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ABSTRACT This work proposes an efficient integration method of solar energy with industrial nonlinear
loads, accounting for dynamic variations in solar power and load harmonic profiles. The involved dynamics
necessitate that the solar interface front-end inverters be equipped to handle both harmonic distortions
and active power injection characteristics simultaneously. In this work, an instantaneous load and source
characteristic mapping is proposed for the solar-interfaced front-end inverter operated as a shunt active
power filter cum active power injector in order to accommodate the dynamic variations of the source and
load. As per requirement, to separate the load-demanded and switching harmonics, a new load network time
constant-based passive filter design diverging from traditional passive filter design methods is demonstrated.
Further, a comprehensive explanation of the current controller modeling methodology is elaborated,
considering the essential bandwidth required for proficiently managing load-demanded harmonics in both
grid injection and drawing modes of operation. Later, in grid injection mode, the influence of grid and system
impedance interactions on the power quality is analyzed for weak grid scenarios to derive the requisite
bandwidth conditions to ensure resilient power transfer. Subsequently, the experimental validation of the
solar interfaced shunt active power filter (SISAPF) with active power injection capability is carried out in
both grid power drawing and injection modes, demonstrating the effectiveness of the enhanced bandwidth
in handling load-demanded harmonics and solar power dynamic variations.

INDEX TERMS EV charging infrastructure, load time constant, non-linear loads, passive filter design, shunt
active filter, solar inverter, system bandwidth, three-phase inverter.

I. INTRODUCTION
With growing awareness of the implications of global
warming, countries worldwide are actively pursuing strategic
measures to curtail their greenhouse gas emissions. A highly
effective strategy involves integrating renewable energy
sources such as solar power into their energy grids [1], [2],
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[3], [33]. However, the integration process faces significant
technical challenges, including the intermittent nature of solar
energy and fluctuations in industrial loads such as like drives
and electric arcs. Additionally, it’s essential to recognize
that industrial loads can introduce disruptions into the power
grid, such as injecting harmonics and oscillations, leading to
issues like power quality and voltage instability [5] and [6].
To overcome these challenges, it is crucial to develop power
converters capable of efficiently injecting power into the grid,
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effectively managing disturbances, and ensuring compliance
with IEEE standards [7] to maintain a specific level of grid
quality (%THD).

Hence, researchers [8], [9], [10], [11], [12] have introduced
passive and active power filters to regulate current harmonics
and maintain them within acceptable limits. This approach
significantly elevates the overall power supply quality. In the
domain of passive filters, [8], [9], [10] discussed the use of
traditional LC and LCL filters to address harmonic currents.
These passive filters have a straightforward design and are
cost-effective, but bulky, heavy, and usually calibrated to
address specific predominant harmonics [10]. Furthermore,
their compensatory capacity is fixed and heavily dependent
on the impedance of the connected electrical network, which
may result in undesirable resonance problems [8].
On the other hand, within the active filter domain, shunt

active filters (SAFs) are a well-established solutions that
have been extensively studied for mitigating predominant
harmonics [10], [11], [12]. However, designing SAFs neces-
sitates a thorough evaluation of factors, including source
availability, converter topology, control methods, and output
filters, to tackle harmonic issues efficiently [13]. These
active filters are directly linked to the load or at the
Point of Common Coupling (PCC). The design principles
for SAFs focus on attaining a sinusoidal current pattern
in the power grid by extracting information about load
current harmonics to synthesize a reference signal for the
controller [12]. These harmonics can be extracted in SAFs
through various methods, including stationary reference
frame techniques [14] and [15], synchronous reference frame
methods [16], [17], [18], or Fourier transform methods [22].
The effectiveness of SAF design through these extraction
methods is optimized when the controller possesses sufficient
bandwidth [19]. Inadequate controller bandwidth in SAFs
can result in the undesirable introduction of notches in the
injected grid current, further compromising the overall power
quality of the grid as highlighted in [20] and [21]. Con-
sequently, Various controller models with diverse harmonic
compensation capabilities have been investigated, as evident
in [23], [24], [25], [26], [27], [28], and [29]. However, the
control methods showcased thus far have not considered
the influence of the load’s passive impedance and load
current gradients in the determination of the controller’s
bandwidth [19]. To ensure the development of an accurate
controller, it is imperative to take into account the load’s
passive impedance and the fluctuations in load current. This
thoughtful consideration allows for the choice of minimum
inductor values, equipping the active filter to effectively
reduce harmonics and enhance the quality of the grid current.

In addition to precise controller modeling, the controller’s
bandwidth is also influenced by the converter filter design of
the SAF [32]. Previous researchers have designed the passive
filter with consideration for the current ripple in the output of
the SAF, ensuring the provision of necessary load harmon-
ics while simultaneously mitigating switching harmonics,

as indicated in [30], [31], and [32]. In [20], the passive filter
is specifically designed to efficiently eliminate switching
harmonics while ensuring no impedance is added to the
load-demanded harmonics. The given literature introduces
a design approach that notably boosts the overall system
bandwidth in comparison to conventional ripple-based filter
designs. However, it falls short of delivering a perfectly
sinusoidal current to the grid [20]. The reason behind this is
the omission of the load’s passive impedance and variations
in load current gradients during the design of the passive
filter. This omission results in unwanted disruptions in the
grid current, further deteriorating the overall power quality.

The literature provided thus far has predominantly focused
on supplying load harmonics using SAF, with limited
attention given to the simultaneous injection of active
power alongside harmonics supply [19]. As energy demands
continue to rise, the need for solar interface active filters
in nonlinear load infrastructures is growing [24]. These
filters are expected to support active power injection into the
grid while managing load-demanded harmonics. However,
a notable challenge arises during active power injection due
to the interaction between passive filter inductance and grid
inductance. This interaction diminishes the short circuit ratio,
leading to a weaker grid scenario [4]. This underscores the
importance of designing the right passive filter and achieving
the corresponding controller bandwidth to improve power
quality in weak grid conditions. In [34] and [35], stability
issues pertaining to weak grids are tackled by employing
a synchronous reference frame-based model to depict the
interactions between the grid and system impedance. The
analysis reveals that modifying the bandwidth of the phase
lock loop (PLL) notably impacts the system’s capability
to reject power harmonics [36]. However, it comes at the
expense of compromising the dynamic response. Therefore,
modifying the PLL bandwidth is not feasible as it restricts
some of the load-demanded harmonics, leading to poor power
quality, which contradicts the primary objective of SAF to
provide the harmonics demanded by the load.

Subsequent researchers have suggested virtual feed-
forward loop compensation techniques to adjust the control
loop parameters based on network impedance [36]. Never-
theless, these feed-forward loops introduce positive feedback,
necessitating additional precautions to maintain system
stability [4]. Later, researchers recommended the use of lead-
lag compensators and notch filters specifically designed to
mitigate power harmonics, ultimately enabling the delivery of
high-quality power in weak grid scenarios. These techniques
aim to enhance the quality of power supplied to weak
grids but have restricted applicability since they primarily
address frequency variations at the PCC. Furthermore, these
methods frequently require additional sensors and complex
algorithms. A recent study outlined in [4] demonstrated
that properly tuning the gain of the PI controller could
effectively reduce existing harmonics in weak grid scenarios.
This reduction was achieved through precise modeling of
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the weak grid scenario, taking into account the interactions
between system and network impedance [4]. However, it’s
important to note that these studies are solely focused on
active power injection into the grid and do not address the
supply of harmonics demanded by nonlinear loads.

Recognizing the crucial need for designing the right pas-
sive filter for solar interface inverters, especially for shaping
grid power quality, this study introduces a novel passive
filter design methodology. This methodology is based on the
computation of instantaneous load time constants at various
power processing instances, considering both load and source
dynamics. The active filter designed in this context is required
to serve a dual role by handling harmonics from nonlinear
loads and injecting active power into the grid, even in weak
grid scenarios. Furthermore, this proposed methodology
sheds light on the substantial relationship between passive
filter bandwidth and its capability to attenuate switching
frequencies while still accommodating permissible load-
demanded harmonics. In addition, the study comprehensively
explains the approach for modeling and adjusting the
current controller. This process involves monitoring the load
network’s time constant under different source and load
power conditions and determining the bandwidth to manage
load-demanded harmonics effectively. The SiSAPF system
can also operate in grid power injection and drawing modes
depending on the available solar power and the demanded
load power. In the grid-injected mode, where interactions
between grid impedance and network impedance result in
power oscillations at the fundamental frequency, the study
suggests establishing appropriate controller gain boundaries
by evaluating interactive time constants.

II. THE SOLAR INTERFACED SHUNT ACTIVE POWER
FILTER
The schematic featured in Fig. 1 illustrates the Solar
interfaced Shunt Active Power Filter (SiSAPF), a system
thoughtfully designed to serve a dual purpose. It effectively
addresses the harmonics demanded by the load while
seamlessly integrating solar power into the AC network. The
proposed system comprises a three-phase inverter integrated
with solar panels, establishing a connection with the AC
power network. This three-phase inverter is strategically
positioned at the Point of Common Coupling (PCC), where
it links the grid and nonlinear loads, as depicted in Fig. 1.
A passive inductor, denoted as Lf , is connected to the
inverter’s output terminals. The primary function of this
passive inductor is to mitigate switching harmonics while
facilitating the passage of harmonics required by the load.
The importance of filter inductance design lies in establishing
an effective bandgap between these harmonics. This design
aspect plays a crucial role in achieving the desired power
quality in the grid. Therefore, in the upcoming sections,
this paper delves into the meticulous process of designing
an efficient passive filter using load network time constant
computation, comparing it with conventional ripple-based
filter design methods.

FIGURE 1. The solar interfaced shunt active power filter schematic with
control diagram.

III. THE PROPOSED LOAD NETWORK TIME CONSTANT
COMPUTATION BASED PASSIVE INDUCTANCE DESIGN
METHOD
The design of passive inductance (Lf ) ensures the optimal
performance of SiSAPF in delivering load harmonics while
attenuating the switching frequency component. The follow-
ing section thoroughly elucidates a comprehensive method
for determining the minimum and maximum inductance
values.

A. MINIMUM FILTER INDUCTANCE DESIGN
To establish the minimum inductance value necessary for
efficient harmonics management and the suppression of
the switching frequency component, configure the three-
phase inverter to solely supply active power to the load,
which is represented by resistance R (where R =

Vg
Ig
).

This configuration is illustrated in the single-line diagram
as shown in Fig. 2, facilitating the calculation of the
required back electromotive force (emf) at the switching
frequency across the passive inductance and resistance. The
voltage across resistor R, due to the switching frequency
current, must match the emf produced by the inductor (esw),
as depicted in Fig. 2. This relationship is expressed as:

efsw = Rifsw = 2π fswLfmin ifsw (1)

The information regarding the calculated back emf is
pivotal in eliminating the current component generated by
the switching frequency. Consequently, the minimum filter
inductance can be determined using Equation. 2.

Lfmin =
R

2π fsw
(2)

R = 2 ∗ π ∗ fsw ∗ Lfmin (3)

As shown in Fig. 2, the inductor produces varying
back-emf across a range of frequencies, spanning from
the fundamental frequency to the switching frequency.
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FIGURE 2. The SiSAPF’s network single line diagram with the realization
of filter inductance as a decomposed harmonic back-EMFs.

FIGURE 3. The variation of the current harmonics along with the offered
resistance and corresponding back emf offered by the filter inductor (Lf )
at two frequencies fsw1 and fsw2.

To effectively accommodate the harmonics required by the
load, it’s crucial that Lfmin does not contribute any back emf
to these harmonics. The amplitude of the back emf imparted
to each harmonic depends on the filter inductance and can be
expressed as follows:

EMFinductor = e1 + e5 + e7 + e11 + . . . . + efsw
= i1.R1 + i5.R5 + i7.R7 + i11.

R11 + . . . . . . . + ifsw.R (4)

The value of (R1, R5, R7 . . . . . . R) is obtained using
Equ.(3).

R1 = 2.π f1Lfmin; R5 = 2.π f5Lfmin . . . (5)

In this context, the impedance’s R1, R5, R7, and so
on are frequency-dependent, varying in magnitude relative
to multiples of the fundamental frequency. This change
is visually represented in the top trace of Fig. 3, using
yellow and green colors to differentiate between two distinct
switching frequencies, namely, fsw1 and fsw2. As the inverter’s

FIGURE 4. The non-linear load current profile with change in network
inductance LNL.

operational switching frequency transitions from fsw1 to
fsw2, the computed impedance values, in accordance with
Equation(5), diminish. This leads to reduced impedances,
depicted in green, for individual current harmonics, indicated
in violet, as observed in the top trace of Fig. 3. Moreover,
the corresponding back emf for individual current harmonics
at these two unique operational switching frequencies, fsw1
and fsw2, is visualized in the bottom trace of Fig. 3. It’s
evident that the provided back emf consistently registers
a slightly lower value, approximately 0.1 to 0.3 per unit
(PU), compared to the back emf at the switching frequency.
This observation underlines the significance of maintaining
minimal back emf for the harmonics required by the load,
ensuring that the designed minimum passive filter inductance
is capable of delivering these harmonics without attenuation.
Simultaneously, the calculated inductance value defines the
time constant of the SiSAPF system as follows:

τsys =
Lfmin
R

(6)

B. MAXIMUM FILTER INDUCTANCE DESIGN
To establish the maximum inductance value, it’s crucial
to evaluate the required bandwidth by taking into account
the load network time constant. This time constant is
dependent on factors such as the load network’s per-phase
equivalent resistance (RNL) and inductance (LNL), as visually
represented in Fig. 4. The load network time constant (τn) is
defined as follows

τn =
LNL
RNL

(7)

where, the method for obtaining the RNL value is detailed in
the appendix.
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The connection between the load network time constant
and the rate of load current rise is defined by Equ.(8).

2π fBW =
1
τr

=
1

2.197τn
(8)

This relationship shows that the per-phase load current rise
time is approximately 2.197 times the load network time
constant (τn). Additionally, it is evident from Fig. 4 that a
reduction in filter inductance results in a shorter rise time
for the load current while the load power remains constant.
The understanding of a shorter rise time plays a pivotal role
in the design of a SiSAPF passive filter, aimed at achieving
a broader bandwidth than the load network. This objective
is attained through a systematic design approach for the
passive filter, with a particular emphasis on the load network
time constant (τn) and the SiSAPF system time constant
(τsys) as essential parameters. To effectively manage the
complete spectrum of load-demanded harmonics without any
reduction, it is crucial to guarantee that the SiSAPF system
time constant (τsys) remains shorter than the load network
time constant (τn). Consequently, themaximum values for the
filter inductance can be determined based on the network time
constant, and these values are as follows:

Lfmax = τn.R (9)

The filter specifications, determined through Equation(9) for
different load processing powers, are compared with tradi-
tional ripple-based filter design methods [20], as depicted
in Fig. 5. It becomes evident that the innovative fil-
ter design effectively accommodates the load-demanded
harmonics, ensuring a flawless sinusoidal grid current,
unlike the conventional filter design methods. Conven-
tional filter design methods take into account the inverter
switching frequency and the magnitude of current ripple
when designing passive filters for SAFs as depicted in
Equation(10).

Lf =
Vdc

6Fsw△Ippmax
Method − 1

Lf =
Vdc

2
√
6Fsw△Ippmax

Method − 2

Lf =
Vdc

8Fsw△Ippmax
Method − 3

Lf =
maVdc

12Fsw△Ippmax
Method − 4 (10)

It is worth noting that the conventional approach results
in larger filter inductance sizes, as shown in Fig. 5, and
fails to provide adequate bandwidth for the load-demanded
harmonics. This leads to the introduction of unwanted
notches in the grid current and, consequently, a degradation
in the overall power quality of the grid, as displayed in Fig. 6.
The reason for this is that these methods often overlook
the impact of load passive impedance and variations in
load current gradients when determining the passive filter
inductance value.

FIGURE 5. Comparison of filter design methods at different powers.

FIGURE 6. Comparison of grid currents for the load currents at different
filter design methods.

Finally, taking into account the essential bandwidth and
switching frequency attenuation criteria, the permissible
range of filter inductance can be determined based on:

R
2π fsw

≤ Lf ≤ τnR (11)

Following the modeling of filter inductance, it is essential
to employ closed-loop modeling to enhance further the
performance of the proposed SiSAPF system in delivering
active power while managing load-demanded harmonics.
This modeling approach aids in determining the appro-
priate controller gains for achieving the desired dynamic
response and optimizing the overall system bandwidth.
Further insights on closed-loop modeling are provided in the
following section.

IV. THE SISAPF’s CLOSED-LOOP CONTROLLER
MODELING
This section focuses on the closed-loop controller modelling
based on the synchronous reference frame (SRF). The
objective is to attain the desired dynamic responses while
managing load-demanded harmonics. In the SRF approach,
the three-phase grid voltages are sensed at the Point of
Common Coupling (PCC) to derive the synchronous voltage
references (vgd & vgq).

vgd =
2
3
(vgacos(ωt) + vgbcos(ωt − 120o)
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+ vgccos(ωt + 120o)); (12)

vgq =
−2
3

(vgasin(ωt) + vgbsin(ωt − 120o)

+ vgcsin(ωt + 120o)); (13)

Here, ωt represents the grid voltage angle obtained through a
phase-locked loop (PLL).

Subsequently, the three-phase nonlinear load currents (Ila,
Ilb, and Ilc) are converted into a synchronous reference frame
by employing the acquired grid voltage angle (ωt), as outlined
below:

Ild =
2
3
(Ilacos(ωt) + Ilbcos(ωt − 120o)

+ Ilccos(ωt + 120o));

Ilq =
−2
3

(Ilasin(ωt) + Ilbsin(ωt − 120o)

+ Ilcsin(ωt + 120o)); (14)

In this context, Ila, Ilb and Ilc represent the three-phase
nonlinear load currents sensed before the diode bridge
rectifier, as depicted in Fig. 1, and are subsequently converted
to the synchronous reference frame as Ild and Ilq. The
load harmonics component information is then extracted
by subtracting the fundamental component from the real
component of the nonlinear load current, as outlined in
Equation(15) [

Ildh
Ilqh

]
=

[
Ild − Avg(Ild )

Ilq

]
(15)

Subsequently, the reference for the current controller can
be determined by combining the extracted load harmonics
component with the photovoltaic active power component,
as shown below: [

Idref
Iqref

]
=

[
Ildh + I∗d
Ilqh

]
(16)

where I∗d represents the active power reference generated
by the Maximum Power Point Tracking (MPPT) controller,
as shown in Fig. 1. Moreover, Fig. 7 illustrates the typical
variations of Ild and Ilq. It’s noteworthy that the rise time of Ilq
precisely aligns with the load current rise time (τr ), indicating
that the load network’s time constant (τn) information is
inherently embedded in Iqref . Consequently, Iqref data alone is
sufficient for determining the network time constant required
to design the SiSAPF inductance and the associated closed-
loop controller gains. Furthermore, the derived active power
reference (Idref ) integrates the available photovoltaic active
power with the load harmonics demand, allowing the SiSAPF
network to operate in two modes based on available solar
active power.

1) Mode-1 (Grid drawing power mode): When the avail-
able solar active power (PS) is less than or equal to the
load demanded active power (PL), i.e. (PS <= PL), the
active power drawn from the grid can be calculated as
Pgd=PL-PS .

FIGURE 7. The variation of three phase nonlinear load currents and
corresponding real and reactive component (Idref and Iqref ) profiles in
SRF at different filter inductance and network power.

FIGURE 8. The single line diagram of the power network demonstrates
the power interaction between SiSAPF, grid, and nonlinear load.

2) Mode-2 (Grid Injection power mode): PS > PL H⇒ ,
the active power injected to the grid can be calculated as
Pgi =PS -PL ;

The controller gain modeling for mode-1 and mode-2 is
described in the subsequent subsection by monitoring the
power and its associated time constant.

A. MODE-1 OPERATION
During this mode of operation, the equivalent resistance (Rs)
corresponding to the available solar energy processed by
SiSAPF can be identified as:

Rs =
vgd
Ifd

(17)

Here, vgd represents the grid voltage, and Ifd is the grid-
injected current in the d-domain. By utilizing the identified
resistance (Rs) and system inductance (Lf ), the system’s
transfer function can be obtained by identifying the rate of
change in reference current as follows:

dIdref
dt

=
2
3
((
vga
Lf

−
Rs
Lf
ifa)cos(ωt) + (

vgb
Lf

−
Rs
Lf
ifb)

cos(ωt − 120◦) + (
vgc
Lf

−
Rs
Lf
ifc)cos(ωt + 120◦)) + ωIqref

dIqref
dt

=
−2
3

((
vga
Lf

−
Rs
Lf
ifa)sin(ωt) + (

vgb
Lf

−
Rs
Lf
ifb)

sin(ωt − 120◦) + (
vgc
Lf

−
Rs
Lf
ifc)sin(ωt + 120◦)) − ωIdref

(18)
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FIGURE 9. The signal flow diagram consolidated the plant model and
controller.

Here, ifa, ifb, and ifc represent the SiSAPF three-phase
currents, while vga, vgb, and vgc denote grid voltages,
as illustrated in Figure 1. Substituting (12) and (13) into
Equation (18) yields:

dIdref
dt

=
vgd
Lf

−
Rs
Lf
Idref + ω.Iqref (19)

dIqref
dt

=
vgq
Lf

−
Rs
Lf
Iqref − ω.Idref (20)

The derived (19) and (20) can be expressed in the form of
state space model as ẋ = Ax + Bu and y = Cx + Du:[

dIdref
dt

dIqref
dt

]
=

[
−RS
Lf

ω

−ω −RS
Lf

] [
Idref
Iqref

]
+

[Vdc
Lf

0

0 Vdc
Lf

] [
md
mq

]
(21)[

Ifd
Ifq

]
=

[
1 0
0 1

] [
Idref
Iqref

]
(22)

where,Vgd = md ∗ Vdc and Vgq = mq ∗ Vdc .
Furthermore, the transfer function can be derived from the

state-space equation in the following form:[Y (s) = (C(SI −

A)−1B+ D) [
Ifd
Ifq

]
=

[
G11 G12
G21 G22

] [
md
mq

]
(23)

The derived G11 and G22 represents the d− loop and
q− loop plant transfer functions as shown in Fig.9.

The plant transfer function is described as

G11 = G22 =
(sLf + RS )

s2L2f + 2Lf RSs+ R2S + (ωLf )2︸ ︷︷ ︸
≈0

(24)

Here, ωLf represents the cross-coupling term. As this
coupling term is compensated in the feed-forward loop,
as shown in Figure 1, the plant’s transfer function can be
simplified as:

G11 = G22 =
1

(sLf + RS )
(25)

As demonstrated in Equation (25), the value of Lf
determines the open-loop response of the plant. TheBode plot
of the plant, with Lf calculated using both the conventional
ripple-based method and the proposed time constant-based
method, is shown in Fig. 10. From the Bode plot and
root locus plot in Fig. 10, it is evident that the inductance
computed using the method described in this work provides
a wider bandwidth compared to the ripple-based filter design
method.

FIGURE 10. The Bode diagram and Root locus of SiSAPF’s open-loop
transfer function with the variation of the filter inductance.

Later, in order to analyze the system’s dynamic response
effectively, it is essential to determine the closed-loop transfer
function. Initially, the open-loop transfer function of the plant
is established by combining the transfer functions of the PI
controller and the plant, as shown below:

GPI = KP +
KI
s

; Gopen = GPI ∗ Gplant (26)

Gopen =
KP
sLf

.(s+
KI
KP

).(
1

s+
RS
Lf

) (27)

Furthermore, the closed-loop transfer function can be
expressed as follows:

Gclosed =
Gopen

1 + Gopen
(28)

Using the closed-loop transfer function, the controller gains
can be determined as follows:

KP =
Lf
τs

;KI =
RS
Lf

.KP; τs =
Lf
KP

(29)

As per Equation (29), it is evident that the value of KP at a
given Lf determines the system’s dynamic response. The step
response of the closed-loop system at different KP values is
depicted in Fig. 11. It is clear from Fig. 11 that an increase in
KP leads to an improved dynamic response as the system time
constant (τs) decreases. Therefore, selecting a suitable KP
value that satisfies τs ≤ τn is essential to smoothly process the
load-demanded harmonics along with active power injection
into the power network. However, increasing gain values
cause the controller’s zeros to shift towards the right-hand
side of the complex plane, as shown in Fig. 12. Fig. 12
makes it evident that the controller zeros are moving towards
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FIGURE 11. Step response SiSAPF’s closed-loop transfer function with
varying Kp.

FIGURE 12. Root locus of SiSAPF’s open-loop transfer function with
varying Kp.

an unstable region. Hence, choosing controller gains within
acceptable limits is crucial to ensure stable system operation.
The effect of the controller gains on grid current in terms of
% THD for processing the inverter power into the grid and
load is discussed in the following section.

B. THE SELECTION OF CONTROLLER GAINS BASED ON
LOAD NETWORK TIME CONSTANT
Further, in this subsection, the controller gains selection
based on the determined load network time constant for
accomplishing the maximum possible closed-loop bandwidth
is demonstrated. Here, the boundary of controller gains and
outlines selection criteria based on the network time constant
is elaborated. The controller system time constant is strategi-
cally chosen relative to load power and network impedance,
ensuring it remains lower than the load network time constant
(τs ≤ τn). Under these conditions, a comparative analysis
of the proposed and ripple-based filter designs is conducted
across varying power levels, with %THD comparisons pre-
sented in Fig. 13. The validity of this condition is confirmed in
both grid drawing and injected modes, particularly under stiff
grid conditions. Fig. 13a illustrates the efficacy of harmonic
compensation with the proposed filter inductance compared
to diverse ripple-based filter inductance methods in grid
drawing (left) and grid injected (right) modes. Additionally,
Fig. 13b compares the proposed method under different
controller system time constants. This reveals that a time
constant lower than the network time constant yields superior
harmonic compensation and lower grid current %THD.

FIGURE 13. THD comparison of proposed and different filter inductances
in grid drawing and injection modes under proposed controller gain
design methods.

However, in grid injection mode, depending upon the injected
power, the uncompensated grid inductance contributes to grid
current oscillations, diminishing the grid’s power quality.
Strategies for enhancing grid power quality are discussed in
the subsequent sections.

C. MODE-2 OPERATION
In this mode, the available PV power (PS ) surpasses the load
power (PL). Therefore, the excess power (Pgi = PS − PL) is
fed into the grid after meeting the load demand. The injection
into the grid is limited to the fundamental current, as the
nonlinear load absorbs the harmonic currents along with
the fundamental load current. Concerning the grid-injected
power, the equivalent resistance can be calculated as follows:

Rgi =
vgd

Avg(Ifd − Idl)
(30)

When real power is injected into the grid, the line impedance
(Lg) after the Point of Common Coupling (PCC) can induce
power oscillations due to interactions between line (Lg)
and filter (Lf ) impedance, as illustrated in Fig. 14. These
oscillations are characterized by a coupling angle (γ ). Owing
to the coupling angle (γ ), the actual currents Idact =

(Igcos(γ )) and Iqact = (Igsin(γ )) never perfectly align
with the reference currents (Idref ) and (Iqref )), respectively.
In this scenario, the power oscillations in the d-domain and
q-domain for generating the reference wave can be modeled
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FIGURE 14. The phasor diagram representing the PCC voltage oscillations
in the weak grid due to coupling angle γ in grid power injection mode.

as (32) and (33), respectively.

Vinv = V ∗
d + jV ∗

q (31)

V ∗
d = Vd(PCC) + (Idref − Igcos(γ ))(Kp +

Ki
s
) (32)

V ∗
q = (−Igsin(γ ))(Kp +

Ki
s
) (33)

Therefore, it is essential to understand the dynamics of the
SiSAPF when injecting active power into the grid. This
subsection aims to mitigate power oscillations in a weak grid
scenario by compensating the natural deviation angle (γ )
induced by grid inductance (Lg).To achieve this, the transfer
function of the SiSAPF in grid injection mode is modeled
as shown in Equation(34), taking into account the network
impedance (Lg) and the grid power injected resistance(Rgi).

G(s) =
Rgi.e−st

(Lg.Lf + L2g )(s2 +
Rgi.Lf .s
Lg.Lf +L2g

+
R2gi

Lg.Lf +L2g
)

(34)

Subsequently, the characteristic equation of the closed-loop
system in grid injection mode can be written as:

λ(s) = 1 + (KP +
Ki
s
).(

K .e−st

s2 + k.Lf .s+ k.Rgi
) (35)

λ(s) = k(Ki + KP.s)e−st + s(s2 + k.Lf .s+ k.Rgi) (36)

λ∗(s) = est .λ(s) Where k =
Rgi

L2g + Lg.Lf
(37)

λ∗(s) = k(Ki + KP.s) + s(s2 + k.Lf .s+ k.Rgi)est (38)

Later, the characteristic equation can be decomposed into real
and reactive components:

λ∗(j.ω) = λr (ω) + jλi(ω) (39)

λr (ω) = kKi + (ω3
− kRgiω)sin(ωt) − ω2kLf cos(ωt)

(40)

λi(ω) = ω(kKP + (kRgi − ω2)cos(ωt) − ωkLf sin(ωt)

) (41)

By substituting ω = γ /t , Equations (40) and (41) can be
rewritten as:

λr (γ ) = kKi + sin(γ )(
γ 3

t3
−
a0γ
t

) −
a1γ 2cos(γ )

t2

λi(γ ) =
γ

t
(kKP + [cos(γ )(a0 −

γ 2

t2
)] −

a1γ sin(γ )
t

)

(42)

Here ao=kRgi and a1=kLf .
For any value of coupling angle (γ0) varies from [-90◦,90◦],

the λ∗(s) is stable only when
(1) Condition-1: λr (γ0) and λi(γ0) have only simple and

real roots and these interlace [4]
(2) Condition-2:λ̇i(γ0).λr (γ0) − λi(γ0).λ̇r (γ0) > 0
When establishing the lower limit ofKP through condition-

2 with the evident root at γ0=0, the condition-2 simplifies to:

λ̇i(γ0).λr (γ0) = (
kKP + a0

t
)kKi ≥ 0 (43)

Equation (43) establishes that KP must satisfy the condition
KP ≥

−a0
k , given that both k and Ki are greater than 0.

Following that, the upper limit of KP can be established
by meeting the interlacing of roots condition as outlined in
condition-1, which is only fulfilled when λi(γ0) = 0. As a
result, Equation (42) can be restructured to determine the
potential roots of λ.

γ = 0 (44)

kKP + cos(γ )(a0 − ω2) − a1ωsin(γ ) = 0 (45)

In a closed-loop controller, the parameter KP functions
as a virtual RC time constant, effectively dampening the
inherent oscillations of the plant. Therefore, it is essential to
initially determine the plant’s natural oscillations (ω). This
determination can be made using Equation (45) under the
conditions γ = 0 and KP = 0, as shown below:

ω =
Rgi√

Lg.(Lg + Lf )
; (46)

Alternatively, the natural oscillations can be deduced from
the coupling trajectory depicted in Fig. 14. This coupling
trajectory, resulting from the cross-coupling terms in the d-
axis and q-axis directions, can be recognized as:

vd
iq

= ω(Lg + Lf )
vq
id

= ω(Lg) (47)

The system inertial time constant corresponding to the natural
oscillations can be derived as:
vd
iq

.
vq
id

= ω2.Lg.(Lg + Lf ) H⇒ R2gi = ω2.Lg.(Lg + Lf )

(48)

ω =
Rgi√

Lg.(Lg + Lf )
; H⇒ τg =

1
ζω

=
2(Lg.(Lg + Lf ))

RgiLf
(49)

where, ζ =
Lf

2
√
Lg.(Lg+Lf )

. Here, ζ represents the damping

ratio of the system, and it can be determined using

VOLUME 12, 2024 19975



P. Mahesh Reddy et al.: Design and Implementation of Load Network Time Constant Computation

Equation (34). Additionally, τg denotes the time constant
of the derived second-order system. Furthermore, when
we substitute values of ω and γ for less than 90o into
Equation (45), we obtain:

Kp < Lf .
RgiSin(γ )√
Lg(Lg + Lf )

(50)

To ensure the injection of a perfectly sinusoidal current
into the grid after satisfying load demands for harmonics
and active power, it’s crucial to satisfy the condition
τg > τn. To meet this condition, it’s essential to
establish a relationship between the determined value of
KP and τg.

KP <
2
√
Lg(Lg + Lf )

τg
sin(γ ) (51)

From Equation(51),It is clear that the value of KP is
notably influenced by τg, and τg is, in turn, dependent
on τn.Therefore, to achieve a perfectly sinusoidal current
injection into the grid, the right value for KP is identified,
ensuring that the system’s time constant (τg) is greater than
the network’s time constant (τn). Furthermore the range ofKP
value in relation to τg by employing Equations (43) and (51)
as follows:

−Rgi ≤ KP <
2
√
Lg(Lg + Lf )

τg
sin(γ ) (52)

D. THE SELECTION OF CONTROLLER GAINS BASED ON
THE MODE OF OPERATION
This subsection emphasizes the critical role of the con-
troller gain range in determining the closed-loop system
bandwidth. This dynamic range boundary depends on the
solar-injected power, illustrated in Fig. 15. In grid drawing
mode, the controller gain variations are calculated within
the shaded region, considering the permissible inductance
value range (minimum and maximum) outlined in Section II.
The pattern reveals that the gain should decrease with an
increase in power, as depicted in the top trace of Fig. 15.
Additionally, computed controller gains must be higher
than the proportional gain corresponding to the network
time constant. In grid injection mode, where the inverter
processing power exceeds the load demanded power, the
proportional gain limit, computed in Section IV-C, must be
considered, as shown in the zoomed portion of Fig. 15. The
intersection area between the upper and lower inductance
values determines the total SiSAPF processing power,
constrained by the grid-injected power limit. In this mode as
well, it is crucial to ensure that the resultant computed gain
exceeds the gain corresponding to the network time constant,
as illustrated in the zoomed portion of Fig. 15. The efficacy
of the SiSAPF design and closed loop controller modeling in
both grid drawing and injected mode of operation is verified
experimentally, and the obtained results are discussed in the
following section.

FIGURE 15. a) Allowable controller range for the SiSAPF from minimum to
maximum controller gain with respect to when the system changes from
grid drawing mode to grid injection mode. b) The zoomed portion of the
grid-injected mode region to ensure the limit for the grid-injected power.

FIGURE 16. The SiSAPF hardware prototype developed in the lab.

V. RESULTS AND DISCUSSION
This analysis is confirmed by developing the SISAPF lab
prototype, illustrated in Fig. 16. Design parameters for
harmonic compensation and active power injection in the
SISAPF prototype are provided in Table-1. Furthermore,
the experimental section discusses the effect of controller
gains on the computed inductance range during harmonic
compensation and active power injection in both grid drawing
and injection modes, as previously mentioned.

In this work, a nonlinear load represented by an AC/DC
rectifier is demonstrated using a DC load resistance of RL =

(18.67(R) × 1.823)�. Initially, this load is powered by the
utility grid supply. The rise time of the load current is
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TABLE 1. Specifications of filter design.

FIGURE 17. The a-phase non linear load current ( X-limit: 2A/div, Y-limit:
10ms/div) along with equivalent current correspond to real (idl ) and
reactive power (iql ) (X-axis: 50mA/div, Y-axis: 10ms/div).

observed and compared in both stationary (a-phase current)
and synchronous reference frame (Ild and Ilq), as depicted in
Fig.17, to calculate the network time constant (τn).
From Fig. 17, it’s clear that the rise time of the nonlinear

load diode current during the off-to-on transition precisely
matches that of the load current’s reactive component, Ilq,
which is 0.416ms (τr ). Using this derived rise time, the
network time constant can be computed as τr

2.197 , resulting
in 0.1896ms. Notably, this computed load network time
constant, based on the rise time at a load inductance of
LNL = 3.2mH and resistance of R = 18.675�, aligns with
the calculated network time constant (τn). This confirms the
accuracy of the measurement-based network time constant
computation and its independence from specific parameters.
With the specified load inductance and resistance, the grid
current % THD is measured at 22.6% (without compen-
sation), as seen in Fig. 18. Using the computed network
time constant and network equivalent resistance, the filter
inductance for SiSAPF is determined to be 0.6mH.

Based on the network time constant, the computed passive
filter design for SISAPF harmonic compensation is compared

FIGURE 18. The 3-phase inverter currents (top trace), load currents
(Middle trace), and grid currents (bottom trace) with no compensation
from the SiSAF (Left) and corresponding grid current harmonic spectrum
(Right).

FIGURE 19. The experimental comparison when SiSAPF operates in
harmonic compensation mode with Filter inductance Lf = 0.6mH
computed through the proposed method (left figure) and Lf = 10mH
computed using ripple-based filter design (Right figure).

with the conventional ripple-based filter and detailed in
Table-1. With the calculated filter parameters, the SISAPF
was tested experimentally, and the current waveforms of the
SISAPF, load, and grid are shown in Fig. 19a. In Fig. 19b,
the conventional method exhibits visible notches in the grid
current, reducing grid current THD to 12.4%. In contrast, the
proposed method effectively compensates for these notches
in the grid current, reducing the grid current THD to 4.4%
as illustrated in Fig. 19b. This improvement is attributed
to the smaller filter inductance in the proposed design,
providing a wider bandwidth for accommodating load-
demanded harmonics compared to the ripple-based design
with higher inductance. Additionally, the computed system
time constant is lower than the network time constant,
allowing the passive filter design to increase the filter value
to align with the network time constant. The effective-
ness of the minimum and maximum boundaries specified
in the proposed filter inductance design methodology
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TABLE 2. The Nonlinear load network parameters along with SiSAPF system parameters at different SiSAPF’s operating modes.

FIGURE 20. The effect of different filter inductances on SiSAPF circuit and grid current THD. The SiSAPF current (top trace X=10ms/div, Y=5A/div),
nonlinear load current(middle trace X=10ms/div, Y=5A/div), and grid current(bottom trace X=10ms/div, Y=5A/div). Zoomed portions correspond to the
grid current waveform THDs, respectively.

(Section-III) is validated for simultaneous harmonic com-
pensation and power injection in both grid drawing and
injection modes, utilizing the network parameters detailed in
Table-2.

The influence of the computed passive filter inductance
range on the grid current’s %THD is experimentally shown
in Fig. 20. In the left figure of Fig. 20, the minimum filter
inductance maintains %THD at 4.4%, while the maximum
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FIGURE 21. The effect of different system time constant over network time constant for SiSAPF circuit on grid current THD. In the Top figure, SiSAPF
current (top trace X=10ms/div, Y=5A/div), nonlinear load current(middle trace Y=5A/div), and grid current(bottom trace Y=5A/div) for one designed filter
inductance and their corresponding grid current THD (bottom figures).

FIGURE 22. The effect of different controller gains on SiSAPF circuit and grid current THD. In the Top figure, SiSAPF current (top trace X=10ms/div,
Y=5A/div), nonlinear load current(middle trace X=10ms/div, Y=5A/div), and grid current(bottom trace X=10ms/div, Y=5A/div) for one designed filter
inductance.

filter inductance keeps it at 4.8%. However, when the
filter inductance surpasses this range, notches appear in the
grid current, resulting in a higher %THD of 6.9%. This
indicates that the SiSAPF cannot provide the necessary high-
frequency components through the inverter circuit to meet
load demands.

To design the controller gains, the consideration of the
system time constant(τs) is crucial, and the system time

constant should be less than the network time constant(τn).
For practical experimentation, the SiSAPF is validated with
the various time constants, as depicted in Fig. 21. The
system constant is lesser than the network time constant
(τs = 0.05msec < τn), as shown in Fig. 21a, which
effectively compensates the harmonics and reduces the grid
current %THD to 4.6%. Incase, at system time constant is
equal to network time constant (τs = 0.1713msec = τn)as

VOLUME 12, 2024 19979



P. Mahesh Reddy et al.: Design and Implementation of Load Network Time Constant Computation

FIGURE 23. The SiSAPF current(top trace X=2sec/div, Y=10A/div),
three-phase non-linear load current(middle trace Y=5A/div), and grid
current(bottom trace Y=5A/div). The zoomed portions correspond to the
dynamic variation of SASAF power from 10 W to 790 W(left figure
X=10msec) and 790 W to 1400 W(right figure).

shown in Fig. 21b, The bandwidth for the load demanded
harmonics is reduced, which starts degrading the grid current
quality, and increase the %THD to 5.1%. Conversely, at a
higher time constant (τs = 0.2msec > τn), as shown
in Fig. 21c, the controller bandwidth is not sufficient to
compensate for the grid current, resulting in an increase
of grid current %THD to 8.4%. Considering the different
time constants for computing the controller gains for the
effective harmonic compensation, the system constant should
vary between (τmin to τn). Furthermore, the effect controller
gains on harmonic compensation is discussed in the following
paragraph.

The controller gains for SiSAPF at the computed minimum
and maximum filter inductance are assessed, and the results
are presented in Table-2. The practical effectiveness of these
evaluated gains is experimentally validated across various
controller gain settings using the computed passive filter for
SiSAPF, as demonstrated in Fig. 22. A controller gain lower
than the computed Kp (0.1PU), as seen in Fig. 22a, causes
notches in the grid current due to insufficient controller
bandwidth, causing an increase in % THD to 8.9%. At the
computed Kp, as shown in Fig. 22b, the controller provides
sufficient bandwidth to mitigate load-demanded harmonics,
reducing grid current % THD to 4.5%. Conversely, higher Kp
results in a grid current % THD of 9.1%, as seen in Fig. 22c.
While higher controller gains improve the system’s dynamic
response, they lead to peak overshoots and negatively impact
current quality, considering the load network time constants.
Further, the computed controller gain and passive filter
observe the dynamic change in the source power.

The effectiveness of SiSAPF in handling dynamic changes
in source power is demonstrated in Fig. 23. The system’s

TABLE 3. Considered parameters for weak grid condition
experimentation.

FIGURE 24. The SiSAPF current(top trace X=10ms/div, Y=10A/div),
three-phase load current(middle trace Y=5A/div), and grid
current(bottom trace Y=5A/div) and corresponding grid injected current
%THD with mimicked weak grid condition.

dynamic response is showcased as the source power varies
from 10W to 790W and then from 790W to 1500W. In the
dynamic characteristics, both grid drawing (Ps < PL) and
grid injection modes are displayed while maintaining the load
at 790W, as shown in the zoomed left and right traces of
Fig. 23. In both cases, the grid currents remain sinusoidal,
affirming the efficacy of the SiSAPF filter design across
different power ranges. Additionally, the power injection
limit concerning controller gains due to uncompensated grid
inductance is demonstrated, as discussed in Section-IV-C.

The grid inductance (Lg) is emulated in the grid line
to create a weak grid with a short circuit ratio (SCR)
between 2 and 3. The experimental parameters in Table-3 for
validate the injected power quality at varying controller gains,
as shown in Fig.15. Under the emulated weak grid conditions,
experiments are conducted with controller gains falling both
outside and inside the intersection area described in Fig. 15,
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and the results are depicted in Fig. 24a. When the gain is
outside the designated area (Kp > Kpweak ), such as at Kp
= 2 PU, oscillations occur due to impedance interactions,
resulting in elevated grid-injected current %THD (9.9%),
as seen in the harmonic spectrum in Fig. 24b. These
oscillations can be suppressed with the appropriate selection
of controller gain, as computed in Table-3 (Kpweak = 0.2 P.U),
as evidenced by the experimental results in Fig. 2b. With
the computed controller gain, grid current distortions are
mitigated, leading to an improved grid current THD of
4.9%. This discussion highlights the adverse impact of
exceeding threshold controller values on grid power quality
in accordance with IEEE standards.

VI. CONCLUSION
This work demonstrates a solar-interfaced shunt active filter
for supplying active power and mitigating nonlinear load
harmonics from grid current. The nonlinear load current
harmonics are addressed using a synchronous reference
frame, and the controller’s reactive power component is
observed to encompass the three-phase load current band-
width. The load network’s time constant is determined based
on the rise time of the reactive power component. This
identified network time constant discusses and analyzes
an effective filter design. Compared to ripple-based filter
designs, the proposed filter design offers a wider bandwidth,
significantly enhancing grid current quality by reducing
%THD from 22.6% to 4.4%. The closed-loop controller
gains are computed using the determined network time
constant and filter design to shape the grid current into
a pure sinusoidal pattern. During grid power drawing
operation, the filter inductance and proportional controller
gains are adjusted to match the required network time
constant, ensuring that the grid current quality remains
within IEEE standards. In the grid-injected operation mode,
interactionswith the grid inductance due to injected power are
modeled to understand the effect of injected power quality.
Consequently, appropriate controller gain tuning dampens
oscillations induced by system inductance, maintaining THD
within IEEE standards in grid-injected mode.

APPENDIX:
REALIZATION OF LOAD IMPEDANCE AT PCC
In the present work, the impedance offered by the non-linear
load at AC or PCC terminals must be considered in the design
methodology. The mathematical formulation relating DC and
AC side load impedances is shown below.

On ignoring the rectification loss.

PLload = PNLload (53)

VLIL = 3VL−N IL−N (54)

Here, the AC side three-phase configuration is assumed to be
a star connection. On substituting, VL =

3
√
6

π
VL−N in (54),

IL =
π
√
6
IL−N (55)

The Equivalent resistances on the DC and AC sides are,

RL =
VL
IL

RNL =
VL−N

IL−N
.

Substitute VL and IL expressions in RL and proceed to obtain
the relationship with AC side impedance. On simplification,

RL =
18
π2RNL . (56)
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