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ABSTRACT This paper introduces an innovative optimal control approach to achieve output tracking
while incorporating H2-performance specifications in a specific class of nonlinear dynamics modeled by
the Takagi-Sugeno fuzzy model (TSFM). The primary innovation lies in extending partial eigenstructure
assignment to TSFM-based nonlinear systems within the framework of sliding mode control (SMC).We pro-
pose a two-step methodology for designing optimal sliding surface gains. Initially, optimal state feedback
gains are computed for each rule consequence containing a linear subsystem, adhering to predetermined
eigenvalues and satisfying H2-performance criteria. Subsequently, using a convex combination, the overall
state feedback gain is calculated and utilized to design sliding matrix gains. The sliding matrix gains are then
determined by strategically combining previously calculated state-feedback gains in a convex optimization
problem. We reframe the output tracking strategy as a stabilization problem using a virtual control input and
reformulate the optimization task concerning tracking state errors. This process yields state feedback gains,
sliding gains, and the formulation of the virtual control input. The effectiveness of our approach is verified
through comprehensive simulations, emphasizing its capability in addressing output tracking challenges
within nonlinear systems.

INDEX TERMS Eigen-structure assignment, generalized partial Eigen-structure assignment,
H2-characterization, LMI approach, output tracking control, sliding mode control, Takagi-Sugeno
fuzzy model.

I. INTRODUCTION
The intricacies associated with solving the output tracking
control problem in nonlinear systems have posed signifi-
cant challenges in the realms of both control theory and
practical applications [1], [2], [3], [4]. One effective avenue
involves the design of output feedback control laws, guiding
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the nonlinear system towards a desired reference signal. This
approach proves particularly beneficial due to its capability
to address the complexities arising from unmeasurable state
signals [2], [5]. In a preceding study [6], the development
of H∞ observers for fuzzy systems with unmeasurable state
variables marked a significant advancement. This achieve-
ment was accomplished by introducing a novel Lyapunov
function, adeptly managing unmatched premise variables and
external disturbances. Similarly, another research endeavor
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introduced an H∞ event-triggered filter tailored specifically
for a class of Takagi-Sugeno (T-S) fuzzy systems [7]. This
innovative contribution encompassed the implementation of
an observer-based piecewise fuzzy filter, synchronizing har-
moniously with the premise variables within the networked
environment of the plant trajectory.

The TSFM stands as a versatile tool commonly har-
nessed for the representation of intricate nonlinear systems
[8], [9]. Through the adoption of the sector nonlinearity
approach [10], a precise characterization of the nonlinear sys-
tem emerges, eloquently expressed as a fuzzy amalgamation
of local models situated within a convex framework. This
unique capability permits the application of various potent
techniques from the realm of linear control theory, each
directed at the individual local linear models that constitute
the foundation of the fuzzy rule consequences. The amalga-
mation of these local control laws culminates in the design
of an encompassing nonlinear control law that effectively
governs the overarching nonlinear system.

Concurrently, research endeavors have frequently cen-
tered around linear systems or the TSFM framework, which
serves as an interpolation of several local linear subsystems.
Combining H∞ performance metrics with pole placement
objectives addresses robust performance and the desir-
able transient behavior of linear systems confronted by
uncertainty or disturbances [11]. In the context of [12],
the utilization of linear matrix inequalities (LMIs) facil-
itates the description of desired performance, ensuring
the placement of closed-loop poles from local subsystems
within a predefined region of the s-plane. Additionally, [13]
presents the proposal of a constrained H2-control system for
TSFMs encompassing stringent constraints and disturbances
characterized as impulses.

The efficacy of SMC in tackling uncertainties and
disturbances within practical systems has been well-
established [14], [15], [16], [17], [18], [19]. The pivotal role
of defining the sliding surface in influencing control system
performance has been recognized [20], [21]. In a pioneering
work [22], a fresh perspective on sub-optimal sliding surface
design and gain determination is introduced. This involves
a two-tiered control design strategy, initially ascertaining
state feedback gain to satisfy performance specifications.
Subsequently, the determination of the sliding surface matrix
employs both direct and indirect methodologies. Although
the enhancement of transient time responses has garnered
substantial attention within the literature [23], the intricate
relationship between transient response profiles and system
parameters remains largely unexplored in the context of SMC
for nonlinear system design.

This paper charts a new course by extending the concept
of eigenstructure assignment to nonlinear systems, with the
specific aim of optimizing transient response characteris-
tics. The proposed approach encompasses the definition of
sliding surfaces and control inputs that align with desired
eigenvalues corresponding to local subsystems within fuzzy

rule consequences. A synthesis of H2-performance metrics
and partial eigenstructure assignment yields suboptimal
gains for each fuzzy rule consequence. By combining these
consequence-specific control laws via a convex combination,
a generalized partial eigenstructure assignment control law is
derived, tailored to the native nonlinear system.

In the pursuit of practicality, H2-optimization techniques
are harnessed throughout the control design process. This
entails deploying optimization methodologies to evaluate a
multi-objective function that encapsulates H2-performance
metrics and generalized partial eigenstructure assignments.
The outcome of this endeavor is an optimal enhancement
of transient response characteristics. The contribution of this
paper is the development of an innovative approach to address
the challenging problem of output tracking control in non-
linear systems modeled using the TSFM. It introduces the
concept of extending eigenstructure assignment to nonlin-
ear systems, enabling the optimization of transient response
characteristics by defining sliding surfaces and control inputs
aligned with desired eigenvalues corresponding to local sub-
systems within fuzzy rule consequences. This paper also
introduces the novel idea of generalized partial eigenstructure
assignment, where suboptimal gains are computed for each
fuzzy rule consequence and then combined to derive a control
law customized to the specific nonlinear system. Through-
out the control design process, H2-optimization techniques
are applied to enhance transient response characteristics.
Empirical validation using a mass-spring system beside a half
vehicle suspension model demonstrate the effectiveness of
the proposed approach, with potential implications for future
research in this field.

The study further delves into the design of output track-
ing controllers, a realm where the objective is to harness
the principles of linear control theory to craft optimal con-
trollers for nonlinear systems while considering specific
constraints.

The structure of this paper unfolds as follows: Section II
formulates a nonlinear system beset by uncertainty through
the lens of TSFM. In Section III, the design process for a
sliding mode controller is meticulously outlined. A novel
LMI representation forH2-problems is introduced, extending
the concept of partial eigenstructure assignment to nonlinear
systems and uniting it with H2-LMI representation to intro-
duce the notion of generalized eigenstructure assignment.
The convex optimization of sliding mode surface gain is
elucidated. Furthermore, the conversion of output tracking
into a stabilization problem is detailed, with the assessment
of tracking error dynamic stability anchored by a theorem.
Section IV lends empirical validation to the proposed
approach by considering a mass-spring system and half
vehicle suspension model. Finally, Section V concludes the
paper, offering insights into future directions for research and
exploration.
Hint 1: herm (1) = 1 + 1∗, where 1 is a square matrix

and 1∗ stands for the conjugate transpose of 1.
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II. PROBLEM STATEMENT AND PRELIMINARIES
Consider the following nonlinear system [2], [24]:

ẋ (t) = f (x (t))+ g1 (x (t)) u (t)+ g2 (x (t) , u (t) , t)

ȳ (t) = h(x (t))

z (t) = 8(x (t) , u (t)) (1)

where xϵRn and u, ȳϵRm, and zϵRq are the state vector, the
control input vector, the measured output vector, and the
H2-performance output vector of the system, respectively.
f (·) , g1 (·) , g2 (·) , h (·) and 8(·) are nonlinear functions
with appropriate dimensions where g2(·) denotes the possible
model uncertainties and/or disturbances with a Euclidean
norm which is bounded by a known function ρ(x, u, t).
In light of the T-S fuzzy model’s benefits of the nonlinear

system, the nonlinear system given in (1) can be represented
by the fuzzy system [10] as:
Plant Rule i:
If µ1(t) is F1,i and . . . and µg(t) is Fg,i, Then

ẋ (t) = Aix (t)+ B1,iu (t)+ fi; i = 1, . . . , r

z (t) = Cix (t)+ Diu(t) (2)

where µj(t) and Fj,i (j = 1, . . . , g) are the premise variables
and fuzzy sets, respectively; r denotes the number of fuzzy
rules; Ai, B1,i, Ci and Di are the system matrices with appro-
priate dimensions, and fi includes system uncertainty and
external disturbance. Without loss of generality, we suppose
that the matched uncertainty fi can be represented by fi =

B1,i f̄i, where f̄i are constant matrices with Euclidean norm
bounded by a known function ρ(x, u, t). Using a singleton
fuzzifier, product inference, and center-average defuzzifier,
the overall T-S fuzzy model is inferred as follows:

ẋ (t) =

∑r

i=1
hi (µ)

{
Aix (t)+ B1,i(u (t)+ f̄i)

}
(3)

z (t) =

∑r

i=1
hi (µ) {Cix (t)+ Diu(t)} . (4)

where hi (µ) are the normalized fuzzy membership functions
defined as

hi (µ) =

∏g
j=1 Fj,i(µj(t))∑r

i=1
∏g

j=1 Fj,i(µj(t))

satisfying hi(µ) ≥ 0 and
∑r

i=1 hi(µ) = 1 and Fj,i(µj(t))
are the grades of membership of µj(t) in Fj,i. The same
method is used to generate the T-S fuzzy controller. The fuzzy
controller u (t)will be designed based on Parallel Distributed
Compensator (PDC) [10] which can be written as

Controller Rule i:
If µ1(t) is F1,i and . . . and µg(t) is Fg,i, Then

u (t) = Kix (t) i = 1, . . . , r . (5)

where Ki indicates the feedback gains. The overall PDC
controller can be represented as

u (t) =

∑r

i=1
hi (µ (t))Kix (t) . (6)

where hi (µ) denotes the normalized fuzzy membership
functions, in which hi(µ) ≥ 0 and

∑r
i=1 hi(µ) = 1.

We will design a SMC for dynamics (3)-(4) based on the
multi-channel H2 performance characterization and the pro-
posed generalized eigenvalue assignment. Moreover, we will
provide an extension to the output tracking problem.

III. MAIN RESULTS
This paper aims to design a multi-channel H2-based SMC
for the system dynamics (3)-(4). The following subsections
illustrate the details of the design procedure.

A. SLIDING MODE CONTROLLER DESIG
Towards this end, primarily, here, for the system dynam-
ics (3), a sliding mode controller is proposed in two steps.
The first step deals with a sliding mode controller for each
fuzzy rule. In the second step, by inspiring the fuzzy blending,
a slidingmode controller is proposed for the overall T-S fuzzy
system.
Step 1. Sliding mode control design for fuzzy rule conse-

quence
Suppose that the linear model of the ith fuzzy rule conse-

quence subsystems introduced in (3) can be rewritten as

ẋ (t) = Aix(t) + B1,i(u (t)+ f̄i) (7)

Then, consider a linear switching surface for the system
dynamics of (7) such that

Hi =

{
x (t) : σi (t) ≜ Six (t) = 0

}
(8)

where SiϵRm×n are full-rank matrices to be designed such
that the appropriate dynamics for the related reduced-order
sliding motions [25] are obtained. To guarantee the conver-
gence of the system states of (7) to the sliding surface in (8),
consider a control law as

ui (t) = ueq,i(t) + un,i(t) (9)

where ueq,i(t) is the equivalent control input and is defined
as [22]

ueq,i (t) = −(SiB1,i)
−1(SiAi − ϕSi)x(t) (10)

where ϕϵRm×m stands for a Hurwitz matrix, and un,i(t) is the
switching control input described as [22]

un (t) = −(SiB1,i)
−1ρ (x, u, t)

σi

∥σi∥
, if σi(t) ̸= 0 (11)

where the scalar function ρ(·) satisfies ρ(x, u, t) ≥
∥∥SiB1,i f̄i∥∥.

Also, we suppose that ϕ = λIm, where λ is a predetermined
negative scalar value. Therefore, by considering ϕ = λIm, the
control law (10) can be rewritten as

ueq,i (t) = (SiB1,i)
−1(SiAλ,i)x (t) (12)

where Aλ,i = λIn − Ai.
Lemma 1: consider the linear system (7) with the given

controller (9) as

ui (t) = (SiB1,i)
−1
{
(SiAλ,i)x (t)− ρ (x, τ, t)

σi

∥σi∥

}
;

if σi(t) ̸= 0 (13)
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where the scalar function ρ(·) satisfies ∥ρ(x, u, t)∥ ≥∥∥SiB1,i f̄i∥∥ . Then, the associated reduced-order sliding mode
dynamic is asymptotically stable.

Proof: Consider a candidate Lyapunov function as:

V1,i =
1
2
σ Ti σi (14)

Now, calculating the time-derivative of the Lyapunov
function (14) leads to

V̇1,i = σ Ti σ̇i = (Six (t))T (Siẋ (t)) (15)

substituting ẋ (t) from (7) in (15) yields

V̇1,i = x (t)T STi
(
SiAix (t)+ SiB1,iui (t)+ SiB1,i f̄i

)
(16)

substituting ui (t) from (13) in (16) results in

V̇1,i = x (t)T STi (SiAix (t)+ SiB1,i(SiB1,i)
−1(Siϕx (t)

− SiAix (t)− ρ (x, u,t)
σi

∥σi∥
) + SiB1,i f̄i)

= x (t)T STi
(
Siϕx (t)− ρ (x, u,t) sgn (σi)+ SiB1,i f̄i

)
(17)

Then, suppose ϕ = λIm, where λ is a pre-determined
negative scalar value, (17) is rewritten as

V̇1,i = x (t)T STi
{
Siλx (t)− ρ (·) sgn (σi)+ SiB1,i f̄i

}
(18)

Using the uncertainty boundary assumption, i.e., ∥ρ(x, u, t)
∥ ≥ ∥SiB1,i f̄i∥, the derivative of the Lyapunov function (18)
along the state trajectory x(t) can be expressed as

V̇1,i ≤ x (t)T STi {ϕSix (t)} +

∣∣∣x (t)T STi SiB1,i f̄i∣∣∣
− ρ (x, u,t) |Six (t)|

≤ x (t)T STi {ϕSix (t)} + ∥Six (t)∥
∥∥SiB1,i f̄i∥∥

− ρ (x, u,t) ∥Six (t)∥ (19)

Since we supposed that ϕ = λIm and
∥∥SiB1,i f̄i∥∥ ≤

ρ(x, u, t), we can rewrite (19) as

V̇1,i ≤ λ ∥Six (t)∥2 < 0 (20)

in which the reachability condition is held and the proof is
completed.
Step 2. Fuzzy slidin mode contro design
Inspiring the fuzzy combination in TSFM, the following

switching surface and control law are proposed for the non-
linear system (3):

H =

{
x (t) :σ (t) ≜ Sx (t) = 0

}
(21)

u (t) = ueq(t) + un(t) (22)

ueq (t) = −

∑r

i=1
hi (µ) (SiB1,i)

−1(SiAi − ϕSi)x(t) (23)

un (t) = −

∑r

i=1
hi (µ)(SiB1)

−1ρ (x, u,t)
σi

∥σi∥

if σi(t) ̸= 0 (24)

where SϵRm×n denotes the full rank sliding matrix
gain to be designed. Also, S =

∑r
i=1 hi (µ) Si,

σ (t) =
∑r

i=1 hi (µ) σi (t), ueq(t) =
∑r

i=1 hi (µ) ueq,i (t),
un(t) =

∑r
i=1 hi (µ) un,i (t), and u (t) =

∑r
i=1 hi (µ) ui (t)

are the sliding matrix, the switching surface, the equivalent
control input, the switching control input, and the overall
control input, respectively.

By employing ϕ = λIm, the control law (22) can be
expressed as

u (t) =

∑r

i=1
hi (µ)

{
(SiB1,i)

−1(SiAλ,i)x(t)
}

(25)

To formulate the disturbance attenuation property of
the proposed approach for the nonlinear TS fuzzy model
(3)-(4), we let f̄ (·) = 0, un (t) = 0, and we have added an
artificial disturbance to the TSFM (3), and then, we proceed
with the equivalent control part in (23). Therefore, the system
dynamics (3)-(4) and the signal controller (6) are rewritten as:

ẋ (t) =

∑r

i=1
hi (µ)

{
Aix (t)+ B1,iu (t)+ B2,iw (t)

}
(26)

z (t) =

∑r

i=1
hi (µ) {Cix (t)+ Diu (t)} (27)

u (t) =

∑r

i=1
hi (µ (t))Kix (t) . (28)

where B2,i is the matrix with appropriate dimension,
w ∈ Rq is the artificial/external disturbance input with
bounded energy, and Ki is the state feedback gain to be
designed. Without loss of generality, it is also assumed that
rank

(
B1,i

)
= m, i = 1, . . . , r , the matrix pair (Ai;B1,i) is

controllable andm ≤ q ≤ n [22].

B. OPTIMAL SLIDING GAIN DESIGN USING GENERALIZED
PARTIAL EIGENSTRUCTURE ASSIGNMENT
Our aim is to determine the most suitable sliding matrix
denoted as ’S’ in equation (21). This S serves a dual
purpose: firstly, it ensures that the state trajectories, when
reduced, stay on a stable surface; secondly, it satisfies
the H2-performance criterion, helping to handle distur-
bances effectively. Achieving this involves solving a complex
challenge known as the multi-channel H2-state-feedback
problem. The solution to this challenge provides us with an
optimal state feedback gain, a critical element in the search
for the optimal sliding matrix gain.

To guarantee the viability of a solution, we must carefully
position m eigenvalues within each local linear subsystem.
These eigenvalues need to align with a predefined negative
value referred to as λ. This condition forms the bedrock for
the subsequent steps in our methodology.

The next phases of our approach encompass designing the
most effective sliding gain. This step is pivotal as it guides
us toward crafting the optimal sliding mode control. This
endeavor involves a well-structured sequence of actions:

1) H2-LMI CHARACTERIZATION
In this subsection, for the TSFM (26)-(27), using LMI
characterization, an H2 performance is presented from the
disturbance w to the output z.
Lemma 2: For the nonlinear system described by TSFM

dynamics (26)-(27), the following statements are equivalent:
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a) ∃Kj, j = 1, . . . , r , such that Ai + B1,iKj is stable
and the H2 performance from the disturbance w to the
output z is less than γ .

∑r

i=1

∑r

j=1
hi(µ)hj(µ){||(Ci + DiKj)

×
(
SI −

(
Ai + B1,iKj

))−1 B2,i||22} < γ (29)

b) ∃X > 0 and Z > 0 such that:

∑r

i=1

∑r

j=1
hihj[

AiX + B1,iYj + XATi + Y Tj B
T
1,i ∗

CiX + DiYj −γ I

]
< 0 (30)∑r

i=1
hi

([
−Z ∗

B2,i −X

])
< 0 (31)

trace (Z ) < 1 (32)

where Yj = KjX .
c) ∃X > 0,Z > 0 and nonsingular matrix Gj such that

 −

(
Gj + GTj

)
∗ ∗

AiGj + B1,iYj + X + Gj −2X ∗

CiGj + DiYj 0 −γ I


< 0; for i, j = 1, . . . , r (33)∑r

i=1

∑r

j=1
hihj

([
X ∗

BT2,i Z

])
< 0 (34)

trace (Z )

< 1 (35)

where Yj = KjGj and X > 0, Z > 0 are positive
semi-definite matrices and Gj are general nonsingular
matrix variables.
Proof: Note that parts (a&b) are equivalent forms of the

standard H2 state-feedback synthesis which is developed by
Lemma (1) in ref [13] for the T-S fuzzy system. By making
use Schur complement lemma, (33) is rewritten as

{
−

(
Gj + GT

j

)
+

γ−1
(
CiGj + DiYj

)T (CiGj + DiYj)

}
∗

AiGj + B1,iYj + X + Gj −2X

 < 0

(36)

whichGj+GTj > 0. Applying the congruence transformation[
G−T
j 0
0 X−1

]
on (36) results in




−

(
G̃j + G̃Tj

)
+

γ−1(CT
i C i + KT

j D
T
i DiKj+

CT
i DiKj + KT

j D
T
i Ci)

 ∗

X̃ (Ai + B1,iKj) + X̃ + G̃j −2X̃

 < 0 (37)

where G̃j = G−1
j , X̃ = X−1, and Kj = YjG

−1
j . Then, (37) can

be rewritten as
{
γ−1

(
CT
i C i + KT

j D
T
i DiKj

+CT
i DiKj + KT

j D
T
i Ci

)}
∗

X̃ (Ai + B1,iKj) + X̃ −2X̃


+ herm(

[
−I
I

]
G̃Tij

[
I 0

]
) < 0 (38)

By using the Projection lemma [26], inequality (38) holds
if the following inequalities are satisfied

[
I
I

]T

γ−1


CT
i C i+

KT
j D

T
i DiKj

+CT
i DiKj

+KT
j D

T
i Ci


 ∗

X̃ (Ai + B1,iKj) + X̃ −2X̃


[
I
I

]
< 0

(39)

[
0
I

]T

γ−1


CT
i C i+

KT
j D

T
i DiKj

+CT
i DiKj

+KT
j D

T
i Ci


 ∗

X̃ (Ai + B1,iKj) + X̃ −2X̃


[
0
I

]
< 0

(40)

Inequality (39) indicates −X̃ < 0 and inequality (40) is
equivalent to

X̃ (Ai + B1,iKj) + (Ai + B1,iKj)T X̃T + γ−1(CT
i C i

+ KT
j D

T
i DiKj + CT

i DiKj + KT
j D

T
i Ci) < 0 (41)

By multiplying both sides of (41) by X = X̃−1, one
obtains:

AiX + B1,iYj + (AiX + B1,iYj)T + γ−1(XCT
i C iX

+ Y Tj D
T
i DiYj + XCT

i DiYj + Y Tj D
T
i CiX ) < 0 (42)

where Yj = KjX . From the Schur complement, (42) is
equivalent to (30). The proof is completed.

C. MULTI-CHANNEL H2 STATE-FEEDBACK
Now, we propose Twz as an H2− performance from the input
w to the output z with control input u (t) =

∑r
j=1 hjKjx(t).

We aim to design Kj such that the following performance
characterization are satisfied

minimize
∥∥Twψ zψ∥∥2

subject to
∥∥Tw1z1

∥∥2
2 < γ1, . . . ,

∥∥Twψ−1zψ−1

∥∥2
2 < γψ−1,∥∥Twψ+1zψ+1

∥∥2
2 < γψ+1, . . . ,

∥∥Twℵzℵ

∥∥2
2 < γℵ

(43)

where
∥∥Twψ zψ∥∥2 :=

∥∥LψTwzRψ∥∥2, such that Lψ and Rψ
are used to select the appropriate input/output channels
or constrained channels [27]. And, ℵ stands for the dif-
ferent Lyapunov constraints or the numeral of channels.
Moreover, Twψ zψ is obtained from substituting B2,i,Ci and
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Di in (26)-(27) with B2ψ,i,Cψ,i and Dψ,i, ψ = 1, . . .ℵ,
respectively. The H2 -performance can be guaranteed by
minimizing the H2-norm associated with signals wψ = Rψw
and zψ = Lψ z. Now, consider a set of LMI characterizations
of (33)-(35) for each channel. Then, the state-feedback LMI
characterization for the multi-channel system can be synthe-
sized by assigning global variables Gj,Yj for entire channels,
and a distinct Lyapunov variable Xψ > 0 to ψ th channel.
As a result, the LMI characterization for ψ th channel trough
extension part (c) of lemma 1 can be formulated as −

(
Gj + GTj

)
∗ ∗

AiGj + B1,iYj + Xψ + Gj −2Xψ ∗

Cψ,iGj + Dψ,iYj 0 −γ I

 < 0; (44)

∑r

i=1
hi

([
Xψ ∗

BT2ψ,i Z

])
< 0 (45)

trace(Z ) < 1 (46)

where Xψ > 0,Z > 0,Gj and Yj are global LMI decision
variables and Yj = KjGj. Then, one may modify the opti-
mization problem (43) as

minimize γψ
subject to (44) , (45) , and (46) forψ − th channel,

(44) , (45) , and (46) forθ − th channel

with given γθ ;θ ̸= ψ;θ = 1, . . . ,ℵ (47)

D. GENERALIZED PARTIAL EIGENSTRUCTURE
ASSIGNMEN
In this part, assignments of partial eigenstructures which are
combined with H2 performance is proposed. Assignment of
m poles of each rule consequence linear subsystem (26)-(27)
to a pre-determined negative value through the PDC con-
troller can be performed by using the LMI conditions
(44)-(46). The assignment of the following partial eigenstruc-
tures

m times︷ ︸︸ ︷
{λ, . . . , λ}

(48)

is done by the state feedback. This problem can be divided
into two steps as follows

1-Compute the base vector
[
Mλ,j Nλ,j

]T of the null space[
Aj − λI B1,j

]
, where j = 1, . . . , r .

2-With arbitrary η1, . . . , ηmϵRm, the state feedback can be
obtained as Kj = YjG

−1
j with

Yj = Nj6N ,Gj = Mj6M (49)

where

Nj :=

 m times︷ ︸︸ ︷
Nλ,j,...,Nλ,j...,

(n− m) times︷ ︸︸ ︷
{I , . . . , I }


Mj :=

 m times︷ ︸︸ ︷
Mλ,j,...,Mλ,j...,

(n− m) times︷ ︸︸ ︷
{I , . . . , I }



6N := diag [η1, . . . , ηm, k1, . . . , kn−m]

6M := diag [η1, . . . , ηm, l1, . . . , ln−m] (50)

such that k1, . . . , kn−mϵRn, and l1, . . . , ln−mϵRn. Note that,
some arrays of6M and6M are dependent on the assignment
of m eigenstructure to a predetermined value λ. In other
words, other arrays which are not used for eigenvalue assign-
ment can be employed to reach further constraints. Hence,
the first step in designing an H2 based SMC is recasting (47)
by the LMI characterizations (44)-(46) with X > 0, Z > 0,
6N ,j, 6M ,j and γi > 0 as below

minimize γψ
subject to (44) , (45) , (46) , and (49) forψ − th channel,

(44) , (45) , (46) , and (49) forθ − th channel

with given γθ ;θ ̸= ψ;θ = 1, . . . ,ℵ (51)

The following lemma demonstrates the conditions that the
consequences subsystems contain eigenvalues (48) for each
local subsystem with PDC controller (28) defined by (49).
Lemma 3: For each fuzzy rule with the state feedback Kj =

YjG
−1
j , where Yj and Gj presented in (49), the set of Aj +

B1,jKj eigenvalues contain the subset (48).
Proof: The base vector

[
Mλ,j Nλ,j

]T of the null space[
Aj − λI B1,j

]
is obtained as follows:[

Aj − λI B1,j
] [
Mλ,j Nλ,j

]T
= 0 (52)

whereMλ,j and Nλ,j are the jth eigenstructure vectors associ-
ated with the system state and the control input respectively,
where j = 1, . . . , r . One can rewrite (52) as

AjMλ,j + B1,jNλ,j = λMλ,j (53)

Furthermore, a set of ηi always exists such that Aj +

B1,jKj has m independent eigenvectors associated with λ, i.e.
Mλ,jηi, i = 1, . . . ,m. By utilizing (49), one can form (53) as(
Aj + B1,jKj

)
Mλ,jηi

=

[
Aj + B1,j

(
Nj6N ,j

) (
Mj6M ,j

)−1
]
Mλ,jηi

=

[
Aj + B1,j

(
Nj6N ,j

) (
Mj6M ,j

)−1
] (
Mj6M ,j

)
ei (54)

where i = 1, . . . ,m, and ei denotes the canonical or standard
basis of Rn [28]. By using (50) and (53), equation (54) can be
rewritten as(

Aj + B1,jKj
)
Mλ,jηi =

[
Aj
(
Mj6M ,j

)
+ B1,j

(
Nj6N ,j

)]
ei

= AjMλ,jηi + B1,jNλ,jηi
= λMλ,jηi (55)

which shows that the set of Aj + B1,jKj eigenvalues contain
the subset (54).

E. THE OPTIMAL SWITCHING GAIN DESIG
This part proposes an LMI optimization approach to obtain
the sliding gain S associated with the state feedback designed
in (51). To obtain the ith sliding gain Si, consider the state
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feedback (28), which is equivalent to the sliding mode
controller (13) as follows

(SjB1,j)
−1SjAλ,j = Kj, for j = 1, . . . , r (56)

Since the matrix SjB1,j should be an invertible matrix,
without loss of generality, let us suppose that Sj = BT1,jPj,
where Pj are semi-positive definite matrices to be obtained.
To analyze (56), one can use a simple relaxation method as

minimize δj

subject to
∥∥∥(BT1 Pj(Aλ,j − B1,jKj)

)∥∥∥ < δj, for j = 1, . . . , r

(57)

where δj > 0 are scalar variables, and Kj are the jth state-
feedback obtained from (51), which makes ensuring that m
poles of each rule consequence subsystem are exactly located
at λ. Using LMI optimization, the minimization problem (57)
is rewritten as

minimise δj for j = 1, . . . , r

subject to
[

−δjI ∗

BT1,jPj(Aλ,j − B1,jKj) −δjI

]
< 0 (58)

Finally, inspired by the convex structure in TSFM, the
switching matrix gain is proposed to obtain as

S =

∑r

i=1
hi (µ)BT1,jPj. (59)

F. THE OUTPUT TRACKING CONTROL
In this subsection, the output tracking problem of the non-
linear systems, described by TSFM (3)-(4), is studied while
some performance specifications are under control. For out-
put tracking control, we suppose that the H2-performance
output vector is only dependent on the state vector; i.e.,
z (t) = 8(x (t)). Furthermore, it is necessary that the
tracking error between the measured output and the desired
trajectory finally meets zero. To convert the output tracking
problem into a stabilization problem, a set of the desired
variable xd (t) which must be tracked by the state variable x(t)
is introduced. Let x̃ (t) :=x(t)−xd (t) and z̃ (t) :=z(t)−zd (t)
which x̃ (t) and z̃ (t) denote the tracking state error of the state
variables and the tracking error of theH2-performance output
vector, respectively. The time derivative of x̃ (t) results in

˙̃x (t) = ẋ (t)− ẋd (t) (60)

Substitute ẋ (t), given in (3), in (60) yields

˙̃x (t) =

∑r

i=1
hi(µ){Aix (t)+ B1,i(u (t)+ f̄i)} − ẋd (t)

(61)

Now, we introduce a new control signal τ (t) satisfying the
following equation [29]∑r

i=1
hi (µ)B1,iτ (t) ≜

∑r

i=1
hi (µ)B1,iu (t)

+

∑r

i=1
hi(µ)Aixd (t)−ẋd (t) (62)

where τ (t) is a new control input that is to be yet acquired.
Therefore, the state-tracking error dynamic is

˙̃x (t) =

∑r

i=1
hi (µ)

{
Aix̃ (t)+ B1,i(τ (t)+ f̄i)

}
(63)

z̃ (t) =

∑r

i=1
hi (µ)Cix̃ (t) (64)

The control purpose is to enforce x̃ (t) to converge zero,
i.e., tracking the desired state xd (t) by the state trajectory x(t).
Next, the novel fuzzy controller τ (t) is proposed relying upon
PDC and can be written as

Controller Rule i:
If µ1(t) is F1,i and . . . and µg(t) is Fg,i, Then

τ (t) = Kix̃ (t) ; i = 1, . . . , r (65)

whereKi denotes the feedback gain. Then, using the singleton
fuzzifier, product inference, and center-average defuzzifier,
the overall new control signal in PDC form can be expressed
as

τ (t) =

∑r

i=1
hi(µ(t))Kix̃(t) (66)

where hi (µ) denotes the normalized fuzzy membership func-
tions, in which hi(µ) ≥ 0 and

∑r
i=1 hi(µ) = 1.

The output tracking problem while satisfying the
H2-performance specification combined with the generalized
partial eigenstructure assignment can be implemented in two
steps. In the first step, the optimization problem introduced
in (51) is recast for the tracking state error (63) and the
H2-performance output tracking error (64) with the overall
new control signal (66). In the next step, the control input
of the output tracking problem will be obtained based on
the new control signal (66) introduced for the tracking state
error (63).
The remaining part to solve the output tracking problem

is to determine the desired state xd (t). Toward this end,
we use the fact that g1 (x (t)) =

∑r
i=1 hi (µ)B1,i, one may

rewrite (62) as

g1 (x (t)) (τ (t)− u (t)) =

∑r

i=1
hi(µ)Aixd (t)−ẋd (t) (67)

The existence of the new control signal τ (t) relates to the
pattern of g1 (x (t)). Hereon, we suppose the matrix of the
input coefficient g1 (x (t)) as a full-column rank matrix with
the following form

g1 (x (t)) =
[
0(n−m)×m B(x)

]T (68)

where 0(n−m)×mϵR(n−m)×m and B(x)ϵRm×m are a zero matrix
and nonsingular matrix, respectively. Similarly, A (x) =∑r

i=1 hi(µ)Ai and xd (t) are partitioned as follows

A (x) =

[
A (x)(n−m)×n
A (x)m×n

]
, xd (t) =

[
xd (t)n−m
xd (t)m

]
(69)
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Substituting (67)-(68) in (66), one has[
0n−m

B(x) (τ (t)− u (t))

]
=

[
A (x)(n−m)×nxd (t)− ẋd (t)n−m

A (x)m×nxd (t)− ẋd (t)m

]
(70)

As a consequence, using the output equation (67) and the
condition in (70), the desired state variables are determined
by the following dynamic [29]:

ẋd (t)n−m = A (x)(n−m)×nxd (t) (71)

ȳ (t) = h(xd (t)) (72)

Also, from (66) and (70), the practical control input is
obtained as

u (t) = τ (t)− B−1(A (x)m×nxd (t)− ẋd (t)m) (73)

The desired variables xd (t) for many physical systems can
be determined by the equations (71)-(72). The stability and
performance of the suggested control system were described
in Theorem 1.
Theorem 1: Suppose that for some γψ > 0, ψ = 1, . . .ℵ ,

the state feedback K is a solution to the optimization problem
introduced in (51). Then, the multi-channel H2 -performance
constraints

∥∥Twψ∅ψ

∥∥2
2 < γψ , ψ = 1, . . .ℵ are guaranteed,

and the new control input

τ (t) =

∑r

i=1
hi (z (t))Kix̃ (t)+ τn (t) (74)

where

τn (t) = −

∑r

i=1
hi (µ)(SiB1)

−1ρ (x̃, τ, t)
σi

∥σi∥

if σi(t) ̸= 0 (75)

In this case, the switching control law σi (t) ≜ Six̃ (t),
stabilizes the obtained sliding mode dynamics in an asymp-
totic manner.

Proof: Select a candidate Lyapunov function as

V2 =
1
2
σ Tσ

=
1
2

∑r

i=1

∑r

j=1
hi (µ)hj (µ) x̃ (t)

T STi Sjx̃ (t)

≤
1
2

∑r

i=1
hi (µ) x̃ (t)

T STi Six̃ (t) (76)

Now, applying the time derivative of the Lyapunov func-
tion (76) leads to

V̇2 = σ T σ̇ ≤

∑r

i=1
hi (µ) x̃ (t)

T STi Si ˙̃x (t) (77)

substituting ˙̃x (t) from (63) in (77) yields

V̇2 ≤

∑r

i=1
hi (µ) x̃ (t)

T STi Si
∑r

i=1
hi (µ)

×
{
Aix̃ (t)+ B1,iτ (t)+ B1,i f̄i

}
(78)

Then, (78) is reformulated as follows

V̇2 ≤

∑r

i=1

∑r

j=1
hi (µ)hj (µ) x̃ (t)

T STi Si

× {Ajx̃ (t)+ B1,jτ (t)+ B1,j f̄j} (79)

substituting τ (t) from (74) in (79) yields

V̇2 ≤

∑r

i=1

∑r

j=1

∑r

l=1
hi (µ)h

j
(µ)h

l
(µ) x̃ (t)T STi Si

× {(Aj + B1,jKl)x̃ (t)− ρ (x̃, τ, t)
σl

∥σl∥
+ B1,j f̄j}

≤

∑r

i=1

∑r

j=1

∑r

l=1
hi (µ)h

j
(µ)h

l
(µ) x̃ (t)T STi Si

× {(Aj + B1,jKl)x̃ (t)} (80)

In this paper, the statement Ai + B1,iKj are Hurwitz
matrices, therefore (80) leads to

V̇2 <
∑r

i=1

∑r

j=1

∑r

l=1
hihjhlλmax,jl ∥Six̃ (t)∥

2 < 0;

(81)

where λmax,jl are the maximal eigenvalues of the Hurwitz
matrices Aj + B1,jKl, and λmax,jl locate on the left side of
the s-plane, which guarantees the reachability condition.
Finally, the proposed approach for the output tracking

problem of a nonlinear system based on TSFM can be imple-
mented by Algorithm 1.
Hint 2: In the process of designing the controller, its

parameters are optimized by solving the associated LMI
optimization problem. Furthermore, the computational load
associated with this approach closely aligns with that of a
comparable study [30]. This similarity arises from the fact
that both approaches involve solving the controller parame-
ters and designing it through the resolution of offline Linear
Matrix Inequalities (LMIs) only once.
Hint 3: The article [31] opens avenues for future research

by overcoming assumptions on state variables and constraints
on slack matrices. The exploration of these principles, DVDP
and VSP, presents an opportunity to further reduce con-
servativeness in filter design. Additionally, the removal of
assumptions on state variables, achieved through a recursive
method, provides a more general and practical approach.
Future research directions may involve extending these
methodologies to broader applications and exploring ways
to eliminate assumptions in finite-time extended dissipative
analysis.

IV. SIMULATION RESULTS
In this section, we assess how well the suggested optimal
sliding matrix control system design works and whether it
is appropriate. Initially, we examine the benchmark problem
that deals with a mass-spring mechanical system. Following
that, we explore the second example, which involves consid-
ering a half-vehicle suspension model.
Example 1: Consider a mass-spring mechanical system

shown in Fig. 1, where (x1, x2), (Ff1 ,Ff2 ), (Fs1 ,Fs2 ),
(Fµ1 ,Fµ2 ), (m1,m2), and u denote the displacement from
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Algorithm 1 The Proposed Control System Design
1) Define Yj and Gj according to (49)-(50), and the state
feedback gain Kj = YjG

−1
j .

If system (1) is SISO,
2) Solve (33)-(35) to obtain Yj and Gj and therefore
Kj.
Go to STEP 4.

Else if the system (1) is MIMO,
3) Solve GEVP (51) to minimize γψ , and to obtain Yj
and Gj and therefore Kj.
Go to STEP 4.

End
% Optimal sliding mode control design
4) Solve minimization problem (58).
5) Define Si = BT1,jPj
6) Calculate the switching matrix gain from (59).
7) Define the linear switching surface σi (t) ≜ Six (t).
8) Derive the control laws ueq(t) and un(t) from (23)-(24).
% Output tracking control
9) Solve (33)-(35) with Dj = 0, to obtain Yj and Gj and

therefore Kj = YjG
−1
j .

10) Determine the desired states xd (t) by (71)-(72)
and τn (t) by (75).

11) Obtain τ (t) by (74).
12) Find the practical control input u (t) with (73)

the reference points, the viscous damping forces, the restor-
ing forces of the springs, the kinetic friction forces, the
masses, and the external input, respectively. By definition
X1 = x1 − x2, X2 = Ẋ1, X3 = x2, and X4 = Ẋ3, the nonlinear
system is represented in the following state-space form:

Ẋ1
Ẋ2
Ẋ3
Ẋ4



=


0 1 0 0

−k − ka2X2
1 −c 0 0

0 0 0 1
k + ka2X2

1 c −k − ka2X2
3 −c



×


X1
X2
X3
X4


+ [0, 1, 0, 0]T (u (t)+ g (x))+ [0,−1, 0,−1]T w(t)

y (t) =

[
1 0
0 1

] [
X1
X3

]
, z1 (t) = X1, z2 (t) = X3 (82)

Using the sector nonlinearity approaches [10], the fuzzy
rule matrices are obtained. Suppose that, we select the
pre-determined eigenvalue as λ = −10, the actuator as
g (x) = 0.1 X1(t), and the periodic external disturbance
caused by a bump (or a rough surface) with 10 cm widths

FIGURE 1. Mass-spring mechanical system.

FIGURE 2. Responses of x1, x3 and x1d , x3d .

which is modeled as

w(t) = 0.01sin(πX1(t)), if 0 ≤ X1(t) ≤
1
10
.

Then, using the LMI optimization problem (51), we obtain
the H2-performance from the external disturbance vector to
the H2 output vector; i.e., from w(t) to z(t), as γ = 13.4741.

To compare the proposed approach efficiency with simi-
lar works, [30] has utilized an integral-type sliding-surface
function for the TSFM, and their approach shows that the
H∞ performance γ∞ = 2.5891 is guaranteed. The illustrative
comparison simulations are brought in Figs. 2-9. In the other
scenario, we devote different Lyapunov matrix variables for
each channel in (51). Also, the pre-determined value γ =

2.5891 is considered for the H2-performance from the exter-
nal disturbance vector to the first H2 output vector; i.e. z2 (t).
Then, the results show that the H2-performance γ = 2.7982
is obtained for the first H2 output vecto; i.e. z1 (t).

The comparison study between the proposed approach
and [30] are shown in Figs. 2-8. Fig. 5 illustrates that the
approach phase is done faster and the trajectory stays on the
surface. The control effort has been reduced and the chatter-
ing phenom is avoided compared with the work [30] as shown
in Fig. 6. The error evolutions of the H2-outputs tracking
control are depicted in Figs. 7-8. The results demonstrate that
the first and the second state trajectories of the errors have
been decreased compared with [30] and their transient time
performances are improved.
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FIGURE 3. Responses of x2 and x2d .

FIGURE 4. Responses of x4 and x4d .

FIGURE 5. The evolution of the sliding surface.

Example 2: Consider the half-vehicle model depicted in
Fig. 9 [30]. In this model, Zsf (t) represents the front body
displacement, Zsr (t) denotes the rear body displacement,

FIGURE 6. The new control input signal τ (t).

FIGURE 7. The trajectory of z1(t).

FIGURE 8. The trajectory of z2(t).

l1 signifies the distance between the front axle and the cen-
ter of mass, l2 indicates the distance between the rear axle
and the center of mass, ϕ(t) represents the pitch angle, and
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FIGURE 9. Half-vehicle model [30].

Zc(t) corresponds to the displacement of the center of mass.
Additionally, ms stands for the mass of the car body, while
muf and mur denote the unsprung masses on the front and
rear wheels, respectively. Iϕ denotes the pitch moment of
inertia about the center of mass. Zuf (t) and Zur (t) represent
the front and rear unsprung mass displacements, respectively.
Zrf (t) and Zrr (t) denote the front and rear terrain height
displacements, respectively. csf and csr are the stiffnesses of
the passive elements of the front and rear wheels, and ksf and
ksr represent the front- and rear-tire stiffnesses. uf (t) and ur (t)
are the front and rear actuator force inputs, respectively.

By introducing the following scale factors:

a1 =
1
ms

+
l21
Iϕ
, a2 =

1
ms

−
l1l2
Iϕ
, a3 =

1
ms

+
l22
Iϕ

and defining the following variables:
x1(t)- suspension deflection of the front car body,
x2(t)- suspension deflection of the rear car body,
x3(t)- tire deflection of the front car body,
x4(t)- tire deflection of the rear car body,
x5(t)- vertical velocity of the front car body,
x6(t)- vertical velocity of the rear car body,
x7(t)- vertical velocity of the front wheel,
x8(t)- vertical velocity of the rear wheel,
And considering the disturbance input as wT (t) =[
Żrf (t) Żrr (t)

]
, this paper aims to optimize the control output

vector zT (t) =
[
Z̈c(t) ϕ̈(t)

]
, encompassing both heave and

pitch accelerations, to enhance passenger ride comfort.
The half-vehicle suspension system can be represented as

follows:

ẋ (t) = A(t)x (t)+ B1(t)τ (t)+ B2(t)w (t)

z (t) = C(t)x (t)+D(t)τ (t) (83)

Here, t is used to account for parameter uncertainty result-
ing from variations in vehicle load. Additionally,

xT =
[
x1(t) . . . x8(t)

]
, u(t) =

[
uf (t)
ur (t)

]
, and

A(t) =

[
04×4 a12(t)
a21(t) a22(t)

]
, a12(t) =


1 0
0 1

−1 0
0 −1

0 0
0 0

1 0
0 1



a21(t) =


−a1ksf −a2ksr
−a2ksf −a3ksr

0 0
0 0

ksf
muf

0

0 ksr
mur

−
ktf
muf

0

0 −
ktr
mur



a22(t) =


−a1csf −a2csr
−a2csf −a3csr

a1csf a2csr
a2csf a3csr

csf
muf

0
0 csr

mur

−
csf
muf

0
0 −

csr
mur



B1(t) =



0 0
0
0

0
0

0
a1
a2

−
1
muf
0

0
a2
a3
0

−
1
mur


, B2(t) =



0 0
0

−1
0
0

0
0
0
0
0

−1
0
0
0
0


,

CT (t) =



−
ksf
ms

l1ksf
Iϕ

−
ksr
ms
0

−
l2ksr
Iϕ
0

0
−
csf
ms

−
csr
mscsf
mscsr
ms

0
l1csf
Iϕ

−
l2csr
Iϕ

−
l1csf
Iϕ

l2csr
Iϕ


, D(t) =

[
1
ms

1
ms

−
l1
Iϕ

l2
Iϕ

]

In this example, it is observed that the suspension system
constitutes an uncertain model, with the sprung mass ms
and the front and rear wheel unsprung masses muf and mur
varying within specified ranges. Additionally, when con-
structing the model for the suspension systems, it is crucial to

FIGURE 10. Response of the front suspention deflection constraints.
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FIGURE 11. Response of the rear suspension deflection constraints.

FIGURE 12. Response of the dynamic front-tire stroke constraints.

consider actuator uncertainty. In this context, a nonlinear term
g (x) = [0.5x1 (t) , 0.5x1(t)]T is assumed.

The T–S fuzzy model for the half-vehicle suspension
system can be formulated as follows

ẋ (t)

=

∑8

i=1
hi (µ)

{
Aix (t)+ B1,i(τ (t)+g (x)) + B2,iw (t)

}
z (t)

=

∑r

i=1
hi (µ) {Cix (t)+Di(τ (t)+g (x))} (84)

In this simulation, the parameters of the half-car model
are detailed in Table 1 [30]. It is assumed that ms ∈[
621kg 759kg

]
, muf ∈

[
39.6 kg 40.4kg

]
, and ms∈[

44.55 kg 45.45kg
]
. The membership functions are

calculated as follows:

M1

(
1
ms

)
=

1
ms

−
1
759

1
621 −

1
759

,

FIGURE 13. Response of the dynamic rear-tire stroke constraints.

FIGURE 14. Response of the vertical velocity of the front car body.

FIGURE 15. Response of the vertical velocity of the rear car body.

M2(
1
ms

) =

1
621 −

1
ms

1
621 −

1
759

N1

(
1
muf

)
=

1
muf

−
1

40.4
1

39.6 −
1

40.4

,
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FIGURE 16. Response of the vertical velocity of the front wheel.

FIGURE 17. Response of the vertical velocity of the rear wheel.

N2(
1
muf

) =

1
39.6 −

1
muf

1
39.6 −

1
40.4

O1

(
1
mur

)
=

1
mur

−
1

45.45
1

44.55 −
1

45.45

,

O2(
1
mur

) =

1
44.55 −

1
mur

1
44.55 −

1
45.45

The fuzzy weighting functions hi (µ) are obtained as:

h1 (µ) = M1(µ1) × N1(µ2) × O1(µ3)

h2 (µ) = M1(µ1) × N2(µ2) × O1(µ3)

h3 (µ) = M2(µ1) × N1(µ2) × O1(µ3)

h4 (µ) = M2(µ1) × N2(µ2) × O1(µ3)

h5 (µ) = M2(µ1) × N2(µ2) × O2(µ3)

h6 (µ) = M2(µ1) × N1(µ2) × O2(µ3)

FIGURE 18. Response of the dynamic front and rear actuator forces.
(a):The first vector of the control input and (b): The second vector of the
input control input.

h7 (µ) = M1(µ1) × N2(µ2) × O2(µ3)

h8 (µ) = M1(µ1) × N1(µ2) × O2(µ3)

where µ1 =
1
ms
, µ2 =

1
muf

, and µ3 =
1
ur .

The road profile in this example is considered to unveil the
transient response characteristic, given by:

Zrf (t) =


A
2
(1 − cos(

2πV
L

t)), if 0 ≤ t ≤
L
V

0, if t >
L
V

Here, A and L are the height and length of the bump, respec-
tively. Assuming A = 0.1 m, L = 2.5 m, and the vehicle
forward velocity as V = 20 km/h. In this scenario, the
road condition Zrr (t) for the rear wheel is assumed to be
the same as that for the front wheel but with a time delay
of (l1 + l2)/V . For this example, zero initial conditions are
chosen. The desired eigenvalue is selected as λ = −30.
Utilizing the optimization problem introduced in (51), theH2
performance index from the disturbance w to the output z is
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FIGURE 19. Trajectories of sliding variable s(t). (a): S1 and (b): S2.

obtained to be less than γ = 7.71. Additionally, the state
feedback gains are obtained as:

kT = 104



−6.1721 0.4018
−0.0590
−4.3908

−0.8129
−2.6817

−0.3251
−0.8538
−0.0178
0.2999

−0.0044

−1.2200
0.0958
1.7968

−0.0286
−2.0014


The sliding gain is obtained as:

ST = 10−3



0.0424 0.0061
0.0091

−0.0134
0.1220
0.0228

0.0007
0.0036
0.0010

−0.0003
−0.0003

−0.0093
−0.0013
0.0123

−0.0006
−0.0037


.

FIGURE 20. Response of the heave and the pitch accelerations. (a):The
first vector of H2 outpout vector and (b): The second vector of H2 outpout
vectot.

TABLE 1. Half-vehicle model parameters [30].

The response of the front and rear suspension deflection
constraints is presented in Fig.10 and Fig.11, respectively.
Figs.12-17 exhibit the tire deflection of the front car body,
the tire deflection of the rear car body, the vertical velocity
of the front car body, the vertical velocity of the rear car
body, the vertical velocity of the front wheel, and the vertical
velocity of the rear wheel, respectively. Fig.18 visualizes the
control inputs, computed by integrating the H2 characteriza-
tion and the generalized eigenstructure assignment method.
Fig.19 illustrates the surface trajectory of the SMC, reaching
zero within a finite time horizon. Finally, the response of the
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heave and pitch accelerations is depicted in Fig.20, demon-
strating superior tracking of zero compared to the method
proposed in [30]. The obtained results affirm the effectiveness
of the proposed method.

V. CONCLUSION AND FUTURE WORKS
In this paper, a novel control strategy has been introduced,
tailored for nonlinear systems characterized by TSFM. The
objective was to devise an optimal switching surface within
the framework of sliding mode control. The strategy involved
obtaining state feedback gain through convex optimization,
executed individually for each closed-loop local subsystem.
This ensured that a predetermined number of eigenvalues
aligned with a predefined negative value, while simultane-
ously adhering to the H2-norm constraints. Subsequently,
the determination of the sliding surface, contingent upon
this specialized state feedback, was achieved by addressing
another convex optimization challenge. The effectiveness
of the proposed method was substantiated through simula-
tion results, confirming its efficiency. Looking ahead, the
study opens avenues for future research. The development
of an adaptive strategy is envisioned, drawing inspiration
from observer-based output tracking control methods for
managing unmeasurable state variables, as demonstrated
in [32] and [33]. In addition, in [34] future directions involve
extending the study to switched neural networks with time-
varying delays. Additionally, the authors express interest in
exploring more complex application scenarios and consid-
ering alternative methods, such as terminal sliding mode
and H∞/H2 LMI characterization, to achieve optimal per-
formance. The paper also suggests investigating machine
learning techniques for defining uncertainty boundaries and
developing adaptive strategies inspired by observer-based
output tracking control methods. These directions hold the
promise of extending the reach and impact of the findings
presented in this research.
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