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ABSTRACT On the road to the sixth generation of cellular networks (6G), the need to ensure a sustainable
usage of natural resources, amid increased competition and cost pressures, has driven the adoption of
Self-Healing Mobile Networks to enhance operational efficiency of current and future wireless networks.
This paradigm shift relies on Artificial Intelligence (AI) to increase automation of network functions, notably
by applying predictive fault detection and automatic root-cause analysis. In this context, this paper proposes
a Deep Learning (DL) model for self-healing operations based on a Spatial Graph Convolutional Neural
Network (SGCN), which is applied to evaluate the performance degradation of Base Stations (BSs) and
uncover the underlying root-causes. The advantages of the proposed DL model are threefold. Firstly, it is
especially suited for wireless network applications, leveraging the SGCN to account for spatial dependencies
among BSs and their physical characteristics. Secondly, the proposed model offers the flexibility to process
diverse types of predictive features, including Performance Management (PM), Fault Management (FM),
or other data types. Thirdly, it incorporates an explainability module that pinpoints the input features, such
as PM counters, with the most significant influence on BS performance, thereby shedding light on its root-
cause factors. The proposed model was evaluated on a live 4G network dataset and the results confirmed
its effectiveness in identifying BS performance degradation. An F1-score of 89.6% was achieved in the
classification of performance failures, which includes a 27% reduction in false negatives compared to prior
research outcomes. In a live network environment, this reduction translates into substantial improvements in
Quality of Experience (QoE) for the end users and cost savings for the Mobile Network Operators (MNOs).

INDEX TERMS Artificial intelligence, deep learning, self-healing operations, mobile network performance,
root-cause analysis.

I. INTRODUCTION
Self-healing operations in telecommunications networks
encompass a diverse range of applications where network
data and AI are used to enhance operational efficiency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mostafa Zaman Chowdhury.

These applications are focused on identifying performance
degradation (e.g., using Key Performance Indicators (KPIs)),
root-cause analysis, predictive fault detection, and self-
healing actions [1], [2], [3], [4], [5].

Currently, the operational paradigm adopted by most
MNOs involves initiating problem analysis and troubleshoot-
ing only after a service fault has been reported [6]. This
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approach is inefficient and time-consuming, as it entails
manually analysing a multitude of information sources,
including network alarms, PM counters, configuration data,
and other data types. Consequently, this leads to prolonged
Mean Time to Repair (MTTR) values, resulting in reduced
service availability and increased customer complaints. Self-
healing operations applications use automated data analysis
leveraging AI to predict network failures and their root-cause
factors, enabling the design of preemptive actions to avoid the
end users’ QoE being impacted. Moreover, such applications
yield positive environmental outcomes, potentially reducing
carbon emissions and energy consumption, contributing to
mobile network sustainability.

A challenge in wireless networks’ self-healing operations
is the development of models able to predict the BSs’
performance, notably due to mutual coverage/interference
levels considering the influence of neighbouring base stations
and user mobility patterns. A possible solution to represent
the spatial relationship between neighbouring BSs is using
SGCNs, which combine Graph Neural Networks (GNNs)
with spatial information associated with each BS. However,
contrary to traditional methodologies oriented to the physical
factors conditioning the wireless network performance,
AI-based approaches, such as SGCNs, are often seen as
very complex and hard to interpret, which may hamper their
adoption by MNOs.

This paper proposes a DL model named as 4D-SGCN-
Gx, which aims at classifying the BSs’ performance and
determining its root-cause performance factors. The proposed
model is composed of two complementary modules: the first
one relies on a SGCN to implement a binary classification
model aimed at assessing BSs’ downlink average throughput
degradation; the second one, uses the saliency algorithm [7]
to identify the root-cause factors of such performance
degradation. The proposed model was evaluated using a
dataset from a 4G live network, and the results were compared
with previous related research provided in [8]. However, the
methodology can be used with other wireless access tech-
nologies. The advantages of the proposed model are three-
fold. Firstly, it is especially suited for self-healing operations
in wireless networks, taking advantage of a four-dimensional
(4D) spatial representation of BSs, encompassing the latitude,
longitude, antenna height and antenna orientation, which
is incorporated in the proposed model by using a SGCN.
Secondly, it is technology agnostic and can be applied to
a variety of self-healing operations applications, such as in
network alarms prediction, or KPI classification using PM or
FM data. Thirdly, the proposed model provides interpretable
results, identifying the input features that contributed the
most to classify the BSs’ performance, thus providing
immediate insights to is performance root cause factors.
Although SGCNs have been successfully applied to different
problems where the data presents a geometric structure, to the
best of our knowledge, SGCN-based models have never
been applied to performance degradation classification in
live wireless networks, notably considering an explainability

module and a 4D spatial representation of BSs, as in the
proposed model. The main contributions of the paper are:

• Proposal of the 4D-SGCN-Gx model using graph-based
representations of BSs to assess their performance by
considering PM data.

• Inclusion of a 4D spatial representation of BSs, consider-
ing the BSs’ height, antenna orientation, and geograph-
ical coordinates, which are exploited by the SGCN to
enhance the 4D-SGCN-Gx’s predictive capabilities.

• Development of an explainability module to assess the
root-cause factors of BSs’ performance degradation.

This paper is organized as follows. After the introduction
provided in Section I, the theoretical background and
related work are reviewed in Section II. In Section III,
the 4D-SGCN-Gx model, designed for self-healing opera-
tions applications, is described. In SectionIV, the proposed
model is evaluated and compared with previous research
in a BS performance degradation classification problem,
relying on downlink throughput analysis. Section V presents
a detailed analysis of the model’s results explainability,
providing a comprehensive exploration of their interpretation
and consistency. Section VI, investigates the versatility of
applying the proposed model across diverse self-healing
operation scenarios, by examining an additional performance
degradation problem. In Section VII, the main conclusions
are drawn, and future work is outlined.

II. THEORETICAL BACKGROUND AND RELATED WORK
This section provides an overview of GNNs and introduces
the key concepts used in this paper, such as graph theory,
convolution, spatial graphs and the range of problems that
can be tackled with this approach. Notably, it emphasises
the significance of using graphs to address performance opti-
mization issues in mobile networks. Furthermore, a summary
of related work presents the most relevant studies that have
previously applied GNNs to similar problems, focusing on
the distinctions with the approach presented in this paper.

A. GRAPH NEURAL NETWORKS
In recent times, a proliferation of research initiatives
has focused on the development of GNNs extending DL
approaches for the analysis of graph-based data. Graphs are
versatile data structures, comprising nodes that are connected
by edges. In reality, numerous systems can be effectively
represented by graphs. For instance, chemical molecules,
where nodes correspond to atoms, and edges symbolise
chemical bonds. Similarly, in transportation networks like
subway systems, grah nodes represent stations and edges
depict the connecting routes. This concept extends to
describing wireless networks, where BSs are represented by
the graph nodes and edges can signify established neighbour
relations among them. Beyond the graph structure, each
node typically holds characteristic information, representing
node features stored as node embeddings. For example, in a
mobile network, each BS can be characterized by a vector of
performance indicators at a specific time stamp. Furthermore,
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FIGURE 1. Example of an undirected graph with N = 5 nodes and its embeddings with C = 7 characteristic features: a) Graph
representation; b) Adjacency matrix; c) Node embeddings.

characteristic information can also be associated with edges,
representing edge features, and stored as edge embeddings.
For instance, edge information between BSs may encompass
details related to daily handovers between neighbouring
nodes or radio link indicators, such as path loss.

Formally, a graph comprises N nodes connected through a
set of E edges. Graphs can be mathematically characterized
using three matrices: A, X, and E, which respectively
represent the adjacency matrix, node embeddings, and edge
embeddings. The adjacency matrix describes the graph’s
structural connections, where aij is 1 if there is an edge
between node i and node j, and 0 otherwise. Moreover, if the
edges have a direction the matrixA is asymmetric, indicating
that the graph is directed (digraph). In this context, the
presence of an edge from node 1 to node 2 does not imply the
existence of an edge from node 2 to node 1. Conversely, when
the edges lack direction, the graph is considered undirected,
and in such cases, the matrix A is symmetric.

In Fig. 1-a), an undirected graph consisting of five nodes
is depicted and its structure is defined by A in Fig. 1-b).
For simplicity, in this example only the node embeddings, X,
are described, where each row represents the vector of
characteristic features of the nth node, x(n), with size C . Upon
defining an object as a graph, three types of problems can be
tackled using GNNs, relying both on the graph’s structure and
its node embeddings [9]:

• Graph-Level Tasks - the objective is assigning labels
or estimating values for the entire graph by aggregating
the node embeddings. An example is the detection of
anomalies in a mobile network by analysing the traffic
flow between BSs (classification), or predicting the
average Received Signal Strength Indicator (RSSI) in a
wireless network (regression).

• Node-Level Tasks - the objective is assigning a label or
predicting a value to each node of the graph. An example
is the prediction of alarm occurrence intervals in BSs
(classification), or predicting the energy consumption of
BSs (regression).

• Edge-Level Tasks - involve making predictions or
computations related to individual edges within a graph.

An example could be predicting the path loss between
two BSs (regression) or estimating whether two adjacent
BS should be defined as neighbours (classification).

GNNs can be categorised into four groups considering their
different approaches [10]:

• Graph Recurrent Neural Networks (GRNs) - learn
node representations relying on recurrent DL architec-
tures.

• Graph Convolutional Neural Networks (GCNs) -
learn node representations by leveraging a convolutional-
based DL architecture.

• Graph Auto Encoders (GAEs) - comprise unsuper-
vised learning frameworks that encode nodes or graphs
into a latent vector space and subsequently reconstruct
graph data using the encoded information.

• Spatial-temporal Graph Neural Networks (STGNs)
- include spatial and temporal dependencies to uncover
complex data patterns.

A taxonomy of GNNs is depicted in Fig. 2, denoting the
four main categories and specific branches, such as the spatial
methods within the Graph Convolutional Neural Networks
(GCNs) approach, also called SGCNs.

FIGURE 2. Taxonomy of GNNs (adapted from [10]).

Among the various types of GNNs, this paper focuses
on SGCNs. Unlike other GCNs approaches, in SGCNs each
node is associated with spatial information defined in a multi-
dimensional space. Moreover, these models are composed
of multiple convolutional layers, where the initial features
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FIGURE 3. Example of a graph-level classification using a SGCN.

of each node are sequentially updated across K iterations
through convolution operations.

In SGCNs, the node embeddings, X, are transformed by
considering information from neighbouring nodes, defined
through the matrix A ∈ {0, 1}N×N , where N is the number
of nodes in the graph. This process is conditioned on spatial
information associated to the nodes, P ∈ RN×S , where S
denotes the number of spatial dimensions considered. The
spatial information matrix, P is given by:

P = [p1,p2, . . . ,pN ] (1)

where the spatial information of the nth node is denoted
as pn ∈ RS . Each convolutional layer of the SGCN, Hk ,
is defined by a function f (•) with parameters U, where
H0 = X such that the intermediate node embeddings (hidden
features) at each convolution layer, can be written as [9]:

H1 = f (H0,U1,A,P)

H2 = f (H1,U2,A,P)

HK = f (HK−1,UK ,A,P) (2)

In this process, unlike H and U, which undergo changes at
each convolutional layer, A and P remain unchanged and are
employed for updating node embeddings. Fig. 3 depicts an
example of an SGCN with K convolutional layers, where
the objective is to perform graph-level classification. The
process transforms the initial node embeddings, H0, into the
final hidden representation HK . As illustrated, in each kth
convolutional layer, at each node i, information is collected
from its neighbouring nodes j by combining their respective
node embeddings h(j)k−1, through a process called message
passing. This results in a new representation that mixes
information from adjacent nodes while considering their
spatial positions, pi and pj. For each k th convolutional layer,
the ith node is updated according to:

h(i)k =

∑
j∈�i

u(ij)k (pj − pi)h
(j)
k−1 (3)

where, �i = {j : aij = 1} identifies the set of indices of
the neighbours of node i, with pi and pj representing the
spatial information vectors for nodes i and j, respectively.
Additionally, u(ij)k is a learnable parameter enabling the SGCN
to assign distinct weights to individual neighbours during
each convolution operation; to illustrate in a mobile network,

certain neighbouring BSs may introduce more interference
than others. The ultimate hidden representation of the node
embeddings, denoted as HK ∈ RN×C , is defined as:

HK = [h(1)K ,h(2)K , . . . ,h(N )
K ] (4)

In the example of Fig. 3, where the goal is to perform
a graph-level classification, the output node embeddings
are aggregated using an aggregation function, such as
computing the mean of the node embeddings. The resulting
vector is then mapped via a linear transformation or neural
network to a fixed-size vector denoted as H∗

k . This process
effectively reduces the graph’s spatial resolution, providing
an aggregated perspective of the entire graph:

H∗
K = Agg(HT

K ) (5)

Finally, for the graph classification, the probability of
each class is calculated by passing the vector H∗

k to the
generalized linear model, also called softmax [9], which
returns the normalised probabilities for each class. In binary
classification, the softmax function simplifies to the logistic
sigmoid function, yielding the graph’s prediction ŷ.

B. RELATED WORK
The recent success of AI, namely Machine Learning (ML)
andDL, has fostered an increasing adoption of learning-based
solutions to plan, manage, and optimize wireless networks
using path-loss predictions, such as in [11], [12], and [13].
AI can contribute to solving cornerstone problems in
self-healing operations, such as performance management,
predictive fault detection, automatic root-cause analysis and
self-healing regenerative mechanisms. Some early works
addressed dynamic network performance optimisation using
Deep Reinforcement Learning (DRL) architectures [14],
[15], [16], [17]. However, this approach requires large
volumes of a priori labelled data, which is often unavailable.
Other works have applied ML to supervised root-cause anal-
ysis in fixed networks [18], [19], and some recent examples
have expanded this application to mobile networks [20], [21].
An application relying on real network data was proposed
in [8] to analyse the root-cause of low throughput scenarios,
using the TreeShap [22] analysis to provide an explainable
interpretation of the results.
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Recently, GCNs have become increasingly popular in
a wide range of applications [10]. Some previous works
attempted to use graph structures for network optimization,
where the nodes may represent users, BSs, or antennas,
and edges can represent network coverage quality using
Received Signal Strength Indication (RSSI), interference
or other metrics [23]. A few approaches have attempted
to apply GCNs to model wireless network planning and
performance optimization problems, relying on graphs to
represent individual BSs’ features [24], [25]. A very active
research branch within GCNs is how to aggregate the
node features at the graph level, aiming at predicting the
label for the aggregated graph while providing interpretable
explanations for the prediction. An example of this approach
can be found in [26], where a learnable aggregator for GCNs
uses a specific mask for each neighbour of a given node,
allowing the model to learn different importance weights
to each node and feature. Other examples within the same
line of work can be found in [27], where a graph pooling
(gPool) mechanism is proposed, or in [28], where a graph
pooling method considers the topology of the graph rather
than barely independent node features. Another strategy,
aimed at capturing the interdependent influences among
nodes in non-telecommunications scenarios, utilises SGCNs,
considering the spatial associations among them [29], [30],
[31]. An example application can be found in [29], where the
authors confirmed its effectiveness in generic classification
tasks. Another work proposes a positional encoder GNN-
based learning framework for regression problems using
geographic data [30]. In [31], a geometric graph aggregation
scheme is proposed for classification tasks in graphs. As for
the case of wireless networks’ applications, some previous
works attempted to perform cellular traffic prediction with
spatio-temporal graph networks [32], [33], [34]. However,
contrary to the model proposed in this paper, all these pre-
vious examples lack an explainability module that provides
detailed insights about the model outputs.

III. BS PERFORMANCE CLASSIFICATION MODEL
This section begins by outlining the key definitions employed
in this paper. Subsequently, it introduces the proposed model
framework, which focuses on classifying the performance
state of BSs. This classification is based on the PM
counters and utilises a spatial graph representation of these
BSs. Finally, an explainability model is presented, which
quantifies the contributions of each PM counter and each base
station (BS) within the graph to the estimated classification.

A. DEFINITIONS
Some definitions are worth clarifying beforehand due to their
prevalence in the paper:

• BS - a base station which, in this paper, denotes a unitary
cell in a specific Radio Access Technology (RAT) and
deployed on a given network location that may host
multiple RATs (e.g., 4G and 5G). Moreover, active and

passive equipment is required for the BSs’ operation,
notably the Baseband Units (BBUs), the Remote Radio
Units (RRUs), and the antennas.

• PM counters - the performance indicators generated by
the Operational Support System (OSS), which are used
to quantify the performance of each BS.

• Target BS - BSwhere themodel classification is applied
to estimate the BS’s performance state, considering its
PM counters and those from neighbouring BSs.

• Source BS - BS located in the vicinity of the target BS
whose PM counters are also considered by the model to
estimate the performance state of the target BS.

• Graph - a set of nodes linked by edges. In the proposed
model, the nodes are the target and the source BSs.

• Adjacency Matrix - a matrix representing the edges
defined between nodes in a graph.

• BS Spatial Features - a set of characteristic features that
describe the spatial positioning of a BS (e.g., latitude,
longitude, azimuth, height).

• Graph Convolution - a process where, in the proposed
model, the PM counters of each BS are mixed with the
ones from other BS considering the defined adjacency
matrix and the spatial features. As a result, at each BS,
a new representation of its PM counters is generated.

A summary of the notations used throughout this paper is
presented in Table 1.

TABLE 1. Main notations used in this paper.
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FIGURE 4. Example showing the used methodology in the definition of individual graphs for each considered target BS, where directed edges are created
between the target and the source BSs: a) An example of a network with 8 BSs; b) The resulting graph for the target BS v1; c) The resulting graph for the
target BS v2; d) The resulting graph for the target BS v8.

The model considers a set of N BSs and the corresponding
PM counters, X = {x(1), x(2), . . . , x(N )

}, where x(n) ∈ RC×T

are the counters associated to the nth BS, with C indicating
the total number of counters, and T the respective time-
series length. Moreover, the BSs are characterized by their
performance states, Y = {y(1), y(2), . . . , y(N )

}, where y(n) ∈

RT and y(n)(t) ∈ [0, 1] is the t th element of y(n) and denotes
the classification of the nth BS performance state, at each
time index t , as failure (y(n)(t) = 0) or non-failure (y(n)(t) =

1). When considering an arbitrary BS as the target BS, the
associated graph comprising both the target and the source
BSs is denoted by G = {V,A}. Here, V = {v1, v2, . . . , vD}

represents the graph nodes. Specifically, v1 represents the
target BS, while the remaining nodes correspond to the source
BSs. Furthermore, for the D BSs comprising the graph V,
an adjacency matrix is established, with edges denoted as:

A =



a11 · · · a1j · · · a1D
...

. . .
...

. . .
...

ai1 · · · aij · · · aiD
...

. . .
...

. . .
...

aD1 · · · aDj · · · aDD


In this matrix, aij = 1 if there is a directed edge from vi to vj,
and aij = 0 otherwise.

B. SGCN PROPOSED MODEL ARCHITECTURE
The primary objective of the proposed SGCN model is
to classify the performance state of a target BS using a
supervised approach, where PM indicators serve as charac-
teristic features to analyse performance degradation. This
classification considers source BSs’ feature contributions,
also accounting for their relative spatial positions. This
involves the generation of an individual graph for each
target BS, at each timestamp. Furthermore, the model
uses an explainability module to identify root-cause factors
explaining BS performance degradation.

1) GRAPHS DEFINITION
The dataset provided consists of target base BSs that are
geographically distributed, as illustrated in Fig. 4-a) for a

group of eight BSs located in three distinct physical locations.
Subsequently, for each arbitrary target BS, a corresponding
graph is constructed based on predefined criteria, namely
considering the number of nearby locations to be included.
This recurrent process is depicted in Figs. 4 b), c), and d)
for a group of eight BSs, where a criterion of three locations
was adopted to establish directed edges linking each target
BS with the selected source BSs. Although not depicted in
the figure, self-loop edges have been added to all nodes
(represented by diagonal entries in the adjacency matrix, A).
The inclusion of these self-loops is crucial as they ensure that
during each graph convolution, an updated representation of
each BS’ features takes into account both its previous values
and the information from neighbouring BSs. Upon defining
the required set of N directed graphs to evaluate the BSs,
the proposed model conducts a graph-level classification task
by aggregating the entire graph to estimate the performance
state, ŷ(n)(t), of an arbitrary target BS, n, at time index t . This
aggregation considers the target BS’s features and those of
its neighbours, sequentially applied to encompass the entire
set of target BSs. Additionally, the explainability module
enhances the model’s functionality by providing interpretable
insights regarding the model output. This is particularly
valuable when the model predicts a performance degradation
in a specific BS, indicated by a binary output of ŷ(n)(t) = 1
(failure). The interpretation of the results produced by the
SGCNs model can contribute to explaining the root causes
of BS performance degradation at two levels: feature-wise,
by examining the PM counters of the source and target BS;
and node-wise, by analysing the most impacting nodes to the
classification. This approach enables the capture of complex
inter-dependencies between BSs.

2) GRAPHS CREATION CRITERION
To assess the impact of spatially distributed BSs on the
model’s output, it is essential to establish selection criteria
for determining which source BSs should be included in
the graphs supporting the SGCN model. A trade-off arises
between selecting a limited number of source BSs, resulting
in graphs that only contain co-located or nearby BSs, and
choosing a larger number of source BSs, which increases the
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FIGURE 5. Proposed model architecture, combining an explainability module and a SGCN module using a 4D spatial representation for the BS,
a graph aggregation module and a final Artificial Neural Network (ANN) to predict the label performance state.

computational complexity of the model. The approach in this
paper defines a fixed number of distinct physical BS locations
in the graph. In the simplified example provided in Fig. 4
considering a distance criterion of three locations, the number
of BSs included in any given graph equals D = 8. However,
it is worth emphasising that undermore complex and irregular
distributions found in live networks, the number of BSs varies
based on the network topology surrounding each target BS.

3) SPATIAL INFORMATION
In the proposed SGCNmodel, each BS, vi, within an arbitrary
graph, G, is also represented by its spatial features described
by the vector pi ∈ R4 = [latitude, longitude, elevation,
azimuth] comprising the following components:

• latitude, longitude are the geographical coordinates;
• elevation is the total antenna installation height, includ-
ing the terrain elevation plus the height of the installation
infrastructure;

• azimuth is the angle between the axis of the BS’s
antenna and the geographical north.

The initial two features capture the Euclidean distance
between the nodes, a critical variable in any wireless network
modelling problem because of its direct influence on the
Received Signal Strength Indicator (RSSI), as shown in [11].
The third component allows us to calculate the difference
in antenna height between the source and target BSs by
combining the antenna installation height with the terrain
elevation. This effective height introduces a new source
of learnable information that can also impact the mutual
interactions between neighbouring BSs in mobile networks,
such as interference. Additionally, the azimuth of the antenna
influences the coverage zone of a particular BS. Collectively,
these spatial features enable themodel to discern the coverage
overlap between two adjacent BSs, a crucial factor in
predicting their expected impact on performance states.

4) PROPOSED ARCHITECTURE
The architecture of the SGCN model proposed in this paper
is presented in Fig. 5. The initial spatial graph convolutional
layer is responsible for updating the aggregated graph infor-
mation after each of the K convolutions; subsequently, the
final classification is carried out through the output layer of
an Artificial Neural Network (ANN). Additionally, there is an
explainability module whose objective is to provide insights
into the model output. Fig. 6 describes in four steps the
various transformations applied to the characteristic features
of every node (BS), during each convolution iteration. In the
initial stage, node embeddings are generated, pertaining to
the PM indicators that characterise the BS’s performance at
a specific time index; these indicators are represented in the
example by a set ofC = 7 PM features andD= 3 nodes (BSs).
The second step illustrates the graph structure, as specified in
the adjacency matrix, A. For each node, a vector of spatial
variables is defined comprising a 4D spatial encoding. In the
third step, a new k th hidden representation, denoted as h(i)k ,
is learned for each node i, based on the PM indicators
of the BS, as well as the relative values of the spatial
features between neighbour BSs. Additionally, a SGCN layer
is employed to adjust the dimensionality of the vector h(i)k
by a factor S, referred to as ‘‘the number of the spatial
hidden features’’, which is one of the hyper-parameters of the
proposed model. The S factor allows the model to increase
the number of parameters used to weigh the influence of
the spatial features on the PM indicators. Hence, a new
feature representation of the PM indicators for the target
BS is transmitted to its neighbours with a dimensionality
S × C , which in the example corresponds to 2 × 7 = 14.
In the fourth step, a new representation of the initial features
for each BS is generated, incorporating contributions from
both the target and source BSs. During this stage, each BS
in the graph updates its initial features to obtain a new
representation, denoted as h′(i)

k . This update is achieved using
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FIGURE 6. Illustration of the graph convolution process implemented in the proposed SGCN model.

a linear transformation to learn a new representation of the
BS’s features with a dimensionality of B. Here, B is defined
as ‘‘the number of the BS hidden features’’ and serves as
another hyperparameter of the model. The output of the linear
transformation is subsequently passed through a nonlinear
activation function, whichwill ensure that the learnedweights
are non-negative. Although the proposed model can use
any activation function, the ReLU is a common choice
because it has the merit of being easily interpretable [9]. The
sequence of steps 1 to 4 is iterated K times, here K denotes
‘‘the number of graph convolutions’’, which is yet another
hyperparameter of the proposed model.

Finally, after each convolution operation, a graph-level
aggregation step is executed, resulting in the graph being
transformed into a single virtual node. This virtual node’s
features are computed by aggregating weighted contributions
from all the nodes in the original graph. The primary goal is to
learn a function z that, through this graph-wide aggregation
process, generates a new representation for the target BS’s
features, denoted as h∗

K , which serves as the final output.
Subsequently, this graph-level aggregation output is fed into
an ANN responsible for predicting the performance state of
the target BS. In this context,‘‘1’’ signifies a failure, while
‘‘0’’ indicates a non-failure. It’s worth noting that, within
the framework of the proposed model, a ‘‘failure’’ is defined
as a scenario where the average downlink throughput falls
below 7 Mbps, a reference threshold commonly used by
MNOs to monitor 4G and 5G performance.

The foundation of the proposed SGCN implementa-
tion draws from [29], incorporating significant adaptations
tailored for self-healing applications in mobile networks.
The architectural modifications unfolded across several
dimensions. First, an explainability module was introduced,
facilitating performance root-cause analysis. Second, the new
4D positional approach was implemented to describe the
spatial aspects of BS spatial positioning. Third, a flexible
graph creation mechanism was implemented to simulate
graphs of variable size (e.g. single network location or

multiple network locations). Fourth, a multi-aggregation
layer was implemented to produce the final aggregation at
the graph level. Finally, an ANN layer was implemented to
predict the BS performance state using a final softmax layer
that assigns probabilities to each binary class, thus supporting
the model’s classification prediction ŷ. The softmax function
was selected in this implementation as it offers the flexibility
to extend the problem into a multi-class classification task
using the negative-loss likelihood loss function. Moreover,
it is a continuously differentiable function, so it allows
calculating the derivative of the loss function concerning
every weight in the SGCN architecture.

C. EXPLAINABILITY MODULE
Considering the objective of providing interpretable results,
an explainability module was added to the proposed model,
which calculates the contribution of each PM counter and of
each node, to the model prediction, as shown in Fig. 7.

FIGURE 7. Explainability module that aimed to evaluate the input
features’ importance to the model’s output.

The explainability module’s implementation relies on the
Captum platform [35], an open-source, extensible library for
model interpretability built on PyTorch. Captum contains
general-purpose implementations of integrated gradients,
saliency maps, smoothgrad, vargrad and others. The inte-
grated gradients’ output is an attribution score for each
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input element and a convergence delta. The saliency maps
are based on computing the gradient of the class score
with respect to the input. The smoothgrad can sharpen
gradient-based sensitivity maps, and vargrad is an unbiased
gradient estimator for variational inference. In this paper,
the choice was the saliency maps algorithm [7], given
its straightforward process of correlating the gradient of
the output regarding the input, where a first-order Taylor
network expansion is used at the input, and the gradients
are the coefficients of each feature in the model’s linear
representation. The absolute value of these coefficients
indicates the relevance of each graph node and the input
features, producing insightful visualizations of the model’s
output.

IV. MODEL EVALUATION
The evaluation of the proposed SGCN model was done with
a dataset of real BS, which included physical installation
details (such as geographical coordinates, antenna heights,
and azimuths) and historical PM data. The model perfor-
mance assessment focused on the ‘‘User Downlink Average
Throughput’’ KPI using as benchmark the results of [8]. The
primary goal was to predict the performance state of the target
BS at each timestamp, employing binary classification with
a 7 Mbps failure threshold. The model classification relied
on the observed PM counters per timestamp, excluding those
already considered in the KPI formula.

A. DATASETS
The BS dataset encompasses 19 different network locations,
hosting a total of 51 BSs operating across various 4G
frequency bands, as described in Table 2. These locations can
be categorised into two groups: single-band installations and
dual-band installations, the latter serving to enhance capacity.

TABLE 2. BSs dataset and radio access frequency bands.

Fig. 8 shows the spatial distribution of the 19 mobile
network locations and 51 BSs over an area of approximately
2 500 km2, denoting irregular proximity patterns.
The PM dataset comprises 232 distinct hourly counters

collected over 28 days for each of the 51 BSs, resulting in 51
BSs × 672 time stamps = 34 272 classification examples.
For training and testing purposes, the same dataset split
used by [8] was considered to ensure comparable results,
using 75% of the dataset for training (25 704 examples)
and reserving 25% of the dataset (8 568 examples) for

FIGURE 8. Spatial distribution of the 51 considered BSs dataset spread
over an area of approximately 2 500 km2.

the final test. Both the train and test sets contain samples
for all individual BSs in the whole dataset, which means
that the train and test datasets contain different time stamp
samples for the same BSs. In Table 3, a more comprehensive
description is provided, notably showing the train and test
dataset splits.

TABLE 3. PM Dataset downlink throughput distribution.

As observed, the dataset exhibits an even failure ratio
between the training and testing partitions. Furthermore,
both partitions demonstrate similar values in the statistical
distribution of the downlink throughput KPI, which serves as
the reference metric for assessing performance degradation.

B. FEATURE SELECTION
Feature selection is a popular topic in DL to remove
redundant features, noisy and irrelevant data, to improve
learning feature accuracy and to reduce the training time [36].
Considering the high number of distinct PM counters in the
dataset, the contribution of each of the 232 PM counters
for the model classification was evaluated by applying the
saliency algorithm to a pre-trained model and using the
graphs with one BS location. An indicative threshold of 95%
was considered for the cumulative feature importance, which
resulted in the selection of 25 features required for the 4D-
SGCN model to reach this level. In Table 4, the obtained
reduced set of PM counters is described, grouping into four
categories: volume, users, channel quality and availability.

Another analysis was performed to assess the contribution
of the neighbour BSs to the model classification, when
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TABLE 4. List of a reduced set of 25 PM counters included in the graph representation for a single network location.

the reduced feature set of PM indicators is applied with
different graph sizes. The hypothesis is that the spatial data
representation, enriched with the information conveyed by
the adjacent BSs, will reduce the required number of PM
counters to achieve the objective of 95% of the model
explainability. The assessment of the graph size impact on
the model performance relied on the empirical definition
of three scenarios comprising one, three and five network
locations. The first scenario denotes a graph encompassing
only the adjacent BSs within a physical network location
(graph 1). The second scenario considers all the BSs in the
first group plus those in the nearest two network locations
(graph 3). Finally, the third scenario considers the first group
plus the BSs in the nearest four network locations (graph 5).
The underlying empirical assumptions for the definition of
the scenarios relied on the limited geographical span of the
dataset, where the distance between adjacent BS’s locations
ranges from 0 km to 25 km across the 19 BS locations. Hence,
it would not make sense to consider larger sized graphs.

The attained results provided in Fig. 9 confirm the hypoth-
esis, i.e., the objective of 95% of the model explainability can
be met with a lesser number of PM counters by using larger
sized graphs.

When using graphs of a single BS location, 25 out of the
232 available PM counters are required to meet the defined
criteria of 95% explainability. Conversely, with graphs of
three and five BS locations, the required number of PM
counters is reduced to 20 and 15, respectively. This result
reinforces the hypothesis that the 4D spatial graphs feature
representation can capture complex relations between the
graph nodes (i.e., BSs), thus reducing the need for larger and
more complex datasets.

FIGURE 9. Minimum number of required PM counters to reach 95% of
model explainability, by graph size.

Considering the importance of transparency and inter-
pretability in AI algorithms, a theoretical comparative
analysis was conducted on the selected PM counters across
various graph sizes. Fig. 10 provides a summary of the
most influential PM counters, considering graphs with one,
three, and five BS locations. The comparative analysis reveals
that the nine primary PM counters, which have the greatest
impact on model classifications, are consistent across all
graph configurations. Therefore, an in-depth examination of
these counters is provided:

1) N_Act_Users - the number of active users connected
to the BS, which allows to predict throughput based on
resource demand.

2) N_Packets_Schedul - a resource allocation control
indicator that reflects the number of scheduled packets.
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FIGURE 10. Comparative analysis using three graph sizes of the PM
counters that account for 95% of the total explainability.

3) Time_Session_Setup - a metric for session setup time
delay.

4) Traf_CarrierAggr - a metric for traffic volume
utilising carrier aggregation between frequency bands.

5) N_MIMO2_Streams - a channel quality measure,
associated with Multiple Input Multiple Output
(MIMO) spatial streams and the radio propagation
environment.

6) Av_ChQual_Index - the average Channel Quality
Index (CQI), which signifies the quality of the wireless
channel measured by the user equipment and reported
to the BS.

7) N_64QAM (CS17) - the top modulation usage, such
as 64 Quadrature Amplitude Modulation (QAM),
denoting excellent channel quality.

8) N_MIMO1_Streams - the measure of MIMO single
spatial streams, impacting maximum throughput.

9) N_QPSK (CS7) - the usage of Quadrature Phase Shift
Keying (QPSK) modulation, which is linked to lower
channel quality.

This analysis validates the choice of the reduced set
of PM counters selected by the explainability module.
As shown, the reduced feature set comprises a the-
oretically coherent summary of the most relevant PM
indicators and denoting root-cause effects with the KPI
addressed in this paper. Hence, the 25 features described
in Table 4 were used for the final model development and
evaluation.

C. PERFORMANCE METRICS
The model’s classification output yields a 2×2 confusion
matrix that captures the interplay between actual and
predicted values for each instance in the dataset. From the
confusion matrix, four basic measures can be derived - True
Positives (TPs), True Negatives (TNs), False Positives (FPs),
and False Negatives (FNs) - and from these, four performance
metrics, typically used in binary classification problems, can
be computed:

• Accuracy - the number of correctly classified examples
over the total number of examples:

Accuracy = (TN + TP)/(TN + FP+ TP+ FN ) (6)

• Precision - represents the percentage of failures which
are correctly classified:

Precision = (TP)/(TP+ FP) (7)

• Recall - denotes the percentage of failures which have
been classified as such:

Recall = (TP)/(TP+ FN ) (8)

• F1-Score - represents the harmonic mean between the
Precision and Recall, such that:

F1 = 2 × (Precision × Recall)/(Precision + Recall)

(9)

D. IMPLEMENTATION DETAILS
The model was trained on a NVIDIA Quadro P4000 GPU.
Training and validation relied on the k-fold cross-validation
methodology, with parameter k = 5 and using 75% of
the total dataset. At each iteration, this technique considers
k − 1 folds for model training and the remaining fold
for model validation. The F1-Score served as the primary
indicator for evaluating the model, with accuracy, precision,
and recall serving as complementary metrics. The model
estimates weight parameters, U, based on output probabil-
ities using Maximum Likelihood Estimation (MLE). This
involves minimising the Negative Log-Likelihood (nLL) loss
function [37] through an optimization process, where the the
Adam optimizer was employed [38]. Adam is a common
choice for handling large datasets and parameters in similar
works, as it converges faster than other alternatives using
a different learning rate for each iteration. The choice for
the activation function used in the model’s implementation
was the ReLU [39], considering its well-known benefits for
DL networks, notably not suffering from vanishing gradients,
as described in [40].

The hyper-parameter optimization relied on the Optuna
framework [41], considering its modularity, easy adaptation
to complex code and support of test parallelization and
pruning of unsuccessful tests. In total, 100 independent trials
were performed across the k-fold cross-validation process to
compare the attained average results. To reduce computation
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TABLE 5. Summary of hyper-parameters used.

time, the hyper-parameters optimization used the reduced
feature set of 25 PM and a graph size of one network
location. The final model’s hyper-parameters resulting from
the optimization process are shown in Table 5.
The optimal hyper-parameter setting was used to compare

model results across graph sizes. The setting which produced
the best average F1-Score in the test set across all trials,
was selected to train the model on the complete train set,
and its performance was finally evaluated using the test set,
comprising 25% of the whole dataset.

E. RESULTS COMPARISON WITH PREVIOUS RESEARCH
The results achieved with the application of the proposed
4D-SGCN-Gx model in the classification of low through-
put situations were compared with the results obtained
in [8], where various boosting algorithms were employed.
These algorithms combine multiple decision trees through
sequential learning, with each subsequent model aiming to
correct the errors of its predecessor. These specific algorithms
include:

• AdaBoost [42] - an adaptive boosting algorithm that
pays more attention to under-fitted training instances by
the previous model,focusing on the harder cases.

• Grad Boosting [43] - a gradient boosting model that
tries to fit the new predictor to the residual errors made
by the previous predictor.

• XGBoost [44] - an extreme gradient boosting model
that minimizes a loss function based on the difference
between the predicted and target outputs and adds a
penalty term for model complexity.

• Catboost [45] - a categorical boosting model that
supports categorical values, offering enhanced inter-
pretability of the results and higher computational
efficiency.

• Light GBM [46] - an increasingly popular light gradient
boosting model because it focuses on the accuracy of
results, can support GPU learning, and offers enhanced
efficiency compared to other boosting frameworks,
notably by reducing memory usage.

Table 6 presents the achieved results for the ‘‘Average
Downlink Throughput’’ performance taken from [8], and
obtained with the proposed 4D-SGCN-Gx model, where Gx

denotes the number of considered BSs’ locations in the
graphs.

TABLE 6. F1-Score (%) on the test set for the downlink throughput KPI
failure classification.

As observed, the proposed 4D-SGCN-Gx model outper-
forms the previous results in all tested graph sizes. However,
the best results were attained with the graph of three network
locations, while the graphs with one and five BSs’ locations
present a similar performance. These results confirm that
the combined representation of the spatial positioning of the
target and source BSs and their PM counters encompasses a
richer and more realistic view of the scenarios posed to live
mobile networks. Hence, the graph’s spatial structure seems
adequate to represent the far-reach effects that create mutual
dependence between the PM counters in each BS. However,
a comprehensive analysis is essential to gain a deeper
understanding of the performance fluctuations observed
when different graph sizes are employed. This analysis
aims to reveal the dataset’s distinctive characteristics, with
a specific focus on inter-location distances. The in-depth
examination is thoroughly discussed in Section V, drawing
insights from individual node contributions to the model’s
output, a feature made accessible through the use of the
explainability module.

V. DETAILED RESULT ANALYSIS
This section presents an in-depth analysis of the proposed
SGCN model’s results, leveraging the explainability module
outlined in Section III. Firstly, in conjunction with the
evaluation of the F1-Score, the Accuracy, the Precision and
the Recall of the proposed model are assessed. Secondly,
a detailed evaluation of individual BS performance is
conducted to assess the consistency of prediction results
across the considered area, taking into account the coverage
area of each BS. Following this, a spatial analysis is
conducted to quantify the influence of the source BSs on
the classification of the target BS, focusing on the impact
of distance and the number of locations included in the
graph definition. Lastly, a temporal analysis investigates the
model’s performance over the course of a day.

A. DETAILED MODEL PERFORMANCE METRICS
To complement the proposed model performance evaluation
using the F1-Score, a more thorough evaluation entails the
computation of additional metrics, specifically: Accuracy,
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FIGURE 11. Model performance metrics for the 3 locations graphs.

Precision and Recall. These metrics were computed for the
test set, using the graph size of three locations, where the
proposed model yielded the best performance results. Fig. 11
presents the detailed results of the performancemetrics, using
the best results of [8] as benchmark.

From Fig. 11, the following insights stand out:

• Better performance in all metrics - the classification
performance gain accomplished in terms of F1-Score is
approximately 2 p.p., which comprises an improvement
of circa 4 p.p. in the Recall. A deeper inspection of
the confusion metrics reveals that this improvement is
founded on less FNs (-27%), more TPs (+6%), a slight
improvement of 0.3 p.p. in the Precision caused by an
increase in TPs, and a small degradation of FPs (+3%).

• Relevance for self-healing operations - the improve-
ment in the Recall aligns with the objective of early
detection and prevention of network failures and perfor-
mance degradation. Despite the slight increase in TPs,
if the effort to treat such cases remains manageable,
it can be considered a preventive maintenance approach,
a fundamental aspect of self-healing applications.

B. MODEL PERFORMANCE PER BASE STATION
The analysis was extended by computing the model’s
performancemetrics at the BS level, aiming at offering amore
comprehensive evaluation of the model performance across
different radio environments. The outcomes are presented
in Fig. 12, offering two complementary views: overall
metrics per BS and, specifically for the F1-Score, the spatial
distribution within each BS’s coverage area. The coverage
areas are defined using Voronoi maps, which consist of
proximal regions around the 51 BSs, considering their spatial
orientation. Moreover, the x-axis of Fig. 12-a) depicts the
number identifying each BS, which is also displayed in the
spatial map in Fig. 12-b).

The primary insights that can be drawn from Fig. 12 are
summarised in the following three points:

FIGURE 12. Detailed model performance for the 51 BSs: a) Overall
analysis of the performance metrics per BS; b) Spatial distribution of the
F1-Score on each BS’s coverage area using Voronoi maps considering
their spatial orientation (azimuth).

• Performance conditioned by number of failures - the
model reveals lower F1-Scores in BSs with fewer failure
examples, namely in number 5, 9, 27 and 38, indicating
reduced statistical significance for a per-BS analysis.

• Area generalisation - the model generalises well with
high F1-Scores in different radio environments, whereas
some discrepancies are observed in specific peripheral
BSs, notably in number 1, 5 and 27.

• Peripheral BSs caveats - the peripheral BSs are
constrained by the lack of informative PM indicators
from neighbours, which, in conjunction with the smaller
number of failures, might help explain the lower
F1-Scores achieved is these specific examples.

C. IMPACT OF DISTANCE AND RELATIVE ORIENTATION
The influence of distance to the target BSs was evaluated
by computing the weight of the source BSs on the model
results, as depicted in Fig. 13-a). The x and y axes
represent, respectively, the 51 target BSs and the distances
to all source BS. The z-axis indicates the weight of each
source BS to the model’s prediction. Fig. 13-b) presents
two illustrative examples to investigate the effect of the
BSs relative orientation. The node colours quantify the
significance of each source BS in classifying the target BS,
with the orientation of the target BS indicated by a black
arrow.
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FIGURE 13. Analysis of distance and azimuth: a) Impact of distance
between the target BS and the source BSs; b) Impact of relative
orientation (azimuth) for two illustrative examples.

In the previous analyses, the results were obtained with
the 5 locations’ graphs, where the primary contribution of
the target BS was omitted due to its predominant effect.
Consequently, the source BSs situated at a distance of 0 km
represent co-located BSs with distinct spatial orientations.
Furthermore, the reduced set of 25 PM indicators was
employed for both analyses.

The primary insights that can be drawn from Fig. 13 are
the following:

• Impact of distance - the results in Fig. 13-a) confirm
that the source BSs with smaller distances to the
target BS have a more pronounced effect on the final
classification, particularly those co-located.

• Overshooting effects - it is evident that certain target
BSs exhibit long-range impacts from source BSs,
notably BS located more than 10 km away, comprising
possible overshooting effects which are captured by the
model.

• Spatial orientation impact - in Fig. 13-b) a preliminary
examination was conducted using two illustrative exam-
ples. In these examples, while the target BS remains
the primary contributor, the most influential source BSs
are those aligned with the target’s orientation, which

validates the model’s ability to capture dependencies
taking into account both their distance and relative
orientation.

D. IMPACT OF GRAPH SIZE
Another significant question pertains to determining the
appropriate number of locations to be included in the graphs.
Including too few source BSs may result in insufficient
information for the model, while incorporating an extensive
range can lead to increased model complexity without
relevant performance improvement. To address this, several
analyses were conducted to assess the cumulative weight
contribution of each additional location included in the graph
to the model predictions, aiming to determine what is the
optimal number of locations that should be considered upon
creating the characteristic graph for each target BS.

The results are visualised in Fig. 14, where three com-
plementary analyses are provided. The first introduces a
criterion to evaluate the contribution of each location; the
second shows the relation between graph size and distance
between BSs; and the third concludes with the marginal con-
tribution of each location to the model results. In Fig. 14-a)
the x-axis represents the cumulative distribution of the
51 target BSs, while the y-axis shows the cumulative weight
of their source BSs’ contributions to the model predictions,
with intermediate distributions displayed for each location,
up to the fifth one, which represents the 100% contribution
limit. A horizontal line at the 95% threshold serves as a
criterion for establishing the minimum cumulative source
BSs contribution, indicating when 95% of the total source
BSs contribution is reached. In Fig. 14-b) the x-axis still
represents the distribution of target BSs, while the y-axis
illustrates the cumulative distribution of distances between
each target BS and its corresponding source BSs. Finally,
Fig. 14-c) presents a box plot of the cumulative weight
contribution to the model output, accounting for the inclusion
of each supplementary location within the graph definition.
The average values of the cumulative contribution for
different graph sizes are highlighted within each box plot.

The following primary insights can be extracted from
Fig. 14:

• Additional locations bring diminishing returns - con-
sidering the 95% weight criterion, Fig. 14-a) shows that
if the graphs contained just one location, approximately
20% of the target BSs meet the objective, while the
remaining 80% receive contributions from the other
four BS locations, of at least 5%. Extending the graph
to include two locations, as indicated by the vertical
dotted lines, shows that already 55% of the target BSs
meet the criteria. However, beyond the inclusion of the
first three locations, the source BSs within the fourth
and fifth ones contribute diminishingly to the model
predictions. This leads to an undesired increase in the
model’s complexity without a significant improvement
in model performance.
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FIGURE 14. Analysis of the optimal graph size: a) Number of target BSs
meeting the 95% weight criteria per additional graph location; b) Impact
on source to target distance when the number of considered graph
locations increase; c) Cumulative weight on model results per additional
graph location.

• Dataset constrained up to 5 locations - the results in
Fig. 14-b) reveal that, as expected, starting from the first
location (at a distance of 0 km from the target BS),
the incorporation of additional locations in the graphs
progressively extends the range of distances. These
extensions result in median values of roughly 7.5 km
when three locations are included and approximately
10 km when four locations are considered. The distri-
bution associated with the fifth location closely mirrors
that of the fourth, which denotes that in this dataset
the fifth location does not significantly contribute new

distance-related information, illustrating the principle of
diminishing returns regarding distance data as additional
locations are incorporated. Moreover, the maximum
distance reached both in the four and five locations is
25 km, which is the limit span of the considered dataset.
This confirms that it would not make sense in this case
to employ graphs with size greater than five locations.

• Optimal results with 3 locations’ graphs - the
cumulative weight contribution to the model output for
each supplementary location, as presented in Fig. 14-c),
shows that the first location is, by large, the most
important one for the model final classification con-
tributing to roughly 74% of the weight, albeit displaying
a high standard deviation. The second location extends
this contribution up to around 97%, and the third
location reaches more than 99% of the total contribution.
This confirms that the appropriate graph size for this
dataset comprises three BS locations, as the incremental
increase in cumulative weight is minimal beyond
this value. These findings emphasise the principle of
diminishing returns discussed in the previous analyses.
This outcome aligns with the results obtained for the
proposed model, which yielded the best results while
employing graphs with three locations.

E. INTRA-DAY ANALYSIS OF MODEL PERFORMANCE
Contrary to other applications where the aggregated values
are sufficient for the model performance evaluation, in self-
healing operations, the near real-time classification of events
can play a crucial role. Hence, an investigationwas performed
on the intra-day variation of the model results, encompassing
two complementary analysis presented in Fig. 15. The first,
as shown in Fig. 15-a), investigates the time dependence
of the average model performance throughout the day. The
second, as shown in Fig. 15-b), focuses on tracking the
evolution of neighbourly influence over a 24-hour period in
the model classification results. This involved computing the
weight impact of individual source BSs on the classification
of the target BS, for each hourly period.

In both figures the x-axis denotes the 24 hours of the
day. As for the y-axis, Fig. 15-a) presents the evolution of
the average values for the Accuracy, Precision, Recall and
F1-Score computed for each hourly period, which accounts
for the minimal time granularity available in this dataset.
Conversely, the y-axis in Fig. 15-b) represents the weights of
the source BSs contributing to the model predictions within
cumulative average distance intervals between the source BS
and the target BSs. Similarly to the previous analyses, only
the source BSs weights are considered, given the dominant
influence of the target BS.

The following primary conclusions can be extracted from
Fig. 15:

• Model performance varies with traffic load - the
results in Fig. 15-a) indicate that albeit the model
Accuracy shows stability throughout the day, the
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FIGURE 15. Analysis of model results throughout the day: a) Performance
metrics evolution across the 24-hour period; b) Influence from neighbour
BS in the model classification across the 24-hour period.

Precision, Recall, and, consequently, the F1-Score show
degradation during the night period. A more detailed
analysis reveals that this is caused by a higher number
of FP and FN predictions during night-time. A possible
explanation is the decrease in user traffic, thus reducing
the variability of the PM indicators and hampering
the model’s performance, notably due to less failures
examples. From a Network Operations Centre (NOC)
perspective, having a higher performance in fault
detection during the higher traffic periods is preferable,
considering the end users’ QoE.

• Influence from far-away neighbours is constant - the
results in Fig. 15-b) show that the impact of source
BSs positioned beyond an 8 km radius from the target
BS remains fairly consistent throughout the day. This
stability can be attributed to persistent interference
originating from these more distant BSs, which may
comprise permanent overshooting effects.

• Mid-range neighbours have more impact during the
day - the results in Fig. 15-b) also indicate that during
typical working hours, a larger portion of the weight
contribution to the model predictions comes from source
BSs located between 4 km and 6 km away from the
target BS. This group collectively represents roughly

60% of the total contribution, particularly around 18:00
when many individuals are commuting from work to
their homes.

• Closest neighbours have more impact at night -
during the period from 00:00 to 6:00, when people are
likely at home, and network activity reflects reduced
user mobility, the weight assigned to source BSs within
1.5 km of the target BS increases to approximately 50%,
indicating reduced reliance on information from source
BSs in more distant locations.

• Spatial features complement PM indicators - the
previous results reinforce the conclusion that the spatial
graphs can complement the PM indicators with infor-
mative additional features extracted from the spatial
relation between BSs, which improves the model’s
performance in the addressed classification objective.

VI. MODEL ADAPTABILITY TO DIFFERENT PM DATA
An additional performance evaluation of the proposed model
was done using an uplink throughput KPI. The objective
is to assess the model’s flexibility in adapting to other use
cases in self-healing operations. This evaluation involved
comparing the results of the proposed model for average
uplink throughput with those presented in [47], where the
same set of BSs and PM dataset were employed, along with
the same threshold for failure classification (0.5 Mbps). The
results, as presented in Table. 7, confirm that, in the uplink
throughput KPI classification, the proposed model outper-
forms the previous work by a significant margin. However,
contrary to what was observed in the downlink analysis, the
best performance is achieved with the smaller-sized graph
of a single network location. Moreover, the absolute F1-
Scores achieved are lower. Although the detailed analysis
of the uplink throughput classification problem is out of
the scope of this paper, some general comments regarding
the specific nature of this problem should be underlined.
Contrary to the downlink throughput classification problem,
where the most relevant factor is the downlink interference
that neighbour BSs exert on each other, in the uplink
throughput classification problem, as explained in [48], the
main root-cause effect is the inter-cell uplink interference
that users in each BS suffer from co-channel interference

TABLE 7. F1-Score (%) on the test set for the uplink throughput KPI
failure classification.
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imposed by users in other surrounding BSs. Hence, it stands
to reason that the proposed SGCN model is well adapted
to the analysis of the downlink throughput classification
problem since the graphs have comprehensive information
regarding the relative spatial distribution of the BSs. This
was confirmed by the results in the downlink throughput
classification using the PM indicators collected by each BS.
However, for the classification problem using the uplink
throughout KPI, the location information of users connected
to nearby BSs is unknown to the model, which hampers its
capability of capturing the uplink interference effects.

As expected, lower model performance was observed in
the uplink classification problem compared to the downlink
throughput. Considering the technical aspects of uplink
interference, having the user spatial distribution would be
essential to achieve a higher performance in the model
classification. This information could be included in the
graphs as if the mobile users were ‘‘individual’’ BSs with
edge connections to other nearby users and to surrounding
real BSs.

VII. CONCLUSION AND FUTURE WORK
In this work, a SGCN-based model relying on a 4D spatial
representation is proposed to classify the performance of
individual BSs in a mobile network, taking into account
the current state of the PM indicators and using the data
downlink and uplink average throughput KPI as the target
classification metric. The model was evaluated using real
network data, relying on fourth generation (4G) indicators
due to the constrained accessibility of recent fifth generation
(5G) network data. Nonetheless, it is essential to note that
the spatial graphs methodology introduced in this paper is
technology-agnostic. The methodology can be seamlessly
applied to a wide range of cellular wireless network
applications, transcending specific technology boundaries.

The application of spatial graphs to model a mobile
communications network aimed at capturing the mutual
influence effects that neighbour BSs exert on each other, thus
improving the model prediction of each BSs performance
states. The results were compared with those from previous
research, where ML boosting models were applied to the
same problem. This confirmed the benefits of the proposed
model, achieving significant performance gains both in
the downlink and uplink throughout KPI classification.
The classification performance gain accomplished in terms
of F1-Score is approximately 2 p.p. for the downlink
throughput KPI, which comprises an improvement of circa
4 p.p. in the recall, founded on a smaller number of false
negatives (-27%) along with more true positives (+6%) in
the failure classification. This new balance of the F1-Score,
as the harmonic mean between precision and recall, is more
favourable to self-healing applications, such as predictive
fault detection use cases. Considering the mission of NOC,
aimed at detecting and preventing network failures and
performance degradation, it is preferable to take preventive
action towards a false alarm rather than not handling an

alarm event. In live networks, such a reduction of circa 27%
in false negatives will have a proportional impact on QoE
improvement, reduction in customer complaints and field
maintenance costs.

In addition to better performance, the proposed model
contributes to improved model interpretability by introducing
an explainability model developed using the saliency algo-
rithm, returning node and feature level individual weights
to the final classification. Leveraging the insights from
the explainability model allows for a feature reduction
process that specifically targets those features responsible
for 95% of the total model explainability. This contribution
holds significant relevance for live NOCs applications as
it streamlines the real-time operation of the model by
reducing data infrastructure requirements and alleviating
the need for extensive processing of all available features.
Additionally, the explainability module introduced here can
provide root-cause explanations for network failures and KPI
degradation.

In future work, two main continuation areas are identified.
Firstly, themodel should be able to process data in time-series
format, comprising PM, FM or Configuration Management
(CM) indicators, and provide time-shifted anticipatory pre-
dictions, as the basis for effective preventive maintenance
and self-healing regenerative actions based on the root-
cause analysis. Secondly, regarding the SGCN architecture,
it is envisaged to test a single graph implementation
to higher-order analysis in the node convolutions. One
possibility to explore involves using satellite imagery for
terrain features, similar to the approach in [11], where
the graphs can be embedded within image pixels. This
approach facilitates the simulation of intricate scenarios, with
individual pixels representing elements such as BSs, users,
sensors, or other pertinent network variables. Additionally,
there is an aim to investigate alternative graph aggregation
methods, integrating node and feature-level learning into the
aggregation process.
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