
Received 18 December 2023, accepted 27 January 2024, date of publication 1 February 2024, date of current version 8 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361317

A Resource Aware Memory Requirement
Calculation Model for Memory
Constrained Context-Aware
Systems
MUMTAZ ALI 1, MUHAMMAD ARSHAD 1, IJAZ UDDIN1, GAUHAR ALI 2,
MUHAMMAD ASIM 2,3, AND MOHAMMED ELAFFENDI 2
1Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan
2EIAS Data Science and Blockchain Laboratory, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Mumtaz Ali (mumtazali@cusit.edu.pk)

ABSTRACT Smart spaces are physical environments equipped with sensors, actuators, and other computing
devices to gather data and provide intelligent services to users. These spaces are made possible by ubiquitous
computing, particularly context-aware computing. Although these systems are mainly implemented on
mobile and other resource-constrained wearable devices, different techniques have been adopted for their
implementation. Rule-based reasoning is a relatively easy-to-implement approach that can solve real-world
problems. Rule-based systems rely on a set of assertions that constitute the working memory and a set of
rules that govern what should be done with the set of assertions. Despite its relative simplicity, the working
memory size is a critical factor in developing these systems, particularly for resource-constrained devices.
In this paper, we propose techniques for efficiently calculating the working memory size. Our results show
that all three techniques, DWM,APS, and SAPS, performed well in different ways. However, APS and SAPS
consumed from 25% to 100% less memory than existing techniques.

INDEX TERMS Context-aware systems, rule-based reasoning, working memory.

I. INTRODUCTION
ARule-Based System (RBS) is a powerful computing system
frequently employed in numerous artificial intelligence
applications. It is designed to incorporate expert knowledge
in the form of rules, closely mimicking human reasoning and
thinking [1]. Numerous studies have supported the RBS as
a viable alternative to human thinking and problem-solving.
While facts are thought to function as short-term memory,
rules behave as long-term memory [2], [3], [4]. Rules are
combined to form a knowledge base, each containing a small
amount of knowledge. The context-aware technique is used to
make the computer aware of its surroundings, just as a human
can perceive its environment through his or her senses of
sight, touch, smell, and hearing. A device with several sensors

The associate editor coordinating the review of this manuscript and

approving it for publication was Yichuan Jiang .

attached to it can sense its surroundings and provide the rule
engine with this context in the form of facts. This enables
the system to react to changes made to its surroundings or as
intended otherwise. A complete system with reasoning and
sensing capabilities is created when rule-based and context-
aware systems are combined [5], [6]. Figure 1 illustrates
the Rule-based system, where multiple components work
together as a single unit. The inference engine and memory
are the two essential parts. Logically, the rules and facts
are stored in memory. The area where the facts are kept
is conceptually further split into two parts: dynamic and
static. The static portion of the RBS keeps the initial facts,
which are essential for any system to start up and cannot
be withdrawn or changed, while the dynamic portion of the
RBS stores newly derived contexts. The work by [7] has a
detailed discussion and further information about the RBS
and its environment.

19320

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-1747-9704
https://orcid.org/0000-0003-1745-3279
https://orcid.org/0000-0001-9691-7347
https://orcid.org/0000-0002-6423-9809
https://orcid.org/0000-0001-9349-1985
https://orcid.org/0000-0002-7349-5249

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

FIGURE 1. Rule engine components logical connection [8].

Naturally, we cannot retain contexts as they enter and
as frequently as they arise when the system is resource
constrained, mainly when the working memory is relatively
minor. As a result, we must establish algorithms/standards
to regulate this situation. The present study has further
refined the previous models of context-aware systems [8],
which were developed for resource-constrained devices using
rule-based systems based on the logical framework [9].
The improvement in this research lies in developing new
calculation methods for memory allocation. To the best
of our knowledge, the existing techniques lack any such
computation method. Most of them are RETE-based, and
the authors of [9], who introduced the preference sets-based
methods, claim the memory randomly without any specific
memory size calculation method.

This paper is an extended version of our previous published
work [10], which is on an abstract level and only proposed the
idea; there was no algorithm design and no implementation.
This paper has properly designed the algorithms and their
implementation on two different systems. The paper proposes
three possible solutions for the same problem in three
different scenarios, which are (i) Distinct Working Memory
(DWM), (ii) Average of the Preference Sets (APS) and (iii)
Smart Average of the Preference Sets (SAPS). The DWM is
recommended for situations where time is more constrained
as compared to space. APS and SAPS are similar in space
requirements; however, SAPS is more time-efficient when
the diversity in the sizes of preference sets is less than the
threshold provided.

The rest of this paper is organized as follows: Section II
provides a review of relevant literature. Section III outlines
the fundamental components of rule-based systems and
multi-agent rule-based reasoning. Section IV presents an
approach to modeling smart space systems. Section V delves
into the management of working memory and presents
proposed algorithms for calculating its size. Section VI is
about the results and their discussion. Lastly, Section VII
summarizes the paper’s key findings and suggests potential
areas for future research.

II. RELATED WORK
In the early works in Pervasive and Ubiquitous Computing,
context awareness is referred to as the location of the objects
and/or people [11]. In recent years, the context has been

extended to other factors, such as the social and physical
aspects of an entity and the activities of the user [8], [12], [13].
Similarly, [11], [14], [15], [16], [17], [18], [19] evaluated the
user’s identity and social situation, as well as the user’s loca-
tion, environmental and/or temporal information, the objects
and people in their immediate surroundings, as well as any
changes to those objects. Furthermore, social networks are
playing a significant role in this regard, as the users provide,
or in the current smart world, these networks and their
applications are intelligent enough to collect information like
the user’s preferences and their likes and dislikes. In other
words, these applications can collect or provide different
user information, like contextual information and behavioral
activities towards the surroundings [20], [21]. These gad-
gets/applications are currently a good and prominent source
of data regarding user preferences. An illustrative example
is the SociaCircuit Platform [22], which aids in monitoring
diverse social interactions among users and subsequently
modifies their preferences. The authors of [23] used data
mining tools and techniques to monitor user interaction.
In [24], an academic advisor expert system is developed.
It is a monotonic system that returns the same answer for
the same input every time. The interface is connected with
a rule set, and there is no capacity to run a different rule
set. Sociometric badges tracked and evaluated employee
activity patterns over time [25] in an organization. Using this
information, they predicted the employee’s job satisfaction
and the effectiveness of employee interactions within an
organization. Similarly, in [26], they monitor the users’
activities on mobile sensors like call logs, a location visited,
etc. Based on this monitoring information, they further tried
to find significant locations based on social activities and
other relevant information.

Significant efforts have been undertaken to introduce
mature expert systems to theAndroid platform, as highlighted
in the book ‘‘Build Android-Based Smart Applications’’ [27].
The book provides comprehensive coverage of rule engines
that can be effectively employed on the Android platform.
It offers in-depth insights into the functionality and utilization
of these rule engines within Android-based applications.
However, these rule engines have limitations in terms of
context awareness, resource efficiency, and dynamic context
utilization with preferences. The authors of the book also
identified additional limitations with these engines. For
instance, certain rule engines such as Jruleengine and Zilonis
do not support the usage of OR operators; Termware
necessitates writing rules in code, making the process of
updating them challenging; and Roolie mandates each rule
to be coded in a separate file, which is cumbersome and
impractical for larger systems.

During porting various rule engines, technical diffi-
culties were encountered. Eclipse faced memory con-
straints while converting files to Dalvik format due to
the memory-intensive nature of Drools. Take necessitates
a Java compiler at runtime, and JLisa encounters a stack
overflow error on Android. Jess, although costly and

VOLUME 12, 2024 19321

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

incompatible with Android, consumes excessive memory
resources.

Table 1 shows that most rule-based engines developed are
RETE algorithm-based. RETE is a well-known algorithm in
the area of rule-based engines. However, according to the
literature, it is a memory-intensive algorithm unsuitable for
memory-constrained devices. RETE loads all the rules in
the memory at the very start of the application’s loading
time and checks them one by one to see if they should be
fired [28]. In addition, it is a time-consuming job to check
each and every rule for each instance. Owing to this, the
authors of [28] introduced preferences. They divide the whole
rule base into preference sets and load only those rules that
are in the preference set. Although at loading time, it works
very efficiently due to preference sets, over time, it does
not work with the same efficiency as it does not remove
the already loaded rule sets. Similarly, [7] does not have
any systematic way for memory allocation. They claim a
fixed-sizememory for execution thatmay lead to some issues.
Like both in [7] and [28], there is no technique to remove
the already loaded rules from the memory once it reaches its
limits. They randomly remove rule(s) that can be critical and
may soon be required for execution. This scenario can lead
the system into an infinite loop.

III. RULES-BASED MULTI-AGENT SYSTEMS
Multi-agent systems are decentralized systems designed
to solve comparatively challenging problems compared to
centralized systems. Multi-agent systems make it possi-
ble to divide the problem into sub-parts, and the struc-
ture/organization of agents imitate human interaction in an
organization. Every agent has responsibilities and sufficient
autonomy to perform the specific task allotted and commu-
nicate with other agents. The primary goal is to work, act
smartly like a human, and smartly perform the task.

An agent is a software system or device (a sensor or robot)
composed of perception and reasoning that acts accordingly.
Simply speaking, agents are designed and programmed to
solve a specific problem(s). Similarly, multi-agent systems
are designed and programmed to solve complex problems.
The author contends in [29] that it enables the development
of a more natural and human-like process to solve an issue.
This also allows agents to be more autonomous in their tasks
and to change physical space into a smart and interactive
environment with a decentralized structure.

Agents that are designed to implement a rule-based
application are known as rule-based agents. Various authors
have proposed a variety of smart rule-based agents [30],
[31], [32], [33], [34], [35]. The behaviour of the proposed
systems was smart as compared to the traditional agents,
where the behaviour of the agents is fixed andworks in a fixed
environment. Moreover, rule-based agents are dynamic and
are created and modeled so that they can acquire information
from their surroundings, reason about it, and alter their
behaviour accordingly.

IV. MODELING SMART SPACE SYSTEMS
It has long aimed to create intelligent, autonomous, and
adaptable systems that function in complex and dynamic
environments. Discussion and studies on this subject have
evolved in recent years [36], [37], [38], [39], [40]. An inter-
operable, heterogeneous environment is offered by a smart
space for users, devices, and services to communicate
in. Users are finally given unobtrusive support based on
contextual information in such a scenario [41]. As numerous
different hardware and software components are present
in smart spaces, interoperability is essential. The receiving
device must accurately translate the data into the form that the
transmitting device intended. Semantics Web technology is
one of the techniques to accomplish this task [42], especially
for mobile and embedded devices. However, one must keep
in mind the resource limitations and unique characteristics of
both devices.

Smart spaces [43] rely heavily on contextually aware
systems, and context modeling is a crucial first step in
creating such systems. Context refers to any information,
whether it be physical or conceptual, that can be employed
in the process of determining the state of an entity.
An entity can be a person, a place, a physical thing, or a
computational object. Entities can also be abstract concepts.
This context reflects the connection between a user and
an application [44]. A smart space provides a service to
its users by sensing and analyzing the scenario in which
the users are currently located, determining the demands of
the users, and supplying the necessary functionality based
on the resources that are accessible during that situation.
‘‘Ontology-based context modeling and rule-based context
reasoning are two of the most common approaches utilized to
facilitate semantic interoperability and analyze user context
in smart spaces’’ [7]. The process of getting context entails
gathering information about the context in its raw form
from a diverse range of available sensors. Moreover, the
smart system may provide the user with the choice to
manually input contextual information, allowing them to
contribute to the context-gathering process [45]. An ontology
that represents the generic concepts on a more advanced
level is required in order to model a context and make it
applicable to any domain. The context model needs to be able
to provide hierarchical frameworks for enhancing specific
context information. A standardized language provided by
context ontology can be used to express knowledge about
a domain and describe particular scenarios that take place
within a domain [46]. Contextual reasoning’s goal is to create
higher-level contexts from perceived low-level contexts.
Contextual reasoning also aims to provide new pertinent
information for users and applications from many context-
data sources [10]. This is the primary stage, which is
mostly in charge of determining what’s happening in a smart
environment and how to assist its users [47]. The OWL is
a descriptive ontology-based language. The semantic web
researchers [48] described the web ontology language (OWL)
as a semantic markup language for ontologies with formal

19322 VOLUME 12, 2024

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

TABLE 1. Comparison of various rule engines.

syntax and semantics. OWL1 and 2 areW3C standards. OWL
1 also comes in Lite, DL, and Full flavours. The descriptive
logic-based OWL DL is more expressive than OWL Lite.
OWL fully expresses more. The authors define OWL 2 as
a more efficient and manageable reasoning standard. There
are a total of four subsets of OWL 2 within the DL subset;
these are EL, QL, and RL. The authors define rules and
ontologies in their work using the OWL 2 RL and SWRL
languages. Both OWL 2 RL and SWRL [49] are applicable
for context modeling and reasoning. It has been shown that
OWL 2 RL is a good fit for developing rule-based systems,
which can then be implemented with the help of rule-based
reasoning engines [9]. A set of Horn clause rules can be
created using an OWL 2 RL ontology, claims [50]. SWRL
enables us to build rules using OWL principles, even for
more complex rule-based concepts. According to ourmethod,
a context-aware system consists of a collection of rule-based
agents and a set of rules that have the potential to infer new
information to represent the system’s behaviour and predict
how the context will change. Additional information on this
method is available in [51]. The rule-based reasoning method
and working memory management and updating will be the
main focus in the subsequent.

V. WORKING MEMORY MANAGEMENT
As mentioned earlier, working memory has been divided
into two parts. Each part carries out its specific function.
The significance of dynamic working memory is the primary
focus of this paper. A context that has just been created can
be added to the dynamic working memory by firing a rule
instance or a context that has been received as a message from
another device or agent. Before proposing novel techniques to
replace the existing framework for efficient working memory
utilization, wemust analyze our current working mechanisms
to apply this new technique or methodology.

A. UPDATING WORKING MEMORY
The working memory functions as a repository for current
contexts, enabling context-aware reasoning. Given the lim-
ited availability of memory, it becomes a crucial resource
during system design and implementation. To ensure efficient
usage, we impose a size restriction on the working memory,
preventing it from exceeding its capacity to hold contexts

at any given time. However, new contexts can emerge
with each iteration, and it is vital to preserve the most
essential ones for execution. Our approach modifies working
memory as a fixed-size container with static and dynamic
components. Each memory unit in the dynamic portion is
just large enough to store one context. When the agent’s
memory is full or a contradictory context presents itself,
only facts currently recorded in the dynamic memory can
be overwritten. Conflicts are resolved even if the memory
is not fully utilized by swapping out the conflicting context
for the new one. Conflicts are found by comparing newly
added contexts with those already present. If there is no
conflict, the new context is introduced to the working
memory by replacing a context chosen randomly if the
memory is already full. If there is an unreachable goal and
no means to halt the inference engine, the system may
continue running indefinitely because the dynamic memory
has limited capacity. For instance, if there is just one memory
unit and rule r1 generates a context that can activate rule r2,
and vice versa, the systemwill run unabated until it is stopped.
We set the number of iterations to equal the number of rules
to address this problem. This ensures that every rule is tested,
and the system stops instead of acting suddenly if no matches
are discovered. This approach also conserves the resources of
the host system.

B. WORKING MEMORY SIZE ESTIMATION
Estimating working memory size can help minimize context
loss, particularly when critical information needs to be
retained for further processing or decision-making. Here
are some techniques that can be used to estimate working
memory size.

1) DISTINCT WORKING MEMORY(DWM)
The ‘‘distinct’’ operator in a database eliminates duplicate
values so that each value appears only once. Similarly, when
determining the working memory size, it is sufficient to
consider the number of unique consequences of the rules
rather than every occurrence of a consequence described in
Algorithm 1. Let RB represent the total number of rules in
the rule base, RC represents the total number of consequences
of these rules, and RDC represents the number of rules with
distinct consequences, where RDC is less than or equal to

VOLUME 12, 2024 19323

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

RC and greater than zero (RDC ≤ RC and RDC > 0).
The appropriate size for the working memory can then be
determined as RDC.

Algorithm 1 Distinct Working Memory (DWM)
Require: [RB: Rule-base, RC : Rule Consequent, RDC : Rule

Distinct Consequent, RS: Array to hold Rule Set, DRS:
Array to hold Distinct Rule Set]

Ensure: [RWM : Required Working Memory Size, TPM :
Time for Performance Measurement]
START

1: start-TPM to start measuring the time
2: create RS
3: create DRS
4: RS ←− Push all the rules from RB
5: for all each Rule in RS do
6: if DRS array does not include RC then
7: DRS ←− Push Rule
8: end if
9: end for

10: RWM ←− size of DRS
11: end-TPM
12: TPM = start-TPM − end-TPM
13: return RWM , TPM

END

2) AVERAGE OF THE PREFERENCE SETS (APS)
This technique considers sets of preferences to personalize
resource-limited context-aware applications based on user
preferences. While implementing preferences can be more
complex with this method, it is space-saving as it considers
the rules of several different preference groups. By consid-
ering the overall average of rule base sizes, Algorithm 2
uses a method to determine the average working memory
size. The number of preference sets with working memory
(WM) requirements greater than the estimated average is
then calculated. The second stage involves checking these
preference sets for distinctive values in their consequent parts.
The system will seek a WM size equivalent to the estimated
average if these preference sets tested for WM have fewer
distinct consequent parts than average. In contrast, if the
number is higher than average, the system will ask for a
WM size equivalent to that amount. To avoid losing crucial
context, the greatest determined value in both cases is chosen
as the WM size. Suppose we have a rule base R with n rules
and m preference sets P1, P2,. . . , Pm with varied preference
methods. In that case, the size of the working memory will
be (|P1|+|P2|+···+|Pm|)

m , where |Pi| is the size of the preference
set Pi for 1 ≤ i ≤ m. The memory size may be larger than
the calculated average if any preference set requires more
memory, as discussed above.

3) SMART AVERAGE OF THE PREFERENCE SETS (SAPS)
The SAPS technique, outlined in Algorithm 3, focuses on
preference sets and shares similarities with APS. However,

Algorithm 2 Average of the Preference Sets (APS)
Require: [RB: Rule-base, RC: Rule Consequent, RDC:

Rule Distinct Consequent, RS: Array to hold Rule Set,
DRS: Array to hold Distinct Rule Set, NPS: Number
of Preference Set, PS: Preference Set, APS: Average
of Preference sets, PSHR: Preference Set with Highest
Number of Rules]

Ensure: [RWM: Required Working Memory Size, TPM:
Time for Performance Measurement]
START

1: start-TPM to start measuring the time
2: NPS ←− Check RB for the number of preference sets
3: PS[i] ←− Check RB for the number of rules in each

preference set
4: Average ←− Calculate the average/mean of the prefer-

ence sets
5: if (Average < PSHR) then
6: Create DRS
7: for each Rule in PSHR do
8: if RS does not include RC then
9: Push rule to DRS
10: end if
11: end for
12: end if
13: if Number of rules in DRS > Average then
14: RWM ←− DRS
15: else
16: RWM ←− Average
17: end if
18: end-TPM
19: TPM = start-TPM − end-TPM
20: return RWM, TPM

END

it incorporates certain conditions that can optimize com-
putation. The first step involves calculating the available
preference sets’ standard deviation (SD). A small SD
suggests values closely clustered around the mean, while a
large SD indicates a wider spread of values.

The systemwill select the preference set from the available
sets with the most memory units when the SD is low (less
than a predetermined threshold value of 2). Since the size of
the chosen preference set is sufficient for all other preference
sets in this situation, no additional calculations are required.

Conversely, when the SD is large (greater than or equal to
the threshold value of 2), the technique operates in a manner
similar to APS, considering the individual characteristics of
each preference set.

4) TIME COMPLEXITY OF THE ALGORITHMS
The time complexity of an algorithm is a measure of how
long it takes to run as a function of the input size. This
metric provides an upper limit on the algorithm’s running
time, particularly in a worst-case scenario. For DWM, APS,
and SAPS, the time complexity is O(n) each.

19324 VOLUME 12, 2024

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

Algorithm 3 Smart Average of the Preference Sets (SAPS)
Require: [RB: Rule-base, RC: Rule Consequent, RDC:

Rule Distinct Consequent, RS: Array to hold Rule
Set, DRS: Array to hold Distinct Rule Set, NPS:
Number of Preference Set, PS: Preference Set, SDPS:
Standard Deviation of Preference sets, APS: Average
of Preference sets, PSHR: Preference Set with Highest
Number of Rules]

Ensure: [RWM: Required Working Memory Size, TPM:
Time for Performance Measurement]
START

1: start-TPM to start measuring the time
2: NPS ←− Check RB for the number of preference sets
3: PS[i] ←− Check RB for the number of rules in each

preference set

4: SDPS ←−
√

1
NPS

∑NPS
i=1 (PS[i]− APS)2

5: if (SDPS ≤ 2) then
6: RWM ←− size of PSHR
7: else
8: RWM ←− Size calculated through APS
9: end if

10: end-TPM
11: TPM = start-TPM − end-TPM
12: return RWM, TPM

END

VI. EXPERIMENTAL RESULTS
The proposed algorithms have been evaluated using three
different rule sets, and the overall combination of the three
rule sets ‘‘Smart Home, Smart Patient, Smart Office and
Overall’’ developed by the authors of [28]. We combine all
the rules as it can be a multi-agent smart solution and check
the algorithm on the maximum number of rules available
in the rule sets selected. The rule sets comprise a total of
153 rules. The algorithms were evaluated, and results were
generated on two different systems. Each result is averaged
over 10 iterations for accuracy. The specification of the first
system is described in Table 2, and the second one is shown
in Table 3.

A. TIME AND SPACE REQUIREMENT
The results generated on both systems are discussed in the
subsequent.

1) RESULTS GENERATED ON CORE I5 SYSTEM:
Table 2 shows the performance results of the three distinct
methods: DWM, APS, and SAPS on an Intel Core i5-4570
system with a CPU 3.20 GHz and 8 GB of RAM for the
following rule sets: Smart Home, Smart Patient, Smart Office,
and Overall.

Based on the data in Table 2, it is evident that the
DWM approach routinely outperforms APS and SAPS in
terms of execution time (in milliseconds (ms)). In the Smart
Patient category, for example, DWM completes tasks in
1.984ms, whereas APS and SAPS take 2.58ms and 2.998ms,

respectively. DWM leads APS and SAPS in the Overall
category, with completion times of 1.998 ms, 2.999 ms, and
2.999 ms, respectively. If we observe the average run-time
of the three methods, DWM has the lowest average run-
time, 1.741 ms, APS follows closely behind with an average
run-time of 2.319 ms, while SAPS has the most extended
average run-time of 2.495 ms.

When it comes to memory usage (in kilobytes (KB)),
DWM uses more memory than APS and SAPS in almost
every category. In the Smart Home category, for example,
DWM uses 0.22 KB, whereas APS and SAPS both utilize
0.136 KB. The Smart Office category has the largest memory
use, with DWMconsuming 0.46 KB and APS and SAPS each
consuming 0.176 KB. On average, DWM consumed 0.25 KB
of memory. In contrast, the APS and SAPS requirements
were only 0.147 KB each. These methods have a significant
difference of almost 52% with DWM. The results and the
difference in the result of the algorithms can also be observed
in Figure 2.

2) RESULTS GENERATED ON RASPBERRY PI:
The results generated on Raspberry PIModel 3B are shown in
Table 3. Time is measured in milliseconds (ms), and memory
is measured in bytes. The result is similar in terms of memory
requirement. That is DWM consumes the most memory in
the Smart Home rules set at 188 bytes. APS and SAPS use
a lesser amount of memory, each utilizing only 124 bytes.
DWM consumes the most memory in the Smart Patient rules
set as well, at 236 bytes. APS and SAPS are more efficient,
each using 156 bytes. The major difference can be viewed in
the Overall rules set, where DWM used 460 bytes, and APS
and SAPS used only 156 bytes. On average, DWM has the
highest memory requirement, which is 0.244 KB, and APS
and SAPSmemory requirements were found to be the same at
0.132 KB. In this case, the APS and SAPS consumed almost
60% less memory as compared to DWM.

There is a significant difference in the calculation running
time between themethods as compared to the result generated
on the core i5 system. That is DWM is the fastest approach
in the Smart Home rules set, finishing tasks in 7.38 ms.
APS and SAPS are both slower, taking 20.48 and 23.97 ms,
respectively. Similarly, DWM maintains its speed lead in the
Smart Patient rules set, with an execution time of 8.29 ms.
At 25.16 ms and 30.55 ms, respectively, APS and SAPS
are slower. Similar trends are found in the Smart Office and
Overall rules sets. The average runtime for DWM is 8.115ms,
24.096 ms for APS, and 28.520 ms for SAPS. The results can
also be observed in Figure 3.

B. NUMBER-OF-RULES BASED RESULTS
The time and memory requirement is directly proportional to
the number of rules required to run a system on a specific
rule base. Table 5 provides information on the maximum
number of rules required to run the system properly using five
different rule-based systems/algorithms over four rule sets.
This section will enhance the clarity and comprehensibility

VOLUME 12, 2024 19325

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

TABLE 2. Results generated on core i5-4570.

TABLE 3. Results generated on raspberry PI model 3B.

FIGURE 2. Results generated on core i5-4570.

of the results. In this table, the Rule Base (RB) column shows
the total number of rules per rule set, and we consider it
equivalent to RETE algorithm-based systems because the
RETE algorithm loads all the rules in memory and compares
them one by one during processing [8].

The Preference Set Based Method (PSBM) technique was
introduced by the authors of [28]. This column shows the
maximum number of rules required from the rule set based
on preference sets. Both RB and PSBM methods do not have
any specific method for calculating the required memory for
rules. The former loads all rules into memory, while the latter
requests a randomworkingmemory size. The remaining three
proposed methods calculate the working memory for the
given rule sets.

For the ‘‘Smart Home’’ rule set, RB needs to load 47 rules
at maximum, the PSBMwill load 21 rules, the DWMmethod
needs space for 16 rules, APS and SAPS will need space for
17 rules each to operate the system on the same rule set. The
requirement of the other rule sets can also be observed in
Figure 4.
On average, DWM requires 44 rules, while APS and SAPS

require 22 rules each. RB and PSBM have an average of
77 and 28 rules, respectively. APS and SAPS performed well
and required space for less number of rules to operate a
specific rule set on a given resource-constrained device as
compared to the other three methods.

FIGURE 3. Results generated on raspberry PI model 3B.

In terms of the ‘‘overall’’ number of rules, RB has the
highest number with 153, followed by DWMwith 97, PSBM
with 40, and APS and SAPS with 30 each.

C. THE PERCENTAGE DIFFERENCE
The percentage difference in both the memory and time
requirements are discussed hereunder.

1) MEMORY-WISE PERCENTAGE DIFFERENCE:
Based on the percentage differences in required memory
space, it appears that APS and SAPS performed better than
DWM, PSBM, and RB for each of the rule sets evaluated.
Specifically, APS and SAPS required less space for the same
rule set than the other methods. While DWM outperformed
RB, it did not perform well as compared to PSBM. This can
be observed in Figure 5.

On average, the percentage difference between APS and
SAPS with RB was 100%, indicating that these methods
required only half as much memory as RB. The percentage
difference with PSBM is 24.5% and 65% with DWM.

2) TIME-WISE PERCENTAGE DIFFERENCE:
The results obtained on the Core i5, as illustrated in
Figure 2, exhibit notable percentage differences. Firstly,
when comparing DWM with APS, on average, there is
a significant gap of 29.57%. This means that DWM
operates approximately 29.57% faster than APS. Similarly,
on average, DWM showcases a time-saving advantage of
35.85% when compared to SAPS. There is a discernible

19326 VOLUME 12, 2024

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

TABLE 4. The percentage difference.

FIGURE 4. Number of rules results (Rule-sets-wise).

FIGURE 5. Percentage difference in results.

difference of 7.47% between APS and SAPS. This suggests
that APS and SAPS present variations in their performance
levels, with APS demonstrating a 7.47% advantage over
SAPS.

Likewise, the results obtained on the Raspberry Pi,
as depicted in Figure 3, reveal a significant average
percentage difference.When comparing DWMwith APS, the
percentage difference is remarkable at 99.19%. This indicates
that DWM operates nearly twice as fast as APS, resulting
in a substantial reduction in processing time. Furthermore,
DWM showcases an even greater advantage of 111.35% over
SAPS, implying that DWM completes tasks in approximately
111.35% less time compared to SAPS. Additionally, the
average difference between APS and SAPS amounts to
16.80%.

The analysis of time-wise percentage differences reveals
that, on average, APS holds an advantage over SAPS.
However, a closer examination of Figures 2 and 3 reveals
an interesting observation in the ‘‘Smart Office’’ rule set:
under specific conditions favouring SAPS, namely when the
standard deviation is less than 2, SAPS outperforms APS
in terms of processing time. In the case of the Raspberry
Pi, SAPS demonstrates a time-saving advantage of 13.52%,
while on the Core i5, SAPS exhibits a more significant
advantage of 33.33%. This suggests that SAPS can be

TABLE 5. Number of rules-based results.

particularly efficient and faster than APS in specific scenarios
with lower standard deviations.

In summary, the study evaluated five rule-based systems
across four different rule sets. The results showed that the
DWM method had the highest memory requirement, while
APS and SAPS required significantly less memory. However,
DWM had the shortest calculation runtime, outperforming
APS and SAPS. Regarding the overall number of rules,
RB had the highest number, followed by DWM, PSBM,
and APS/SAPS. The individual rule-set categories showed
that RB had the highest number of rules in the Smart
Home and Smart Office categories, while PSBM had the
highest number in Smart Patient. On average, APS and
SAPS required from 25% to 100% less memory compared
to RB and PSBM, indicating that they are more memory-
efficient, can be observed in Table 4. Both the APS and SAPS
generate almost similar results. On the overhead of standard
deviation calculation, SAPS can save time by abstaining
from additional processing/checks for distinct rules within
the preference set. This situation can be observed in Figure 3
in the Smart Office rule set.

Overall, the study provides valuable insights into the
performance of different rule-based systems and methods
for working memory calculation, which can help guide the
selection of appropriate systems for specific applications.

VII. CONCLUSION AND FUTURE WORK
The presented paper proposes a solution to the problem
of calculating dynamic working memory size in resource-
constrained devices. The proposed solution enables the
calculation of dynamic working memory size for fixed-size
rule sets, which is a critical problem in many intelligent
systems. However, it is important to consider resource
constraints while designing more complex solutions.

In the future, the authors intend to focus on the rules
write-up and generation strategies to improve the efficiency
of the proposed solution further. Even though the rules are
well written, there is room for improvement in reducing the
memory requirements for rule sets and making the process

VOLUME 12, 2024 19327

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

more efficient. The authors plan to explore new techniques
and approaches to address these challenges, enabling the
implementation of more complex and intelligent systems on
resource-constrained devices. Likewise, there is potential for
enhancing the functionality of the working memory updating
process, and we plan to incorporate these improvements in
the upcoming version of our paper.

ACKNOWLEDGMENT
The authors would like to thank Prince Sultan University
and the EIAS Laboratory for their valuable support and also
would like to thank Prince Sultan University for paying the
article processing charges (APC) of this publication.

REFERENCES
[1] E. Lagun, ‘‘Evaluation and implementation of match algorithms for rule-

based multi-agent systems using the example of jadex,’’ M.S. thesis,
Faculty Math., Comput. Sci. Natural Sci., Univ. Hamburg, Hamburg,
Germany, 2009.

[2] J. C. Giarratano and G. Riley, Expert Systems: Principles and Program-
ming. Boston, MA, USA: Thomson Course Technology, 2005.

[3] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex
Problem Solving, 6th ed. USA: Pearson Education, 2016.

[4] K. Ahmed, A. Altaf, N. S. M. Jamail, F. Iqbal, and R. Latif, ‘‘ADAL-
NN: Anomaly detection and localization using deep relational learning in
distributed systems,’’ Appl. Sci., vol. 13, no. 12, p. 7297, Jun. 2023.

[5] J.-Y. Hong, E.-H. Suh, and S.-J. Kim, ‘‘Context-aware systems: A
literature review and classification,’’ Expert Syst. Appl., vol. 36, no. 4,
pp. 8509–8522, May 2009.

[6] S. Matalonga, D. Amalfitano, A. Doreste, A. R. Fasolino, and
G. H. Travassos, ‘‘Alternatives for testing of context-aware software
systems in non-academic settings: Results from a rapid review,’’ Inf. Softw.
Technol., vol. 149, Sep. 2022, Art. no. 106937.

[7] I. Uddin, H. M. U. Haque, A. Rakib, and M. R. S. Rahmat, ‘‘Resource-
bounded context-aware applications: A survey and early experiment,’’ in
Proc. Int. Conf. Nature Comput. Commun. Rach Gia, Vietnam: Springer,
2016, pp. 153–164.

[8] A. Rakib and I. Uddin, ‘‘An efficient rule-based distributed reasoning
framework for resource-bounded systems,’’ Mobile Netw. Appl., vol. 24,
no. 1, pp. 82–99, Feb. 2019.

[9] A. Rakib and H. M. U. Haque, ‘‘A logic for context-aware non-monotonic
reasoning agents,’’ in Human-Inspired Computing and Its Applications.
Tuxtla Gutierrez, Mexico: Springer, 2014, pp. 453–471.

[10] I. Uddin, A. Rakib, M. Ali, and P. C. Vinh, ‘‘Memory-constrained context-
aware reasoning,’’ in Proc. 10th EAI Int. Conf. Context-Aware Syst. Appl.
Ho Chi Minh City, Vietnam: Springer, 2021, pp. 133–146.

[11] B. N. Schilit and M. M. Theimer, ‘‘Disseminating active map information
to mobile hosts,’’ IEEE Netw., vol. 8, no. 5, pp. 22–32, Sep. 1994.

[12] P. Dourish, ‘‘What we talk about when we talk about context,’’ Pers.
Ubiquitous Comput., vol. 8, pp. 19–30, Dec. 2003.

[13] I. H. Sarker, ‘‘Context-aware rule learning from smartphone data: Survey,
challenges and future directions,’’ J. Big Data, vol. 6, no. 1, pp. 1–25,
Dec. 2019.

[14] P. J. Brown, J. D. Bovey, and X. Chen, ‘‘Context-aware applications: From
the laboratory to the marketplace,’’ IEEE Pers. Commun., vol. 4, no. 5,
pp. 58–64, Oct. 1997.

[15] N. S. Ryan, J. Pascoe, and D. R. Morse, ‘‘Enhanced reality fieldwork:
The context-aware archaeological assistant,’’ in Computer Applications in
Archaeology. Canterbury, U.K.: Univ. of Kent at Canterbury, 1998.

[16] P. J. Brown, ‘‘The stick-e document: A framework for creating context-
aware applications,’’ Electronic, vol. 8, pp. 259–272, Sep. 1995.

[17] A. Burinskiene, ‘‘Context-aware service support efficiency improvement
in the transport system,’’ inDevelopment of Smart Context-Aware Services
for Cargo Transportation (International Series in Operations Research &
Management Science). Cham, Switzerland: Springer, 2022, pp. 179–227.

[18] A.Ward, A. Jones, and A. Hopper, ‘‘A new location technique for the active
office,’’ IEEE Pers. Commun., vol. 4, no. 5, pp. 42–47, Oct. 1997.

[19] A. O. Bang and U. P. Rao, ‘‘Context-aware computing for IoT: History,
applications and research challenges,’’ inProc. 2nd Int. Conf. Smart Energy
Commun. Jaipur, India: Poornima Institute of Engineering and Technology,
2021, pp. 719–726.

[20] I. H. Sarker, ‘‘Mobile data science: Towards understanding data-driven
intelligent mobile applications,’’ 2018, arXiv:1811.02491.

[21] I. H. Sarker, ‘‘BehavMiner: Mining user behaviors frommobile phone data
for personalized services,’’ in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops (PerCom Workshops), Mar. 2018, pp. 452–453.

[22] I. Chronis, A. Madan, and A. Pentland, ‘‘SocialCircuits: The art of using
mobile phones for modeling personal interactions,’’ in Proc. Workshop
Multimodal Sensor-Based Syst. Mobile Phones Social Comput., Nov. 2009,
p. 1.

[23] Q. Meng, B. Liu, H. Zhang, X. Sun, J. Cao, and R. K.-W. Lee, ‘‘Temporal-
aware and multifaceted social contexts modeling for social recommenda-
tion,’’ Knowl.-Based Syst., vol. 248, Jul. 2022, Art. no. 108923.

[24] W. M. Aly, K. A. Eskaf, and A. S. Selim, ‘‘Fuzzy mobile expert system for
academic advising,’’ in Proc. IEEE 30th Can. Conf. Electr. Comput. Eng.
(CCECE), Apr. 2017, pp. 1–5.

[25] D. O. Olguin, B. N. Waber, T. Kim, A. Mohan, K. Ara, and A. Pentland,
‘‘Sensible organizations: Technology and methodology for automatically
measuring organizational behavior,’’ IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 39, no. 1, pp. 43–55, Feb. 2009.

[26] N. Eagle and A. S. Pentland, ‘‘Reality mining: Sensing complex
social systems,’’ Pers. Ubiquitous Comput., vol. 10, no. 4, pp. 255–268,
May 2006.

[27] C. Mukherjee, Build Android-Based Smart Applications: Using
Rules Engines, NLP and Automation Frameworks. Karnataka, India:
Apress, 2017. [Online]. Available: https://books.google.com.my/books?
id=plJDDwAAQBAJ

[28] I. Uddin, ‘‘A rule-based framework for developing context-aware systems
for smart spaces,’’ Ph.D. dissertation, School Comput. Sci., Malaysia
Campus, Univ. Nottingham, Nottingham, U.K., 2019.

[29] N. R. Jennings and S. Bussmann, ‘‘Agent-based control systems,’’ IEEE
Control Syst., vol. 23, no. 3, pp. 61–74, Jun. 2003.

[30] J. Ramos, J. A. Castellanos-Garzón, A. González-Briones, J. F. de Paz, and
J. M. Corchado, ‘‘An agent-based clustering approach for gene selection in
gene expression microarray,’’ Interdiscipl. Sci., Comput. Life Sci., vol. 9,
no. 1, pp. 1–13, Mar. 2017.

[31] A. González, J. Ramos, J. F. De Paz, and J. M. Corchado, ‘‘Obtaining
relevant genes by analysis of expression arrays with a multi-agent system,’’
in Proc. 9th Int. Conf. Practical Appl. Comput. Biol. Bioinf. Spain: Univ.
of Salamanca, 2015, pp. 137–146.

[32] A. González-Briones, J. Ramos, J. F. De Paz, and J. M. Corchado, ‘‘Multi-
agent system for obtaining relevant genes in expression analysis between
young and older women with triple negative breast cancer,’’ J. Integrative
Bioinf., vol. 12, no. 4, pp. 1–14, Dec. 2015.

[33] A. González-Briones, G. Villarrubia, J. F. De Paz, and J. M. Corchado,
‘‘A multi-agent system for the classification of gender and age from
images,’’Comput. Vis. Image Understand., vol. 172, pp. 98–106, Jul. 2018.

[34] P. Praitheeshan, L. Pan, X. Zheng, A. Jolfaei, and R. Doss, ‘‘SolGuard:
Preventing external call issues in smart contract-based multi-agent robotic
systems,’’ Inf. Sci., vol. 579, pp. 150–166, Nov. 2021.

[35] A. Bregar, ‘‘Implementation of a multi-agent multi-criteria negotiation
protocol for self-sustainable smart grids,’’ J. Decis. Syst., vol. 29, no. 1,
pp. 87–97, Aug. 2020.

[36] M. Alirezaie, J. Renoux, U. Köckemann, A. Kristoffersson, L. Karlsson,
E. Blomqvist, N. Tsiftes, T. Voigt, and A. Loutfi, ‘‘An ontology-based
context-aware system for smart homes: E-care@home,’’ Sensors, vol. 17,
no. 7, p. 1586, Jul. 2017.

[37] R. Abdur, ‘‘Smart space system interoperability,’’ in Proc. 3rd Int.
Workshop (Meta) Model. Healthcare Syst., 2019, pp. 16–23.

[38] I. Uddin, A. Rakib, H. M. U. Haque, and P. C. Vinh, ‘‘Modeling and
reasoning about preference-based context-aware agents over heteroge-
neous knowledge sources,’’ Mobile Netw. Appl., vol. 23, no. 1, pp. 13–26,
Feb. 2018.

[39] N. Streitz, D. Charitos, M. Kaptein, and M. Böhlen, ‘‘Grand challenges
for ambient intelligence and implications for design contexts and smart
societies,’’ J. Ambient Intell. Smart Environments, vol. 11, no. 1,
pp. 87–107, Jan. 2019.

[40] P. N. Mahalle and P. S. Dhotre, Context-aware Pervasive Systems and
Applications. New York, NY, USA: Springer, 2020.

19328 VOLUME 12, 2024

M. Ali et al.: Resource Aware Memory Requirement Calculation Model

[41] D. Cook and S. K. Das, Smart Environments: Technology, Protocols, and
Applications, vol. 43. Hoboken, NJ, USA: Wiley, 2004.

[42] M. Ushold, C. Menzel, and N. Noy, ‘‘Semantic integration & interoper-
ability using RDF and OWL,’’ in Proc. W3C Editor’s Draft, vol. 3, 2005.

[43] F. Yang, J. Huang, A. Bhardwaj, A. Hussain, A. A. A. El-Latif, and K. Yu,
‘‘Adaptive modulation based on nondata-aided error vector magnitude for
smart systems in smart cities,’’ IEEE Internet Things J., vol. 10, no. 21,
pp. 18672–18685, Nov. 2023.

[44] A. K. Dey, ‘‘Understanding and using context,’’ Pers. Ubiquitous Comput.,
vol. 5, no. 1, pp. 4–7, Feb. 2001.

[45] I. Uddin and A. Rakib, ‘‘A preference-based application framework
for resource-bounded context-aware agents,’’ in Mobile and Wireless
Technologies. Kuala Lumpur, Malaysia: Springer, 2017, pp. 187–196.

[46] M. Alenezi, ‘‘Ontology-based context-sensitive software security knowl-
edge management modeling,’’ Int. J. Electr. Comput. Eng., vol. 10, no. 6,
p. 6507, Dec. 2020.

[47] X. H.Wang, D. Q. Zhang, T. Gu, and H. K. Pung, ‘‘Ontology based context
modeling and reasoning usingOWL,’’ inProc. IEEEAnnu. Conf. Pervasive
Comput. Commun. Workshops, Mar. 2004, pp. 18–22.

[48] A. Rakib, R. U. Faruqui, and W. MacCaull, ‘‘Verifying resource
requirements for ontology-driven rule-based agents,’’ in Foundations of
Information and Knowledge Systems. Kiel, Germany: Springer, 2012,
pp. 312–331.

[49] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, ‘‘SWRL: A semantic web rule language combining OWL and
RuleML. Acknowledged W3C submission, standards proposal research
report: Version 0.6,’’ W3C, Tech. Rep., 2004.

[50] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, ‘‘Description logic
programs: Combining logic programs with description logic,’’ in Proc.
12th Int. Conf. World Wide Web, 2003, pp. 48–57.

[51] A. Rakib, H. M. Ul Haque, and R. U. Faruqui, ‘‘A temporal description
logic for resource-bounded rule-based context-aware agents,’’ in Proc. 2nd
Int. Conf. Context-Aware Syst. Appl. Phu Quoc Island, Vietnam: Springer,
2013, pp. 3–14.

MUMTAZ ALI received the M.Sc. degree in
computer science from theUniversity of Peshawar,
Pakistan, and the M.S. degree from the Institute
of Management Sciences Peshawar, Pakistan.
From 2005 to 2012, he was a Computer Network
Administrator with the Institute of Management
Sciences, Peshawar. Currently, he is an Assistant
Professor with the Department of Computer Sci-
ence, City University of Science and IT, Peshawar,
Pakistan. With over 15 years of experience in

research and academia, his areas of expertise encompass machine learning,
the IoT, computer networks, and AI.

MUHAMMAD ARSHAD received the Ph.D.
degree in computer science from Liverpool John
Moores University, Liverpool, U.K., in 2010.
From 2010 to 2013, he was an Assistant Pro-
fessor with City University Peshawar, Pakistan.
In 2013, he joined Sohar University, Sohar, Oman,
as an Assistant Professor. Since 2019, he has
been an Associate Professor with City University
Peshawar. He has over 14 years of experience
in research and academics. His current research

interests include peer-to-peer networks, networked appliances, agent-based
modeling and simulation, the Internet of Things, MANET’s, and service-
oriented architecture.

IJAZ UDDIN received the M.S. degree in com-
puter science from the Institute of Management
Sciences, Peshawar, Pakistan, and the Ph.D.
degree in computer science from the University
of Nottingham, Malaysia, in 2019. He has been
an active Researcher and a Developer, since 2007.
He is currently an Assistant Professor with the
City University of Science and IT, Peshawar.
He has published a number of research articles. His
research interests include the Internet of Things,

context-aware systems, and multi-agent systems.

GAUHAR ALI received the M.S. degree in
computer science from the Institute of Manage-
ment Sciences, Peshawar, Pakistan, in 2012, and
the Ph.D. degree in computer science from the
University of Peshawar, Peshawar. He is currently
a Postdoctoral Researcher with the EIAS Data
Science and Blockchain Laboratory, College of
Computer and Information Sciences, Prince Sultan
University, Riyadh, Saudi Arabia. His research
interests include the Internet of Things, access

control, blockchain, machine learning, wireless sensor networks, intelligent
transportation systems, formal verification, and model checking.

MUHAMMAD ASIM received the M.S. degree
in mathematics from the University of Peshawar,
Peshawar, Pakistan, in 2013, the M.Phil. degree in
mathematics from the Kohat University of Science
and Technology, Kohat, Pakistan, in 2016, and
the Ph.D. degree in computer science and tech-
nology from Central South University, Changsha,
China, in 2022. Currently, he is conducting his
postdoctoral research with the EIAS Data Science
Laboratory, College of Computer and Information

Sciences, Prince Sultan University, Riyadh, Saudi Arabia. His current
research interests include artificial intelligence, computational intelligence
techniques, cloud computing, edge computing, 5G/6G communication
systems, and autonomous vehicles. He has been awarded as an Outstanding
International Graduate of Central South University, in 2022.

MOHAMMED ELAFFENDI is currently a Pro-
fessor in computer science with the Department
of Computer Science, College of Computer and
Information Sciences (CCIS), Prince Sultan Uni-
versity, Riyadh, Saudi Arabia. He is also the
Founder and the Director of the Center of Excel-
lence in CyberSecurity (CYBEX), the Founder and
the Director of the EIAS Data Science Research
Laboratory, AIDE to the Rector, the Director of
the Institutional Policy and Development Unit,

and the former Dean of CCIS. His research interests include machine
learning, natural language processing, emerging distributed architectures,
next-generation computer systems, and complexity science.

VOLUME 12, 2024 19329

