quality of the KpqC Round 1 candidates.

IV. PROPOSED EXTENSIVE TESTING FRAMEWORK
RESULTS FOR KPQC COMPETITION ROUND 1
SUBMISSIONS

A. PERFORMANCE ANALYSIS

1) BENCHMARKING STRATEGY AND RESULTS

In this section, we describe the approach for the clean library
and performance evaluation results for the candidates of the
KpqC Competition including memory usage measurement.
Firstly, we removed the entire external dependencies in each
algorithm such as OpenSSL. A number of reference codes
utilize AES API in OpenSSL for DRBG, which requires that
OpenSSL needs to be pre-installed. Also, some algorithms
use a hash function in OpenSSL. Thus, we removed all of
the dependencies with OpenSSL for clean code and easy
building. For two algorithms, REDOG and IPCC, we were
unable to perform tests. The reasons why we were unable
to perform tests for each algorithm are described in Table 5.
IPCC fails KAT on Linux, but passes on macOS, and REDOG
is implemented in Python, not C programming language. For
the fairness of evaluation, we decided to exclude both.

The evaluation was conducted using an Intel Core
i7-13700K processor on Ubuntu 20.04 LTS with compile
option -O3. We measured the clock cycles for each security
level. All measurements were based on the average results
of 100 runs. All of the benchmarking results are shown in
Table 4 and 6. Also, the graphs of the benchmarking results
are shown in Figure 10-12 in the Appendix. In addition, the
benchmarking performance of FIBS was measured, but the
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TABLE 6. Benchmarking result of DSA (kilo clock cycles).

[ Algorithm [ keygen [ sign [ verify ]
AlMer-1 343 6,826 6,181
AlMer-IIT 710 12,677 11,858
AlMer-V 1,786 27,092 25,736
Enhanced pqsigRM-612| 929,021 878 229
Enhanced pqsigRM-613| 234,120 3,912 1,636
FIBS 311,493,411(7,228,086,586(423,968,581
GCKSign-II 226 1,007 176
GCKSign-III 235 895 235
GCKSign-V 305 1,081 299
HAETAE-II 1,210 3,946 1,818
HAETAE-III 2,731 9,666 3,544
HAETAE-V 4,200 17,259 5,399
MQSign-72/46 43,538 429 606
MQSign-112/72 160,988 695 1,546
MQSign-148/96 412,059 1,526 3,267
NCCSign-1II 1,654 23,575 2,850
NCCSign-1II aes 1,618 23,330 2,846
NCCSign-IIT 2,974 43,124 5,671
NCCSign-III aes 2,921 40,787 5,506
NCCSign-V 5,576 82,360 10,617
NCCSign-V aes 5,534 80,069 10,623
Peregrine-512 10,716 353 10
Peregrine-1024 36,850 614 85
SOLMAE-512 24,933 313 33
SOLMAE-1024 63,966 601 142

results were not shown. The reason was the long signing
time, which made it challenging to display the graphs of other
algorithms even on a log scale.

The benchmarking graph for keygen, encap, and
decap of KEM is presented in Table 4. In keygen,
PALOMA showed the highest computational overheads,
while SMAUG and TiGER showed relatively lower clock
cycles overall. In addition, Layered ROLLO-I and NTRU+
showed similar performance at security levels 1 and 3, but
at security level 5, NTRU+ required more clock cycles.
In encap, PALOMA exhibited the highest number of
clock cycles, and TiGER showed better performance than
NTRU+ except at security level 5, where they performed
similarly. Layered ROLLO-I and SMAUG achieved the
lowest performance, with similar results at security levels 1
and 3, but SMAUG outperformed Layered ROLLO I at
security level 5. In decap, similar to keygen and encap,
PALOMA exhibited the highest number of clock cycles.
It was followed by Layered ROLLO-I and NTRU+, while
SMAUG and TiGER showed lower clock cycles in decap.
Overall, the benchmarking results showed that PALOMA
had the slowest performance, and SMAUG had the fastest
performance among the KEM algorithms.

The benchmarking result for keygen, sign, and
verify of DSA is presented in Table 6. In keygen, similar
to KEM, it shows an increasing trend in required clock cycles
as the security level rises. However, Enhanced pqsigRM
exhibited a decrease in clock cycles even with increasing
security levels. Overall, Enhanced pqsigRM and MQSign
required the highest clock cycles, while GCKSign and AIMer
needed relatively lower clock cycles. In sign, MQSign
took the longest to generate signatures, followed by AIMer
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TABLE 7. Benchmarking of stack size of KEM(bytes).

TABLE 8. Benchmarking of stack size of DSA(bytes).

Algorithm Heap/Stack Usage (KB) | l Algorithm [ Heap/Stack Usage (KB) |
AlMer-1 216/ 6
Layered ROLLO-I-128 1778 ATMer I o7
Layered ROLLO-I-192 20/ 10 AlMer-V 91375
Layered ROLLO-I-256 24 /13 Enhanced pgsigRM-612 4,848 /1,620
Enhanced pqsigRM-613 25,180 / 4,248
NTRU+-576 2/18 GCKSign-II 157512
NTRU+-768 2/123 GCKSign-III 15749
NTRU+-864 21/25 GCKSign-V 17780
NTRU+-1152 5733 HAETAE-II 17 7 106
HAETAE-TII 20/ 156
PALOMA-128 0/16,642 HAETAE-V 337196
PALOMA-192 0/16,642 MQSign-72/46 345 7904
- MQSign-112/72 1,278 / 3,401
PALOMA-256 0/16,642 MQSign-148/96 2,961 / 7,949
SMAUG-128 2/10 NCCSign-T 167188
SMAUG-192 4/ 15 NCCSign-1II 187262
SMAUG-256 9/27 NCCSign-V 21/ 347
- Peregrine-512 11977
TiGER-128 1/12 Percgrine-1024 33073
TiGER-192 1/18 SOLMAE-512 197120
TiGER-256 1/ 31 SOLMAE-1024 27 /1238

and HAETAE. Peregrine and SOLMAE showed similar
performance, while at the same time generated the fastest
signatures. In particular, GCKSign showed intermediate
performance in security level 1 but showed the third
fastest performance in level 5, the highest security level. In
verify, all algorithms tended to increase clock cycles as
the security level increased, and AIMer showed the slowest
verification speed. Peregrine and SOLMAE showed the
fastest verification speed in sign, but Peregrine was slightly
faster in sign but showed a significant performance gap with
SOLMAE in verify. GCKSign was measured with a small
gap in clock cycles required even though the security level
increased.

To gain insights into the memory usage patterns of
the algorithms at different security levels, we harnessed
Massif. This tool enabled us to determine the peak memory
consumption of each algorithm. To utilize Massif when
running Valgrind, it is necessary to specify it as the tool to
be used by adding ——tool=massif as an option. Memory
usage during execution can be measured using the Massif
tool with ——stacks=yes option. The results are stored
inmassif.out, and we can view them using ms_print
command.

We have presented the memory usage of KEM algorithms
for Round 1 candidates in Table 7. The maximum usage
for both heap and stack is indicated in bytes. The algorithm
that exhibited the highest memory consumption is PALOMA,
showing the highest memory usage across all security levels.
It is noteworthy that PALOMA did not use heap memory,
attributed to its implementation avoiding memory allocation.
Furthermore, among all algorithms, SMAUG and TiGER
demonstrated the least memory usage overall. Except for
PALOMA, the remaining algorithms utilized both stack and
heap memory according to their respective reference codes.
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We have presented the memory usage of DSA algorithms
for Round 1 candidates in Table 8. The algorithm that
consumed the most memory was Enhanced pqsigRM, partic-
ularly Enhanced pqsigRM-613, which exhibited significant
heap usage. Additionally, the algorithms with the least
memory usage were Peregrine, HAETAE, and SOLMAE.
It was observed that all reference codes utilized both stack
and heap memory. While Table 7 and 8 represent the
maximum usage of heap and stack memory individually,
these values may vary depending on the implementation
approach. For instance, implementations that avoid dynamic
allocation, like PALOMA, may reduce heap usage, whereas
heavy dynamic memory allocation could increase heap
consumption while reducing stack usage. Therefore, the
provided tables aim to divide the total memory usage into
stack and heap components, highlighting that it is challenging
to definitively determine whether the given implementations
will use precisely the specified sizes of heap or stack.
In summary, it should be emphasized that the tables are
intended to illustrate the total memory usage, divided into
stack and heap while acknowledging that the exact heap
or stack sizes used by these implementations may not be
conclusively determined.

2) SUITABILITY ASSESSMENT FOR
RESOURCE-CONSTRAINED IMPLEMENTATION

We explore the feasibility of implementing KpqC algorithm
candidates in resource-constrained environments, taking into
consideration the results of Massif’s memory profiling.
In line with the findings in [2], we specifically target
the STM32F4 Discovery board, which features an ARM
Cortex-M4 CPU clocked at 168MHz, IMB of flash memory,
and 192KB of RAM. By evaluating the memory usage of
KpqC algorithm candidates and comparing it to the available
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RAM on the board, we assess both implementation feasibility
and scalability.

According to [2], the 192KiB memory of the
STM32F4ADISCOVERY board is segmented into multiple
memory regions. However, this paper evaluated algorithm
candidates based on the 192KiB threshold. For KEM, the
PALOMA algorithm, and for DSA, the AlMer, Enhanced
pgsigRM, MQsign, and NCCsign algorithms were deter-
mined to be unsuitable for implementation in constrained
environments. The total memory usage of PALOMA varied
with security strength but was measured at 16,251KiB,
representing the highest among KEM. Additionally, the mem-
ory usage of Enhanced pqsigRM recorded approximately
28,738KiB, marking the highest among DSA. Apart from the
mentioned algorithms, HAETAE, Peregrine, and SOLMAE
also exhibited cases where memory usage exceeded 192KiB
depending on the parameter set. While using higher-tier
boards could increase RAM capacity, it demands a
proportional increase in cost, making it unsuitable. Thus,
research on memory optimization techniques is necessary for
the embedded implementation of these algorithms.

3) PROFILING RESULT

In this section, we provide profiling results for certain
components of the Round 1 DSA candidates. The profiling
results present the top three most frequently called functions
in each algorithm’s keygen, sign, and verify. The
profiling was conducted using Visual Studio 2019. To enable
execution in MSVC for functions and GCC extensions that
are specific to Ubuntu, minor code modifications were made
to ensure minimal impact on overall performance. Profiling
results for KEM and FIBS are not included in this section and
are left as future work. The profiling outcomes are presented
in Table 11 and 12 in the Appendix.

In most algorithms, bottlenecks primarily occurred in
polynomial multiplication, division, reduction, matrix mul-
tiplication, and Keccack. Particularly, cases like HAETAE
employing schoolbook algorithms and using the C language’s
modulo operation for remainder calculations resulted in this
operation accounting for approximately 90% of the total
computations, causing significant performance degradation.
Furthermore, algorithms based on NTRU problems like
Peregrine experienced bottlenecks due to operations related
to NTRU problems. Algorithms utilizing finite field oper-
ations, such as AIMer, MQSign, and NCCSign, also faced
bottlenecks related to finite field computations. In AlMer,
Keccak operations emerged as a significant bottleneck across
the entire algorithm.

Consequently, optimizing the parts responsible for bot-
tlenecks in each algorithm could lead to substantial per-
formance improvements in their optimal implementations.
For example, the naive implementation of polynomial
multiplication in HAETAE has a time complexity of O(n?).
Replacing such an implementation with a multiplication
algorithm like Toom-Cook or Karatsuba, which has a
lower time complexity, is expected to directly impact the
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implementation’s performance. In cases like SOLMAE,
which uses FFT with a time complexity of O(nlogn),
it might be challenging to replace it with a lower-complexity
multiplication algorithm. Thus, utilizing the optimized code
for the respective algorithm can be expected to enhance
performance. In order to achieve post-quantum security
in resource-constrained environments, there is a need for
optimal implementation research on the candidates of the
KpqC Competition. We hope that the profiling results
presented in this paper will help identify bottlenecks in
each algorithm, stimulating active research toward optimal
implementations tailored to each algorithm’s characteristics.

B. SECURITY ANALYSIS STRATEGY AND RESULTS

In this section, we provide security analysis results for 1
Round KpqC submissions by classifying them into basic
S/W verification and Constant-time verification using the
Valgrind tool, and Metamorphic Testing. Before providing
security analysis, we first define the risk level of found bugs
and errors. Afterwards, we provide detail results of security
analysis for 1 Round KpqC submissions through the basic
S/W verification, cost-time implementation verification, and
Metamorphic Testing.

1) DEFINING BUGS AND ERRORS

In this section, we define the bugs and errors found in our
test framework, including a design rationale for proposed
Metamorphic Testings. We designed our test framework with
basic compile warning, memory error, and constant-time
implementation verification through the Valgrind tool, and
verification through Metamorphic Testing. Errors generated
in this verification can be largely classified into four
categories, and the meanings of each error are as follows:

o Compile Warnings Warnings generated during com-
pilation are intended to alert the developer to potential
problems with code and do not have a fatal effect when
the developer runs the compiled file. As the compiler
analyzes the source code, it points out non-errors
but potential bugs or informs the developer of areas
where the quality of the code can be improved.
By processing these warnings without ignoring them,
the quality of the program can be increased. Com-
mon compiler warnings include: There are Unused
Variable, Uninitialized Variable, Type
Mismatch, and Type Redefinition, etc.
Unused Variable and v are warnings that occur
when an unused variable exists and when a variable
is used without initialization. Type Mismatch and
Type Redefinition occur when the data type
of a variable is different from what was expected
and when multiple variables with the same name are
defined. In addition to these warnings, various warnings
can occur depending on the compiler version and
compilation options used. These warnings should be
handled carefully to improve code and prevent bugs.

VOLUME 12, 2024



Y. Choi et al.: KpgBench: Performance and Implementation Security Analysis

IEEE Access

e Memory Error There are various causes of memory
errors in algorithm behavior. First, we have the issue of
Memory Leak. This occurs when a program dynam-
ically allocates memory space but fails to deallocate
it. In C/C++ language, where there is no garbage
collector, it’s the programmer’s responsibility to release
memory. While memory is automatically reclaimed
when the process terminates, it is essential to free
unused memory during runtime to avoid memory waste.
Next, we encounter Invalid Read errors, which
involve reading from or writing to memory locations that
have not been initialized or allocated. This can lead to
unintended data access, potentially resulting in incor-
rect encryption/decryption outcomes. Errors may also
arise from referencing invalid memory addresses. For
instance, if a function uses a memory address declared as
alocal variable, the validity of that memory address may
differ depending on the function’s termination status.
While Memory Leak may be considered minor errors,
Invalid Read, which involve using invalid data, can
lead to critical issues that affect the behavior or results
of the program.

o Metamorphic Testing Error Errors in Metamorphic
Testing mean that forged inputs produce results for orig-
inal inputs. In other words, forgery attacks are possible
due to errors in the implementation, which can have
a significant impact on authentication services. Meta-
morphic Testing performs wide-coverage verification
of implementations by designing Metamorphic Rela-
tions based on algorithmic relationships. Representative
Metamorphic Testing includes Bit Contribution, Bit
Exclusion, Encrypt-Decrypt, and Bit Verify verification.
These verifications are performed by comparing the
result with the original value and the result with the
forgery value. Thus, the Metamorphic Testing error is
a very fatal error because a forgery attack is possible.

« Non-Constant-time Implementation Code that han-
dles sensitive information, such as private keys, must
adhere to the principle of being ‘“‘constant-time” to
prevent the leakage of secret values through side
channels, including timing attacks. This entails avoiding
any conditional branches that depend on secret values
and refraining from memory accesses that are deter-
mined by secret information. Algorithms that fail to
meet these constant-time conditions are classified as
Constant-test Fail. This vulnerability to side-
channel attacks, particularly timing attacks, presents
a critical issue, as it can lead to severe security
risks. In II-B3, a detailed explanation of constant-time
implementation is provided.

2) DESIGN OF VALGRIND TESTS

We provide an overview of the Valgrind tests conducted
on the candidates for the KpqC Competition. The focus
of these tests was on Constant-time Tests and Memory
Error checks for the submitted algorithms. To facilitate these
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tests, a dedicated test code which is named const_test
was developed, specifically designed for evaluating KEM
(Key Encapsulation Mechanism) and DSA (Digital Signature
Algorithm) operations. Notably, this test code excluded file
I/O functionalities inherited from the NIST_PQCgenKAT
code. We use Memcheck to test the constant-time imple-
mentation and detect Memory Errors of the algorithms
proposed in the KpqC competition. The tests we conducted
are described in detail below:

o Constant-time Implementation Test In this paper,
a test tool was generated using Memcheck’s built-in
functions VALGRIND_MAKE_MEM_UNDEFINED (),
VALGRIND_MAKE_MEM_DEFINED (), and
VALGRIND_CHECK_MEM_IS_DEFINED (). Refer-
ring to [42], poison (), we defined unpoison (),
and is_poisoned () inthe poison.h file. In Valgrind,
there is a function to trace undefined data. This function
reports when data derived from undefined data is used
for branching or memory access. We can track the
possible occurrence of variable timing by identifying
the flag as undefined data using a secret. At this
time, we can set the flag using poison (). The input
value is the address and size of the data to set the
flag. The flag can be released with unpoison ().
In addition, a warning about an uninitialized variable
occurs, and to distinguish it from the data we want,
we can check which value the flag is for through
is_poisoned (). we incorporated flags into the
const_test code, with a specific focus on crucial
points such as the Crypto_Encryption function for
KEM algorithms and the Crypto_sign function for
DSA algorithms. These flags were strategically placed to
highlight secret information being processed. During the
Valgrind Memcheck tests, our analysis revolved around
interpreting warnings. This process involved careful
scrutiny to distinguish between uninitialized variables,
which triggered warnings, and the actual flagged data
that was a subject of interest. Each algorithm was tested
with the lowest security level standard. When executing
Valgrind, the movement path of the flag was tracked
using the ——-track-origins=yes option. Since
Memcheck is already included in the file when Valgrind
is executed, it is not necessary to specify it separately.

+ Memory Error Test Memcheck is capable of inspecting
Memory Errors. By using ~1leak-check=full and
-show-leak-kinds=all options, it becomes pos-
sible to check for memory leaks and other issues within
the code. We identified the precise error occurrence
locations by using the —g compile option.

3) DESIGN RATIONALE OF METAMORPHIC TESTING

In the case of Metamorphic Testing, we applied a total
of 4 tests: Bit Contribution Test, Bit Exclusion Test,
Encrypt-Decrypt Test, and Bit Verify Test. Each test is
designed considering the characteristics of the algorithms,
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or basic properties of cryptographic algorithms. We designed
the Metamorphic Relations and implementation approach
of each test. The encrypt-Decrypt Test is designed for
KEM/PKE, and the Bit Verify Test is designed for DSA.
The overall design rationale is similar to Mouha et al.
[40], but it has some differences: Mouha et al. designed
their Metamorphic Relation for hash functions because they
targeted algorithms submitted to the SHA3 Competition,
but in this paper, we perform it for KEM and DSA. Thus,
we designed the Metamorphic Relation appropriately for
KEM and DSA. The Bit Contribution Test and Bit Exclusion
Test have the same name as Mouha et al.’s research, but
their method is quite different although they have the same
design rationale. Mouha et al. Mouha et al. designed a
Metamorphic Relation by focusing on preimage resistance,
second preimage resistance, and collision resistance, which
are properties of cryptographic hash functions. However,
since our target is PKE/KEM and DSA, we designed
a Metamorphic Relation by focusing on encapsulation,
decapsulation, and signature. This is the same as designing
a Metamorphic Relation based on cryptographic properties,
but it is different from the existing Metamorphic Relation.
Additionally, we did not apply the Update Test, which
verifies Update () process of a hash function. The reason
is described in the following subsections:

« Bit Contribution Test The Bit Contribution Test is

designed based on the fundamental characteristic of
cryptographic algorithms where different plaintexts
result in different ciphertexts. In this scenario, a fixed-
size message m of length n is chosen, and its ciphertext
¢ is computed. Then, a follow-up case is created by
changing one bit of m, resulting in a new message n?/,
and its corresponding ciphertext ¢’ is computed. This
process is repeated for all bits of m, and it checks
whether two different ciphertext pairs exist with the
same plaintexts. The Bit Contribution Test succeeds if
no identical ciphertext pair is found.
This scenario relies on the ‘avalanche effect’ of crypto-
graphic functions. The avalanche effect is the property
of a cryptographic function where a small change in
the input value should cause a completely different hash
value even though the key is the same one. Similarly,
cryptographic algorithms must produce completely
different ciphertexts for different inputs. Therefore, the
same design can be applied to cryptographic algorithms.
In the Bit Contribution Test, the MR states, “If the keys
are the same, different plaintexts must result in different
ciphertexts.” The overview of the Bit Contribution Test
is shown in Figure 2.

o Bit Exclusion Test The Bit Exclusion Test is not
designed based on the characteristics of the algorithm
itself but rather on the features of the implementation
environment. In the C language, it allows programmers
to read beyond the allocated size of an array. As a
result, it can lead to unintended consequences, such as
mistakenly reading the last bit of a message or reading
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FIGURE 2. Overview of proposed bit contribution test for KEM/DSA.
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FIGURE 3. Overview of proposed bit exclusion test for KEM/DSA.

beyond the message’s length. If the implementation
reads beyond the message’s length and uses that value in
the encryption, the final ciphertext may differ from the
expected result. The Bit Exclusion Test is designed to
detect such implementation ‘mistakes’ or bugs. In this
scenario, a fixed-length message m of size n is taken,
and follow-up cases m’ are generated by changing bits
beyond the message’s length, i.e., bits n + 1, n + 2,
and so on. Then, the original message’s ciphertext ¢ and
the follow-up case’s ciphertext ¢’ are compared. If they
are different, it indicates that the encryption used data
beyond the allocated memory, resulting in a failure of
the Bit Exclusion Test. For example, let’s consider a
scenario where the message length is 128 bits, and the
length information is passed to the encryption function.
The message is stored in an array of 16 elements of
each byte since the message is stored as a byte array.
If we set the array size to 20 and change the 128-th
bit of the message (assuming 0-indexing), the message
length remains 128 bits when passed to the encryption.
Therefore, the encryption should not use the 128-th
bit. If the ciphertext changes after modifying the 128-
th bit, it indicates that data beyond the given message
length was read, which may indicate a bug in the
implementation. In the Bit Exclusion Test, the MR states
that ““if the length information is the same, changing data
beyond the length does not affect the ciphertext.” The
overview of the Bit Exclusion Test is shown in Figure 3.
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FIGURE 4. Overview of update test.

The blue area means the extended array of the original
message.

Update Test The Update Test is designed based on
the characteristics of the Update () process in a hash
function. According to the SHA-3 Competition API
Specification [43], an implementation must provide four
different functions: Init (), Update (), Final (),
and Hash (). Among these, Update () is called after
Init () toprocessthe message and compute the digest.
Finally, calling Final () results in obtaining the hash
value y. Assume that a message m is divided into
multiple message blocks mj, my,... on a block-by-
block basis (where the length of each m; is assumed to be
a multiple of 8 bits). In this case, after calling Init (),
the implementation performs Update (mp),Update
(my), and so on, and finally executes Final () to
obtain the hash value y’. The generated y and y’ must be
the same, which is a requirement specified in the API’s
incremental processing requirement. This requirement
is important when hashing very long messages since
waiting for the entire message to be received in situations
like packet transmission over a network can result in
delays. Therefore, the Update Test compares the hash
value of the original message m with the hash values of
its partitions mp, my, . .. in consecutive order. If the two
hash values differ, the implementation fails the Update
Test as it does not meet the API’s requirements. In this
paper, the Update Test was not applied because the
hash function used in the paper is based on the code
from PQClean [1], and this code has been verified to
pass the Update Test. Since the Update Test is entirely
dependent on the implementation of the hash function
in algorithms that include a hash function, if the used
hash function implementation passes the Update Test,
then the algorithm implementation will also pass the
Update Test. The overview of the Update Test is shown
in Figure 4.

Encrypt-Decrypt Test The Encrypt-Decrypt Test is a
test similar to the Bit Contribution Test and is designed
based on the characteristics of the KEM scheme where
different keys result in different ciphertexts. In this
scenario, a fixed key k and a fixed message m are
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FIGURE 5. Overview of proposed encrypt-decrypt test for KEM.
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FIGURE 6. Overview of proposed bit verify test for DSA.

chosen, and the ciphertext ¢ is computed. Then, follow-
up cases are generated by changing one bit of the key
k, resulting in new keys k’, and their corresponding
ciphertexts ¢’ are computed. This process is repeated for
all bits of k, and if no two identical ciphertexts are found
among these ciphertexts, the Encrypt-Decrypt Test is
successful. The MR in the Encrypt-Decrypt Test states
that ““if the message is the same, different keys must
result in different ciphertexts.” This test ensures that
the encryption process produces different ciphertexts
when different keys are used, thereby confirming the
security property of the algorithm that ciphertexts are
dependent on the choice of keys. The overview of the
Encrypt-Decrypt Test is shown in Figure 5.

Bit Verify Test The Bit Verify Test is a test similar
to the Bit Contribution Test and is designed based on
the signature property of the DSA. DSA signatures
are dependent on the message being signed. Therefore,
if a signature is tampered with for a certain message,
the signature would be recognized as invalid by the
Verify () function in DSA. Inspired by this idea,
the following scenario is conducted: First, a signature
s (or sm where m is the message) is generated for a
given message m. Then, a follow-up case is created by
changing one bit of the signature s (or sm), resulting
in ' (or sm’). Next, the altered signature is verified.
If the modified signature is validated, the Bit Verify Test
fails. The MR in the Bit Verify Test states that ‘““for the
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TABLE 9. Results of Valgrind testing on KEM.

[ Algorithm |
Layered ROLLO-I-128
Layered ROLLO-I-192 PASS Leak
Layered ROLLO-I1-256
NTRU+-576
NTRU+-768
NTRU+-864
NTRU+-1152
PALOMA-128
PALOMA-192 PASS None
PALOMA-256
SMAUG-128
SMAUG-192 PASS None
SMAUG-256
TiGER-128
TiGER-192 PASS None
TiGER-256

Const-time Test | Memory Error |

PASS None

TABLE 10. Results of Valgrind testing on DSA.

Algorithm

AlMer-1
AlIMer-I1I PASS None
AlMer-V

Enhanced pqsigRM-612
Enhanced pqsigRM-613
GCKSign-II

GCKSign-III PASS None
GCKSign-V
HAETAE-II
HAETAE-III PASS None
HAETAE-V
MQSign-72/46
MQSign-112/72 PASS None
MQSign-148/96
NCCSign-I
NCCSign-IIT PASS None
NCCSign-V
Peregrine-512
Peregrine-1024
SOLMAE-512
SOLMAE-1024

| Const-time Test [ Memory Error |

PASS Leak/Invalid Read

PASS None

PASS None

same message, the signature remains the same.” This
test ensures that any modifications to the signature or
the signature concatenated with the message result in an
invalid signature, as expected by the security property
of DSA. The overview of the Bit Verify Test is shown in
Figure 6. Also, the original signature should be verified.

When performing verification for the aforementioned
tests, all random values are fixed during the execution.
All algorithms submitted to KpqC Competition generate
random numbers using the randombytes () function as a
Deterministic Random Bit Generator (DRBG). Due to this,
even for the same input message, there exists a probabilistic
possibility that the ciphertext and signature may differ.
If random values are not fixed, it can lead to incorrect
test results. For instance, consider the scenario of the Bit
Exclusion Test. In reality, if the implementation does not
read beyond the array boundary and successfully passes the
Bit Exclusion Test, it is still possible that the ciphertext
might probabilistically differ due to random variations.
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Algorithm 1 Code Snippet of Modified L-ROLLO sk_gen
Function

1: biix_secretKey skTmpl

2: biix_publicKey pkTmpl

// deleted code
3: // rbc_gre_init(&(pkTmp1.h))

4: rbec_gre_init(&(pkTmp1.h))
5: rbe_qre_mul(pkTmpl.h, invX1, skTmpl.y)

/I added code
6: rbc_qgre_clear(invX1)
7: tbc_qgre_clear_modulus()
8: return

Algorithm 2 Code Snippet of Modified Enh. pqsigRM
crypto_sign Function

1: uintl6_t *Q, *part_perml, *part_perm?2, *s_lead;

/I deleted code
2: matrix *sign = newMatrix(1, CODE_N)

// added code
3: deleteMatrix(sign)

4: return

Algorithm 3 Code Snippet of Modified Enh. pqsigRM
export_sk Function

1: exportMatrix(sk, Sinv)

2: memcpy(sk + Sinv->alloc_size, Q, sizeof(uintl6_t) *
CODE_N)

3: memcpy(sk + Sinv->alloc_size + sizeof(uintl6_t) *
CODE_N,
part_perml, sizeof(uint16_t) * CODE_N/4)
// added code

4: memcpy(sk + Sinv->alloc_size + sizeof(uintl6_t) *
CODE_N + sizeof(uint16_t) * CODE_N/4,
part_perm?2, sizeof(uint16_t) * CODE_N/4)

Consequently, it may fail the Bit Exclusion Test. Also,
because many PQCs use random numbers, the results of
signing and encapsulation can vary from run to run. If you
don’t fix the random number, your test could fail even though
you got the right result every time. Thus, to obtain accurate
Metamorphic Testing results, it is essential to fix all random
numbers to constant values.

4) VALGRIND TEST RESULTS

By conducting Valgrind tests, we were able to compre-
hensively evaluate the candidates’ performance in terms
of memory usage, constant-time behavior, and memory
management. This thorough analysis assisted in selecting

VOLUME 12, 2024



Y. Choi et al.: KpgBench: Performance and Implementation Security Analysis

IEEE Access

TiGER-128
TiGER-192
TiGER-256
SMAUG-128
SMAUG-192
SMAUG-256
PALOMA-128
PALOMA-192
PALOMA-256
NTRU+-576
NTRU+-768
NTRU+-864
NTRU+-1152
Layered ROLLO-I-128
Layered ROLLO-1-192
Layered ROLLO-I-256

Security Level

FIGURE 7. Benchmarking results on keygen () of KEM.
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FIGURE 8. Benchmarking results on encap () of KEM.
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FIGURE 9. Benchmarking results on decap () of KEM.

algorithms that are not only robust and secure but also feasible
for deployment in embedded environments. The test results
were categorized for KEM and DSA algorithms and are
presented in Table 9 and 10, respectively.

Below is a comprehensive overview of the Valgrind
test results. The identified errors have been classified in
accordance with the definitions outlined in Section IV-B1.
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Clock Cycles

The TiGER algorithm is identified as a Non-Constant-
time Implementation, resulting in a Constant-test
Fail error. The Layered ROLLO-I and Enhanced pqsigRM
algorithms have been found to exhibit Memory Errors
such as Memory Leak, Invalid Read. In this section,
we also explain the feasibility of implementing the proposed
algorithm candidates within constrained environments.
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FIGURE 10. Benchmarking results on keygen () of DSA.
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FIGURE 11. Benchmarking results on sign () of DSA.
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FIGURE 12. Benchmarking results on verify () of DSA.

5) NON-CONSTANT-TIME IMPLEMENTATION

KpqC Competition Round 2 requires a constant-time imple-
mentation. Based on this requirement, all submissions were
implemented in Constant-time, and in fact, all were verified
as Constant-time using Valgrind.

6) MEMORY ERROR
o Layered ROLLO-I In the Layered ROLLO I algorithm,
Memory Leak have been detected. Testing was con-
ducted on the biix algorithm. The majority of memory
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1068 107
Clock Cycles

leaks occurred in the init function, where memory
for data used in computations was allocated. A notable
example is within the biix_sk_generate () func-
tion, where memory allocated for invX1 was not released
until the algorithm’s termination. Additionally, memory
allocation for pkTmp1 occurred twice. To address
this, appropriate memory deallocation functions were
introduced according to the data types, and memory
allocation was modified to occur only once. Another
instance involved allocating memory for a specific
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TABLE 11. Profiling result of DSA schemes(1).

Algorithm \ Function \ Bottlenecks ‘
keccack 21.46%
keygen () transpose_upper_to_lower 21.05%
transpose_lower_to_upper 18.62%
keccack 56.11%
AlMer-1 sign () aiml28_mpc 28.51%
poly_mul 6.90%
keccack 38.16%
verify () aiml28_mpc 30.21%
GF2_128_matmul_vec 10.53%
isNonsingular 4.98%
keygen () rref 4.84%
inverse 3.74%
vector_mtx_product 48.58%
Enhanced pqsigRM-612 sign() recursive_decoding_mod 40.94%
randombytes 4.73%
vector_mtx_prodt 88.03%
verify () free 8.01%
hashMsg 1.85%
KeccackF1600_StatePermute 70.96%
keygen () randombytes 11.77%
rej_uniform 7.80%
KeccackF1600_StatePermute 72.08%
GCKSign-II sign () randombytes 5.52%
rej_uniform 4.91%
KeccackF1600_StatePermute 81.01%
verify () rej_uniform 5.86%
ntt 2.78%

structure’s size during initialization and releasing mem-
ory using a function that only freed some members of
the structure, leading to memory leaks. Similar errors
stemming from similar causes were also identified.
In the case of biix_128, approximately 4,852 bytes
of unreleased memory were detected. The pseudo-code
for modifying Memory Leak error example is shown
in Algorithm 1.

o Enhanced pqsigRM The Enhanced pqsigRM algo-
rithm encountered Memory Leak and Invalid
Read errors during the test. Memory Leaks
were identified within the crypto_sign and
crypto_sign_keypair (). For example, the sign
variable in crypto_sign was allocated memory
using the newmatrix () function but was not freed.
Therefore, the memory pointed to by sign must be
deallocated before the termination of the function.
The same type of memory error was also found in
the crypto_sign_keypair () function. In another
instance, a pointer pointing to the memory allocated
in init_decoding remained until the algorithm’s
termination. Similarly, it is necessary to include a
section for deallocating the memory. For the Enhanced
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pgsigRM-612, 332,558 bytes of unreleased memory
and 16,384 bytes pointed by the remaining pointer
were recorded. The Invalid Read occurred within
the export_sk () function. During the process of
copying the contents of the part_perm?2 variable using
the memcpy () function, an incorrect range size was
passed. Modification of the parameter indicating the size
to be read is necessary. For the correction of Memory
Leak and Invalid Read errors, we have the follow-
ing sections of pseudo-code for each Algorithm 2, 3.

7) METAMORPHIC TESTING RESULTS
In this section, we present the results of the Metamorphic
Tests conducted on the candidates of the KpqC Competition.
For KEMs, we conducted the Bit Contribution Test and
the Bit Exclusion Test. For DSAs, we performed the Bit
Contribution Test, the Bit Exclusion Test, and the Bit Verify
Test. All tests were conducted based on the reference code
provided on the KpqC website. IPCC and REDOG are
excluded as shown at Table 5.

All algorithms passed the Bit Exclusion Test, Bit Verify
Test, and Encrypt-Decrypt Test. Thus, we might assume that
there is no potential bug in each candidates’ code.
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TABLE 12. Profiling result of DSA schemes(2).

Algorithm \ Function \ Bottlenecks ‘
_allrem 89.96%
keygen () poly_naivemul 7.37%
keccack_squeezeblocks 1.40%
_allrem 90.35%
HAETAE-II sign () poly_naivemul 6.87%
KeccakF1600_StatePermute 1.08%
_allrem 90.74%
verify () poly_naivemul 6.77%
KeccakF1600_StatePermute 1.15%
gfdv_mul_2_u32 24.45%
keygen () gfdv_mul_3_u32 5.06%
memcpy 4.72%
gfdv_mul_2_u32 16.46%
MQSign-72/46 sign () gf256v_mul_u32 9.07%
_gf256v_conditional_add_u32 5.96%
gfd4v_mul_u32 26.64%
verify () gfdv_mul_2_u32 24.76%
gfdv_mul_3_u32 4.69%
mod_add 45.39%
keygen () montgomery_reduce 6.44%
randombytes 5.20%
mod_add 49.37%
NCCSign-I sign () montgomery_reduce 7.12%
mod_sub 2.95%
mod_add 48.17%
verify () montgomery_reduce 6.99%
mod_sub 3.09%
solve_NTRU_intermediate 69.33%
keygen () zint_bezout 8.34%
make_fg 5.69%
mg_NTT 33.30%
Peregrine-512 sign () mg_iNTT 18.18%
modp_NTT2_ext 13.88%
mg_NTT 27.13%
verify () mg_iNTT 28.11%
mg_poly_tomontymul_ntt 2.86%
falcon_inner_FFT 24.28%
keygen () falcon_inner_iFFT 24.81%
solve_NTRU_intermediate 15.98%
falcon_inner_ FFT 30.47%
SOLMAE-512 sign () falcon_inner_ iFFT 32.78%
sampler?Z 12.56%
falcon_inner_FFT 43.41%
verify () falcon_inner_ iFFT 47.00%
falcon_inner_poly_mul_fft 6.01%

V. CONCLUDING REMARKS

In this paper, we conducted extensive tests to verify the
round 1 candidates of the KpqC Competition considering
the performance and implementation security. From a perfor-
mance point of view, we presented benchmarking results in a
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general CPU environment for fair comparison and evaluated
applicability in resource-constrained devices with respect to
memory usage. Lattice-based algorithms such as SMAUG,
TIGER, and NTRU+ in KEM and HAETAE, GCKSign,
and SOLMAE, etc. in DSA were the most competitive.
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Furthermore, we presented bottlenecks through the profiling
of some round 1 candidates and suggested optimization
points. Most of the bottlenecks have been Keccak and
polynomial multiplication. From implementation security,
we performed Valgrind tests to find errors and bugs, Meta-
morphic Testing with extensive test coverage, and evaluation
of the side channel resistance. We found memory errors
in the Layered ROLLO-I and Enhanced pqsigRM through
Valgrind tests. This was because the allocated memory was
not freed or an overflow accessing an area other than the
allocated memory. In addition, we found vulnerabilities of
forgery attacks in TiGER and suggested ways to solve this
vulnerability. In side-channel resistance, most of the round
1 candidates were constant-time implementations, and only
the TiGER algorithm failed to achieve constant-time imple-
mentation. Through our extensive test, we expect to improve
the software quality of the KpqC first-round candidates.
We plan to integrate and verify the round 1 candidates of
the KpqC Competition in various environments such as ARM
Cortex-M4, ARMvS, and GPU in the future.

APPENDIX A
BENCHMARKING RESULT OF KEM
See Figures 7-9.

APPENDIX B
BENCHMARKING RESULT OF DSA
See Figures 10-12.

APPENDIX C
PROFILING RESULT OF DSA
See Tables 11 and 12.
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