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ABSTRACT This paper presents a fault diagnosis (FDD) approach based on a Takagi-Sugeno Unknown
Input Observer (TS-UIO) that allows for the estimation of the states of an active pitch system for a studied
wind turbine even in the presence of unknown interference factors. A scheme for FDD is proposed based
on the residual evaluation between the non-linear model of the active pitch system and the Takagi-Sugeno
unknown input observer proposed for the detection and isolation of faults in sensors with measurable premise
variables. The proposed TS-UIO State Observer is resilient to disturbances and measurement noise due to its
unique feature of decoupling unknown inputs, interruptions, or undefined factors that affect the behavior of
the system under study. This study investigates the effect of load-induced stress on the mechanical blades of
a wind turbine, caused by the wind force considered as an unknown disturbance or input to the system given
its dependence on weather conditions. The proposed FDD algorithm includes Linear Matrix Inequalities
(LMI) ensuring the estimation error dynamics approximates to zero. Successful implementation tests are
demonstrated in an active pitch system with reference parameters based on a wind turbine model. The review
outlines traditional FDD approaches, including those based on nonlinear models, as well as relatively new
methods based on linear sector conditions. Special attention is given to Takagi-Sugeno (TS) methods.

INDEX TERMS Fault diagnosis, unknown inputs observer, pitch system, Takagi-Sugeno model.

I. INTRODUCTION
The safety and reliability of wind power systems are of
utmost importance today due to the increasing demand for
electrical energy consumption [1]. Thus, it is necessary to
implement monitoring actions to detect faults. In the case
of state-of-the-art wind power systems, rapid and efficient
fault handling is crucial to anticipate future impacts on
the system [2].Therefore, it is necessary to understand the
operation of wind turbines, which begins with the conversion
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of mechanical wind energy into electrical energy through
the generator. For this purpose, it is necessary to couple
a converter with a rated power equal to the generator’s
capacity [3]. Next, a gearbox is placed between the rotor and
the generator to transmit the rotor’s speed to the generator,
allowing for speed control [4]. For this reason, the energy
generation process can be a complex one that must be
controlled by altering the rotor’s aerodynamics [5].

The aerodynamics of the rotor can be managed by
modifying either the pitch angle of the blades or the rotor
speed [6]. The mechanism employed to alter the pitch angle
of the blades is referred to as the pitch system. This system is
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FIGURE 1. The evolution of mechanical power versus wind speed [11].

employed to regulate the rotor’s speed and the energy output
of the wind turbine, ensuring that the wind load on the rotor
remains within design limits. Bymanipulating the pitch angle
of the blades, the wind turbine’s power coefficient can be
maintained or increased, enabling the production of more
energy with the same amount of wind. Typically, the pitch
system is used in conjunction with other wind turbine control
systems to optimize efficiency and energy production [7] can
see Figure 2.

When the wind speed is equal to the nominal speed of the
wind turbine, a transition occurs between zone 2 and zone 3
of the wind turbine’s operation. In zone 2, the wind speed is
lower than the nominal speed of the wind turbine, and the
kinetic energy of the wind is used to increase the rotor speed
of the wind turbine, as observed in Figure 1. In zone 3, the
wind speed is higher than the nominal speed of the wind
turbine, and the kinetic energy of the wind is used to generate
electricity.

For optimal performance, the wind turbine speed must
be carefully controlled during the transition from zone 2 to
zone 3 to ensure that the maximum amount of energy is
produced. The aim of the control is to maintain the output
power. This can be achieved by controlling the pitch system,
which adjusts the angle of the blades to maintain an optimal
rotor speed at different wind speeds. Other control systems,
such as generator speed control or tower tilt control, can also
be used to optimise wind turbine performance under different
wind conditions [2].
A failure must be considered an accidental change in the

functionality of the system [8]. Failures of this kind cause
an interruption in the standard operation of an automated
system, resulting in a decrease in performance that is deemed
unacceptable [9]. Thus, it is necessary to study the fault
diagnosis and isolation, which are critical to maintaining
correct system operation. Allowing enough time to prepare
a plan and repair the system [10].

Márquez et al. conducted a literature review in 2012 on the
approaches available for monitoring the condition of wind
turbines [12]. Gao et al., on the other hand, analysed fault
diagnosis and isolation (FDI) approaches based on models
and signals, also known as ‘‘black box’’ approaches [13].

FIGURE 2. Block diagram of active pitch into a wind turbine.

While it is true that model-based fault detection and isolation
approaches require a complete system model, this can
also limit their applicability in some situations. However,
in the specific case of wind turbines, these methods can
determine the explicit behaviour of the system, making
them an advanced monitoring tool. On the other hand, the
data-based FDI approach may be affected by the consistency
of the recorded data, which reduces its viability. In summary,
although data-based approaches are commonly applied to
complex processes, model-based approaches tend to have
faster response times and can be very useful in monitoring
wind turbines.

This work proposes a fault diagnosis (FDI) approach
based on signal analysis in the time domain with an
explicit mathematical model, mainly in linear models of
a wind turbine, obtained from the nonlinear model using
the Takagi-Sugeno approach and Unknown Input Observer
Takagi-Sugeno (UIO). This new FDI scheme based on UIO
represents a valuable reference for fault detection in complex
systems, mainly for fault detection and isolation in the
pitch system of the wind turbine due to the interaction
between the blades attached to the rotor and the gearbox to
facilitate the evaluation of aerodynamic loads on the wind
turbine rotor, as shown in Figure 2. The proposed method
demonstrates high robustness against different stochastic
operating conditions and measurement errors at different
wind speeds.

This paper is organised as follows: Section II describes the
design of the model of an active pitch system [14], Section III
describes the pseudocode for Takagi-Sugeno Unknown Input
Observer (TS-UIO); Section IV describes the mathematical
model of the system under study, which extends to the
validated pitch system model; Section V describes the results
for Takagi-Sugeno Unknown Input Observer; Section VI
describes how to perform a fault detection and isolation
(FDI) system in sensors; and Section VII shows simulation
results and discussion. Finally, the conclusion is described in
Section VIII.
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II. STABILITY ANALYSIS AND DESIGN OF A TS-UIO
CLASS
Takagi-Sugeno (TS) models are mathematical models that
serve as an exact representation of the nonlinear model within
a specified range. These models are characterized by their
convexity and consist of a set of linear systems interpolated
using convex scalar functions, also known as membership or
weighting functions, as described in [15]. These functions
govern the behavior of the i-th rule and are formulated as
follows:

IF α1(t) is Mij and . . . and αp(t) is Mip

THEN

{
ẋ = Aix(t) + Biu(t)
y(t) = Cix(t)

i = 1, 2, . . . .r (1)

where Mij represents a fuzzy set and r denotes the number
of rules within the model. The state vector is denoted by
x(t) ∈ Rn, the vector of inputs by u(t) ∈ Rm, and the
vector of outputs by y(t) ∈ Rq. The terms Ai ∈ Rn×n and
Ci ∈ Rq×n represent coefficient matrices that are associated
with each rule. Technical term abbreviations are explained
when first utilized. The two known approaches for modeling
nonlinear systems are the nonlinear sector method and the
linearization method. The former is generally accepted as the
more accurate of the two due to its ability to closely represent
nonlinear behavior. The latter, as demonstrated in [16], is only
an approximate model.

The premise variables can inherently impact the system’s
rules and are influenced by various factors, including state
variables, external disturbances, and time, without relying
on any subjective assessments. The measurability of these
variables may vary based on the unique characteristics of the
case study. It is worth mentioning that selecting a Takagi-
Sugeno (TS) system with either measurable or unmeasurable
variables depends entirely on the case at hand. The utilization
of non-measurable premise variables is closely tied to the
particular characteristics of the system being analyzed, the
resources available, and the specific goals of the applica-
tion [17]. In the present study, we have intentionally opted
for using TS systems with measurable premise variables.
This decision was determined by the feasibility of meeting
the instrumentation requirements, as there is no need for
estimating non-measurable premise variables. This strategy
not only streamlines the system’s practical implementation
but also lowers the associated expenses.

The vector α(t) groups all individual premise variables,
namely α1(t), and individual premises α1(t), . . ., αp(t). The
Takagi-Sugeno model, described in [15], is recommended for
consideration.

ẋ(t) =

r∑
i=1

hi(α(t))Aix(t) + Bu(t) + Gξ (t)

y(t) = Cx(t) + fs(t) (2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output
vector, u(t) ∈ Rr is the known input vector, and ξ (t) ∈ Rq

is the unknown input vector (perturbation), and fs(t) ∈ Rv

is the sensor failure vector. B and G, are known matrices
with compatible dimensions. Ai represents each of the linear
subsystems, and hi ∈ R are weighting functions that depend
on α(t), also known as premise variables or determination
variables [18]. The weighting functions satisfy the convex
sum:

∀i ∈ [1, 2, . . . , r], h1(α(t)) ≥ 0,
r∑
i=1

hi(α(t)) = 1,∀t (3)

There are some papers published in recent years that
assume that the premise variables are measurable, as in [19].
However, in some practical applications, the premise vari-
ables are not measurable or are measured with level
uncertainties [20].

A. UNKNOWN INPUT OBSERVER DESIGN
Unlike conventional unknown input observers, which have
been shown to work well in systems with accurate and well-
defined models, Takagi-Sugeno unknown input observers
(TS-UIO) provide a flexible and adaptable solution for
addressing more complex behaviors in systems with inherent
uncertainty, high nonlinearity, and imprecision typical of
fuzzy systems [21].

In this paper, we present a comprehensive investigation
into the application of fuzzy unknown input observers.
Through a detailed analysis of the advantages and real-world
applications, we demonstrate the value of this approach in
improving system performance and efficiency. Our findings
illustrate the fundamental importance of this concept in
accurately estimating nonlinear and complex systems, thus
highlighting its relevance within various engineering and
control disciplines. The study builds on prior research that
demonstrated the efficacy and utility of Takagi-Sugeno fuzzy
observers in approximating nonlinear systems. Specifically,
this study focuses on utilizing the fuzzy observer approach
for detecting sensor faults in a wind turbine’s pitch system
with unknown inputs. This perspective adds to the expanding
knowledge base in the field of sensor fault detection,
endorsing the enduring value of Takagi-Sugeno models in
resolving intricate and pertinent issues [22].
In model-based fault diagnosis methods, one topic of

great interest is robust residual generation based on fault
decoupling approaches [23]. Here, an unknown input is
assumed in the system, which is described by a known
distribution matrix. This enables the decoupling of the
unknown input from the residuals. For an observer with
unknown input for a linear system, the estimation error
approaches zero even in the presence of the unknown input,
since the residual is also decoupled [8].
The structure of a complete order observer is described by:

ż(t) =

r∑
i=1

hi(α(t))
(
Fiz(t) + TiBu(t) + Kiy(t)

)
25298 VOLUME 12, 2024
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FIGURE 3. Unknown Input Observer Structure [8].

x̂(t) =

r∑
i=1

hi(α(t))Hiy(t) + z(t) (4)

where x̂ ∈ R2 is the estimated state vector, z ∈ R2 is the
observer complete order state vector, and Fi,Ti,Ki,Hi are
matrices used to satisfy decoupling of unknown entries and
other design requirements [24]. The observer described by
equation (4) is shown in Figure 3.
When the observer of the equation (4) is applied to the

system 2, the estimated error state is [25]:

e(t) = x(t) − x̂(t) (5)

The estimate of the error is given by the equation (5), and x̂(t)
is then described in equation (4):

e(t) = x(t) −

r∑
i=1

hi(α(t))Hiy(t) − z(t) (6)

Substituting y(t) = Cx(t) + fS (t)

e(t) = x(t) −

r∑
i=1

hi
(
α(t)

)
Hi
(
Cx(t) + fS (t)

)
− z(t) (7)

To obtain the dynamics of the error, equation (5) is derived by
substituting ż(t) from equation (4) [26], which is described in
the following equation:

ė(t) =

r∑
i=1

hi
(
α(t)

)
[I − HiC] ẋ(t)

−

r∑
i=1

hi
(
α(t)

)
Hi ḟs(t) − ż(t)

ė(t) =

r∑
i=1

hi
(
α(t)

)
[I − HiC]

×

 r∑
j=1

hj
(
α(t)

)
Ajx(t) + Bu(t) + Gξ (t)



−

r∑
i=1

hi
(
α(t)

)
Hi ḟs

−

r∑
i=1

hi
(
α(t)

)(
Fiz(t) + TiBu(t) + KiCx(t)

)
(8)

grouping terms:

ė(t) =

r∑
i=1

hi(α(t))
( r∑

j=1

hj(α(t))Ajx(t) + Bu(t) + Gξ (t)

−

r∑
j=1

hj(α(t))HiCAjx(t) − HiCBu(t)

− HiCGξ (t)
)

−

r∑
i=1

hi
(
α(t)

)
Hi ḟs(t)

−

r∑
i=1

hi
(
α(t)

)(
Fiz(t) + TiBu(t) + Kiy(t)

)
(9)

substituting y(t) = Cx(t) + fS (t):

ė(t) =

r∑
i=1

hi(α(t))
( r∑

j=1

hj(α(t))Ajx(t) + Bu(t) + Gξ (t)

−

r∑
j=1

hj(α(t))HiCAjx(t) − HiCBu(t)

− HiCGξ (t)
)

−

r∑
i=1

hi
(
α(t)

)
Hi ḟs(t) −

r∑
i=1

hi
(
α(t)

)
×

(
Fiz(t) + TiBu(t) + KiCx(t) + Kifs(t)

)
grouping terms:

ė(t) =

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))Ajx(t)

−

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))HiCAjx(t)

−

r∑
i=1

hi(α(t))KiCx(t)

+

r∑
i=1

hi(α(t))Bu(t) −

r∑
i=1

hi(α(t))HiCBu(t)

−

r∑
i=1

hi(α(t))TiBu(t) +

r∑
i=1

hi(α(t))Gξ (t)

−

r∑
i=1

hi(α(t))HiCGξ (t) −

r∑
i=1

hi(α(t))Hi ḟs(t)

−

r∑
i=1

hi(α(t))Kifs(t) −

r∑
i=1

hi(α(t))Fiz(t) (10)
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Solving for z(t) in (7) and substituting into (10) the dynamics
of error can be expressed as:

ė(t) =

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))
(
Aj − HiCAj − KiC

)
x(t)

+

r∑
i=1

hi(α(t))(B− HiCB− TiB)u(t)

−

r∑
i=1

hi(α(t))(G− HiCG)ξ (t) −

r∑
i=1

hi(α(t))Hi ḟs(t)

−

r∑
i=1

hi(α(t))Kifs(t) −

r∑
i=1

hi(α(t))Fi

×

( r∑
i=1

hi(α(t))(I − HiC)x(t) − e(t)
)

(11)

finally, the dynamics of the error can be expressed as:

ė(t) =

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))
(
Aj − HiCAj − KiC

+ FiHiC − Fi

)
x(t) +

r∑
i=1

hi(α(t))
(
B− HiCB

− TiB
)
u(t) −

r∑
i=1

hi(α(t))(G− HiCG)ξ (t)

−

r∑
i=1

hi(α(t))Hi ḟs(t) −

r∑
i=1

hi(α(t))Kifs(t)

+

r∑
i=1

hi(α(t))Fie(t) (12)

Remark 1: In order for the observer to prove its efficiency,
the error e(t) should asymptotically approach zero, which
means that the estimated state x̂(t) should approach the actual
state of the system x(t) in the absence of faults, where fs(t) =

0 and ḟs(t) = 0. The following relationships must hold true to
achieve this goal:

r∑
i=1

hi(α(t))(B− HiCB− TiB)u(t) = 0

Ti = I − HiC (13)
r∑
i=1

hi(α(t))(G− HiCG)ξ (t) = 0

G = HiCG (14)

Considering the relationships (13) and (14), we obtain

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))(I − HiC)Aj

=

r∑
j=1

r∑
i=1

hi(α(t))hj(α(t))TiAj (15)

Remark 2: The following variable changes (16, 17,18) are
proposed to simplify the term that multiplies x(t) in the
equation (12).

r∑
i=1

r∑
j=1

hi(α(t))hj(α(t))TiAj =

r∑
i=1

hi(α(t))A1i (16)

r∑
i=1

hi(α(t))FiHi =

r∑
i=1

hi(α(t))K2i (17)

r∑
i=1

hi(α(t))Ki =

r∑
i=1

hi(α(t))(K1i + K2i)

(18)

Such that the dynamics of the error can be rewritten as:

ė(t) =

r∑
i=1

hi(α(t))
(
A1i − KiC + K2iC − Fi

)
x(t)

+

r∑
i=1

hi(α(t))Fie(t) (19)

therefore:
r∑
i=1

hi(α(t))
(
A1i − KiC + K2iC − Fi

)
x(t) = 0

Fi = A1i − KiC + K2iC (20)

Theorem 1: For the TS system (2), an asymptotic Unknown
Input Observer (UIO) (4) is proposed with gainsKi,Hi,Ti and
Fi that satisfy conditions (13) and (14) if and only if there
exists a positive definite matrix P = PT ∈ Rmxm and χ ∈

Rmxm that satisfies the LMIs:

P > 0

A1Ti P− χTi C
T

+ PA1i − χiC < 0 (21)

Proof: Given the conditions from 20, the dynamics of the
error are expressed as:

ė(t) =

r∑
i=1

hi(α(t))Fie(t) (22)

Considering a candidate Lyapunov function as a function of
the error:

v(e(t)) = e(t)TPe(t) > 0 (23)

where:

P = PT > 0

Therefore, the derivative of the function is monotonically
decreasing, as can be seen:

v̇
(
e(t)

)
< 0 (24)

v̇
(
e(t)

)
= ė(t)TPe(t) + e(t)TPė(t) < 0 (25)
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Given the fact that the sum of
r∑
i=1

hi
(
α(t)

)
= 1 and

the weights are between zero and one and substituting (22)
in (25): (

Fie(t)
)TPe(t) + e(t)TP

(
Fie(t)

)
< 0 (26)

We have that the LMIs FTi P+PFi < 0, i = 1, 2, . . . , r are
sufficient conditions for v̇

(
e(t)

)
< 0.(

A1i − K1iC
)TP+ P

(
A1i − K1iC

)
< 0 (27)

A change of variable is proposed for:

χi = PK1i ⇒ K1i = P−1χi

χTi = K1Ti P

Finally, the LMI can be expressed as follows:

A1Ti P− χTi C
T

+ PA1i − χiC < 0 (28)

This concludes the proof □

III. PSEUDOCODE FOR OBSERVER DESIGN
This section is dedicated to presenting the procedure for
designing the unknown input observer.

• Step 1: Calculate Ti and Hi and A1

[
TiHi

]
=

([
I
C

]T [ I
C

])−1 [
I
C

]T
A1i = TiAj

• Step 2: LMI solution from 28

• Step 3: Calculate Fi

Fi = A1i − K1iC

• Step 4: Calculate K

K2i = FiHi
Ki = K1i + K2i

IV. MODELING OF AN ACTIVE PITCH SYSTEM
In this section, the parts of the pitch system model are
presented. Finally, the numerical values of the various
parameters are given.

A. PITCH SYSTEM MODEL
The pitch system consists of four main components [4]:

• Gear train consisting of a frequency converter, an elec-
tric motor (a squirrel cage rotor), a gearbox, and a
transmission pinion.

• Rotor Blade Rotary Union
• Wind rotor blade
• Gearbox control unit. The gearbox control unit receives
the desired angle of attack ϕ from the control system and
calculates the control signal for the motor. The power
of the motor is converted into speed and torque by the
gearbox.

Similarly, the vectors, whose components are the stator and
rotor currents, For an induction motor with one pair of poles,
the equations describing the induction motor are thus:

ẋ1(t) = −
Rs
σLs

(
x1(t) −

Lm
Lr
x3(t)

)
+ ωsx2(t) + u1(t)

ẋ2(t) = −
Rs
σLs

(
X2(t) −

Lm
Lr
x4(t)

)
− ωsx1(t) + u2(t)

ẋ3(t) = −
Rr
σLr

(
x3(t) −

Lm
Ls
x1(t)

)
+ (ωs − px5(t)) x4(t)

ẋ4(t) = −
Rr
σLr

(
x4(t) −

Lm
Ls
x2(t)

)
− (ωs − px5(t)) x3(t)

ẋ5(t) =
3
2
Zp
J

Lm
σLsLr

(x2(t)x3(t) − x1(t)x4(t))−
TL
igJ

ẋ6(t) = x5(t) (29)

The state variables are:

x(t) = [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]T

:= [ψsd (t) ψsq(t) ψrd (t) ψrq(t) ωr (t) ϕ(t)]T

and

u(t) = [u1(t) u2(t)]T := [usd (t) usq(t)]T (30)

The state variables ψsd (t) and ψsq(t) are the components of
the magnetic flux in the stator within the frames d and q,
ψrd (t) and ψrq(t) are the components of the magnetic flux in
the rotor within the frames d and q, ωr (t) is the rotor speed,
and ϕ(t) is the rotor angle. The input vector contains the stator
voltages usd (t), usq(t) are also related in the frames d and q.
The system parameters in equation (29) are the load inertia
J , the stator and rotor resistance Rs and Rr , the stator and
rotor inductance Ls and Lr , the mutual inductance Lm, the
number of pole pairs p and σ = Ls −

L2m
LsLr

is the Blondel
coefficient, and the relationship γ =

3
2
p
J

Lm
σLsLr

is used to
simplify the writing of the equation(33). The transmission
ratio that exists between the gearbox and the spur gears
connecting the wind turbine blades ig = igp igs. The total
moment of inertia is the sum of the moment of inertia of the
induction motor Ja, the moment of inertia of the gear Jg, and
the moment of inertia about the axial length of the blade Jg.

J = Ja + Jg +
Jb
i2g

(31)

The system output vector is defined as: y(t) :=

[isq(t), isd (t), ωb(t), ϕ(t)] from state space model
equation (32).

y(t) =


1
σLs

0 −
Lm
σLsLr

0 0 0
0 1

σLs
0 −

Lm
σLsLr

0 0
0 0 0 0 1

ig
0

0 0 0 0 0 1
ig


× [ψsd (t) ψsq(t) ψrd (t) ψrq(t) ωr (t) ϕ(t)]T (32)
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TABLE 1. pitch system parameters.

The parameters of the pitch system described by equa-
tion(29) are shown in Table 1.

The approach used in the present research, ‘‘non-linear
sector’’, is explained in [16]. This approach guarantees the
accurate construction of fuzzy models. The pitch system (see
equation (29)) is considered a simple nonlinear system ẋ(t)=
f(x(t)) where f (0) = 0. The objective is to find the local sector
such that ẋ(t)= f(x(t)) ∈ [a1a2]. Such local sectors whose
nonlinearities are denoted by x3(t) ∈ [−0.4, 0.4] (Wb),
x4(t) ∈ [−0.4, 0.4] (Wb) and w(t) ∈ [−378, 378] rad/s.
The assumption variables α1(t) = ω(t), α2(t) = x4(t),

α3(t) = x3(t) are used to compute the membership functions,
and the resulting TS model is:

Ai =



−
Rs
σLs

α1(i) −
LmRs
σLsLr

0 0 0
−α1(i) −

Rs
σLs

0 −
RsLm
σLsLr

0 0
RrLr
σLsLr

0 −
Rr
σLr

α1(i) −pα2(i) 0
0 RrLn

σLsLr
−α1(i) −

Rr
σLr

pα3(i) 0
−γα2(i) γα3(i) 0 0 0 0

0 0 0 0 1 0


(33)

B =


1 0
0 1
0 0
0 0
0 0
0 0

G =

[
0 0 0 0 −

1
igJ 0

]T
(34)

The matrix C is defined by:

C =


1
σLs

0 −
Lm
σLsLr

0 0 0
0 1

σLs
0 −

Lm
σLsLr

0 0
0 0 0 0 1

ig 0
0 0 0 0 0 1

ig

 (35)

Membership functions are:

M1(α1(t)) =
α1(t)+378

756 ; M2(α1(t)) =
378−α1(t)

756 (36)

N1(α2(t)) =
α2(t)+0.4

0.8 ; N2(α2(t)) =
0.4−α2(t)

0.8 (37)

S1(α3(t)) =
α3(t)+0.4

0.8 ; S2(α3(t)) =
0.4−α3(t)

0.8 (38)

The weights of which are:

h1(α(t)) = M1(α1(t))N1(α2(t))S1(α3(t)
h2(α(t)) = M1(α1(t))N1(α2(t))S2(α3(t))
h3(α(t)) = M1(α1(t))N2(α2(t))S1(α3(t))
h4(α(t)) = M1(α1(t))N2(α2(t))S2(α3(t))
h5(α(t)) = M2(α1(t))N1(α2(t))S1(α3(t))
h6(α(t)) = M2(α1(t))N1(α2(t))S2(α3(t))
h7(α(t)) = M2(α1(t))N2(α2(t))S1(α3(t))
h8(α(t)) = M2(α1(t))N2(α2(t))S2(α3(t))

(39)

The matrices Ai obtained are:

A1 = 1 × 103

×

−1.4207 0.3780 1.3981 0 0 0
−0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 0.3780 −0.0012 0

0 0.6852 −0.3780 −0.7112 0.0012 0
−4.2362 4.2362 0 0 0 0

0 0 0 0 0.0010 0


A2 = 1 × 103

×

−1.4207 0.3780 1.3981 0 0 0
−0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 0.3780 −0.0012 0

0 0.6852 −0.3780 −0.7112 −0.0012 0
−4.2362 −4.2362 0 0 0 0

0 0 0 0 0.0010 0


A3 = 1 × 103

×

−1.4207 0.3780 1.3981 0 0 0
−0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 0.3780 0.0012 0

0 0.6852 −0.3780 −0.7112 0.0012 0
4.2362 4.2362 0 0 0 0

0 0 0 0 0.0010 0


A4 = 1 × 103

×

−1.4207 0.3780 1.3981 0 0 0
−0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 0.3780 0.0012 0

0 0.6852 −0.3780 −0.7112 −0.0012 0
4.2362 −4.2362 0 0 0 0

0 0 0 0 0.0010 0


A5 = 1 × 103

×

−1.4207 −0.3780 1.3981 0 0 0
0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 −0.3780 −0.0012 0

0 0.6852 0.3780 −0.7112 0.0012 0
−4.2362 4.2362 0 0 0 0

0 0 0 0 0.0010 0


A6 = 1 × 103

×

−1.4207 −0.3780 1.3981 0 0 0
0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 −0.3780 −0.0012 0

0 0.6852 0.3780 −0.7112 −0.0012 0
−4.2362 −4.2362 0 0 0 0

0 0 0 0 0.0010 0


A7 = 1 × 103

×

−1.4207 −0.3780 1.3981 0 0 0
0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 −0.3780 0.0012 0

0 0.6852 0.3780 −0.7112 0.0012 0
4.2362 4.2362 0 0 0 0

0 0 0 0 0.0010 0


A8 = 1 × 103

×

−1.4207 −0.3780 1.3981 0 0 0
0.3780 −1.4207 0 1.3981 0 0
0.6852 0 −0.7112 −0.3780 0.0012 0

0 0.6852 0.3780 −0.7112 −0.0012 0
4.2362 −4.2362 0 0 0 0

0 0 0 0 0.0010 0


To check the effectiveness of the proposedmodel, themean

squared error (MSE) is calculated using the equation:

MSE =
1
n

n∑
i=1

(Pi − Oi)2 (40)

where:
Pi = Values obtained from the non-linear model
Oi = Values obtained from the TS model
n = Number of sample data
The result obtained is MSE1 = 4 × 10−5 and MSE2 =

5 × 10−5 where MSE1 is the mean square error between Isd
representing the output current in the stator of the stepper
actuator at coordinate d of the non-linear model and IsdTS
representing the output current in the stator of the stepper
actuator at coordinate d of the Takagi-Sugeno model, and
MSE2 is the mean square error between Isq representing
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the output current in the stator of the stepping actuator at
coordinate q of the non-linear model and IsqTS representing
the output current in the stator of the stepping actuator at
coordinate q of the Takagi-Sugeno model. Therefore, we can
check the efficiency of both models in figure 4.

V. RESULTS
In nonlinear system estimation, observers of unknown inputs
are crucial. However, the presence of unknown inputs can
introduce complexities to the estimation process. To improve
estimation performance, we address the challenge of decou-
pling unknown inputs and enhancing system estimation
accuracy.

The primary method for decoupling incorporates the use of
filtering methods to separate unknown inputs. Our proposed
approach involves employing adaptive filtering techniques or
modal decomposition to efficiently extract the influences of
unknown inputs from the estimation process.

Our findings demonstrate that the implementation of
the proposed decoupling technique effectively enhances the
observer’s capacity to precisely approximate the system
state, despite the presence of unknown inputs. Such an
improvement is of paramount importance in various pertinent
applications, including the control of dynamic systems and
navigation systems, where the accuracy of state estimation is
indispensable.

This work contributes to the field by providing a robust
methodology for decoupling unknown inputs in observers
of nonlinear systems, thus extending the applicability and
effectiveness of these observers in real-world environments.

Traditional TS observers operate under global sector
conditions where the membership function is limited by
constraints on input variables to ensure system stability. How-
ever, our proposed new approach is innovative as it adopts
a local sector framework, thereby guaranteeing convexity
intrinsically through a lack of overlap between the input
variables’ membership functions. This approach, presented
below, offers a promising perspective for improving the
efficiency and stability of TS observers, providing a valuable
alternative in the design of dynamic systems.

The pitch system (see equation 29) is considered a simple
non-linear system ẋ(t) = f (x(t)) where f (0) = 0. The
objective is to find the local sector such that ẋ(t) = f (x(t)) ∈

[a1a2]. The nonlinearities of the local sectors are denoted
by x3(t) ∈ [−0.4, 0.4](Wb), x4(t) ∈ [−0.4, 0.4](Wb) y
w(t) ∈ [−378, 378] rad/s.

P =


0.6723 0.1339 −0.3297 0.1891 −0.0278 0.0496

0.1339 0.1387 0.1375 0.1981 −0.0262 0.0467

−0.3297 0.1375 0.6651 0.1941 −0.0285 0.0509

0.1891 0.1981 0.1941 0.2877 −0.0364 0.0650

−0.0278 −0.0262 −0.0285 −0.0364 0.0054 −0.0096

0.0496 0.0467 0.0509 0.0650 −0.0096 0.0172

 (41)

F1 = 1 × 103

×

 0.0997 0.8702 −0.1165 −0.4844 −0.0006 0.0000
0.0164 −0.1821 −0.3881 0.1608 0.0006 0.0000
0.1018 0.5099 −0.1189 −0.1238 −0.0006 0.0000
0.2711 −0.1656 −0.6448 0.1443 0.0006 0.0000
0.8663 8.8729 −5.0215 −4.5631 −0.0020 −0.0018

−3.3844 0.9662 3.3307 −0.9508 −0.0001 −0.0024



F2 = 1 × 103

×

 0.0756 0.0827 −0.0929 0.2906 −0.0006 0.0001
0.0541 −0.0572 −0.4253 0.0378 −0.0006 −0.0001
0.1120 0.2132 −0.1289 0.1682 −0.0006 0.0000

−0.1330 −0.0837 −0.2471 0.0637 −0.0006 0.0000
0.4552 −0.1271 −4.6169 −4.0438 0.0000 −0.0048
2.2777 2.0084 −2.2416 −1.9765 0.0010 −0.0044


F3 = 1 × 103

×

 0.0756 0.0827 −0.0929 0.2906 0.0006 −0.0001
0.0541 −0.0572 −0.4253 0.0378 0.0006 0.0001
0.1120 0.2132 −0.1289 0.1682 0.0006 −0.0000

−0.1330 −0.0837 −0.2471 0.0637 0.0006 0.0000
−0.4552 0.1271 4.6169 4.0438 −0.0000 −0.0048
−2.2777 −2.0084 2.2416 1.9765 0.0010 −0.0044


F4 = 1 × 103

×

 0.0997 0.8702 −0.1165 −0.4844 0.0006 0.0000
0.0164 −0.1821 −0.3881 0.1608 −0.0006 0.0000
0.1018 0.5099 −0.1189 −0.1238 0.0006 0.0000
0.2711 −0.1656 −0.6448 0.1443 −0.0006 0.0000

−0.8663 −8.8729 5.0215 4.5631 −0.0020 −0.0018
3.3844 −0.9662 −3.3307 0.9508 −0.0001 −0.0024


F5 = 1 × 103

×

 0.0756 −0.0827 −0.0929 −0.2906 −0.0006 0.0001
−0.0541 −0.0572 0.4253 0.0378 0.0006 0.0001
0.1120 −0.2132 −0.1289 −0.1682 −0.0006 0.0000
0.1330 −0.0837 0.2471 0.0637 0.0006 0.0000
0.4552 0.1271 −4.6169 4.0438 −0.0000 −0.0048
2.2777 −2.0084 −2.2416 1.9765 0.0010 −0.0044


F6 = 1 × 103

×

 0.0997 −0.8702 −0.1165 0.4844 −0.0006 0.0000
−0.0164 −0.1821 0.3881 0.1608 −0.0006 0.0000
0.1018 −0.5099 −0.1189 0.1238 −0.0006 0.0000

−0.2711 −0.1656 0.6448 0.1443 −0.0006 0.0000
0.8663 −8.8729 −5.0215 4.5631 −0.0020 −0.0018

−3.3844 −0.9662 3.3307 0.9508 −0.0001 −0.0024


F7 = 1 × 103

×

 0.0997 −0.8702 −0.1165 0.4844 0.0006 0.0000
−0.0164 −0.1821 0.3881 0.1608 0.0006 0.0000
0.1018 −0.5099 −0.1189 0.1238 0.0006 0.0000

−0.2711 −0.1656 0.6448 0.1443 0.0006 0.0000
−0.8663 8.8729 5.0215 −4.5631 −0.0020 −0.0018
3.3844 0.9662 −3.3307 −0.9508 −0.0001 −0.0024


F8 = 1 × 103

×

 0.0756 −0.0827 −0.0929 −0.2906 0.0006 −0.0001
−0.0541 −0.0572 0.4253 0.0378 −0.0006 −0.0001
0.1120 −0.2132 −0.1289 −0.1682 0.0006 0.0000
0.1330 −0.0837 0.2471 0.0637 −0.0006 0.0000

−0.4552 −0.1271 4.6169 −4.0438 0.0000 −0.0048
−2.2777 2.0084 2.2416 −1.9765 0.0010 −0.0044

 (42)

K1 = 1 × 103

×

−0.0002 −0.0000 0.0585 −0.0067
−0.0000 −0.0002 0.0363 −0.0063
−0.0002 −0.0000 0.0394 −0.0126
−0.0000 −0.0002 0.0496 −0.0297
−0.0013 0.0013 2.4015 2.1286
0.0000 −0.0000 1.3615 2.9284


K2 = 1 × 103

×

−0.0002 0.0000 0.0000 −0.0658
−0.0000 −0.0002 0.0000 0.0616
−0.0002 0.0000 0.0000 −0.0150
0.0000 −0.0002 0.0000 0.0105

−0.0013 −0.0013 0.0000 5.7564
0.0000 0.0000 0.0000 5.2503


K3 = 1 × 103

×

−0.0002 0.0000 0.0000 0.0658
−0.0000 −0.0002 0.0000 −0.0616
−0.0002 −0.0000 0.0000 0.0150
0.0000 −0.0002 0.0000 −0.0105
0.0013 0.0013 0.0000 5.7564
0.0000 0.0000 0.0000 5.2503


K4 = 1 × 103

×

−0.0002 0.0000 −0.0585 0.0067
−0.0000 −0.0002 −0.0363 0.0063
−0.0002 −0.0000 −0.0394 0.0126
0.0000 −0.0002 −0.0496 0.0297
0.0013 −0.0013 2.4015 2.1286
0.0000 0.0000 1.3615 2.9284


K5 = 1 × 103

×


−0.0002 −0.0000 0.0000 −0.0658
0.0000 −0.0002 0.0000 −0.0616

−0.0002 0.0000 0.0000 −0.0150
−0.0000 −0.0002 0.0000 −0.0105
−0.0013 0.0013 0.0000 5.7564
−0.0000 0.0000 0.0000 5.2503
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FIGURE 4. Isd and Isq no lineal vs Isd and Isq TS.

FIGURE 5. Isd and Isq TS vs Isd and Isq TS-UIO.

K6 = 1 × 103

×


−0.0002 0.0000 0.0585 −0.0067
0.0000 −0.0002 −0.0363 0.0063

−0.0002 0.0000 0.0394 −0.0126
0.0000 −0.0002 −0.0496 0.0297

−0.0013 −0.0013 2.4015 2.1286
0.0000 0.0000 1.3615 2.9284


K7 = 1 × 103

×


−0.0002 0.0000 −0.0585 0.0067
0.0000 −0.0002 0.0363 −0.0063

−0.0002 0.0000 −0.0394 0.0126
0.0000 −0.0002 0.0496 −0.0297
0.0013 0.0013 2.4015 2.1286

−0.0000 0.0000 1.3615 2.9284



K8 = 1 × 103

×


−0.0002 0.0000 0.0000 0.0658
0.0000 −0.0002 0.0000 0.0616

−0.0002 0.0000 0.0000 0.0150
0.0000 −0.0002 0.0000 0.0105
0.0013 −0.0013 0.0000 5.7564
0.0000 0.0000 0.0000 5.2503

 (43)

T1−8 =


0.4920 0 0.4999 0 0 0

0 0.4920 0 0.4999 0 0
0.4999 0 0.5080 0 0 0

0 0.4999 0 0.5080 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (44)
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FIGURE 6. Normalised residuals ∥r1(t)∥, ∥r2(t)∥, f1(t), f2(t) are induced fault signals.

FIGURE 7. Error e(t) between the observer (TS-UIO) and the Takagi-Sugeno (TS) model.

H1−8 = 1 × 10−3

×

 0.3153 0 0 0
0 0.3153 0 0

−0.3103 0 0 0
0 −0.3103 0 0
0 0 0.8333 0
0 0 0 0.8333

 (45)

VI. FAULT DIAGNOSIS
Fault detection in the sensor in the DOS-like observer
bank scheme [27] (Figure 9) generates a vector |rn(t)|

representing the normalised residual of the n-th observer. Its
n-th component uses all inputs and only the n-th output [8].

∥rn(t)∥ = ∥yn(t) − Cnx̂n(t)∥ (46)

The set of residuals is used to distinguish between one fault
and another, i.e., fault is isolated using a set of residuals as
shown in the table 2.
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FIGURE 8. Disturbance ξ (t).

FIGURE 9. Two-bank observers scheme for detecting faults in sensors.

TABLE 2. Incidence Matrix for the Two Schemes for Sensor Fault Isolation.

VII. DISCUSSIONS
To demonstrate the application of the proposed method,
we consider the measurement noise in the sensors Isd
and Isq with a power of 1 × 10−6W and the uncer-
tainty given in the unknown input of the system ξ (t)
can be shown in Figure 8. Two known inputs, u1(t) =

220sin(377t) and u2(t) = 220sin(377t −
2∗pi
3 ) for all t are

also considered. For the simulation, the initial conditions
x(0) =

[
0.2 0.2 0.2 0.2 0 0

]T of the observer and x(0) =[
0 0 0 0 0 0

]T for the Takagi-Sugeno system were consid-
ered, as shown in Figure 5, to demonstrate the convergence of
the TS-UIO observer with the non-linear system of the pitch
system under study.

In the Figure 6 showing Fault Diagnostics (FDI)
scheme [28], the fault is induced in the stator current sensor

d (sensor 1), indicated as f1(t), and a fault is induced in the
stator current sensor q (sensor 2), indicated as f2(t), Both
faults can be shown in Figure 6 (c) and (d). This failure can
be described as a ramp or step function to represent slow or
abrupt failures. Abrupt failures are considered in this paper.
It’s also important to note that sensor failures are modeled
as additive bias, i.e., they can be described as calibration
or compensation problems. The signals of the normalised
residuals are shown in Figure 6 and Figure 6 (a) and (b)
[29]. Under fault-free conditions, the TS-UIO observer [30]
can estimate the states despite measurement noise in the
sensor and uncertainty due to the action of the wind force.
The purpose of sensor fault detection is fulfilled by the fault
diagnosis scheme (FDI) [31]; the proposed unknown input
observer (UIO) has the robustness to detect faults in the
presence of uncertainty in one of the states and measurement
noise. Finally, Figure 7, shows the error between the observer
(TS-UIO) and the Takagi-Sugeno (TS) model; for the states
Isd vs IsdTS and Isq vs IsqTS.

VIII. CONCLUSION
This paper shows the design of TS-UIO applied to fault
diagnosis in an active electrical pitch system. It is important
to mention that in this work, the Takagi-Sugeno model was
used for the system as well as for the observers. The fault
diagnosis algorithm was tested in simulation, and according
to the results, we may assume that the TS-UIO is a good tool
for resolving the model-based fault diagnosis problem. The
Takagi-Sugeno Unknown Inputs observers allow the sensor
fault detection for the systems, in this case, study the pitch
system of a wind turbine.

This work considers the variable parameter conditions
denoted by the nonlinearities x3(t) ∈ [−0.4, 0.4] (Wb),
x4(t) ∈ [−0.4, 0.4] (Wb) and w(t) ∈ [−378, 378]
rad/s and the analysis of the wind maps provided by the
National Renewable Energy Laboratory (NREL) in the user
manual [32], cites themaximum torque supported by thewind
turbine blades, for this reason it is possible to measure the
unknown input to the system.
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The comparison with [33], the nonlinear system, shows
that the observer proposed in this work is a robust observer
of disturbances, even when there is measurement noise,
the proposed scheme is able to observe the behaviour of
the states. Another important consideration in the work is
considering two simultaneous faults during simulation time
at different times [33] as can be seen in Figure 6.
An additional contribution of the proposed work is the

evaluation of the stress to which the wind turbine blades
are subjected, considering this stress as an unknown input
because it depends on the wind and weather conditions where
the wind turbine is installed. It is important to mention in
future work: propose amethod of the diagnosis of faults in the
pitch actuator proposed with an observer of unknown inputs
(UIO) and add delay times in the measurements to verify
the robustness of the observer of unknown inputs (UIO),
being this observer one of the most studied by the scientific
community.

Finally, it can be concluded that there is an increasing
demand for renewable wind or solar energy in various sectors,
including industry, companies, homes, buildings, and electric
car charging. It is crucial to ensure the quality of this energy
to prevent any harm to equipment or systems that run on it.
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