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ABSTRACT In recent years, a wide variety of Machine Learning (ML) algorithms, including Deep Learning
(DL) methods, have been proposed for electrocardiogram (ECG) beat classification. However, accurately
discerning ECG beat types faces challenges due to noise interference and inherent imbalances among
different classes. Moreover, understanding mathematical models enclosed by black-box learning systems
is an issue today. Our study employed a manifold learning algorithm capable of mapping high-dimensional
data into a latent space to conduct a comprehensive analysis within a neural network learning framework.
This approach involved the following studies: 1) examining the intermediate high-dimensional latent space
in simple architectures by studying its projection into a visualizable latent space; 2) exploring the influence of
class imbalance on the configuration of the latent space; 3) evaluating and analysing the compensatory effects
of employing diverse DL architectures, such as modified autoencoders and Generative Adversarial Networks
(GANs), specifically in generating data augmentation through synthetic beats. The experimental results
demonstrated the effectiveness of our methodology in mitigating noise and addressing inter-class imbalance,
notably enhancing the diagnostic Area Under the ROCCurve (AUC) in ECG signal analysis. Implementation
of GAN data augmentation techniques resulted in a 2% improvement, elevating the AUC from 0, 9332 to
0, 9520 in the biclass dataset. Similarly, the AUC values increased by 2%, from 0, 9020 to 0, 9223, for the
multiclass dataset. These findings highlight the impact of appropriate data augmentation techniques on AUC
improvement. Furthermore, visualizing latent spaces during beat classifier design significantly contributes
to developing solid and principled multiclass beat-discriminating systems.

INDEX TERMS Electrocardiography, machine learning, unsupervised learning, neural networks,
dimensionality reduction, manifold learning, generative adversarial networks, data augmentation.

I. INTRODUCTION
Cardiovascular diseases (CVD) are disorders of the heart
and blood vessels. They are one of the leading causes of
mortality worldwide and a serious public health problem,

The associate editor coordinating the review of this manuscript and
approving it for publication was Gina Tourassi.

as noted by the World Health Organization. Among the
CVDs, the arrhythmias are characterized by an altered heart
rhythm. The heart generates electrical impulses to pump
blood throughout the body. However, during an arrhythmia,
these impulses become irregular and originate from undesired
locations [1]. Early identification and characterization of
arrhythmias are crucial for accurate diagnosis and risk
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assessment in clinical practice [2] and essential for effective
patient treatment. One of the most common techniques for
early detection and treatment of these arrhythmias is using
medical devices measuring the Electrocardiogram (ECG),
which is the primary test for detecting cardiac irregularities.
Furthermore, studies have shown that long-term ECG signal
monitoring and analysis can significantly improve CVD
diagnosis, control, and prevention. The Holter System,
a portable medical device with attached cutaneous electrodes
on the chest [3], records ECG signals over extended periods,
ranging from 24 hours to several days, making it one of the
most effective devices for detecting arrhythmias.

In recent years, significant progress has been made in the
automated detection of cardiac arrhythmias and abnormal
beats [4], [5]. Traditionally, cardiologists would visually
inspect and annotate ECG recordings, which requires deep
domain knowledge and signal preprocessing. However, this
manual method is time-consuming and can sometimes lack
accuracy. Digital technology has led to the development
of automated systems, revolutionizing heartbeat identifica-
tion. Modern systems employ advanced signal processing
algorithms and Artificial Intelligence (AI) methods to
analyse ECG signals automatically and detect abnormal
rhythms. ECG arrhythmias detection remains a challenging
problem, as evidenced by numerous studies aimed at
improving heartbeat classification using Machine Learning
(ML) algorithms [6], [7]. Traditional detection methods have
extensively utilized supervisedML algorithms like K-Nearest
Neighbors (KNN) and Support Vector Machines (SVM).
These algorithms depend on labelled training data to identify
patterns and classify new instances, yet their black-box nature
makes interpreting them challenging.

Deep Learning (DL) is a branch of ML that has emerged
as a powerful approach in the field of ECG and has earned
significant attention due to its ability to extract complex
features and model intricate relationships automatically,
allowing for more nuanced and accurate assessments of
cardiac health [8]. DL systems offer the potential for
continuous, real-time monitoring and increased precision in
interpreting ECG signals, thereby improving the likelihood of
detecting intermittent arrhythmias. Integrating ML and DL
models into ECG analysis standardizes interpretations and
mitigates variability inherent in human analysis, potentially
leading to improved patient outcomes.

Autoencoders (AE), since the early days of DL, have
been a resourceful tool for dimensionality reduction and
feature extraction. According to the literature, AE techniques
have consistently enhanced computational efficiency, user
satisfaction, and crucial metrics like the Area Under the
ROC Curve (AUC) across various domains [9], [10], [11].
In ECG beat classification, their application has contributed
to more refined and dependable results [12], [13]. However,
AE algorithms typically use high-dimensional latent spaces,
leading to a black-box classification process. Complex and
nonlinear transformations in deep neural networks contribute

to this black-box nature, obscuring the interpretation of their
internal representations and decisions.

Over the last years in ECG analysis, the contributions
of DL have immensely increased [14], [15], [16]. Some
of these contributions have addressed the ECG denoising
problem, but the most successful of them have focused
on classification applications, particularly detecting and
classifying arrhythmias [5], [17], [18], [19]. One of the
applications that are gaining relevance in DL is the generation
of synthetic heartbeats [20] or Data Augmentation (DA).
The basic DA techniques of ECGs initially involved random
transformations of beats, such as scaling, flipping, and
noise addition. However, these basic DAs often modify
the inherent properties of ECG signals, generating noise
rather than enriching the dataset with meaningful samples.
These augmented samples may adversely impact ECG
classification, as noted in [21], where the authors reported
detrimental effects of horizontal and vertical flipping DA
operations on their classifier [22]. To address the limitations
of basic DA techniques, advanced methods can offer a viable
alternative. A highly successful technique for generating new
data is the Synthetic Minority Over-sampling Technique,
commonly known as SMOTE [23], [24]. This technique
involves sampling data from the minority class by creating
data points along the line segment connecting a randomly
chosen data point and one of its KNNs. Notably, Generative
Adversarial Networks (GANs) represent one such advanced
technique with utility in DA. This field has garnered much
attention in computer vision for its ability to generate
data without explicitly needing to model the probability
density function [25], [26]. GANs are a distinctive class of
neural network models in which two networks are trained
simultaneously in such a way that one specializes in image
generation while the other focuses on discrimination. With
their auspicious potential, GANs have found significant
applications in medical imaging.

Due to the black-box nature of deep neural networks,
it poses challenges in understanding how these models
arrive at their predictions. The term black box refers to
sufficiently complex models, making them challenging for
humans to interpret directly. In healthcare, where decisions
have life-and-death implications, the lack of interpretability
in predictive models can erode trust. To address this concern,
there has been a surge in research on explainable machine
learning. While the potential of explainable machine learning
is substantial, it is crucial for cardiologists encountering
these techniques in clinical decision-support tools or research
papers to critically understand both their strengths and limita-
tions [27]. For this reason, interpreting the decisions made by
DL models is crucial. The lack of interpretability limits their
applicability in critical areas such as healthcare. Researchers
have proposed various techniques to interpret DL models to
uncover insights into their decision-making processes [28],
[29], [30]. These include visualization methods such as
Manifold Learning, an unsupervised set of techniques that
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give us visually interpretable representations and operates
under the assumption that any observed data exist within a
lower-dimensional manifold that is embedded in a higher-
dimensional space [31]. These techniques identify low-
dimensional structures within high-dimensional data [32].

In contrast to conventional dimensionality reduction
methods like Principal Component Analysis (PCA), which
primarily assume linear relationships, manifold learning
takes a different approach. It focuses on discerning the
underlying manifold or the intricate surface on which data
points reside. This approach is particularly effective in
capturing nonlinear dependencies, a key aspect in ECG
signal analysis. Despite its potential, manifold learning
techniques are still relatively unexplored in ECG analysis,
with limited research papers dedicated to this area. For
example, [31] demonstrated the application of manifold
learning in discriminating different types of ventricular
fibrillation, showcasing its utility. A notable manifold
learning technique is Uniform Manifold Approximation and
Projection (UMAP) [33]. UMAP is unique in its foundation,
built upon principles of Riemannian geometry and algebraic
topology. This combination results in a practical and scalable
algorithm, making UMAP well-suited for complex, real-
world data applications like those found in ECG analysis.

In this paper, we introduce an innovative methodology to
address the dual challenge in ECG signal analysis: mitigating
overfitting due to class distribution imbalance and enhancing
signal quality for better classification. Our approach inte-
grates two key strategies: (1) transforming the input space
into a more informative latent space using AE techniques for
effective feature extraction; and (2) generating new, synthetic
samples with AE and GANs. By refining the latent space,
we improve the signal quality, as well as the classification and
diagnostic accuracy. Recognizing the critical issue of class
imbalance, our use of AE and GANs focuses on creating
realistic, representative synthetic samples. These samples are
instrumental in balancing the dataset, improving the training
process, and ensuring enhanced model performance and
generalization.

The subsequent sections of this paper are structured as
follows. Section II explains the methods employed in this
research, which are presented in detail, encompassing the
data description, the utilization of AE for feature extraction,
and the implementation of various classifiers. In section III,
the dataset we used is described. Section IV is devoted to
presenting the experimental setup and the obtained results,
highlighting the performance of the proposed approach.
Finally, section V concludes the paper by summarizing
the obtained results, discussing their implications, and
suggesting potential avenues for future research.

II. ALGORITHMS
This section describes the fundamentals of our methodology,
algorithms, and metrics. A detailed explanation of the
methods used in this study is provided.

A. AUTOENCODERS
We implemented a neural network architecture capable of
unsupervised learning in terms of a simple AE architecture
[11]. This neural network consists of two main components,
namely, an encoder and a decoder, as shown in Figure 1.
The input data vector, denoted as x, serves as the input to
the encoder layer, where x ∈ Rn. This primary objective of
the encoder is to generate a representation with a different
dimensionality implementing a function fenc, using theweight
matrix Wenc and bias vector benc. This function transforms
the input data into a reduced-dimensional representation,
known as latent space and denoted as h, h ∈ Rm, where
m < n. This information compression aims to capture the
main characteristics of the above input data and retain the
crucial patterns.

The encoder function is denoted by:

h = fenc(x) = φ(Wencx + benc) (1)

where φ represents an activation function, and commonly
used choices include the sigmoid function σ or the Rectified
Linear Unit (ReLU) function.

The decoder function fdec reconstructs the input data as
approximated data x′ from this latent space representation,
h, using the weight matrix Wdec and bias vector bdec [31].
The decoder function is denoted by:

x′
= fdec(h) = ϕ(Wdech + bdec) (2)

where ϕ is a nonlinear activation function, possibly and
sometimes different from φ mapping.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs are unsupervised learning techniques in the ML field.
They are designed to learn patterns and structures from
input data automatically. GANs are crucial in generating
synthetic data that closely mirrors real data distributions.
This generative model comprises two key components: the
generator and discriminator models, illustrated in Figure 2.
The generator model creates new examples, while the
discriminator model evaluates these generated examples to
distinguish them from real data. Through this adversarial
process, GANs continually improve the quality and realism
of their synthetic data.

The generator, denoted as G, is trained to produce new
samples by taking a noise input, z, from a prior noise
space, P(z), and mapping it to the target data space (x),
where fabricated data is generated. This mapping is achieved
through the function G(z; θG), where θG represents the
parameters of the generator:

xfake = G(z; θG) (3)

where, z is a random variable sampled from the distribution
P(z), and xfake represents a sample generated by the generator.
The parameters θG correspond to the generator’s parameters
subject to training.
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FIGURE 1. Representation of the structure with each layer of an autoencoder.

FIGURE 2. Representation of the structure with each layer of a generative adversarial network.

The discriminator, denoted as D, classifies samples as
either genuine (belonging to the dataset domain) or counter-
feit (generated by the generator). It takes an input x, which
can be either real or generated, and produces an output
representing the probability that x is real. This probability
estimation is achieved through the function D(x; θD), where
θD denotes the discriminator parameters,

D(x) = D(x; θD) (4)

where D(x) represents the estimated probability that x is
a real sample, while θD corresponds to the parameters of
the discriminator that undergoes training. These two models
are jointly trained in a zero-sum, adversarial game until the
discriminator model is fooled about half the time, meaning
the generator model generates a plausible sample [25].

C. SMOTE
The SMOTE algorithm stands out as one of the earliest
and remains the most widely adopted algorithmic method
for generating synthetic data in datasets [23], [34], [35].
The SMOTE algorithm is configured with two parameters:
k neighbors (indicating the number of nearest neighbors to
consider) and the desired count of new points to generate.
Each iteration of the algorithm involves the following steps:

1) Randomly choose a minority point.
2) Randomly select any of its k nearest neighbors from the

same class.
3) Randomly assign a lambda value within the range

[0, 1].
4) Generate and position a new point on the vector

between the two selected points, situated lambda
percent of the distance from the original point.

SMOTE operates by pairing minority class observations
and creating synthetic points along the connecting line. Its
approach to selecting minority points is relatively liberal,
potentially encompassing outliers.

D. SUPPORT VECTOR MACHINE
Support Vector Machine is an ML technique that aims to find
an optimal hyperplane that separates the data points from
different classes while maximizing the margin between the
hyperplane and the closest data points, known as support
vectors [36]. Different kernels can be implemented, and for
this work, we used the radial basis function,

K (x, x′) = exp
(

−
∥x − x′

∥
2

2σ 2

)
(5)
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where x, y are two input samples, and σ is a bandwidth
parameter that controls the influence of each neighboring
sample in the transformed feature space.

The SVM can resolve classification problems (SVC) or
regression problems (SVR). To estimate SVC, we determine
the optimal combinations of hyperparameters using cross-
validation. Cross-validation is a statistical technique applied
to our data using machine learning to approximate the results
better, avoid overfitting, and provide a more robust estimate
of its generalization capabilities. This technique divides the
dataset into multiple folds, iteratively trains the model on
different combinations of these folds, and tests the remaining
ones. We can identify the optimal hyperparameter values
for the SVC model by systematically evaluating different
hyperparameter configurations by cross-validation.

E. MANIFOLD APPROXIMATION AND PROJECTION
This work uses UMAP, a nonparametric graph-based dimen-
sionality reduction algorithm, for representation and data
analysis [37]. The technique constructs a graph by connecting
neighboring data points based on their similarity or distance
in the high-dimensional space. Then, it optimizes embedding
the data points in the low-dimensional space to minimize
the discrepancy between the distances in the original and
projected space. The resulting UMAP embedding provides
a compressed representation of the data while effectively
reducing the dimensionality, preserving its local and inherent
structure when projected into a lower-dimensional space.

For UMAPmathematical formulation, given a dimensional
data set x = x1 . . . , xN , where x ∈ RD, in the embedding
space there is a z = z1 . . . , zN ,where z ∈ Rd . In the high-
dimensional space, when considering two data points, xi and
xj, xi selects xj as one of its neighboring points based on the
conditional probability xj, which is then defined as

pj|i = exp
[
−d(xi, xj) − ρi

σi

]
(6)

where σi is the perplexity parameter, controlling the number
of effective neighbors, ρi can be seen as the averaged
weighted distance of a given point with its neighbors, and
d(xi, xj) represents the distance between xi and xj. The value
of pj|i is computed only for approximately n neighbors,
resulting in pj|i = 0 for all other j. UMAP uses a
symmetrization of the high-dimensional probability [38], as a
combination of pj|i · pi|j, leading to:

pi,j = (pj|i + pi|j) − pj|i · pi|j (7)

The subtraction term pj|ipi|j corrects for the overlap between
the two conditional probabilities, ensuring that the joint
probability is not overcounting the shared information.

Once the data have been projected into the low-
dimensional space, the similarity between high-dimensional
data points is expected to be preserved in the low-dimensional
representation. If we assume that the mapped positions of the
high-dimensional data point xi and xj in the low-dimensional

space are hi and hj, respectively, the distribution qi,j in the
low-dimensional space is defined as:

qi,j = (1 + a||hi − hj||2b)−1 (8)

F. METRICS
To evaluate the results obtained in the different experiments
and to facilitate comparing these results, we considered the
AUC. This metric provides a comprehensive assessment and
facilitates a robust analysis of the outcomes of the different
experiments. The AUC metric is appropriate for unbalanced
datasets because it measures the ability of the classifier to
discriminate between positive and negative classes without
being overly sensitive to class imbalances. Unlike accuracy,
which can be misleading in imbalanced datasets, AUC
considers the entire range of possible thresholds, compre-
hensively assessing a model’s performance across various
operating points. This makes AUC a robust choice for
evaluating classifiers on unbalanced data, where accurately
capturing the minority class is often important. The AUC
needs two parameters for calculation, the True Positive Rate
(TPR) and False Positive Rate (FPR), described with the
following equations,

TPR =
TP

TP+ FN
(9)

FPR =
FP

TN + FP
(10)

AUC =

∫ 1

0
TPR d(FPR) (11)

where TP are the true positives, FN are the false negatives,
TN are the true negatives, and FP are the false positives.
For evaluating multiclass classification, we use the One-vs-
Rest method. This evaluates multiclass models by comparing
each class against all the others simultaneously. Doing this,
we convert the multiclass classification task into a series of
binary classification tasks.

AUC is complemented with additional metrics such
as Accuracy and F1-score to provide a comprehensive
evaluation. This enhances and strengthens the understanding
of classification performance. Accuracy is a metric that
measures the overall correctness of a classification model.
It is calculated as the ratio of correctly predicted instances
to the total number of cases in the dataset.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)

F1-score is a metric that balances precision and recall,
providing a single value that combines both measures.
It is beneficial when there is an uneven class distribution,
described with the following equations:

F1 − score =
2 × Precission× Recall
Precission+ Recall

(13)

Precission =
TP

TP+ FP
(14)
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TABLE 1. Description of the beats belonging to each class for multiclass
AAMI regrouping, where beats stands for the total number of beats,
mean stands for the mean number of beats per patient of each class, and
std stands for the standard deviation for all the beats of each class per
patient.

Recall =
TP

TP+ FN
(15)

The F1-score ranges from 0 to 1, with 1 indicating perfect
precision and recall and 0 indicating the worst possible
F1-score. It is a valuable metric for evaluating the overall
performance of a classificationmodel, especially in situations
where class distribution is imbalanced.

III. DATASET DESCRIPTION
PhysioNet is an online resource dedicated to advancing
research in various biomedical and physiological signals,
including areas such as cardiology and neurology. In this
study, we utilize the widely recognizedMIT-BIH Arrhythmia
Database [39], [40], a cornerstone resource in cardiac
signal research, accessible through the PhysioNet web
repository [41]. This database is particularly valuable due to
its comprehensive range of cardiac arrhythmia labels, making
it valuable for ECG signal analysis, and many authors have
used it to date.

Initially, the MIT-BIH Arrhythmia Database encompasses
19 different labels, which include: normal beat (N), left
bundle branch block (L), right bundle branch block (R),
bundle branch block beat (B), atrial premature beat (A),
aberrated atrial premature beat (a), nodal premature beat (J),
supraventricular premature or ectopic beat (atrial or nodal)
(S), premature ventricular contraction (V), R-on T premature
ventricular contraction (r), fusion of normal and ventricular
beat (F), atrial escape beat (e), nodal (junctional) escape
beat (j), supraventricular escape beat (atrial or nodal) (n),
ventricular escape beat (E), paced beat (/), fusion of paced and
normal beat (f), unclassified beat (Q), and beat not classified
during learning (?).

In the literature, regrouping the diverse labels of ECG
signals into fewer categories for more effective analysis is
usual. In this study, we employ two different criteria for this
purpose. The first is a multiclass labelling system, regrouping
into five types (N, S, V, F, U) as recommended by the AAMI
standard, a commonly used approach in many studies [1],
[42], [43], [44], detailed in Table 1. This system, however,
might lack clinical intuitiveness as it combines various
criteria like QRS morphology and beat origin. To address
this, we also employ a biclass regrouping, formulated by
an expert cardiologist in our team. This approach, outlined

TABLE 2. Description of the beats belonging to each class for biclass
regrouping where beats stands for the total number of beats, mean
stands for the mean number of beats per patient of each class, and std
stands for the standard deviation for all the beats of each class per
patient number.

in Table 2, primarily distinguishes between supraventricular
and ventricular-originated beats, offering greater clinical
relevance.

Cardiac signals often contain noise from interference,
electrode contact issues, or physiological factors. This noise
can significantly distort the signals, complicating their
analysis and subsequent interpretation [45]. To counter these
challenges and obtain meaningful results from ECG analysis,
it is crucial to have an effective digital preprocessing pipeline.
Our focus is on cleaning the noise while preserving the signal
morphology. This preprocessing step is essential as every
ECG in our database is a collection of consecutive beats,
where maintaining the integrity of each beat is crucial for
accurate analysis.

IV. PROPOSED METHODOLOGY
This section describes the core elements of the methodology.
Firstly, it provides a comprehensive explanation of the data
preparation steps, which is essential to support a wide range
of experiments. Secondly, it describes a series of sequential
steps to measure the impact of using latent space and
data augmentation techniques to assess noise reduction and
overfitting on the data set prepared in the previous point.

A. DATA PREPARATION
For our experiments with the MIT-BIH database, we
employed three distinct approaches to analyse the perfor-
mance and generalization capabilities of our algorithms in
different scenarios. The first experiment used the entire
dataset, with patient beats divided into train beats and
test beats. This division ensured no overlap of patients
between the training and test sets, aiming to mitigate the
risk of overfitting. The second experiment utilized the
original dataset but excluded data from five patients. In this
subset, we did not separate the beats of patients into
distinct train and test sets, allowing for the possibility of
the same patient’s beats appearing in both sets. However,
we ensured different beats in the train and test sets. The
third experiment focused exclusively on the data from the
five excluded patients. This targeted selection was designed
to uncover unique patterns or characteristics specific to these
patients. By applying these varied methodologies, our study
comprehensively evaluates how these different data handling
strategies affect classification accuracy in the context of ECG
beat classification.
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FIGURE 3. Representation of the input signal in a blue line, the reconstructed signal in a red line, and their difference:
(a) Representation implementing AEs; (b) Representation implementing GANs.

B. SEQUENTIAL METHODOLOGICAL BREAKDOWN
Our proposed methodology comprises four key steps, each
designed to address specific challenges in ECG classification:
(1) Data augmentation for the minority class to balance the
dataset; (2) Establishing high-dimensional latent represen-
tation to capture complex patterns; (3) Applying nonlinear
dimension reduction to simplify the latent space; And
(4) Quantifying classification performance and providing
graphical representations for in-depth analysis.

C. STEP 1: DATA AUGMENTATION FOR THE MINORITY
CLASSES
The first step in our methodology tackles the twin challenges
of overfitting and class imbalance, which often lead to
variations in classification accuracy, especially when models
are tested on independent datasets. We observe that while
models perform well on samples from training patients,
their accuracy diminishes with beats from different patients.
This necessitates strategies to enhance model generalization
across a diverse patient population. To this end, we generate
new synthetic samples using advanced data augmentation
techniques, explicitly targeting the minority class beats.
Employing AEs and GANs, we create synthetic samples that
are both representative and diverse, enriching our training
datasets [10], [46].

Figure 3(a) illustrates our AE implementation, showing
a visual comparison between an original beat (in blue)
and its AE reconstruction (in red). Our focus here is
no on noise reduction using AEs, but on generating and
scrutinizing latent variable representations to guide classifier
design and enhance understanding. The discrepancy between
the two beats is indicated in pale red, representing the
error. Figure 3(b) demonstrates using GANs to augment
regular heartbeats. In both cases, the reconstructed signals
maintain minimal error, indicating effective augmentation.
Our approach, concentrating on the minority class, aims to
alleviate class imbalance issues and enhance classification

performance. We create multiple datasets incorporating
augmented data to allow for comprehensive comparative
analyses. These synthesized beats are integrated with the
original dataset, fostering a more balanced data representa-
tion during training. Through this, we aim to develop models
with improved generalization capabilities, ensuring robust
performance across varied patient demographics.

D. STEP 2: HIGH-DIMENSIONAL LATENT
REPRESENTATION
The second step in our methodology involves transforming
the actual and augmented datasets into a latent space. This
latent space, an abstract multidimensional realm, encodes
significant internal representations of observed events. While
not immediately interpretable, these feature values in the
latent space compress or augment the data, ensuring that
similar data points in this space are also closer in the input
space. Our initial hypothesis posited that leveraging a latent
space for beat samples would aid in noise reduction and signal
refinement, isolating the core information of interest.

We utilized AE techniques, renowned for compressing
multidimensional data into concise latent representations,
to achieve this. Our experiments focused on the latent space
generated by the encoder. We experimented with various
encoders, selecting the most effective based on performance.
This selection process involved an extensive parameter
sweep, evaluating different aspects, such as layer count,
encoding dimension, epochs, and batch size, to determine
the optimal configuration for our objectives. For this stage,
we incorporated two architectural approaches: the first uses
a regular AE. In contrast, the second adopts a modified
AE approach, called the encoder plus fine-tuning method.
To carry out this fine-tuning, we have implemented a transfer
learning technique, which involves adding a softmax layer
alongside the encoder layer for the classification task. This
additional layer is then retrained using the encoder weights.
This approach allows us to leverage the knowledge acquired
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FIGURE 4. Outline of the proposed methodology.

during the initial AE phase to enhance performance in a
related task.

E. STEP 3: NONLINEAR DIMENSION REDUCTION OF
LATENT SPACE
The third step in our approach involves using UMAP
for dimensional reduction, as instrumental in revealing
complex patterns and trajectories hidden within the ECG
beat samples. By implementing this technique, our goal is
to discern intricate structures and relationships within the
data and provide valuable insights for further analysis and
interpretation in ECG signal analysis.

F. STEP 4: CLASSIFICATION PERFORMANCE AND
REPRESENTATION
In the final step, we focus on the classification task, following
the dimensional reduction where the distinct classes have
been effectively separated. Utilizing the reduced-dimensional
representation of the data, which enhances class separability,
we aim to achieve accurate and reliable classification of
the ECG signals. This step facilitates us to assess our
methodology in addressing noise reduction and inter-class
imbalance challenges, ultimately contributing to improved
diagnostic AUC in ECG signal analysis.

G. EXPERIMENTAL FRAMEWORK
The experimental framework comprises distinct blocks
implemented using different datasets, as seen in Figure 4.
First, these datasets used the original data shown in frame
(1). Second, it uses the data obtained by the autoencoder-
based augmentation (AE), as shown in frame (2). Finally,
it uses the data obtained using data augmentation with GAN
in frame (3). Each block encompasses three sub-experiments.
The initial sub-experiment involves only the dimensionality
reduction coupled with a classifier task, as seen in frame
(a). In the subsequent sub-experiment, we incorporate latent
space, the dimensionality reduction, and the classification
task, as shown in frame (b). The final sub-experiment
introduces latent space with fine-tuning, followed by the
implementation of the dimensionality reduction. Finally, the
classification task is applied, as we can see in frame (c).

In totality, we conducted nine sub-experiments for each
dataset to meticulously compare each component of the
proposed methodology. The combination of these repre-
sents the nine described sub-experiments to reference each
experiment in the experimentation section straightforwardly.
For instance, sub-experiment 3C would indicate utilizing
latent space with fine-tuning, dimensionality reduction, and
classification tasks for the dataset augmented with GAN-
generated data.

V. EXPERIMENTS AND RESULTS
In the upcoming subsections, we present a detailed account
of the experimental setup and evaluation methodologies
employed to assess the effectiveness of our proposed
methodology. The criteria for label regrouping are outlined
in [1], where the adoption of biclass regrouping is justified
from a clinical standpoint. Through a series of experiments,
we investigate the impact of transforming the input space
into the latent space, evaluate the noise reduction achieved
using AE techniques, and explore the compensatory effect
of generating synthetic samples using AEs or GANs. The
experimental results shed light on the potential of our
methodology to simultaneously address the challenges of
beating noise pollution and inter-class imbalance in ECG
signal analysis.

A. BICLASS DATASET
1) EXPERIMENT 1: COMPLETE DATA
In the first experiment, we utilized the entire biclass
dataset from the MIT-BIH database, carefully partitioning
the patients into distinct train and test sets [1]. This
meticulous segregation is pivotal to ensure that no patient
data overlaps between the sets, thereby preventing potential
information leakage and confounding effects during model
evaluation. The primary objective was rigorously assess-
ing the algorithm’s performance and robustness across a
diverse range of patient samples and cardiac signal patterns.
Furthermore, this explicit separation into train and test
subsets is crucial for evaluating the algorithm’s ability to
generalize effectively to unseen data, thereby enhancing the
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FIGURE 5. Representation of experiment one for biclass data set. The decision region corresponding to Class 2 is depicted in pink. The labels beneath
each image convey the following meanings: the first number is associated with the three different approaches mentioned previously and represented in
Figure 4, (1) Refers to the entire dataset; (2) Refers to the entire dataset excluding five patients; (3) Refers for the five patients. (I) Original data; (II)
latent space applied to real data; (III) Fine-tuning applied to real space; (IV) AE data; (V) latent space applied to AE data; (VI) Fine-tuning applied to AE
data; (VII) GAN data; (VIII) latent space applied to GAN data; (IX) Fine-tuning applied to GAN data.

reliability and validity of our findings and contributing to the
advancement of cardiac signal analysis methodologies.

To ensure a comprehensive representation of beats from
all classes in both the train and test datasets, we specifically
selected patients with beats associated with less frequent
classes, achieving an even distribution across both datasets.
This strategic selection allows for the inclusion of samples
from both classes in each dataset, reinforcing the robustness
and reliability of our experimental results. As a consequence
of this approach, the test set comprises 78% of beats from
class 1 and 22% from class 2, the minority class. This
distribution offers a detailed view of the test set composition,
underscoring the imbalanced nature of the class distribution
and highlighting how our methodology addresses these
imbalances.

The experiment is structured into the three blocks men-
tioned previously in the methodology and represented in
Figure 4. In the first block, the input data consists of the
original database, continuing with the second block, where
the input data involves an augmented database generated
using AE. Finally, in the third block, the input data also
involves an augmented database created using GANs.

For this experiment, we carried out nine detailed sub-
experiments as previously outlined. These are visually
represented in Figure 5, which provides a comprehensive

illustration of the distribution patterns and boundaries of both
classes. This visual representation offers insights into the
spatial arrangement and segregation of data points from each
class.

The first row in Figure 4 (1) corresponds to the original
database, the second row (2) to the augmented database using
AE, and the third row (3) to the augmented database using
GAN. In the first row, three sub-experiments (paths 1a, 1b,
and 1c) involve various applications of UMAP and classifiers,
depicted in Figures 5 (I to III). Similarly, the second and third
rows follow the same structure with paths 2a, 2b, 2c (Figures
IV to VI) and 3a, 3b, 3c (VII to IX), respectively.

A significant improvement in outcomes is noted when
applying augmentation techniques to the underrepresented
minority class. Particularly, integrating AE and GANs shows
pronounced enhancements in AUC metrics. According to
Table 4, the AUC increased from 0.9332 without data
augmentation to 0.9520 with GAN implementation, marking
a 2% increase. These improvements are especially notable
in augmentation margins, validating the efficacy of our
approach. Furthermore, implementing latent spaces using
fine-tuning also shows improvement; we achieve an AUC
of 0.9545 with fine-tuning compared to 0.9332 without data
augmentation. Regarding accuracy, a rise from 0.9609 with-
out data augmentation to 0.9755 is observed when employing
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FIGURE 6. Representation of experiment two for biclass dataset, the first number is associated with the three different approaches mentioned
previously and represented in Figure 4, (1) Refers to the entire dataset; (2) Refers to the entire dataset excluding five patients; (3) Refers for the five
patients. (I) Original data; (II) latent space applied to real data; (III) Fine-tuning applied to real space; (IV) AE data; (V) latent space applied to AE data;
(VI) Fine-tuning applied to AE data; (VII) GAN data; (VIII) latent space applied to GAN data; (IX) Fine-tuning applied to GAN data.

ENC + CLF with GAN for data augmentation, reflecting
an increase of 1.5%. These results underscore the impact
of data augmentation techniques in enhancing the analytical
outcomes of our study.

The enhancements achieved through our methodology are
evident in the confusion matrix presented in Figure 7. This
matrix, highlighting the 2-class experiment (supraventricular
(SV) vs. ventricular and other (V) origin), demonstrates clear
improvements in both classes with increased true positives
and reduced misclassifications. Particularly, we observed
a notable reduction in false SV detections classified as
ventricular (from 509 to 309) and false V detections classified
as SV (from 1296 to 872). However, an area of concern
is the decrease in true positives for the V class. Figure 5
illustrates this effect; in the first scenario (Panel (I)),
the sample distribution appears more fragmented, whereas
data augmentation results in a more compact and defined
distribution for both classes (Panel (IX)).

Furthermore, implementing latent space via two tech-
niques, encoder, and encoder with additional fine-tuning,
shows discernible improvement. We also noticed similar
results in AUC when using GAN for latent space and
fine-tuning. To provide a broader context, we compared
these findings with results obtained using the SMOTE data
augmentation technique. As shown in Table 3, the outcomes
from experiments employing AE and GAN surpass those

FIGURE 7. Comparison of confusion matrices: one without data
augmentation and another employing ENC + CLF with GAN for data
augmentation.

achieved with SMOTE, indicating a higher efficacy of the
methods proposed here regarding AUC, accuracy, and F1
metrics.

2) EXPERIMENT 2: ENTIRE DATASET EXCLUDING FIVE
RANDOM PATIENTS
In this experiment, we employed the complete biclass dataset
from the MIT-BIH database but excluded five patients. The
beats of these five patients were used in the next experiment.
In this selected dataset, the beats of the patients were not
subject to any division into distinct train and test sets. As a
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TABLE 3. Baseline results for AUC, accuracy, and F1 scores derived from biclass and multiclass experiments utilizing SMOTE for data augmentation.

result, there is a possibility of having beats from the same
patients in both the test and train sets, although there are no
identical beats in the test and training sets. This intermixing of
patient data in the two sets can give rise to overfitting issues,
where the model becomes excessively tuned to the training
data features and could fail to generalize better to unseen
instances.

We conducted the nine sub-experiments again using this
modification of the database. The first row pertains to the
first data block, represented in Figure 4 (1) using only the
actual dataset. The subsequent row pertains to the second
data block. It is represented in Figure 4 (2) using data
augmentation with AE, and the third row pertains to the
data third block, which is represented in Figure 4 (3) using
data augmentation with GAN. Figure 6 represented the
three sub-experiment corresponding to each row. The first
row displays the results in Panels (I-II-III), the second row
displays the results in Panels (IV-V-VI), and the last row
displays the experiments in Panels (VII-VIII-IX). A salient
observation is made during this experiment regarding certain
patients whose cardiac beats can be observed in both training
and test datasets, indicating the presence of overfitting.
This becomes evident when examining Figure 6, where
a distinct contrast between its characteristics and notably
exhibits a more pronounced and refined separation of classes
due to overfitting, in comparison to the distribution shown
in the previous experiment, depicted in Figure 5, where
the separation between the two classes was present, but
not so extremely evident. As seen in Figure 4, the results
obtained in this second experiment seem to exhibit significant
improvements across all three blocks, with 100 % achieved
for both AE and GAN, as seen in Table 4. When mixing beats
from the same patient in train and test, the performance results
become overly optimistic due to patient overfitting.

3) EXPERIMENTS 3 AND 3’: DATA FROM THE FIVE SELECTED
PATIENTS
In these experiments, we aimed to evaluate the performance
of the model on new patient data, categorized as healthy
and abnormal beats. Experiment 3 involved five randomly
selected patients, while Experiment 3’ included five specif-
ically chosen patients based on the prevalence of abnormal
heartbeats. In Experiment 3, 9% abnormal beats are attributed
to class 2, while in Experiment 3’, 37% of beats are attributed
to this class. This distinction stems from the deliberate

selection of patients in Experiment 3’ to include a higher
proportion of abnormal beats.

Table 4 reveals contrasting results between these sce-
narios. Without data augmentation, Experiment 3 shows
an increase in AUC (0.9629) compared to Experiment 1
(0.9332). However, Experiment 3’ demonstrates a slightly
lower AUC (0.9262) than Experiment 1. Notably, the
use of GAN-generated data results in improved AUC for
both Experiments 3 (0.9906) and 3’ (0.9541), surpassing
Experiment 1 (0.9562). This improvement, particularly in
minority class detection, highlights the efficacy of GAN-
generated data in enhancing classification performance.
Furthermore, a distinction between Experiments 3 and 3’ is
evident, with the former achieving a higher AUC, mainly due
to class imbalance favoring the majority class in the case of
healthy patients. Overall, as seen in Table 4, all biclass dataset
experiments exhibit improved AUC with data augmentation.
Nevertheless, it is noteworthy that the difference in AUC
between using AE and GAN is not significant. Additionally,
our general assessment shows a substantial enhancement in
AUC when implementing fine-tuning.

B. MULTICLASS DATASET
In our experiments, as outlined in Section IV, we encountered
a notable observation regarding certain patients whose
cardiac beats appeared in both the training and test datasets.
This situation raised concerns about potential overfitting.
The evidence of overfitting becomes more apparent when
comparing Figure 6 with Figure 5. In Figure 6, there is a more
pronounced and refined separation of classes, suggesting
overfitting, compared to the more blended distribution in
Figure 5. In response to this finding, we adapted our
experiments within the biclass dataset framework, introduc-
ing a significant variation by incorporating the multiclass
dataset. This modification allowed us to validate the efficacy
of our proposed methodology thoroughly. By conducting
these comprehensive experiments, we aimed to gain insights
into the performance of our approach across different
classification scenarios.

1) EXPERIMENT 1: COMPLETE DATA
In this experiment, we applied the same procedure as in
Section V-A, but this time utilizing the multiclass dataset.
Our approach mirrored that of the biclass section, providing
a consistent and comparable evaluation framework. This
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TABLE 4. AUC, accuracy and F1 results from biclass experiments.

TABLE 5. AUC, accuracy and F1 results from multiclass experiments.

adaptation allowed us to delve into the effects of our
methodology amidst a more complex and varied class
distribution. Similar to Experiment 1 in the biclass dataset,
we ensured that beats from all classes were adequately
represented in both the train and test sets. Consequently, the
distribution in the test set comprised 72% of beats belonging
to class 1, with 5%, 10%, 1%, and 12% allocated to classes 2,
3, 4, and 5, respectively.

We replicated the nine sub-experiments using thismodified
database. These experiments followed the same structure
detailed previously. The first row corresponds to the original
data approach, as shown in Figure 4 (1). The second row
relates to the augmented data using AE (Figure 4 (2)),
and the third row involves the data augmented with GAN
(Figure 4 (3)). The results of these sub-experiments are
depicted in Figure 8, with the first, second, and last rows
represented in panels (I-II-III), (IV-V-VI), and (VII-VIII-
IX), respectively. This figure highlights the distinguishable
manifolds of class one, represented in purple, across all sub-
experiments. In contrast, class five, depicted in yellow and

representing beats with various pathological characteristics,
exhibits significant diversity, displaying up to three distinct
community structures. This divergence indicates that the
underlying data distribution of class five warrants further
investigation and analysis.

Implementing data augmentation techniques enhances our
model performance, as reflected in Table 5. For instance,
we observed an increase in AUC from 0.9020 to 0.9223 when
using actual AE data. This improvement highlights the
effectiveness of data augmentation in boosting the model’s
accuracy and robustness. In terms of accuracy, the model
achieved a significant increase, moving from 0.9298 without
data augmentation to 0.9539 with the implementation of ENC
+ CLF using GAN, representing a nearly 3% improvement.
The enhancements are further evident in the confusion
matrix (Figure 9), which demonstrates improvements across
all classes, characterized by increased true positives and a
substantial reduction inmisclassifications. Notably, classes 1,
3, 4, and 5 show significant improvements, although class
2 experiences a slight decline.
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FIGURE 8. Representation of experiment one for the multiclass dataset, the first number is associated with the three different approaches mentioned
previously and represented in Figure 4, (1) Refers to the entire dataset; (2) Refers to the entire dataset excluding five patients; (3) Refers for the five
patients. (I) Real data; (II) latent space applied to real data; (III) Fine-tuning applied to real space; (IV) AE data; (V) latent space applied to AE data; (VI)
Fine-tuning applied to AE data; (VII) GAN data; (VIII) latent space applied to GAN data; (IX) Fine-tuning applied to GAN data.

Additional improvements are observed when implement-
ing latent space through two distinct techniques: encoder
and encoder with fine-tuning. Similar results in AUC were
noted when using GAN for latent space and fine-tuning.
Consistent with the findings in the biclass dataset, our results
demonstrate the robustness of our methodology. Table 3
reveals that our AE and GAN experiments consistently
outperform those using SMOTE regarding AUC, accuracy,
and F1 metrics when comparing our approach to the SMOTE
data augmentation technique.

2) EXPERIMENT 2: ENTIRE DATASET EXCLUDING FIVE
RANDOM PATIENTS
In this experiment, we adapted the methodology of Exper-
iment 2 from the previous section to the comprehensive
multiclass dataset from the MIT-BIH database, this time
excluding five random patients. This modification assessed
the impact of excluding specific patient data on the perfor-
mance of our model.

We once again conducted the nine sub-experiments using
this adjusted database. The first row of results corresponds to
the original data approach, as depicted in Figure 4 (1). The
second row involves the augmented data using AE (Figure 4
(2)), and the third row includes the data augmented with GAN
(Figure 4 (3)). The outcomes of these sub-experiments are

FIGURE 9. Comparison of confusion matrix in multiclass experiment: one
without data augmentation and another employing ENC + CLF with GAN
for data augmentation.

illustrated in Figure 10, with the first row shown in panels
(I-II-III), the second row in (IV-V-VI), and the last row in
(VII-VIII-IX).

A key observation in this experiment pertains to certain
patients whose cardiac beats appeared in both the test and
training datasets, raising concerns about potential overfitting.
This issue becomes evident upon examining Figure 10, which
reveals a stark contrast in class separation compared to
Figure 8. Notably, Figure 10 shows a more pronounced and
refined class separation, indicative of overfitting, as opposed
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FIGURE 10. Representation of experiment two for the multiclass dataset, the first number is associated with the three different approaches mentioned
previously and represented in Figure 4, where: (1) Refers to the entire dataset; (2) Refers to the entire dataset excluding five patients; (3) Refers to the
five patients. (I) Real data; (II) latent space applied to real data; (III) Fine-tuning applied to real space; (IV) AE data; (V) latent space applied to AE data;
(VI) Fine-tuning applied to AE data; (VII) GAN data; (VIII) latent space applied to GAN data; (IX) Fine-tuning applied to GAN data.

to the more blended distribution in Figure 8. The influence of
overfitting is further reflected in the exceptionally high AUC
values, reaching up to 0.9998, as shown in Table 5.

3) EXPERIMENT 3: DATA FROM FIVE SELECTED PATIENTS
Similar to Experiment 3 with the biclass dataset, the
primary focus of this experiment was to assess the impact
of introducing previously unseen patients to the model.
Using the multiclass dataset, Experiment 3 involved healthy
vs abnormal heartbeats predominantly from class 1, and
the five patients were randomly selected. In contrast,
Experiment 3’ included five patients with mainly abnormal
heartbeats, with the majority of beats belonging to the other
classes. We followed the same criteria as in Experiment
1 to ensure representation from all classes, resulting in a
varied distribution of beats across different classes. In both
Experiments 3 and 3’, we observed an increase in AUC when
implementing data augmentation, including all three blocks:
actual data, latent space, and fine-tuning. In Experiment 3,
the AUC increased from 0.8759 to 0.961 when using GAN
techniques for actual data, as indicated in Table 5.

The confusion matrices, depicted in Figure 9, present two
cases: one using all patients and the other after applying
fine-tuning to GAN data augmentation (shown in Figure 8,
panels (I) and (IX)). Initially, we notice that N beats are
often confused with S, V, and U beats. SV beats are mainly

mistaken for N beats, with less confusion with other classes.
However, when compared with GAN augmentation, the
overall performance improves significantly. The confusion of
N beats with other classes reduces, particularly for SV and
V. SV beats are no longer mistaken for V, F, or U, though
there is an increase in confusion with N beats. There’s a
marked increase in true positives for V beats and a notable
reduction in their confusion with N beats. F and U beats
also improve, with increased true detections and fewer errors.
The second case, with fine-tuning and GAN augmentation,
substantially improves class separation. Each class exhibits
more defined domains, with N beats concentrated in specific
regions and clear transitions among subregions. SV beats
show two distinct clusters, one in contact with N beats and
another separate from them. U beats are spread across a
vast domain, differentiating from N and V beats. V beats,
varied in their anatomical origin, are generally distinct from
N beats, except in some regions. These results illustrate
the effectiveness of a well-adapted classifier and GAN data
augmentation in refining class distinctions and improving
classification accuracy.

VI. DISCUSSION AND CONCLUSION
The primary aim of this paper has been to underscore
the pivotal role of latent space techniques in generating
synthetic data, particularly in mitigating the adverse effects of
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inter-class imbalance and overfitting in ECG signal analysis.
Our experiments across both biclass and multiclass datasets
have demonstrated marked improvements in task perfor-
mance through data augmentation techniques employing
AE and GAN. For instance, in the biclass dataset, GAN
implementation led to enhanced classification results across
various scenarios, including real data, latent space utilization,
and fine-tuning. It is important to note that the use of SVC in
our study was mainly to provide a quantitative assessment.
We focused on mapping activations to a reduced observation
space and quantifying class separability and confusion using
SVC, chosen for its definitive minimum that aids in metric
clarity. Experiment 1 observed an AUC improvement from
0.9332 without augmentation to 0.9520 with augmentation, a
2% increase as depicted in Figure 4. Generally, both biclass
and multiclass datasets showed higher AUC values with the
application of AE and GAN augmentation techniques. The
data augmentation techniques applied to the biclass dataset
yielded positive outcomes across multiple sub-experiments.

A significant issue highlighted in our study is overfitting,
which is evident in graphical representations and metrics.
This was especially pronounced in experiments reaching
AUC values close to 100%. Overfitting manifested in
quantitative metrics and visual depictions underscored the
necessity of adequately separating training and testing
datasets to build models that effectively generalize to new,
unseen data. Generalizing from a small dataset comprising
only five patients presents notable challenges, primarily due
to the limited sample size. This limitation was evident in
both biclass and multiclass dataset experiments. For instance,
in Experiment 2, we achieved AUC values of 100% with
data augmentation in the biclass dataset and 0.9998 in the
multiclass dataset. While indicative of model accuracy, these
high values also point to potential overfitting issues.

When introducing previously unseen patients in Experi-
ment 3 for both biclass and multiclass datasets, we observed
an AUC increase compared to Experiment 1. For instance,
the AUC for Experiment 3 was 0.9629, a 3% increase
from 0.9332 in Experiment 1, as shown in Tables 4 and 5.
Notably, this improvement occurred without applying data
augmentation techniques to real data.

In conclusion, our research introduces a novel approach
to address the dual challenge of beat noise interference and
class imbalance in ECG signal analysis. We systematically
improved the classification task by transforming the input
space into a latent space and employing data augmentation
with AE and GANs. Our findings highlight the effectiveness
of innovative strategies in enhancing the accuracy and
robustness of ECG signal analysis, contributing to more
reliable cardiac condition diagnoses. It is crucial to separate
patients into distinct training and testing sets to reduce
overfitting, emphasizing the importance of robust dataset
partitioning in machine learning. Our study illustrates the
power of interdisciplinary approaches in advancing medical
research and practice, paving the way for future innovations
in this field.
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