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ABSTRACT This paper proposes an indoor positioning system for mobile devices using visible light
beacons. The device’s camera is used to acquire images in which the beacon appears. An algorithm processes
these images to reconstruct the camera’s pose at the photo acquisition time. This reconstruction allows for
estimating the camera position accurately. The system operation is tested by a simulator based on Blender.
This simulator allows for setting the beacon and camera characteristics, taking samples in rooms of different
dimensions and analysing and studying the results obtained. In addition, an Android application for the real
system has been developed to take samples and analyse them to estimate themobile device’s position. Finally,
a comparison between the real and simulated systems is made. For this purpose, a test bench grid of 0.8m ×

1.1m with 391 test points is designed. The simulator offers an average fidelity 97% and can automate the
sampling process. An average error of 7.49 × 10−3m and coverage of 100% are achieved with the camera
and LED panel facing each other. The test bench real system achieves an average positioning error of less
than 20.44 × 10−3m, having a coverage close to 80% and decreasing performance when the beacons are
not fully captured. Finally, an experimental study of the system scalability has been carried out in a test room
where four coded beacons have been deployed covering an area of 2.4×3.6m2. Results over two different
trajectories show reasonable losses of accuracy and coverage compared to the simulation and test bench,
especially in the transition between beacons.

INDEX TERMS Local positioning, mobile device, pose reconstruction, visible light.

I. INTRODUCTION
In recent years, several lines of research have been developed
to address the need for more accuracy and availability
of GNSS in indoor environments. One of these research
lines is based on visual light communication, where several
approaches can be found [1]. For example, works such as
those developed by [2] and [3] are based on the fingerprinting
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technique, i.e. they measure the Received Signal Strength
(RSS) of light beacons and then apply different artificial intel-
ligence techniques to the resulting radio map to determine
with low accuracy the user’s position. Others, such as the
work presented by [4], propose developing a Visible Light
Positioning System (VLPS) based on four LED lamps as
transmitters and a Quadrant Photodiode Angular Diversity
Aperture (QADA) as a receiver. This systemwas validated by
simulation and experimental tests, obtaining 3-D positioning
average errors below 13 cm in the worst case.
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Adifferent approach is developed by [5] where is presented
a system based on Light-Emitting Diode (LED) beacons and
CMOS cameras. With the help of additional sensors (an
inclinometer and a magnetometer), they achieve accuracy
in the low decimeter range. The centroid of each beacon is
used for the location estimation. A 30 Frames per Second
(FPS) video stream from a static digital camera, placed at
a known height, is captured and processed in an auxiliary
computer. The greater the number of beacons used, the better
the accuracy provided in position estimation. The system has
a coverage of 15×20m2, and the positioning is evaluated at
different heights offering a Mean Absolute Error (MAE) of
0.17m when four or more beacons are used.

Another work of interest is that carried out by [6] in
which a high-speed indoor VLPS is proposed by designing an
elaborate flicker-free line coding scheme and a lightweight
image processing algorithm. This system can provide cell
phone positioning up to speeds of 5 m/s and achieve an
accuracy of 7.5 cm with a processing time of 22.7 ms for
a single beacon and 35.7 ms for two beacons. This work
represents an evolution in this type of system since it allows
image processing on the cell phone and offers processing
times that make real-time positioning possible. Another work
of similar characteristics can be found in [7], where the
authors improve the system’s accuracy up to 3.25 cm.

However, although the positioning of these systems is
quite accurate, there is still room for improvement. The
system proposed in this paper takes advantage of the whole
beacon geometry by implementing the Pose Reconstruction
Algorithm (PRA) [8] for the first time on an Android phone.
This way, a minimum error of 0.28mm is achieved with
only one beacon, employing a processing time of 0.5 s,
which is adequate to provide a real-time positioning rate.
Also, the system proposed in this work is accompanied by
a simulator that saves much time and effort in the system
characterization. This tool allows the simulation of extreme
conditions to test the system limits, analyze phenomena that
could affect its performance, or study the implementation of
possible improvements in the real system.

The usefulness of this type of simulator is evidenced by
the large number of works in which a previous modelling
of the real system is done. Some examples are the work
developed by [9] to model a positioning system based on
magnetic technology or the one developed in [10] for a UWB
system. Some other works can be found when restricting the
search to systems based on visible light. In [11], the authors
propose modelling a VLPS to study its performance and
accuracy depending on a series of configurable parameters,
such as the location of the LED beacons, the room luminosity,
and the camera’s responsibility, among others. In [12], the
authors propose a Indoor Location-Based Services (ILBS)
based on cell identification (Cell-ID). In this work, four LED
luminaires are simulated to position a receiver with the help
of CandLES [13], a visible light communication simulator
conducted by Boston University. This system has an average
error of 20 cm on the selected cell and a maximum variance

of 0.25m2 in the cells farthest from the beacons. In [14],
LED beacons are proposed to provide accurate positioning
within subway tunnels. When the beacons are 4m high, the
maximum error at ground level reaches 0.60m for a person
and 0.27m for a vehicle. These results are based on the
development of an analytical model. More recent work using
the same approach can be found in [15], where visible light
is combined with Machine Learning (ML) and theoretical
models to evaluate the system’s performance. The mean
error when using the 2nd-order regression model is within
4 cm and goes up to 5 cm when using the polynomial ML
model. Finally, the work proposed by [16] uses a tool called
LedMapper that allows the mapping of LED beacons in the
environment using a pose reconstruction algorithm from the
beacon image received through a smartphone camera. This
tool is used to calibrate the visible light-based positioning
system they proposed. To the authors’ knowledge, none
of these works mentioned above offer the possibility of
interacting with the models or making extensions to adapt the
simulator to the requirements of different experiments.

This work presents an evolution of the Blender simulator
developed in [17], allowing it to switch from one simu-
lated environment to another without further complication.
Besides, the PRA [8] has been implemented for the first time
in an Android phone, allowing to compare the phone’s real
positioning results with those obtained in the simulator. Addi-
tional improvements included in this work are summarized
below:

• The simulator source code has been updated to work
with the most recent Blender release.

• The positioning estimation is now based on the SQPnP
pose reconstruction algorithm, which improves the
overall system performance.

• A real-world test bench has been built to compare
simulated and experimental results.

• A different round-corner detection algorithm has been
included to provide a more accurate beacon detection.

• A system scalability study has been conducted in an
office room where four coded beacons were deployed.

The rest of this article is organized as follows. In Section II,
the simulator, its operation and the real system are described.
Next, in Section III, some foundational ideas are discussed.
A positioning algorithm is tested in the simulator and in
the real system in Section IV. Finally, in Section V, the
conclusions and future work derived from this work are
extracted.

II. SYSTEM DESCRIPTION
A. BLENDER-BASED SIMULATOR
In this work, a Blender-based simulator is introduced.
Blender [18] is a 3D modelling software distributed as open-
source, which is also extensible via Python add-ons [19].
This simulator represents a significant long-term investment
in developing improvements in the real system. It allows
to systematically study the system performance under
different conditions simply by modifying their corresponding
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FIGURE 1. Blender add-on interface.

simulation parameters, saving researchers time and effort
in taking measurements. The Blender project developed is
shown in Fig. 1.
The proposed simulator shouldmeet some specific require-

ments. First, it has to provide an interface to introduce the
camera’s characteristics, either a general-purpose camera or
a smartphone one. In the latter case, its location (front or rear)
should also be offered as an option. The said camera will be
located at the origin of the coordinates, facing the ceiling and
to a certain distance from it.

Also, the beacon side length (a squared panel) and its
location should be configurable. Besides, a method to take
either single samples or a series of them should be available
to the user. The camera’s location and rotation should be
customizable when taking a series of samples. The resulting
samples should include all the data needed to reproduce
the same sampling session further. The proposed solution is
provided as a Python add-on [20] that can be easily installed.

B. ACTUAL IMPLEMENTATION
An experimental test bench has been developed to validate
the results obtained in the Blender-modeled system.

The first step is to create an accurate grid similar
to the simulator’s design. The grid has been carved with
a Computer Numerical Control (CNC) machine in a wood
plank whose dimensions are 0.8m width by 1.1m length,
according to the simulation’s Field of Vision (FOV) described
in Section III-A.
Grid details are depicted in Fig. 2a, where each cell is

marked with its coordinates. The coordinates’ origin is in the
centre of the grid. Each cell has a side of 0.05m, resulting in
391 positions on thewhole grid. TheX-axis has been labelled,
from left to right, with values from−8 to+8. TheY-axis takes
values from 11 to -11, from top to bottom.

A squared beacon of 0.174m side has been installed at 1m
height on this grid with the help of two adjustable stands.
The smartphone’s front camera faces the beacon-illuminated
plane. The sampling application provides a calibration mode
to determine when the camera axis is aligned just below the
beacon centre as described in Fig. 2b. Once the grid centre is
located, the grid plank is anchored to prevent its movement.
The assembled test bench is shown in Fig. 2c.

FIGURE 2. Test bench.

The smartphone is placed at each point of the grid, starting
at the upper left corner and ending at the lower right one,
taking a sample and advancing to the next point until all
391 possible samples are taken. That means the first sample
is taken at the box with coordinates (−8, 11) and the last
at (8, −11). The smartphone is placed inside a framed box
with rails in the back that perfectly fit the carved grid of the
wooden plank. This system makes placing the camera in the
desired coordinates easier, a detail that can be observed in
Fig. 2.

III. FUNDAMENTALS
A. FIELD OF VISION
The camera’s FOV could be defined as the portion of reality it
can perceive. Calculating this area with accuracy is essential
for two main reasons. First, if its dimensions are known,
it can be divided into smaller cells, enabling a discretisation
to evaluate the positioning system, comparing the actual
position with the estimated one. Second, if the surface
covered by each beacon is known, the number of beacons
needed to cover a given surface can also be calculated.
The cameras included in the smartphones follow the pinhole
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model [21]. A 2D projection of the pinhole camera model is
shown in Fig. 3.
The camera sensor dimensions (width and height) are

represented by the 2 × 1 matrix a. Similarly, the FOV
dimensions (width and height) are represented by the
2 × 1 matrix A. The distance between the camera and the
beacon is D, and the camera’s focal length is f . Note that
the horizontal line that divides Fig. 3 through its centre
defines four right-angled triangles. In the left lower triangle,
sin(αij) =

ai,j
2 , where αij is the ij-th element of the 2 × 1 α

matrix and f = cos(αij).
Similarly, in the upper right triangle sin(αij) =

Aij
2 , being

Aij the ij-th element of the 2 × 1 A matrix and D = cos(αij).
That way:

tanα =

aij
2

f

tanα =

Aij
2

D

 ⇒

aij
2

f
=

Aij
2

D
⇒ Aij = aij ·

D
f

(1)

FIGURE 3. Pinhole camera model.

If 2 × 1 R matrix contains the camera samples width and
height in pixels and P represents the pixel size (mm/px):

S = R · P (2)

where 2×1 Smatrix elements are the width and height of the
camera sensor in mm. Combining 1 and 2:

FOV = S ·
D
f

(3)

where FOV contains the width and height of the FOV as a
2 × 1 matrix. The FOV dimensions can be obtained using 3,
so it can be represented in the simulation. However, only half
of the beacon would be visible when the camera location is
on the FOV edges. Reducing the FOV’s area by half of the
beacon side length in each dimension this problem is solved:

FOV = S ·
D
f

− B (4)

FIGURE 4. Camera in a corner of the beacon-adjusted FOV.

where B contains the beacon’s width and height as a
2 × 1 matrix. Two variables define a digital camera’s FOV:
its sensor size and its focal length [22]. In this case, a third
factor is present: the beacon size. Nevertheless, sampling
every point in the FOV is not a practical way to evaluate
the positioning performance in the simulated system. This
evaluation requires discretising the available space, placing
the camera in the corner of each cell and taking a sample in
that position. The FOV centre is the origin of the coordinates.
Dividing both sides of the FOV by the side of the cell and
discarding the rest, the FOV calculated in 4 can be paved with
a grid of square cells with known side:

1 =

⌊
FOV

δ

⌋
(5)

where1 components are the FOV’s width and height in cells,
expressed as a 2 × 1 matrix, and δ is the side length of each
squared cell. Finally, the origin of coordinates could be in the
centre of one cell if the division into cells results in an odd
number of them. Obtaining1 mod 2 solves this case. If equal
to zero, the result remains; else, the number of FOV cells are
made even by decreasing them by one unit:

1 =

{
1 if 1 mod 2 = 0
1 − 1 if 1 mod 2 ̸= 0

(6)

With this in mind, the FOV can be obtained:

FOV = 1 · δ (7)

Fig. 4 shows the FOV obtained using these equations to
simulate a Xiaomi MI 8 [23] front camera, placed at 1m
height. It is equipped with a S5K3T1 sensor [24] developed
by Samsung [25], with a pixel size of 0.9µm. This camera
is assembled with a focal length of 3.52mm and its samples
dimensions are 3880 px× 5184 px (width× height). The cell
side length is 0.05m. The resulting FOV is 0.8m wide ×

1.1m long, containing 16 cells wide × 22 cells long.

B. POSITION ESTIMATION
This section describes the system used to estimate a person’s
position inside a room using a LED beacon and a photograph
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taken with the camera of a smartphone held by the person
himself. This system is developed both in simulation and in
the real world.

FIGURE 5. Position estimation system operation diagram.

Before going into detail about each position estimation
system steps, described in Fig. 5, the process can be
summarized as follows: first, the camera is prepared to take
samples with a specific configuration that highlights the
beacon outline. Next, these samples are further processed
to accentuate the beacon outline even more. Following, the
image is analyzed using computer vision techniques (such
as contour localization or polygon approximation) to locate
the beacon corners and find the beacon centre. Subsequently,
the pose and the relative position between the camera and the
beacon are estimated with the data obtained. This makes it
possible to decide and estimate where the camera was inside
the roomwhen the sample was taken. Each step of the process
is described in detail below.

1) SAMPLE COLLECTION
The sample must be taken to determine the beacon contour
accurately. For this purpose, the camera sensitivity is set to
take its minimum value. In addition, the exposure time is set
to 0.01 s since it has been experimentally proven that this
value offers the best results. A sample taken on the real system
test bench at a distance of 1.2m from the beacon is depicted
in Fig. 7b.

2) SAMPLE PROCESSING
Before working with the samples obtained in the previous
step, performing some operations is necessary to leave them
in an optimal state. This processing consists of the following
steps:

• grayscale image conversion: the acquired samples
are in YUV format [26], which allows direct access
to the luminous intensity data without the need to
perform any operation on the original data. Since the
image chromatic components contribute nothing to the
decoding process, they can be discarded to obtain a
grayscale image.

• image blur: a slight smoothing eliminates the image
noise and optimizes the following steps results.

• image thresholding: to decode the image, it is necessary
to work with zeros and ones instead of values between
0 and 255; the binary thresholding only keeps the most
intense image values.

Everything that is not the beacon (black colour) shall
correspond to the value zero, while the remaining area (white
colour) shall be the beacon and take the value one. The steps
taken in this process are described in Fig. 6 from the original
sample until the final image is ready for analysis.

FIGURE 6. Sample processing.

3) SAMPLE ELEMENTS SEARCH
OpenCV is a cross-platform, open-source package that
provides multiple tools to perform computer vision tasks.
As described in [8], a minimum of 4 points of the sample
taken is needed to estimate the camera’s pose. Using the
geometry of the beacon, whose luminous surface is close to
the shape of a perfect square, it is possible to obtain these four
points by locating its corners. A fifth point, the centre of the
beacon, is obtained for extra safety.

Locating the beacon corners of an ideal square beacon
is a relatively simple task using the computer vision tools
available in OpenCV. Fig. 7a shows a perfect square
beacon. However, the beacon used in the simulator and real-
world testing, shown in Fig. 7b, has rounded corners. This
peculiarity must be considered when designing the algorithm
to locate the beacon corners.

FIGURE 7. Square corners vs rounded corners.

The beacon corner detection process begins with detecting
the contours present in the black-and-white image resulting
from the thresholding operation. Due to the data in these
samples, the white areas correspond to the beacon, and the
rest will be black. The contours detected in these samples
will completely envelop the beacon, delimiting the area in
which it is located. Even if the beacons were perfectly square,
it does not mean that their outline is composed of four straight
segments, corner to corner. Due to imperfections in the image
acquired in the simulation and the real world, such a contour
may consist of more than four line segments. These defects
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can lead to differences in the corner location process for the
ideal and the real beacon. The process, in both cases, starts
with the beacon contour present in the sample but is addressed
differently.

a: SQUARE CORNERS BEACON CASE
It is enough to approximate the contour to a polygon
with fewer vertices to reduce the contour to its minimum
expression. For this purpose, the Ramer-Douglas-Peucker
algorithm [27] is used. This algorithm can reduce the
number of segments defining a curve. As a criterion, a value
determines the maximum distance between the original curve
and its approximation. In this particular case, it is one-
hundredth of the contour perimeter. The result is a contour
with four corners in all cases tested. However, the detection
process would be considered incorrect if the resulting contour
did not have four corners.

b: ROUNDED CORNERS BEACON CASE
Due to the beacons used in the simulation and the real world
having rounded corners, the starting contour comprises two
distinct zones. On the one hand, there are straight zones
on each beacon side and, on the other hand, curved zones
at each corner. For this reason, approximating the contour
using the Ramer-Douglas-Peucker algorithm is not optimal,
as depicted in Fig. 8. The final contour is close to the
expected contour but not containing the beacon totally since
it leaves a gap without coverage at each rounded corner.
To solve this problem, the first step is to convert the contour
found into a convex hull using Sklansky’s algorithm [28] and
then use the Ramer-Douglas-Peucker algorithm, but this time
keeping identical the perimeter size. As a result, the contour
is maintained around the beacon, but the number of vertices
is smaller, facilitating further work.

Subsequently, the list of points that trace the beacon
contour is arranged. This list of points is transformed into
a list of consecutively linked segments. The last segment is
linked to the first segment to complete the contour. A list of
segment lengths is stored together with the list of segments.
The segments with the shortest length are those that define
the corner curves. The segment’s average length is calculated,
discarding those below this value. The longest segments,
which compose the beacon’s sides, are concatenated to form
a single segment. Finally, the four longest ones are taken,
and their intersection, which corresponds to the corners of
the beacon, is calculated. The result can be seen in Fig. 8b.
In both cases (simulation and real world), segments are

labelled counterclockwise. The corners are marked in green
dots, and the midpoint of each side is in red. The intersection
of two diagonal segments determines the beacon’s centre.
With the four corners and the centre, the camera’s pose can be
estimated from a single sample. In Fig. 8a, the beacon contour
is not optimally detected because the rounded corners of the
beacon are not correctly identified. However, in Fig. 8b, this
problem is solved, and the contour is identified accurately.

FIGURE 8. Contour detection comparison.

Note that the rounded corner detection improves the distance
estimation to the beacon. If the estimated contour area is
smaller (see Fig. 8a) than the actual one (see Fig. 8b), the PRA
will calculate that the beacon is farther away than it really is.

4) CAMERA TRANSLATION AND ROTATION ESTIMATION
As discussed in [8], the SQPnP algorithm optimises the
PnP problem by finding the minima that satisfy the problem
conditions. OpenCV implements this algorithm through the
solvePnP method. This method provides an implementa-
tion of the SQPnP algorithm if the value SOLVEPNP is given,
and the following data are available:

• the object model points whose pose is to be estimated.
• the points of that object in an image.
• the camera intrinsic matrix used to capture the image.
• the camera distortion coefficients.

a: OBJECT MODEL POINTS
In this work, the object model describes its characteristics as
if it were precisely in the camera projection plane. That is,
it is the beacon’s dimensions if there is no distance between
its surface and the handheld camera. To create this model,
it is necessary to know the side of the square beacon and
the camera’s pixel size. The first value is available since the
beacon geometrical properties are known. The second value
is provided by the optical sensor manufacturer.

The centre of the squared beacon model is at the origin
of coordinates (0, 0), which divides the beacon into four
quadrants. The side of the object model is calculated by
multiplying the side length by the camera pixel size. The
beacon side is measured using the decimal metric system.
The pixel size units are in those same units per pixel. The
result, therefore, is in pixels. Hence, if the beacon side
measured 174mm and the camera pixel size were 0.9µm/px,
the Beacon Model Side (BMS) in pixels would be:

BMS =
beacon side
pixel size

=
174
0.9

mm
µm/px

=
174
0, 9

10−3

10−6

m
m/px

= 193 333.33 px (8)

Consequently, if the beacon plane were attached to the
camera and its sensor could capture the beacon completely,
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its side would occupy 193 333.33 px. At this value, with
the beacon centre at the coordinate origin, each corner of
the beacon model, starting from the upper left and moving
clockwise, would be at:

• (−96 666.66 , +96 666.66 ).
• (+96 666.66 , +96 666.66 ).
• (+96 666.66 , −96 666.66 ).
• (−96 666.66 , −96 666.66 ).
For different beacon contours, the object model would

have to be created in an equivalent way. Since the
Levenberg–Marquardt Algorithm (LMA) needs at least four
points to estimate a flat object’s pose, the beacon’s geometry
could be at least triangular, using the three vertices and the
barycenter. At the opposite extreme would be beacons with
circular or oval shapes, where the necessary points should be
taken from their contour to have an error below the tolerance
margin established when approximating their shape by a
polygon.

b: OBJECT IMAGE POINTS
How the object points are located in the sample is described
in Section III-B3. There, this task appears second in the list
of requirements for pose estimation because it is the second
parameter that the solvePnP method needs. In practice,
it is the condition without which pose estimation cannot
proceed. Therefore, pose estimation cannot be performed if
it is impossible to find the four corners and the centre of the
beacon in the sample.

c: INTRINSIC CAMERA MATRIX
The camera intrinsic matrix I contains camera-specific
details, such as its focal length and the deviation of its
optical centre. This matrix is part of the camera sensor’s
projection system of real-world objects. The focal length
f = (fx , fy) is a parameter that depends on the handheld
device manufacturer and determines the space left between
the lens and the camera sensor. It usually has the same value in
both coordinates, so fx = fy. This value is in the specifications
of the handheld device and usually appears among the Exif
fields [29] included in the images captured with the sensor.
Moreover, the camera’s optical centre c = (cx , cy) matches
the centre of the captured image.

During the development of the positioning system, the
front camera of a Xiaomi Mi 8 was used. Its pixel size
is 0.9 µm/px, its focal length 3.52mm, and the samples,
in portrait mode, have a width of 3880 px and a height of
5184 px. Therefore, in this particular case, the intrinsic matrix
of the camera is:

fx = fy =
3.52
0.9

mm
µm/px

=
3.52
0.9

10−3

10−6

m
m/px

= 3911.11 px

cx =
3880 px

2
= 1940 px ; cy =

5184 px
2

= 2592 px

I =

fx 0 cx
0 fy cy
0 0 1

 =

3911.11 0 1940
0 3911.11 2592
0 0 1

 (9)

d: CAMERA DISTORTION COEFFICIENTS
In the pinhole camera model (see Section III-A), a lens
is placed between the object and the optical sensor to
concentrate the light in the sensor. These lenses are imperfect
and can exhibit different types of distortion that affect image
formation. The most commonly used system for estimating
these coefficients consists of a calibration process during
which the camera takes a certain number of photographs of
a known pattern, which are then analyzed for aberrations.
After this process, the distortion coefficients are incorporated
into the image processing process to obtain a more accurate
result [30].

Although adding a calibration step to the system developed
here could improve the results obtained, it has been discarded
because the process would annoy the user. Future improve-
ments could be incorporated into the system, including
not only the estimation of distortion coefficients but the
development of a calibration process that is as unobtrusive
as possible. However, in its current state, the system assumes
no distortion exists in the lens.

All the data needed to perform the pose estimation are
available now. Themain result of the process is a Boolean flag
that determines whether or not it is possible to reconstruct the
pose. If it is not, another sample is taken to repeat the entire
process from the beginning. If it was, solvePnP provides a
rotation vector and a translation vector to estimate the relative
position between the camera and the beacon when the sample
was taken.

IV. EXPERIMENTAL RESULTS
A. SIMULATION FIDELITY
Before comparing the results obtained in the simulated and
real environments, measuring the simulation’s fidelity is
necessary. To do so, a comparison between the samples
obtained in both environments has been performed. The
camera characteristics correspond to the rear camera of
a smartphone, Xiaomi Mi 8 [31]. It is equipped with an
IMX363 Exmor RS sensor [32] developed by Sony [33], with
a pixel size of 1.40µm. This camera is assembled with a focal
length of 4.216mm and its samples dimensions are 3024 px×

4032 px (width × height).
Fig. 9 compares the samples obtained in the simulator

and the real world when the camera is aligned parallel to
the beacon surface. The simulated sample is the inner white
square, while the real sample is the outer greyish square.

A Python script that accepts a simulated sample and a real
one has been developed to compare them. The comparison
process starts thresholding both samples to obtain their black-
and-white representation, so the beacons’ luminous parts are
isolated. Then, the length in pixels of the top beacon side
is measured for both images to establish the comparison.
Finally, the results are stored in a comma-separated values
(CSV) file and can be seen in Fig. 10.

The samples compared are taken at intervals ranging from
1m to 3m, in 0.1m steps. The abscissa axis shows these
distances. The ordinate axis shows the ratio between the top
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FIGURE 9. Comparison of a sample in the simulation and real-world
(inner and outer squares, respectively).

FIGURE 10. Simulation fidelity.

side length of the real and the simulated beacons. It has
been obtained an average ratio of 0.9738 with a standard
deviation of 0.0069. Detecting the beacon’s rounded corners
contributes a 1% improvement to this result.

In the real-world tests, the beacon will be located in
the ceiling at a minimum distance of 1m to the camera.
In that case, the fidelity ratios are above 0.95. Under
these circumstances, it can be concluded that the simulation
reliability is acceptable.

B. SIMULATED SYSTEM RESULTS
A set of samples covering the whole FOV has been taken to
validate the simulator experimentally. The side of each square
cell is 0.05m. With a distance of 1m between the beacon
and the camera, said FOV is composed of 391 positions. Its

FIGURE 11. Simulated positioning results in the entire FOV.

wide is 0.8m and its length is 1.1m. Each sample is processed
with the algorithm based on the camera pose reconstruction
presented in Section III-B. In Fig. 11 can be observed the
result obtained.

The black cross marks the position at which each sample is
taken. The positions estimated by the positioning algorithm
are marked with blue circles, and potential outliers with a
2D error above the length of the cell side are also evaluated
and marked with red circles. This figure shows that the
positioning accuracy is relatively high in all the evaluated
points, with no outliers appearing.

Fig. 12 shows these positioning results as a heat map.
Note that positioning results deviate from the ideal behaviour
around the centre of the FOV, although their errors are not
enough to be considered outliers. These higher errors are due
to the closer distance between the camera and the beacon in
these areas, obtaining larger andmore detailed beacon images
in which the realistic effects modelled in the simulator have
a greater influence on the results.

The positioning results and the coverage percentage
obtained are detailed in TABLE 1.

Reproducing the limiting cases is possible thanks to the
simulator interactivity, making it easier to study different
adverse situations and search for possible solutions that
lead to improvements in the performance of the position
estimation algorithm.
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TABLE 1. Simulation positioning results (10−3 m).

FIGURE 12. Heatmap of positioning results over the entire FOV in the
simulation.

C. REAL SYSTEM RESULTS
The positioning results of the tests performed on this bench
are shown in Fig. 13. Analogously to what was established in
the simulator, outliers have been considered as those whose
error in two dimensions exceeds the confidence margin,
established as the side length of each cell, i.e. 0.05m.

To better understand the results obtained in the real system,
Fig. 14 shows the error made in the estimation at each
position of the test bench as a heat map. As shown, the
most significant errors are found at the left and right ends
of the grid, where the beacon could not be fully captured.
These results confirm the negative impact that partial beacon
captures have on the performance of the positioning system.
This effect is also noticeable in the bottom end of the grid,
where a smaller portion of the beacon surface was lost when
taking the samples.

Similarly, there is a circular area around the centre of
the test bench where the error is slightly higher than the
confidence margin (maximum 0.11m vs confidence margin
of 0.5m), so that the estimated positions are marked in red
in Fig. 13 and lighter blue in Fig. 14. This error is due to
the distortion produced by the camera lens used to take the
samples [34].

FIGURE 13. Real system positioning results in the entire FOV.

FIGURE 14. Heatmap of positioning results over the entire FOV in the real
system.

The coverage obtained in the simulator is 100% (see
Fig. 11). In this test bench, the coverage obtained under
the same circumstances is almost 80%. The greatest loss
of coverage is at the edges of the test bench, where the
beacon cannot be completely captured. Besides, the lens
distortion also influences the coverage in the central area.
It should also be noted that the difference between samples
taken in the periphery for the simulator and reality is due
to smartphone lens aberration, which is not modelled in the
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simulator. Incorporating this characteristic into the simulator
will be explored in future work.

In TABLE 2, some parameters that quantitatively describe
the accuracy in two-dimensional positioning and the coverage
achieved in this test are provided. These values are calculated
only for those samples with an estimation error below the
confidence margin, as was done in the simulation tests. The
mean error is 20.44m, achieving a 79.03% coverage across
the entire grid of test points.

TABLE 2. Test bench positioning results (10−3 m).

D. SYSTEM SCALABILITY
To study the system’s behaviour in an everyday positioning
environment, four luminaires are placed on the ceiling of a
clear office room at 2.72m above the floor. Each beacon has
been coded by Visual Light Communication (VLC), emiting
a 5-bit header followed by a 8-bit BiphaseMark Code (BMC)
[35] at a sampling frequency of 2.5 kHz. Hence, the cell
phone can identify the captured luminaire image, which are
taken every 0.5 s continuously. A total positioning surface of
2.4×3.6m2 has been established where two trajectories have
been followed, one in a zigzag and the other in a convergent
square spiral. In both trajectories, the user has held the cell
phone to a height of approximately 1.32m. The test room
set-up details are depicted in Fig. 15.

FIGURE 15. Test room with four beacons, showing the distance between
them and the cell phone camera.

The chosen distance between the luminaire and the phone
camera is based on a study to evaluate the success rate in
detecting the codes emitted by VLC as a function of the
reception distance. The results of this study are shown in

FIGURE 16. Success rate in identifying the codes associated with the
beacons as a function of distance.

FIGURE 17. Positioning results in the zigzag trajectory.

Fig. 16, where for the chosen luminaire size, it can be noticed
that a detection success rate of 100% is achieved up to
distances of 1.3m between the luminaire and the camera.
Beyond this distance, the success rate gradually decreases
until the codes are undetectable at a distance of 3.0m.
Nevertheless, if greater detection distances are required, this
can be solved by installing luminaires with a larger surface
area.

An approximate minimum distance of 1.40m from the
camera to the beacons is chosen for the trajectories, meaning
the maximum code detection rate is around 90%, according
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FIGURE 18. Positioning results in the spiral trajectory.

to Fig. 16. The positioning results obtained for the zigzag and
the convergent square spiral trajectories can be seen in Fig. 17
and Fig. 18, respectively. In these figures, each beacon’s
coverage area has been coloured in a different soft tone. The
positions estimated from the images captured from each one
have been coloured with dots of their corresponding intense
colour. In addition, a line in orange has also been drawn to
define the path the person follows when moving along each
trajectory.

Fig. 17 and Fig. 18 show reliable results close to the
Ground Truth line along the complete trajectories. The
density of points obtained during these trajectories is also
adequate to provide a real-time user experience.

On the other hand, these results also show some losses
of coverage and accuracy in the transition areas between
different beacons. These accuracy losses are due to partially
capturing one or more luminaire contours in these transition
regions. This problem could be easily solved, for example,
by including a fifth beacon in the center of the positioning
area. Other accuracy losses are mainly produced because
the cell phone trajectory is not precisely guided, but
rather, the device is held in the person’s hand leisurely,
as a user would do in realistic everyday use. Despite
these circumstances, the system still provides accurate
positioning data as long as the tilt of the cell phone in
the hand is not so extreme that beacons disappear from
the captured image or make it unable to reconstruct its
contour.

V. CONCLUSION AND FUTURE WORK
This work presents a visible-light indoor positioning system
running on smartphones and a Blender simulator. The sim-
ulator enables the creation of rooms, cameras, and beacons.
Also, it can take individual samples with a simulated camera
with the same physical properties as a real camera to perform
an analysis. Furthermore,multiple samples can be taken using
the automation tools provided, moving the camera along
different positions and even varying its orientation. The data
necessary to reconstruct the camera and room characteristics
are included in each sample. The simulator’s reliability has
been studied by comparing a set of samples obtained in
the simulator with those obtained in the real world. The
simulation is faithful to reality with a mean fidelity of 97%.

The performance of the positioning system using the
simulator was evaluated by placing the modelled smartphone
and beacon face to face and 1m away. A 391 test point grid,
with dimensions 0.8m × 1.1m was used, obtaining a 100%
coverage and a mean error of 7.49 × 10−3m. Subsequently,
a real-world test bench replicating this setup was built,
focusing on minimizing every possible human error that
could affect the result. The grid was machined to a wood
plank, and an enclosure to position the smartphone camera
with accuracy was built. The positioning results offered a
coverage close to 80% and a mean error of 20.44 × 10−3m.

In addition, an experimental study of the system scalability
has been carried out in a test room where four coded beacons
have been deployed. Two trajectories have been carried out,
showing the system’s feasibility in everyday positioning
environments. However, there is some loss of accuracy
and coverage compared to the simulation and one-beacon
test bench, especially in the transition areas between
beacons.

Work is in progress on various aspects to enhance
the system scalability, such as reconstructing the contour
of partially captured luminaire images and developing
techniques to improve the Visual Light Communication
(VLC) performance at longer distances. Besides, future
system evolutions will consider more hostile environments
for positioning where obstacles such as columns or furniture
are present, relying on additional phone sensors such as
the gyroscope, accelerometer and magnetometer. Regarding
the simulator, improving its performance in light pollution
conditions or modelling the lens distortion is necessary to
bring its results closer to reality. Nevertheless, this simulator
is a valuable analysis tool that saves time and effort when
studying the behaviour of visible light indoor positioning
systems.
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