
Received 29 November 2023, accepted 22 January 2024, date of publication 1 February 2024, date of current version 8 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361318

Transaction Conflict Control in Hyperledger
Fabric: A Taxonomy, Gaps, and Design
for Conflict Prevention
MÁTÉ DEBRECZENI , ATTILA KLENIK, AND IMRE KOCSIS
Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1117 Budapest, Hungary

Corresponding author: Imre Kocsis (kocsis.imre@vik.bme.hu)

This work was supported in part by the Cooperation Agreement between the Hungarian National Bank (MNB) and the Budapest University
of Technology and Economics (BME) in the Digitization, Artificial Intelligence, and Data Age Workgroup. The work of Attila Klenik and
Imre Kocsis was supported in part by the SME4DD Project of the European Union’s Digital Europe Program under Project 101100768.

ABSTRACT The execute-order-validate approach to blockchain consensus, most notably implemented
by Hyperledger Fabric, facilitates highly scalable execution of smart contract – in Fabric terminology,
‘‘chaincode’’ – invocations in cross-organizational blockchains; at the expense of requiring multi-version
concurrency control conflict handling during block validation. Consequently, the system-level goodput can
be significantly lower than throughput. Although several solutions have been proposed for handling and
avoiding conflicts in Hyperledger Fabric, a systematic and holistic approach is missing. We introduce
the notion of conflict-controlled operation, propose a novel taxonomy of its means based on the codified
principles of dependable computing, and categorize the known approaches. Based on this taxonomy,
we identified the critical gaps in the state-of-the-art. Design-time conflict prevention is one such gap, and
we propose the application of a model-driven engineering process for this purpose. For the last storage
mapping stage of the process, we propose entity attribute partitioning for conflict prevention, describe a data
mapper-style chaincode layer, and empirically evaluate our solution.

INDEX TERMS Blockchain, hyperledger fabric, multi-version concurrency control, goodput, taxonomy,
dependable computing, model-driven engineering, attribute affinity.

I. INTRODUCTION
Blockchain-based business solutions and applications began
to proliferate in the past decade since the inception of
the smart contract-enabled Ethereum [1] technology and
network. Today, numerous enterprise-grade platforms facil-
itate the creation and management of closed access and
permissioned consensus [2] blockchains, serving specific
cross-organizational collaboration use cases in a dedicated
way. Hyperledger Fabric (HLF) [3] is one of the most popular
and mature closed-permissioned blockchain platforms.

Fabric offers a modular, performant, and scalable solution
to satisfy the diverse requirements of enterprise use cases.
It achieves new levels of scalability (at least in the context

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Guidi .

of blockchains) through a consensus protocol that employs
multi-version concurrency control (MVCC; a form of opti-
mistic concurrency control), allowing more parallel access to
the shared blockchain data than blockchains architected for
the open-unpermissioned setting.

While traditional database solutions have been using
MVCC for a long time [4], Fabric introduced it for
blockchains by applying a novel execute-order-validate
consensus approach – instead of the well-known order-
execute paradigm, notably followed by Ethereum.

However, the application ofMVCCmakes transaction suc-
cess highly dependent on themanner in which smart contracts
read and write data. Unfortunately, designed data models and
smart contracts can lead to many failed transactions (owing to
MVCC conflicts), significantly limiting the system’s goodput
and scalability. Blockchain clients must also re-submit such

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

18987

https://orcid.org/0009-0001-4582-8368
https://orcid.org/0000-0002-2792-3572
https://orcid.org/0000-0002-0151-6469

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

transactions, resulting in an additional load on the system,
which potentially negatively affects the execution of other
transactions in the performance domain. Finally, transactions
that fail because of MVCC conflicts also represent wasted
resources because the transaction failure is unsubstantiated
at the business logic level. Although several solutions have
been proposed for handling and avoiding MVCC conflicts
in Hyperledger Fabric, a systematic and holistic approach
supporting requirement-based design is still missing.

In this paper, we make the following contributions.

• We introduce the notion of conflict-controlled operation
for Hyperledger Fabric.

• Building on a core taxonomy of dependable computing,
which is known to support extra-functional assurance
design in system engineering processes, we propose a
taxonomy of the means of conflict-controlled operation.

• We survey and categorize the known MVCC conflict-
addressing approaches and identify the gaps in the state-
of-the-art.

• We propose the application of the concepts and methods
of model-driven engineering for planned conflict pre-
vention.

• We propose two specific approaches to conflict pre-
vention in mapping platform-independent concepts to
the key-value storage model of Fabric. We describe a
supporting SDK prototype and provide an empirical
evaluation.

The paper is structured as follows. Section II summarizes
the consensus mechanism of Hyperledger Fabric and the
ways MVCC conflicts emerge. Section III introduces our
taxonomy, categorizes the known approaches, and identifies
important gaps. Section IV describes the common model
refinement methodology of model-driven engineering and
argues that it is able to support the design of conflict
prevention by facilitating the proper mapping of the instances
of business-level concepts to the key-value pairs stored
by Hyperledger Fabric. We evaluate the state-of-the-art of
model-driven engineering and low-code/no-code develop-
ment for Fabric from the point of view of recognizing the
need to design against MVCC conflicts. Section V pro-
poses conflict prevention with storage-level entity attribute
partitioning, presents ‘‘total partitioning’’ and an attribute
affinity-based partitioning algorithm, describes our prototype
chaincode SDK, and provides initial empirical evaluation.
The code, data, and analysis artifacts associated with this
section are available in our GitHub repository.1

The paper is based on the initial results of a student
research report [5], created by one of the authors (and
consulted by two others). However, only Section V of this
paper relies on the report meaningfully, and that content has
also been significantly revised.

1https://github.com/ftsrg/hyperledger-fabric-mvcc-analysis

II. EXECUTE-ORDER-VALIDATE CONSENSUS IN FABRIC
This section gives an overview of the relevant core concepts
of Hyperledger Fabric and its consensus protocol. For further
details, we refer to [3] and the Fabric documentation.2

A. TRANSACTION PROCESSING
A Hyperledger Fabric network is operated by a membership-
controlled consortium of organizations with the goal of
jointly maintaining a connected set of distributed key-value
ledgers, each equipped with smart contracts (in Hyperledger
Fabric terminology, the ledgers are called channels and smart
contracts chaincode). The ledgers do not have a native data
model (notably, there is no ‘‘unit of value’’, or cryptocurrency,
present out of the box); ledger content is entirely defined by
the key-value operations performed by the smart contracts.

Each channel is maintained by a subset of the organiza-
tions, as determined by business cooperation requirements
and the intended balance between integrity and need-to-know
considerations. Without losing generality, throughout this
paper, we assume a single-channel Fabric network, as cross-
channel chaincode operations are restricted to reads. As we
will see, this means that even in a multi-channel setting, for
each transaction, only the channel it directly targets will be
relevant from the point of view of MVCC conflicts.

The distributed ledgers realized by a Hyperledger Fabric
network are blockchain-based; however, the Fabric system
architecture and consensus approach are significantly dif-
ferent from public blockchains. In Fabric, consensus and
client access are both permissioned – the latter is restricted
to members and systems of the participating organizations; it
is common to call Fabric networks consortial blockchains.

Each organization contributes resources to the network in
a number of roles. Peer nodes are the primary computational
resources of the network, responsible for maintaining the
distributed ledger by executing, validating, and committing
transactions.

A set of ordering service nodes (OSNs) jointly operates
the ordering service, which determines the global order
of transactions and batches them to blocks. Organizational
clients submit transaction requests to the network to trigger
ledger state changes subject to authentication, authorization,
and the Fabric consensus protocol (depicted in Figure 1).
1) The client sends a transaction proposal to peers

of the participating organizations, containing various
parameters, such as the smart contract (chaincode)
function to execute and its inputs.

2) Peers independently execute the proposals against their
stored distributed ledger state by executing the target
chaincode, a smart contract that encodes the nec-
essary business logic. Chaincodes access the current
peer-local ledger state (the world state) through the
executor peer as a versioned key-value store. The peer
records the data accesses of the executing transaction

2https://hyperledger-fabric.readthedocs.io/en/latest/

18988 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

in the form of a read set and a write set, but does not
perform the writes.

3) The client receives the execution – ‘‘simulation’’ –
results from the peers in terms of versioned variable
reads and writes. Each peer endorses and signs
successful executions in the name of its controlling
organization. The client receives the read set and the
write set as part of an endorsement.

4) If the client gathered sufficient endorsements with
matching read sets and write sets, it submits the pro-
posal, endorsements, and read and write sets to an OSN
for ordering. The number of necessary endorsements
is governed by a configurable endorsement policy
(e.g., one endorsement from at least k participating
organization out of n).

5) The OSNs use the crash fault-tolerant Raft protocol [6]
to globally order the incoming transactions of clients
in a first-in, first-out manner. (The ordering service
is pluggable – other options exist – but Raft is the
preferred one.)

6) When a preconfigured criterion is met (number of
transactions, aggregated payload size, or timeout), the
ordering service creates and broadcasts a new block of
transactions to the peers.

7) The peers receive the new block and validate multiple
aspects of the transactions in the block. The MVCC
validation substep ensures that the read set of each
transaction still matches the current world state (see
below). Only the write sets of valid transactions are
committed to the world state.

8) Finally, the peers notify the subscribed clients about the
final statuses of new transactions in the latest block.

Peers in newer versions of Fabric can also provide a
gateway functionality, performing most of the client’s work:
steps 1⃝ through 4⃝ and 8⃝ in Figure 1 are pushed into
the peer components. The client only performs a traditional
request-reply communication with a peer of its organization,
extending the process with an additional initial request
and final reply step. However, the underlying consensus
mechanism remains unchanged; the functionality is mostly
just a code reorganization. Accordingly, this paper assumes
gatewayless operation.

In comparison to other platforms, notably Ethereum, this
approach to blockchain consensus changes the order of trans-
action ordering and execution. As such, the above process
is commonly called Execute-Order-Validate (abbreviated as
EOV or XOV) consensus. While some other blockchains
also follow the EOV pattern and its variants, we focus on
Hyperledger Fabric in this paper due to its maturity and
practical significance.

It is to be noted that the smart contract execution model
of Fabric is not virtual machine but interface-based (in
contrast to, e.g., Ethereum). Chaincode bundled with its
execution environment either resides in a Docker container
on the peer or its execution is fully detached as an external
service. Chaincode communicates with the peer during

FIGURE 1. Transaction processing in a Hyperledger Fabric network.

transaction proposal execution through a key-value get/put
RPC API.

One of the many ramifications of this model is that the
chaincode development language, runtime, and execution
environment can be almost arbitrary as long as the envi-
ronment and executable can be encapsulated in a container,
implement the RPC API, and adhere to a lifecycle model.
Fabric natively supports JavaScript/TypeScript, Java, and
Golang chaincodes.

B. MVCC CONFLICTS
In EOV transaction processing, read-write conflicts can arise
between transactions due to their parallelized pre-execution.
Multi-version concurrency control in Fabric handles these
conflicts by invalidating some transactions during block
validation on the peers; it processes the transaction read-write
sets sequentially and discards all unsafe operations.

The core logic of conflict handling is simple: if, in a
block, the pre-execution of a transaction relied on a
variable – as expressed by the versioned read set – which
has been updated in the world state since then it has to be
discarded. The update may have happened during committing
a transaction from the same block or could have happened
even during committing an earlier block. Due to the nature
and significant configurability of the EOV mechanism, end-
to-end transaction latency can be significant (on the order of
seconds), and it can be possible to simulate a transaction with
a world state which will be updated shortly by a block already
being prepared for broadcast to the peers. This way, we tend
to distinguish intra-block and inter-block MVCC conflicts
between transactions.

Reference [7] formalizes Hyperledger Fabric transaction
failure modes and describes them in detail; in the terminology

VOLUME 12, 2024 18989

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

of [7], this paper is primarily concerned with MVCC read
conflicts. We introduce the new term conflict horizon to
denote the age (as measured from initial request issuance)
interval of transactions which a distinguished transaction
may conflict with during its own (later) validation phase.
The underlying intuition is that when a transaction is newly
started, transactions over a certain age can be assumed
to have already gone through validation and commitment
(or invalidation) by the time the distinguished transaction
begins to undergo endorsement. The conflict horizon does
evolve during the lifetime of a transaction – during ordering,
‘‘too young’’ other transactions will not be able to interfere
anymore (although the relationship is certainly asymmetric).

It is challenging to empirically characterize the risk
associated with MVCC conflicts in the practice. Due to the
consortial nature of Fabric networks, production chaincode,
and workloads are very hard to find publicly (in stark
contrast to Ethereum). That said, the experiments of [7],
the publications we cite later as well as the professional
experience of the authors indicate that it can be deceptively
easy to create Hyperledger Fabric-based solutions where
the goodput is markedly and unexpectedly lower than the
throughput due to MVCC conflicts; especially when the
ledger data model is not trivial (as, e.g., in [8]).
We will argue that for critical applications, application

requirements can necessitate the systematic analysis and
designed control of MVCC conflicts, irrespective of their
unknowable incidence statistics across production Fabric
deployments.

C. MOTIVATING EXAMPLE: WAYS TO HANDLE CONFLICTS
The state-of-the-art in MVCC conflict control (which, as a
concept, we will define shortly) primarily focuses on the
clients emitting transactions in an unfortunate manner and
the transactions being ordered into blocks in a conflicting
way. Only limited research (only the recent publication [9]
seems to formulate an initial systematic approach) addresses
the appropriateness of the way we map application concepts
to the ledger key-value store to support a given business logic
and workload profile setting. As some of our contributions
investigate this latter aspect, we demonstrate this duality in a
simple example, as depicted on Figure 2.
In our example, we track the attribute values of entities on

the ledger. We opt for a straightforward key-value represen-
tation: an entity identifier serves as the key, and all attributes
are stored in a value corresponding to that key on-ledger,
e.g., as a JSON document. This approach echoes the standard
encapsulation practice of object-oriented programming and
seems to be standard chaincode development practice. On the
figure, at time t1, entity-key E has version v1, storing the
current value of attributes A1 and A2 on-ledger. A simple
example we will use again later would be a person and their
money accounts.

Transaction TX1, accounting for a money transfer, aims to
increase the balance of the first account. To that end, during

FIGURE 2. Temporal view of logically independent entity-attribute MVCC
conflicts.

endorsement, at t1 the key is read on the endorsing nodes, the
attributes parsed, and an endorsed read-write set created with
R = {Ev1} and W = {(E, {A′

1,A2})}, that is, the single key
E is read and simulated to be written. The endorsements are
bundled, sent for ordering, and then get back to the peers as
a part of block validation; at t3, the transaction is validated,
and peer world states are updated to (Ev2 , {A′

1,A2}).
At t2, between t1 and t3, a transaction TX2 is endorsed to

change the balance of the other account, but still using R =

{Ev1}, thus trying to update to W = {(E, {A1,A′

2})} instead
of {(E, {A′

1,A
′

2})}. At t4, during block validation, MVCC
conflict control recognizes that the write set was computed
based on Ev1 while the committed version is already Ev2 ;
thus, TX2 is invalidated and discarded.
While the literature widely recognizes the more mechan-

ical categorizations of conflicts (as. e.g., read-write/write-
write/write-read [10]) and the various transaction dependency
graphs they give rise to, it has been mostly overlooked
that there is a qualitative difference between the logical
dependencies of transactions, rooted in transaction semantics,
and storage-level dependencies, which flow from the way
we choose to use the ledger key-value store for a given
application.

Approaching the transaction conflict on Figure 2 at the
storage level, we can try to eliminate the conflict through
temporal decoupling: by manipulating the timing (including
the global order) of transactions. For example, we can try to
achieve t2 > t3 by decreasing the latency of transactions.
We can also try to mitigate the conflict instead of resolving
it: e.g., achieving t3 > t4 by reordering TX1 and TX2 in
the ordering service if the commit of TX2 would cause fewer
overall conflicts than TX1. We can also opt to abort one of the
transactions early to avoid wasting network resources at least
partially. In the next section, we will systematically review
the relevant techniques.

At the same time, recognizing that we can minimize
the read and write set overlaps between transactions while
retaining business logic semantics, we can perform data
dependency refinement by storing the individual accounts

18990 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

under independent keys. This prevents the conflict depicted
on Figure 2. However, semantics-based, conflict-minimizing
key usage has received limited attention in the literature.

III. MEANS OF CONFLICT-CONTROLLED OPERATION
As practical experience in applying consortial blockchain
to cross-organizational collaboration problems mounts, it is
becoming increasingly viable to treat the design of systems
with distributed ledger components through the lens of
requirement-based system engineering.

A systematic design approach is warranted as consortial
blockchains are at least moderately (business-)critical in at
least integrity almost by definition; otherwise, a distributed
ledger would not be necessary. As a logical corollary
substantiated by practical experience, the need for a varying
set of performance, dependability, and security guarantees
can be expected to be present, too, simply because integrity
is usually not the only concern in most critical systems.

Systematic, requirement-based design requires a corpus of
at least semi-codified design knowledge. This encompasses
functional and extra-functional requirement modeling; devel-
opment, operational, and process models; hazards, risks, and
the ways to mitigate them; and the testing, verification, and
validation approaches that can demonstrate compliance to the
requirements to the necessary extent.

Most of these foundational components of system engi-
neering for blockchains are still missing or immature. As a
contribution to the state of the art, in this paper, we propose a
structured model for the means of conflict-controlled opera-
tion in Execute-Order-Validate blockchains, and specifically,
Hyperledger Fabric.

By conflict-controlled operationwe mean the ability of a
Hyperledger Fabric network to operate within some expected
bounds on MVCC conflicts in a trustworthy manner, with the
help of appropriate system design and runtime mechanisms.

It is important to emphasize that we do not aim to
give an overview of the means to guarantee performance,
performability, timeliness, or Age of Information (AoI) [11]
targets. Controlling forMVCC conflicts is a true sub-problem
of design against requirements on these extra-functional
properties.

• For performance, conflicts reduce goodput but do not
influence the theoretical maximum of throughput.

• For timeliness and AoI, conflicts introduce problematic
transaction retries but do not influence whether the block
time is tuned correctly or whether a malicious ordering
service can perform application-level attacks.

• MVCC conflicts can even be a consideration for
availability at the application protocol level; if two
kinds of transactions are consistently consecutive and
conflicting, the one coming later will never be validated.

We propose a taxonomy ofmeans for conflict control based
on a proven lifecycle model that has decades of application
in risk-based, requirement-driven design processes. We note
in advance that how this taxonomy is best applied during
design is a further step that needs investigation. However,

dependability, the domain we borrow from, provides ample
prior art.

A. A TAXONOMY BASED ON DEPENDABLE COMPUTING
For Hyperledger Fabric performance optimization, [9] pro-
poses a multi-level optimization model, distinguishing the
user level, the data level, and the system level and describes
the BlockOptR tool for event log and process mining based
optimization. While the user-data-system trichotomy is a
good framework for the performance optimization of an
already established system, we propose a taxonomy better
suited to designing for conflict control, based on the widely
accepted classic concepts of the dependability of computer
and communication systems [12].

One of the common definitions of dependability is that it
is ’’the ability to avoid service failures that are more frequent
and more severe than is acceptable’’. To further quote [12],
a service failure is deviation from correct service; errors
are (internal) system states which may lead to subsequent
service failure; and faults are the adjudged or hypothesized
causes of errors. In composed systems, the service failure of
a system component is treated as an external fault from the
point of view of the components relying on the failing one,
giving rise to the notion of internal error propagation in a
system.

We make the connection between dependability and
MVCC conflicts by observing that when an EOV system has
to invalidate a transaction at the last step of its life-cycle, then
it is natural to treat the invalidation as a transaction service
failure; the requesting client has to retry the transaction (or
decide on some alternative action). The error state leading
to the failure is two or more transactions being present in
the system, carrying the possibility of one or more of them
getting invalidated during block validation, and faults are
such requests being initiated by clients that can cause such
error states.

Note that the faults-errors-failures framework is apt from
the determinism point of view, too; two transactions – e.g.,
one reading a key and another writing the same key –
which are undergoing endorsement can be only potentially in
conflict until at least one of them is put into a block. Ordering
the transaction that writes the key after the transaction that
reads the key does not lead to a conflict, while the opposite
order does. Accordingly, the error state does not necessarily
lead to a failure.

Interpreting conflicts as failures and potential conflicts
as errors enables a systematic application of the existing
consensus taxonomy of the means to attain dependability in
our setting. In the following, we will make the distinction
between potential and actual conflicts only when necessary
for clarity. The fundamental means to attain dependability
– fault prevention, fault tolerance, fault removal, and fault
forecasting [12] – can be translated to MVCC conflicts the
following way.

• Fault prevention translates to conflict prevention:
preventing the appearance of potentially conflicting

VOLUME 12, 2024 18991

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

transactions in the system to the required extent.
Classically, fault prevention has been focusing on proper
engineering practices and component selection; in our
context, workload schedule planning, load shaping, and
the possibly associated admission control can also be
preventive measures.

• Fault tolerance translates to conflict tolerance: avoid-
ing service failures – invalidated transactions – in
the presence of potentially or actually conflicting
transaction requests. Fault tolerance presupposes error
detection; detected error states are processed through
recovery, where error handling eliminates errors from
the system state and optional fault handling prevents
faults from being activated again. Conflict detection and
recovery from conflicts are directly meaningful in our
setting.

• Fault removal translates to conflict potential removal:
reducing the number and severity of potential conflicts
in the issued transactions. Fault removal can happen
either during development or at runtime as corrective
or preventive maintenance; the same can be said for
conflicts. However, empirical evidence on the overall
role of maintenance in cross-organizational blockchains
is still lacking.

• Fault forecasting translates to conflict forecasting:
estimating the present number, the future incidence, and
the likely conflict consequences of transactions issued
with a conflict potential.

Although faults, errors, and failures usually have a direct
and nontrivial impact on performance, the classic means
to attain dependability are not directly concerned with
performance, as performance falls outside the set of attributes
comprising the codified notion of dependability. At the same
time, the task completion problems arising from depleted
capacity reserves in a system – i.e., overload situations caused
by overload or capacity planning faults – are failures in the
strict sense and usually cannot be recovered from. Rather,
overloads require a more permissive approach: the error state
is not recovered from, but mitigated by ’’masking errors and
compensating for their effects’’ [13, p. 179].

Reference [13] presents software and system pattern
languages for error recovery as well as error mitigation.
Generally, while recovery techniques roll back or roll forward
an erroneous state to a non-erroneous one or fully compensate
for it through redundancies, mitigation techniques focus on a
graceful (partially compensatory) response to transient error
states. Common patterns include shedding – refusing or
aborting – workload; equitably allocating resources between
workloads; deferring work; and, when possible and effective,
expanding processing resources.

Mitigation is applicable to errors different from overload,
too. MVCC conflicts are a prime example: if it can be
detected early enough – e.g., during endorsement – that
the invalidation of a transaction is unavoidable, then it
makes more sense to abort it as early as possible to avoid
unnecessary resource usage and to signal failure to the

requesting client as early as possible. Thus, we also include
the category of conflict mitigations.

• Error mitigation [13] translates to conflict mitigation:
addressing conflicts and potential conflicts at runtime
without fully recovering the expected normal operation;
that is, executing and finalizing all valid transaction
requests.

Note that the terminology in the literature addressing
MVCC conflicts is not consistent; what we mean by recovery
is sometimes described as mitigation. This is a common
phenomenon with the concepts of dependability in general;
related fields regularly use them in divergent ways or are
much laxer with respect to terminological precision. We hope
that our adaptation of the core concepts of dependability can
facilitate more systematic assurance process thinking than the
state of the art.

B. EXISTING APPROACHES
In this section, we provide a categorization of the known tech-
niques for conflict-controlled operation in EOV blockchains,
emphasizing Hyperledger Fabric. To identify the relevant
approaches, we applied the following literature research
strategy.
1) Establishing a core set: using Google Scholar with

a wide search for the terms ‘‘MVCC conflict’’ and
‘‘Hyperledger Fabric’’, in 2022, [5] established a core
set of existing MVVC conflict control techniques.3

One-step forward and backward reference-chainings
(limited snowballing) were also performed. The search
was performed for ‘‘performance optimization’’ and
‘‘Hyperledger Fabric’’, too, but only the very limited
set of results where the connection between perfor-
mance and MVCC conflicts is made explicit was
retained. All searches were cut off at 2018, as older
papers could be realistically based only on the earlier,
starkly different (non-MVCC) Fabric architecture.

2) Follow-up reference chaining: for this paper, using
Google Scholar again, we performed forward snow-
balling on the reference set of [5] for 2022 and 2023.

3) Cross-referencing with systematic analysis: we became
aware of [9] through Google Scholar recommendations
on its publication. We cross-referenced it with our
references (not finding significant relevant deficiencies
on our side).

These three steps covered the conflict prevention, toler-
ance, and mitigation categories and provided an entry for
conflict potential removal.
4) Exploratory literature research for new categories:

In comparison to [5], conflict potential removal and
conflict forecasting are entirely new taxa derived from
a dependability-motivated approach, and not just a
logical restructuring. For these categories, we reviewed
Google Scholar results (from 2018 on) for the combi-
nations of the search term ‘‘Hyperledger Fabric’’ with

3In this work, we propose a fully reworked taxonomy compared to [5].

18992 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

‘‘MVCC conflict analysis,’’ ’’write conflict analysis,’’
‘‘read conflict analysis,’’ and ‘‘conflict forecasting.’’
The exploration was based on titles and abstracts and
cut off after the first ten pages of hits (where appli-
cable); due to the lack of relevant results, meaningful
snowballing could not be performed.

As a general rule, we discarded all papers not discussing
MVCC conflict control or providing relevant insights and
those not published either in a peer-reviewed journal or in
the proceedings of a peer-reviewed conference. In general,
we excluded approaches not targeting Fabric, or only
conceptually, but not technically being based on Hyperledger
Fabric, such as [14].

Table 1 presents the results of our literature survey efforts
categorized according to our taxonomy and laid out in a tabu-
lar form. Note that the repetitions in the table are intentional;
many approaches are naturally composite, especially those
that provide conflict tolerance for some conflicting requests
and perform early aborts for the remainder.

C. CONFLICT PREVENTION
Conflict prevention can be performed from the point of view
of numerous aspects, which we synthesized based on [5]
and [9]. Although this is where the potential for some
genuinely robust solutions lies from a system engineering
point of view, important avenues of conflict prevention are
far less developed than the techniques addressing potential
and actual conflicts.

1) ARCHITECTURE AND NETWORK
At the platform software layer, significant changes to the
Fabric architecture either facilitate the use of conflict-free
datatypes [18] or lower transaction processing delay [16],
[17]. Controlling conflicts through network configuration and
sizing is also an indirect effect through lower end-to-end
delays [7], [9].
The latter mechanism has been thoroughly investigated

in [7] by a series of ‘‘tuning’’ experiments. From our point
of view, the main insight of [7] is that irrespective of
the workload, the configuration parameters that yielded the
lowest end-to-end latency resulted in the fewest conflicts.
Speedup can act as a temporal decoupling mechanism
for conflicts: lower latencies mean earlier final transaction
commits (after validation), leading to clean data reads by
previously parallel but now subsequent transactions. In [7],
the following tuning aspects were investigated.

• Block time: the time between creating two blocks.
Although examined through changing the block size
by [7], block time is a better-known metric in the
blockchain domain. Lower duration thresholds lead to
earlier block cut times, decreasing the waiting times
and – consequently – the end-to-end latencies of queued
transactions.

• Endorsement policy: the number of organization
endorsements required for eventual transaction approval.
Demanding fewer endorsements (i.e., parallel

transaction executions) can shorten the endorsement
gathering time (e.g., in geographically widespread
systems) and decrease the overall load on the peers (also
performing validations), both ultimately lowering the
end-to-end latency of transactions. Note, however, that
the endorsement policy is not just a performance-tuning
parameter; it directly expresses the approach taken to
trust decentralization.

• Network complexity: the number of organizations
and peer nodes in the network. Network complexity
largely shapes endorsement policies and node-to-node
communication overheads, contributing to end-to-end
transaction latencies.

• State DB type: either CouchDB or GoLevelDB can be
used as the world state database for the network. The
more performant GoLevelDB option can lower end-to-
end transaction latencies due to faster endorsement and
validation times.

In Table 1, we chose not to enumerate all known
performance tuning parameters and only demonstrate their
diversity.

2) DATA MODELING AND CHAINCODE ARCHITECTURE
There is only very scarce work on Hyperledger Fabric smart
contract design with an explicit intent to prevent MVCC
conflicts and some of it is only available as non-peer-
reviewed, online material.

In the keystone Hyperledger Fabric paper [3], the perfor-
mance case study uses a UTXO-based ‘‘FabToken’’ asset
type. As UTXO-like constructions explicitly ‘‘track the
money’’ instead of account balances, they enable multiple
send and receive transactions for the same party in each
others’ conflict horizon - without MVCC conflicts. The
downsides are the same as with all UTXO-based approaches
(including the ledger not maintaining balances explicitly).

In [15], a readless write approach is followed; new
ledger records are created in a log entry-like manner,
and for transactions where up-to-date status information is
necessary, logical rollups (a combination of range queries
and aggregation) are used. This technique can dramatically
reduce the number of conflicts, but its usage is limited
to use cases with infrequent reads. In [9], this technique
is formulated as a delta writes recommendation for writes
where differential updates are meaningful.

Reference [9] also suggests ‘‘smart contract partitioning’’
(domain-level partitioning of the assets and corresponding
functionalities). Data model alteration is also specified as
a category, but only a few examples are given (the logic of
which is covered by Section IV).

3) BUSINESS PROCESS
The authors in [9] point out that for Hyperledger Fabric use
cases with cooperation process semantics, suchmodifications
at the process level as model pruning and activity reordering
can lead to the prevention of conflicts.

VOLUME 12, 2024 18993

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

TABLE 1. Means of conflict-controlled operation in Execute-Order-Validate (EOV) blockchains: taxonomy and known solutions. *: indirectly related.

4) CLIENT WORKLOAD
Transaction rate control can also be a tool for conflict
prevention, as pointed out in [9], however, without discussing
its specific challenges in the distributed ledger context,
specifically for Hyperledger Fabric.

First, rate control either requires the cooperation of
the clients of the participating organizations, or the rate
control measures have to be implemented as early abort
mechanisms in the endorsing smart contracts. A fuzzy logic-
based variant of the latter has been proposed in [30] and [31],
although without explicitly considering conflicts. Without
smart contract-based enforcement, an organization can get
an unfair advantage over others by disregarding its own

rate limits. On the other hand, this variant of ‘‘dishonest
behavior’’ is easily detectable in Hyperledger Fabric.

Second, production-grade rate control logic design can
be a rather involved challenge, as it may have to imple-
ment an equitable resource allocation [13] across orga-
nizations and transaction types of the block space as a
limited resource. Currently, the algorithmic support for such
requirement-driven admission control design seems missing
for Hyperledger Fabric.

D. CONFLICT TOLERANCE
Conflict tolerance mechanisms eliminate or reduce the
conflict effects of potentially conflicting transactions without

18994 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

aborting them. We subdivide the mechanisms based on the
Fabric consensus stage where they act. As alreadymentioned,
many mechanisms appear in the conflict mitigation category,
too, as in most cases, some transactions can remain in
conflict; for those, it is still more appropriate to abort them
early than waste more resources by finishing the entire Fabric
transaction lifecycle.

1) CLIENT ENDORSEMENT REQUEST
Clients can choose not to start transactions based on the out-
standing ones or issue different transactions. Reference [19]
creates delta-writes based on its local cache. However, it is
unclear whether the cache is shared between at least the
clients of the same organization, and the same unfair behavior
considerations as with rate control still seem to apply.

2) ENDORSEMENT
We did not find any approach that would introduce conflict
tolerance at the endorsement stage. However, it is logically
possible in aminimally invasiveway from the point of view of
Fabric consensus and platform software if there is redundancy
in time with respect to executing the transaction requests.

Namely, if an endorsing peer can recognize that it has
already endorsed a transaction with which an incoming
endorsement request would be in conflict, it can delay
endorsement until it receives and validates the already
endorsed transaction’s block. At that time, an endorsement
relying on the updated ledger values can be issued.

It can even be possible to waitlist requests without
executing them, preserving resources if request-pair con-
flict probabilities can be learned or determined during a
model-based system design process. Such a solution would
require a cache of endorsed but not validated transactions
shared across the endorsing peers of each organization, but
given the usual limited horizontal scaling inside individual
organizations (a dozen peers is usually considered large-
scale), this is easily achievable at sufficient performance
with a distributed, in-memory, non-Byzantine fault-tolerant
database.

In this paper, we only identify this gap – uncovered by our
systematic approach – and outline an apparent solution. The
report this paper is based on [5] provides a more detailed
blueprint, but prototyping and assessing the solution is an
open technical problem, and the learning aspect is an open
research problem.

3) CLIENT ENDORSEMENT DISPATCH
Reference [20] presents an approach where clients cache
their endorsements and decide to have some transactions
re-endorsed instead of submission for ordering. Questions
of unfair behavior seem to apply, and it is not obvious how
effective the approach can be at the system level.

4) ORDERING SERVICE
Most approaches focus on modifying the order of endorsed
transaction requests in the ordering service [10], [21], [22],

[23], [24] to create a conflict-free transaction order (and
to early abort the transactions for which this cannot be
done). This is a well-researched area, and intervention in the
ordering service has the benefit that it can be easily realized
and maintained as an architecturally localized customization
of the platform consensus mechanism. Our comment (and not
critique) is that as these mechanisms act on the computed
read-write sets, they should be employed with certainty
gained at design time that they will be effective to at
least some degree. We did not find any guidance on the
pre-operation assessment of the cited techniques.

5) VALIDATION
XOX-Fabric [25] presents a unique conflict tolerance
approach: instead of ‘‘throwing them away’’, transactions are
reexecuted during validation, giving rise to a new, ‘‘Execute-
Order-Execute’’ computational model. This is an elegant
solution, although it modifies Fabric’s consensus semantics
in important ways (e.g., for the re-execution, in contrast to
normal endorsement, a client cannot choose not to proceed
with a transaction based on the execution result). Also, the
post-order execution needs a dedicated ‘‘patch-up code’’ in
the smart contract, and the keys in the new read-write set must
be a subset of the original (invalidated) one. Smart contract
logic can still prescribe transaction rejection (e.g., trying to
spend from an account emptied by an earlier transaction,
which led to the invalidation in the first place).

E. CONFLICT MITIGATION
Conflict mitigation approaches abort transaction processing
early, potentially protecting resources and facilitating earlier
retries. The same categorization to consensus phases can
be applied as with conflict tolerance, and due to the noted
overlaps, we outline only the differences.

EMVCC [26] performs early aborts after endorsement,
using endorser-local caching, and one mechanism in Fabric
++ [10] is early abort during endorsement. In our view,
mitigation at the client endorsement request phase does
not make sense logically; ordering incorporates the same
approaches as conflict tolerance, and mitigation during
validation is effectively the base Fabric MVCC conflict-
handling behavior.

F. CONFLICT POTENTIAL REMOVAL
We defined conflict potential removal as reducing the number
and severity of potential conflicts in the issued transactions,
denoting an activity performed during development or system
maintenance.

The relevant literature for Hyperledger Fabric is scarce;
BlockOptR [9] seems to be the only directly applicable
approach.

Indirectly, emerging architecture selection and Hyper-
ledger Fabric auto-tuning tools, such as AdaChain [27], and
Athena [28]may be applicable, at the very least through react-
ing to conflicts by trying to compress the transaction conflict
horizons. However, all of these are empirical methods; their

VOLUME 12, 2024 18995

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

use at development time presupposes implementation and the
availability of expected load profiles to the specificity where
the load can be generated with tools like Hyperledger Caliper.

As an outlook, we note that parallelization efforts for the
Ethereum Virtual Machine (EVM) (see, e.g., [29]) have been
introducing fine-grained ledger variable read-write analysis
through a mix of static smart contract analysis and dynamic
execution. These approaches may prove adaptable to remove
potential MVCC conflicts under transaction request patterns
that are either expected or enforced.

G. CONFLICT FORECASTING
We did not find any relevant specific literature for conflict
forecasting; we hypothesize that an explicit connection
between the workload at the semantic level and the reads
and writes of workload items (Section IV) can enable the
prediction of the evolution of MVCC conflicts, including
emerging ‘‘conflict storms’’.

H. GAPS IDENTIFIED
We believe that our taxonomization of the existing
approaches for conflict-controlled operation in Fabric points
toward the following gaps in the state of the art.
GAP 1. The mapping between the domain data model and its
operations to chaincode-computed key-value changes lies at
the heart of all conflict prevention approaches, which do not
require any change to Fabric (apart from reducing end-to-end
delay). However, this mapping has not been proposed yet to
be utilized systematically as a part of designing for conflict
prevention.
GAP 2. The possibility of conflict tolerance during endorse-
ment is not utilized.
GAP3. In dependable computing, the means to attain
dependability act in concert. Governed by the level of
system criticality and the extra-functional requirements, fault
prevention and removal are complemented by systematically
choosing and evaluating fault tolerance and mitigation
mechanisms during design. Fault removal and forecasting
also extend to operation time. There has not been a similar
model of conflict-controlled operation for MVCC conflicts,
and there is no guidance on the co-application of the existing
techniques during the system lifecycle.

We make conceptual and technical contributions to GAP
1 in the upcoming sections. Earlier, we briefly outlined
a technique that can address GAP 2. We made an initial
contribution to GAP 3 with our taxonomization, but at the
same time, recognize that much work is remaining.

IV. TOWARDS MDE-BASED CONFLICT PREVENTION
Reference [9] treats MVCC conflicts as a part of performance
and approaches them from the point of view of measurement-
based optimization. We propose that it is also possible to
consider MVCC conflicts from the initial system design
phase, and this constitutes an outstanding gap in the
conflict prevention category which can be addressed with
Model-Driven Engineering (MDE) techniques.

FIGURE 3. A ledger change interpretation-oriented view of Fabric
transactions: chaincode-computed ledger changes (Greek delta)
correspond to a series of interpretations at different abstraction levels.

A. THE SEMANTIC GAP
To guide our discussion, Figure 3 presents a ledger change
interpretation-oriented view of Hyperledger Fabric transac-
tion execution. In the interest of legibility, the figure abstracts
away the endorsement by multiple nodes aspect of the
process.

In Fabric, there’s a form of a semantic gap between the
business-level interpretation of ledger data and operations
and the basic versioned key-value ledger data model it
supports. There aren’t even typing and data shape constraint
enforcement facilities – such as database schemata in
relational databases – unless chaincode implements them.
Consequently, mapping the intent of ledger changes in terms
of the business interpretation of the ledger to key-value
changes is entirely left to the chaincode implementation.

From the system engineering point of view, in the majority
of consortial blockchain use cases, the ledger carries and
manages either the state of collaboration processes or
‘‘assets’’ in the most generic sense. A review of Fabric
use cases is beyond the scope of this paper; as supportive

18996 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

evidence, we refer to the Hyperledger use case tracker4 and
as an analogical argument, we point out that the same can be
said for the decentralized applications implemented on public
blockchain networks [32].

Without the blockchain context, the notions of the collab-
oration process and asset state induce ontological concepts
and relationships over them; and, as in a wide variety of use
cases, a distributed ledger acts functionally as a database with
special extrafunctional properties, we can assume that from
the decision making and business process point of view, users
interpret ledger content in largely blockchain-independent
terms. The semantic gap manifests in the high-level meaning
of ledger content and its changes having to be ‘‘serialized’’ to
a key-value pair-based storage approach.

In system and software engineering, when such relation-
ships are nontrivial, it is usually expedient to express them
as a series of model refinements. The well-known base
mechanics of Bitcoin can give us a simple example here:
in the abstract sense, users usually interpret ledger state as
’’howmuch Bitcoin they have’’; what at the platform-specific
level translates to the concept of unspent transaction outputs
(UTXOs) existing on the ledger which are spendable with
their private keys; which, in turn, have a specific transaction
output representation in mined Bitcoin transaction blocks.

B. THE SEMANTIC GAP IN MDE TERMS
Due to the increasing role of Model-Driven Engineering
(MDE) in smart contract development, which we expand
on later, we use the model hierarchy of the Model Driven
Architecture (MDA) from the Object Management Group
(OMG) [33] to characterize the relationship between dis-
tributed ledger interpretation and implementation.

• A Computation Independent Model (CIM) does not
show system-specific details; it is familiar to the
practitioners of the application domain, and it is often
called a domain model and vocabulary.

• A Platform Independent Model (PIM) is already a
‘‘system view’’ but is not dependent on the concepts of
a target platform.

• A Platform Specific Model (PSM) incorporates the
platform concepts and defines how a system uses a
specific platform.

MDA, when applied for system design and development,
advocates creating a series of model refinements from CIM
through PIM(s) and PSM. The PSM is the direct basis of
implementation. Modern MDE connects refinement levels
with metamodel-based, automated model transformations;
applies formal methods for verification and validation at
various levels (creating the input of analysis tools with
model transformations and marking back the analysis results
to the model); and uses at least partial code and artifact
generation in the PSM-to-implementation step. Note that
MDE, in general, encompasses several approaches different

4Available at: https://www.hyperledger.org/learn/use-case-tracker, last
accessed: 11.08.2023.

from MDA [34], too, and the field is constantly evolving;
however, for our purposes here, classicMDAwith its codified
model refinement approach is a good fit.

In terms of the CIM-PIM-PSM framework, the intention
of a chaincode-implemented transaction is to compute
the necessary changes (denoted with 1 on Figure 3) in the
CIM; which correspond to changes in the PIM(s) and the
PSM; which correspond to changes and accesses in key-value
pairs, giving rise to the computed read-write set which is
created as a chaincode execution result. The correspondence
of the changes (and possible model ‘‘navigations’’ necessary
to compute them) are governed by the mapping relations
between the implementation and the models.

This is a logical framework connecting the tangible results
of chaincode execution with their domain semantics using the
MDA abstraction hierarchy. Apart from the most straightfor-
ward applications, this abstraction hierarchy always exists,
even if it is fully implicit – i.e., when developers directly write
chaincode, which serializes/deserializes ledger key-value
pairs from/to chaincode-local program variables and objects
in an ad-hoc way.

We posit that deriving the key-value storage model
along an explicit, MDE-style model refinement hierarchy
facilitates conflict prevention at design time. We present
an outline of setting up the CIM-PIM-PSM-implementation
refinement hierarchy for this purpose and the basic logic
of refinement pattern application. On this basis, Section V
describes a novel technical contribution covering the PIM-
PSM-implementation fragment.

C. MODEL REFINEMENT BASED STORAGE DESIGN
For a consortial distributed ledger, where consensus partic-
ipation and access to the ledger services are permissioned,
the application data model, the transaction types, and the
expected transaction load profiles are not unknown, as in
public blockchains. The network is created for a specific busi-
ness cooperation purpose, and users do not deploy new smart
contracts at their will. Instead, smart contract (chaincode)
deployments and updates are controlled change processes
that the participating organizations perform cooperatively.
Additionally, for any structured system development process,
these aspects must be captured as requirements in the early
stages; there is no reason for blockchain-based solutions to
be exceptions.

1) CIM-PIM MAPPING
Given this premise, it is possible to map a domain model to
an appropriate PIM based on the expected logical read/write
accesses in the expected CIM model spaces and a general
understanding of the nature of transaction processing.

Figure 4 outlines an example for persons and their (money)
accounts. The critical transaction is transferringmoney across
accounts; legal name and address changes are expected to be
infrequent. Although we do not necessarily know the specific
platform at this stage yet, at least the computational model
is specific for a PIM; i.e., we do know that transactions

VOLUME 12, 2024 18997

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 4. From CIM to PIM in ledger data modeling: an outline of three
transaction profile driven strategies.

will be executed on a blockchain. Blockchains, by definition,
use transaction batching; thus, we may want to create a
PIM that minimizes transactions’ reliance on unfinalized
modifications.

If we know that we can expect a transaction on an account
to appear mostly once on an appropriate event horizon, then
we can reuse our simple CIM model. A good example would
be a retail central bank digital currency if it is offered only to
citizens and small businesses. These users can be expected to
have at most one incoming and outgoing transaction in a few
blocks’ time if the block time is low enough (for Hyperledger
Fabric, the default is 1 second).

Conversely, we may know that we have ‘‘warm accounts’’
in that a significant ratio of accounts regularly has multiple
incoming and outgoing transactions on an appropriate time
horizon. In this case, a UTXO-like solution will be more
appropriate.

Lastly, if we know that we have to support at least a
few ‘‘hotspot accounts’’ – in the extreme, all transactions
targeting them for some periods – then we may opt to

use a delta write + aggregation pattern. This certainly
requires overspend protection for a money use case; the
model indirectly controls overspends by limiting maximum
transaction value.

2) PIM-PSM MAPPING AND IMPLEMENTATION
Given a PIM, for Hyperledger Fabric, the most straightfor-
ward PIM-PSM mapping specifies the way we partition the
properties of entities across keys at the logical level. (A more
complete PSM should include further platform concepts like
channels and private data collections.) Figure 5 presents an
outline of three basic mapping strategies. The PIM is the first
option from Figure 4.

In the first case, the person’s accounts (note the composi-
tion relation) are grouped into a single composite value. This
simplifies chaincode development and ledger consistency
management – chaincode can navigate to ‘‘everything
belonging to a person’’ in a single call. However, this
approach introduces the possibility of transaction conflicts,
which can be undesirable and could be avoidable: e.g., two
different accounts of the same person receiving transfers in
the same conflict horizon.

The second option addresses this drawback with a partial
partitioning. Note that we show in the second example a
concept partially orthogonal to partitioning, too: storing an
association in the person value enables chaincode to read
the account key from the person and navigate to the account
atomically.

The third example shows a fully partitioned model.
Last but not least, a PSM translates to a specific key-value

storage approach. Even in this step, there is design variability;
in the example, we use very simple key composition schemes
and JSON values.

3) METHODOLOGICAL HYPOTHESES
In this paper, our methodological contribution to MDE-based
conflict prevention is the above example-supported approach
outline and the formulation of the following hypotheses.

• ForHyperledger Fabric, given the nature of Fabric-based
systems and the fact that, for critical applications,
their development can be expected to follow a proper
design process, it is possible to reason about data
access conflicts well before (full) implementation in a
systematic way if MDE principles are also followed.

• Specifically, after a CIM-PIM mapping, assessing
logical data access conflicts (model reads, navigations,
and writes of transactions) can provide a pessimistic
overabstraction of the actual MVCC conflicts in imple-
mentation.

• Given an (expected) transaction workload profile at the
semantic level, a specific PSM can serve as the basis of
preliminary MVCC conflict analysis.

• On the constructive side, MDE-based conflict analysis
and arguments support the creation of a maximally
conflict-preventing data storage implementation.

18998 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 5. From PIM to PSM in ledger data modeling: an outline of three transaction profile driven strategies.

These hypotheses are certainly in need of validation.
Implementing and evaluating an end-to-end, MDA-inspired
conflict prevention approach still has numerous missing

parts and is part of our ongoing research. However, to our
knowledge, the approach outlined above is entirely novel, and
Section V makes a tangible contribution to the fourth point.

VOLUME 12, 2024 18999

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

D. TRANSACTION CONFLICTS AND MDE FOR FABRIC
UsingMDE for blockchain is not a new concept, especially in
its more simple manifestations when it is applied in the form
of a single-stage code generation from a general-purpose
modeling language or domain-specific language. That said,
the potential to support design for conflict prevention and
systematically designing conflict control for Hyperledger
Fabric seems not to have been recognized yet.

To support this claim, we have performed a targeted
literature review based on [35], a recent and comprehensive
structured literature review on the design of blockchain-based
applications using MDE and low-code/no-code platforms.

We filtered the cited conceptual methods [35, p. 11] as well
as executable code generation methods [35, pp. 12-13] to the
ones identified as applicable either to Hyperledger Fabric or
multiple platforms. We performed forward citation chaining
from this seed set (and based on the content of the papers, one-
step backtracks among their references), taking into account
peer-reviewed papers.

We present our negative result in three categories:
grouping MDA-like approaches (where there is at least
multi-aspect modeling or consistent use of hierarchical
modeling) and approaches targeting the Business Process
Model and Notation (BPMN) language. The third category is
miscellaneous.

1) MDA-LIKE APPROACHES
iContractML 2.0 [36], an extension of iContractML [37],
defines a domain-specific language that acts as a PIM
reference metamodel and supports smart contract generation
to a variety of platforms. The metamodel covers data (assets),
transactions, and participants. Fabric is supported indirectly
by code generation for Hyperledger Composer (now defunct)
and DAML – both smart contract languages for which
interpreter chaincodes exist.

Reference [38] synthesizes chaincode and other artifacts
for hybrid on-chain/off-chain applications from an ensemble
of models, including a domain, an action, and an interaction
flow model. However, the ‘‘Ledger Object Generator’’, the
critical component from our point of view, is not discussed.

Reference [39] presents automatic smart contract gener-
ation for Hyperledger Fabric from the DEMO (Design and
Engineering Methodology for Organizations) language. The
process involves defining a ‘‘fact model’’ (a relational domain
model) and compiling an ‘‘Action Model’’ to Go chaincode.
The relational domain model seems to be transformed to a
Fabric storage scheme on a per-relation basis (all row field
values serialized to a single JSON object).

To our knowledge, the recent MDAsmartCD approach [40]
is the first attempt to fully apply the MDA life cycle.
MDAsmartCD sets up a full CIM-PIM-PSMmodel chain and
uses model-to-model transformations. However, neither the
key-value mapping aspect of data modeling nor conflicts are
first-class concepts. Reference [41] presents a precursor to
MDAsmartCD.

MDE4BBIS [42] is similar but applies only a PIM-PSM
approach. Reference [43] also focuses on the PIM-PSM step,
starting from ArchiMate and targeting the (now defunct)
Hyperledger Composer chaincode domain-specific language
and middleware.

None of the above papers investigate either performance or
MVCC conflicts.

2) BPMN
Supporting cross-organizational collaborations is one of
blockchain technology’s dominant non-crypto applications.
As BPMN is the most widely used modeling language to
capture business processes across organizations, it is natural
that there is significant interest in creating blockchain support
for collaboration based on BPMN models. The general state
of the art is much broader than what we touch on; we restrict
our discussion to approaches relevant to Hyperledger Fabric.

Mantichor [44] is a multi-chain architecture for business
process choreographies with code generation from BPMN.
Performance and conflicts on Fabric are not discussed.

Multi-Chain [45] also addresses multi-party choreogra-
phies onmultiple blockchains (but not cross-chain), including
Hyperledger Fabric. Initial and inconclusive performance
figures are reported, but the approach seems to serialize the
entire choreography state to a single key. This limits the
frequency of actions on each choreography to one for each
conflict horizon.

TABS [46] transforms BPMN models into discrete event
Hierarchical State Machine smart contracts, enabling parts
of collaborations to be offloaded for side-chain processing.
Basic latency characteristics are investigated, but not through-
put (and conflicts on execution on Hyperledger Fabric).

Reference [47] models inter-organizational collaborations
as BPMN process models, transforms them to minimized
organizational state charts, and generates code for a custom
state chart execution engine chaincode through State Chart
XML (SCXML) as an intermediary language. Performance
and conflicts are not addressed.

3) OTHER APPROACHES
Reference [48] presents a Hyperledger Fabric-based solution
for executing business rule sets under a mixed on-chain/off-
chain model. Explicit domain modeling is part of the
approach; world-state accesses are executed by the business
object integrations of the rule execution engine deployed in
the chaincode execution container. Reference [49] generates
Go chaincode from domain-specific OWL ontologies and
SWRL rules. Reference [50] generates chaincode from an
ontology-based model of legal contracts, which also covers
domain data modeling. References [48], [49], and [50]
discuss neither conflicts nor performance.

Reference [51] introduces a domain-specific smart con-
tract language that combines linear dynamic logic formulas
to be enforced and business rules. Contracts are compiled to
SCXML notation and executed in Hyperledger Fabric on a

19000 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 6. The core idea behind storage-level partitioning.

chaincode container deployed SCXML interpreter. Only very
rudimentary performance measurements are reported.

4) SUMMARY
Emerging MDE and low-code/no-code approaches for
chaincode creation for Hyperledger Fabric seem to be
entirely unconcernedwith explicitly supporting high-goodput
operation and preventing MVCC conflicts at this point.
For specific domains, and somewhat more generally, for
business processes, this can be justified by expected orders
of magnitude difference between transaction-on-entity and
block frequencies. However, this assumption does not hold
in general; even business processes may express high-
frequency, automated activities (although we did not find this
justification stated). Thus, we believe that MVCC conflicts
and their avoidance, if the need arises, should be – at the very
least – a recognized aspect of Fabric-targeting MDE.

V. CONFLICT PREVENTION WITH STORAGE-LEVEL
ENTITY PARTITIONING
Having introduced entity attribute partitioning as a concept in
the context of ledger data PIM-PSM mapping in the previous
section (see Figure 5), we propose two specific ‘‘storage
level’’ partitioning algorithms in this section. We also
describe a chaincode SDK prototype that supports developing
chaincode against PIM-level concepts and transparently
implements serialization to the appropriate key-value level
operations.

Expanding on Figure 2, on Figure 6, we show how storage
partitioning can alleviate MVCC conflicts.

On the left side, transaction TX1 modifies entity E1 as part
of its write set. Even though TX1 only updates the value of
attribute A1, the entire entity is now ‘‘dirty’’ because every

attribute of E1 is stored under the same key-value entry in the
ledger, as per standard object-oriented design practices. In the
meantime, a second transaction – TX2 – is also endorsed
in parallel with TX1, including E1 in its read set. Even
though TX2 only needed attribute A3 for its business logic
calculations, it read all attributes of E1 from the ledger. The
entity-level storage mapping choice put the transactions into
each other’s conflict horizons, introducing a potential MVCC
conflict that can lead to the invalidation of TX2 if TX1 is put
earlier into a block by the ordering service.

Refining the unit of key-value storage from the entity level
to the attribute level in the PSM (as depicted by the second
and third columns in Figure 4) prevents potential MVCC
conflicts by decreasing the conflict horizon of transactions.
The right side of Figure 6 demonstrates the preventive effect:
now transactions ‘‘dirty’’ only the actually used attributes of
the entities, making the storage-level dependencies equivalent
to higher level, logical dependencies.

If those still cause an unacceptable number of MVCC
conflicts, then PIM-level approaches can also be applied
transparently on top of the proposed PSM-level solution
(in conjunction with other prevention and conflict toler-
ance/mitigation mechanisms).

A. PARTITIONING ALGORITHMS
As defined in [25] as the ’’Hot Key Theorem,’’ if l is
the average time between a transaction’s execution and its
state modification commitment, then the average effective
throughput for all transactions operating on the same key k
is at most 1/l. By dividing the data stored under key k to
n ∈ N parts and storing them under keys {k1, . . . , kn}, the
average effective throughput of all transactions that operated
over key k becomes at most n/l, i.e., increases linearly with
the number of parts. We present two partitioning algorithms,
which differ essentially in choosing the partitions ki.

• Total partitioning creates a separate partition ki for
every attribute Ai of every entity instance Ej, resulting
in n = |{Ai}| parts.

• Attribute affinity-based partitioning groups the
attributes based on co-access patterns, resulting in
potentially fewer, n ≤ |{Ai}| parts.

1) TOTAL PARTITIONING
Total partitioning maximally reduces cross-transaction stor-
age dependencies by storing every attribute of every entity in
a standalone partition. Thus, each attribute is stored under a
unique key on the ledger, enabling MVCC with the highest
possible granularity (on the PSM level). The algorithm for
transforming the platform-independent data model to the
platform-specific data model is simple, as it barely requires
a data PIM. Another advantage of the approach is that
its preventive effect is independent of the actual workload
profile and its possible future changes (which might not be
predictable at design time).

The drawback is that total partitioning potentially inflates
read and write sets for complex transactions. Consequently:

VOLUME 12, 2024 19001

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

TABLE 2. Example apriori data for transaction types (attributes accessed
by transactions are marked with a 1, otherwise 0).

TABLE 3. Attribute affinity matrix created from table 2.

TABLE 4. The Attribute affinity matrix of table 3 after applying the Bond
Energy Algorithm.

• the number of ledger accesses may increase, negatively
impacting the endorsement latency;

• the size of the read and write sets may also increase,
negatively impacting both the endorsement and block
validation latencies.

However, a partition can be considered unnecessary if no
cross-transactional storage dependency is ever resolved by its
creation. For example, if attributes A1 and A3 (from Figure 6)
are always updated together by every related transaction,
their separation into different partitions is superfluous.
Their ‘‘dirtiness’’ can be checked together by the MVCC
mechanism, i.e., they can reside under the same ledger key.

2) ATTRIBUTE AFFINITY-BASED PARTITIONING
Eliminating such superfluous partitionings is analogous to
the transaction data access-based vertical partitioning of
traditional database schemas, a topic dating back to the
80’s [52].

We will use the intentionally simple, example apriori
transaction data in Table 2 to demonstrate our application
of the algorithm presented in [52]. First, an attribute affinity
matrix AA, a symmetric square matrix, is created from the
input data, where each field contains a value quantifying
the similarity of each attribute pair in terms of their access
pattern. We use the summed load rate of functions accessing
both attributes as their similarity value, as shown in Table 3.

In the next step, the Bond Energy Algorithm (BEA) [53] is
used for diagonalizing AA, resulting in the diagonal block
matrix AAB of Table 4. Each block along the diagonal
corresponds to a set of attributes that are similar to each other
with respect to the employed similarity metric.

After the clustering step, the SPLIT_NON_OVERLAP
binary partitioning algorithm from [52] is applied to the block
matrix AAB. The algorithm first splits the AAB matrix at m
different locations along the diagonal, where m is the size of
the (square) matrix. Each split results in a different upper and

lower block of AAB, representing the binary partitioning of
attributes. From all the binary partitions, only one is selected,
such that the number of transactions that access only one
of the two partitions is maximized while the number of
transactions accessing both partitions is minimized. This is
done by finding the binary partitioning with the maximal z
value

z = cucl−c2i (1)

where
• cu is the number of transactions accessing only the upper
partition of the AAB matrix;

• cl is the number of transactions accessing only the lower
partition of the AAB matrix;

• and ci is the number of transactions accessing both
partitions of the AAB matrix.

Only partitions with a positive z value are accepted.
N-ary partitioning of the attribute set is achieved by
recursively applying the binary partitioning algorithm to the
affinity matrices of the resulting attribute sets.

3) THE INTUITION BEHIND ATTRIBUTE AFFINITY-BASED
PARTITIONING
The original vertical partitioning algorithm was designed for
efficient data access in databases. Accordingly, the semantics
of the applied similarity metric incorporated many physical
traits of the system (I/O performance, caches, data sizes,
etc.) and included all forms of data access, i.e., reading and
updating attributes. In order to use the algorithm for MVCC
conflict prevention, we had to redefine the semantics of
attribute access.

The goal of attribute grouping, in our case, is not to
speed up access to attributes that are read and written
together. Rather, the goal is to group attributes that contribute
to potential MVCC conflicts in ‘‘a similar way.’’ Defined
succinctly, MVCC conflicts are caused by keys that became
dirty since their last read. A key becomes dirty when a
transaction updates it through a write operation.

Correspondingly, if two attributes are always updated
together, then storing them under separate keys (i.e., par-
titioning them) is unnecessary because their partitions will
always get dirty together; they behave identically from the
point of view of causing potential MVCC conflicts. Thus, our
apriori transaction and attribute data contains only the update
of attributes by transactions, i.e., a (TXi,Aj) cell in Table 2 is
1 if TXi sets Aj during its execution, and 0 otherwise. Note
that read-only transactions (i.e., queries) are served by peers
directly, without the consensus mechanism, and they will
correspond to rows having zero values only in the attribute
affinity matrix. Thus, they can be eliminated from the input
data altogether.

4) POTENTIAL DRAWBACKS OF AFFINITY-BASED
PARTITIONING
The attribute affinity-based partitioning approach aims to
improve the potentially wasteful (in terms of latency and

19002 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 7. Proposed data mapper architecture.

storage) total partitioning method. However, it also has some
potential drawbacks.

• Its effectiveness is sensitive to the quality of the
apriori transaction data, which is either hypothesized or
measured. Thus, it is best suitable when the assumptions
about the access patterns are reliable, for example, when
a legacy system is being ‘‘blockchainified.’’

• It’s hard to define and compare different affinity metrics
for attributes to quantify their similarity.

• The resulting partitioning needs to be reevaluated upon
changes in the apriori information, e.g., in the workload
profile or transaction logic, which can be an expensive
operation and may require a maintenance window.

B. A SUPPORTING DATA MAPPER ARCHITECTURE
The two partitioning approaches have been implemented in
a prototype Java chaincode SDK. Furthermore, for attribute
access-based partitioning, a Python-based Jupyter Notebook
has also been created.

The SDK prototype automatically translates storage
accesses to the PIM level and vice versa, enabling developers
to write succinct, readable, and maintainable code similar
to non-Fabric business logic implementations. Entity class
attributes can be marked with Java annotations, and the
storage-level data model is generated automatically with
the configured partitioning approach. Both partitioning
approaches have the same development experience; the only
difference is in the annotation values that determine the
partition of the attribute.

Figure 7 highlights the main part of the SDK’s architecture,
with a Data Mapper pattern at its core and the following key
classes:

• CachedContext: as per the recommended program-
ming model for Fabric chaincodes, CachedContext
specializes the Context class of the Fabric chaincode
SDK. The class instances act as scopes for different

transactions. A dedicated instance is passed to each
transaction invocation handler/function as a mandatory
first parameter, providing ledger-level and custom
services. The SDK’s custom instances also act as a
caching service (AssetCache below) between the
chaincode and the ledger, extending the base chaincode
API with (the by-default unsupported) chaincode-level
‘‘read-your-write’’ consistency capability.

• AssetBase: the base class that every business-level
entity must inherit to gain partitioning capability.
The base class provides generalized attribute-level
data manipulation and maintains connections (through
injected dependencies) with the other core services of
the SDK.

• DataLayer: provides CRUD (create, read, update,
delete) operations and supports attribute-level manip-
ulation of assets. The layer is also aware of the
partitioning capabilities of the entities and retrieves
partitioning information about the entities through an
injected strategy implementation.

• AttributeMappingStrategy: following the strat-
egy design pattern, the concrete implementations of the
class decide how to map attributes of assets to key-value
entries on the ledger. This class is the core component
of the data mapper pattern.

• AssetCache: interface for extending the ledger’s
CRUD operations with caching capabilities. The inter-
face is currently implemented by theCachedContext
class in the current prototype. However, it could be
applied directly to the official Fabric chaincode SDK’s
data access layer via the Decorator pattern.

The caching mechanism of the SDK ensures that race
conditions do not occur concerning the independent updates
of the same asset on the chaincode. Whenever an asset needs
to be retrieved from the ledger, the local cache is consulted
first (Figure 8). If the asset instance is already loaded, the
same deserialized instance is returned to the client, i.e., the
business logic in the chaincode that interacts with the SDK.

The SDK provides automatic life-cycle management for
the loaded and manipulated assets (Figure 9). The cache
tracks the retrieved assets and their changes, i.e., whether any
attributes have been updated. The corresponding partitions
are only saved to the ledger if their attributes change.
The ‘‘save’’ happens only upon the success of the TX’s
endorsement, eliminating meaningless write requests to the
ledger.

C. EMPIRICAL VALIDATION
The prototype SDK implementation was evaluated using
a micro-benchmark to compare the different partitioning
approaches and the ‘‘unpartitioned’’ baseline.

1) MICRO-BENCHMARK AND WORKLOAD DEFINITIONS
The data model under test is a personal account definition
with multiple subaccounts (similarly to Figure 5), referred

VOLUME 12, 2024 19003

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 8. The call sequence for creating an asset.

FIGURE 9. The call sequence for persisting an asset.

to as pockets. The business logic (i.e., the chaincode)
consists of multiple transaction types/functions that modify
a different number of pockets, simulating the attribute
access-based complexity of general business logic. The
transaction functions update one or more pockets of a single
account, i.e., they simulate one end of a transfer operation
(to keep the randomness of the workload and its evaluation
manageable).

Each benchmark run begins with an initialization phase,
where the accounts are created sequentially. Each account
has three subaccounts (pockets). The main phase consists of
10000 transactions, where accounts are chosen to be updated
randomly – with a constant workload rate within a given
benchmark run.

We defined three distinct workload profiles for the
chaincode based on the access pattern of the transaction
functions:

• 1pockets (1P): a transaction updates only a single, fixed
subaccount.

• 2pockets (2P): a transaction updates two subaccount
balances together, or only the third one. Technically, this
is a choice between two chaincode methods.

• 3pockets (3P): a transaction updates any of the three
subaccounts.

TABLE 5. The control variables of the evaluation campaign.

2) CAMPAIGN VARIABLES AND TARGET METRICS
Table 5 outlines our experiment control variables and their
possible values for the individual benchmark runs. We mea-
sured all variable-value combinations in our measurement
campaign.

The ranges for the account numbers and workload rates
collectively cover the spectrum of high-intensity, hot-key, and
low-intensity key access scenarios (i.e., from a few accounts
with high load rates to a lot of accounts with low load
rates). Different workload profiles simulated how transaction
functions can update one or more attributes of a single ledger
entity.

In the case of the affinity-based approach, the workload
profile 3P was not tested, as the calculated partitioning
scheme matched that of the total partitioning approach.

For evaluation, we used the following metrics.

• Transaction failure rate is the ratio of the number of
failed transactions to the total number of transactions.
In our case, failures mainly occurred due to MVCC
conflicts since the chaincode did not employ business
logic-level assertions that could fail a TX endorsement.
Thus, the transaction failure rate directly translates to the
MVCC conflict rate.

• End-to-end latency is the total client-side elapsed
time from the submission of a transaction proposal to
receiving transaction validation notification.

• Mean read set size is the combined size of ledger
entries (counting both the keys and values in bytes)
read during the endorsement of the transaction. Note
that even though the consensus process only operates
on the versions of the keys (and not their values) for
read operations, this is still an important metric, as data
retrieval can significantly contribute to the latency and
resource use of the endorsement and block validation
consensus steps.

• Mean write set size is the combined size of ledger
entries (counting both the keys and values in bytes)
updated during the endorsement of the transaction.

3) MEASUREMENT ENVIRONMENT
The benchmark runs were performed in our university’s
private cloud on 7 QUEMU-based virtual machines (VM)
configured with 8 vCPUs and 16 GB of RAM each.
The operating system was Ubuntu 18.04 LTS with Docker
20.10, and the containerized components (Fabric, monitoring
components, workload generators, etc.) were all orchestrated
by a Docker Swarm network spanning all VMs.

19004 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

A Hyperledger Fabric v2.22 network was used as the
system under test, consisting of 3 nodes: 2 peer nodes
(1-1 node per organization) and a single ordering service
node. All nodes were deployed on separate VMs to limit
performance interferences.

A Fabric batch timeout of 750 ms and a max transaction
count per block of 80 were chosen as reasonable middle
grounds between throughput and latency. GoLevelDB was
used as the state, index, and history database in the peers.
All remaining configuration options were left at their default
values.

The Hyperledger Caliper5 blockchain performance bench-
marking tool was used for workload generation due to its
flexibility and easy-to-use distributed workload generation
feature. The benchmark runs utilized four Caliper worker
services and an orchestrator service, sharing a single VMwith
ample capacity.

For instrumentation, the following tools were deployed.
• Hyperledger Explorer (now Blockchain Explorer6) was
installed on a separate VM to gather data about the read
and write sets of the transactions.

• A custom build of Hyperledger Caliper was utilized to
collect data about the latency and validity of individual
transactions.

• The SDK was instrumented with the help of a logging
library; the logs were collected with Logspout,7 mined
with Logstash,8 and stored in an Elasticsearch9 instance.

• The utilization of system resources was monitored on all
VMs with cmonitor.10

4) EVALUATION RESULTS
Overall, we can state that applying any partitioning technique
reduces the ratio of MVCC conflicts when the access of
attributes is sparse enough (i.e., the 2P and 3P workload
profiles) and not focused on a single hot attribute (i.e., the
1P workload profile).

Figure 10 to 12 present the pair-wise comparison of
partitioning techniques and the unpartitioned case. The axes
represent the ratio of transactions that failed due to MVCC
conflicts in a benchmark run; a point in the figures represents
a pair of benchmark runs that differ only in the applied
partitioning techniques, and their other control variables have
the same value. The lines represent the theoretical maximum
of improvement for the three workload profiles, as suggested
by the hot key theorem in [16] (the dotted line representing
y = 3x, the dashed line y = 2x and the solid line y = x).

Figure 10 and 11 show that both partitioning techniques
scale according to the hot key theorem. The difference is
especially noticeable for the scenarios that have a high con-
flict ratio in the unpartitioned case. Figure 12 demonstrates

5https://github.com/hyperledger/caliper
6https://github.com/hyperledger-labs/blockchain-explorer
7https://github.com/gliderlabs/logspout
8https://www.elastic.co/logstash/
9https://www.elastic.co/
10https://github.com/f18m/cmonitor

FIGURE 10. Comparison of MVCC conflict percentages: total partitioning
vs unpartitioned.

FIGURE 11. Comparison of MVCC conflict percentages: affinity-based
partitioning vs unpartitioned.

FIGURE 12. Comparison of MVCC conflict percentages: total vs
affinity-based partitioning.

that – for this particular use case – both partitioning methods
prevented conflicts with the same effectiveness.

Figure 13 presents the box plots of the end-to-end latencies
of transactions for each technique. While there were some
outliers, further examination revealed that most of these
values occurred during the initialization phase. Thus, all
approaches exhibited the same performance characteristics
during the main part of the benchmark run, leading to the

VOLUME 12, 2024 19005

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

FIGURE 13. End-to-end transaction latencies.

FIGURE 14. Mean size of chaincode-read data.

exploratory data analysis-based hypothesis that the runtime
performance overhead of the partitioning techniques is
insignificant. Note that the large latency variance is entirely
natural for Fabric – the 750 ms ‘‘latching’’ of block formation
in itself adds a significant minimum spread.

Figure 14 presents the mean read set sizes produced by
the different chaincode functions corresponding to the three
subaccount workload profiles. transferWithPocket23
implements double-pocket transfer for the 2P workload
profile; transferWithPocket1 implements the single-
pocket transactions.

The partitioning methods introduced a noticeable read set
size overhead when reading multiple attributes. This effect
is due to the additional metadata stored and read with the
partitions.

Figure 15 presents the mean write set sizes. Metadata
introduces overheads when initially creating the accounts
with their attributes and partition metadata. However, once
an account is created, subsequent updates to the partitions can
be smaller thanwith the unpartitioned approach. Accordingly,
the partitioning techniques can lead to reduced I/O load on the
blockchain storage while committing the transactions in the
validation phase of the consensus protocol.

FIGURE 15. Mean size of chaincode-written data.

D. TOWARDS PRODUCTION APPLICATIONS
We do not see any significant threat to the basic validity of
our data mapper-based entity attribute partitioning approach;
although it provides a different – in our view, preferable
– programming model for the business logic part of the
chaincode, it does not modify the platform at all, and we have
demonstrated on synthetic examples that it can be effective
under the right circumstances. Total attribute partitioning is
straightforward and robust, although potentially wasteful in
storage – however, the storage overhead is easy to assess on
an application-by-application basis.

However, how robust affinity-based partitioning is for
typical production applications remains to be determined.
Similarly, while valid, attribute partitioning can be ineffective
– ideally, the typical cases when a PIM-level intervention is
needed should be identified.

These are significant challenges. Open and production-
grade chaincodes are practically nonexistent (primarily due to
the consortial and bespoke nature of Fabric-based solutions),
and chaincode benchmark standardization efforts are still in
their infancy. The authors are currently working on porting
their ‘‘blockchainified’’ TPC-C performance benchmark
implementation [8] to Java, the chaincode language utilized
by the SDK prototype. The workload specification of TPC-C
enables the controlled scaling of the MVCC conflict ratio in
the system while operating with a complex data model.

The implementation efficiency of the SDK prototype also
has room for improvement. More precisely, the observed read
and write set overheads might be substantially reduced by
using a more efficient encoding of partitions or even the
attribute data itself (for example, using Protobufs instead of
JSON).

VI. SUMMARY AND FUTURE WORK
In this paper, with the help of a novel taxonomy, we presented
our findings on the gaps in the current Hyperledger Fabric
MVCC conflict control literature. We drew attention to

19006 VOLUME 12, 2024

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

the importance of designing for MVCC conflict prevention
during system engineering and showed that it requires
following model-driven engineering principles.

In that context, we proposed data model partitioning
techniques to facilitate conflict prevention as a previously
overlooked avenue ofMVCC conflict control. The algorithms
we propose, total partitioning and affinity-based partitioning,
prioritize different aspects and are suitable for a wide range
of use cases. We implemented these approaches as part of an
SDK prototype which acts as a data mapper chaincode layer
and evaluated them on micro-benchmark scenarios.

Our results show that the affinity-based approach reduces
the number of database accesses and matches the total
partitioning approach in conflict mitigation in the case of
well-known access patterns, but it may not necessarily reduce
storage use.

We believe our proposed techniques hold promise for
further research and development. We plan to investigate
more efficient storage methods, adding domain modeling to
the framework and prototyping a full-fledged MDE process.
More representative validation on a TPC-C implementation
for Hyperledger Fabric is also planned.

REFERENCES
[1] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. Accessed: Nov. 28, 2023. [Online]. Available: https://gavwood.
com/paper.pdf

[2] D. Yaga, P. Mell, N. Roby, and K. Scarfone, ‘‘Blockchain technology
overview,’’ 2019, arXiv:1906.11078.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, and
S. Muralidharan, ‘‘Hyperledger Fabric: A distributed operating system for
permissioned blockchains,’’ in Proc. 13th EuroSys Conf., 2018, pp. 1–15,
doi: 10.1145/3190508.3190538.

[4] P. A. Bernstein and N. Goodman, ‘‘Multiversion concurrency control—
Theory and algorithms,’’ ACM Trans. Database Syst., vol. 8, no. 4,
pp. 465–483, 1983, doi: 10.1145/319996.319998.

[5] M. Debreczeni. Data Model Driven Goodput Optimization for Execute-
Order-Validate Blockchains. Accessed: Nov. 28, 2023. [Online]. Available:
https://tdk.bme.hu/VIK/ViewPaper/Alkalmazasi-szintu-ateresztokepesseg

[6] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

[7] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, ‘‘Why do my blockchain
transactions fail? A study of Hyperledger Fabric,’’ in Proc. Int. Conf.
Manag. Data, 2021, pp. 221–234, doi: 10.1145/3448016.3452823.

[8] A. Klenik and I. Kocsis, ‘‘Porting a benchmark with a classic work-
load to blockchain: TPC-C on Hyperledger Fabric,’’ in Proc. 37th
ACM/SIGAPP Symp. Appl. Comput., Apr. 2022, pp. 290–298, doi:
10.1145/3477314.3507006.

[9] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, ‘‘How to optimize
my blockchain? A multi-level recommendation approach,’’ Proc. ACM
Manag. Data, vol. 1, no. 1, pp. 1–27, May 2023, doi: 10.1145/3588704.

[10] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich, ‘‘Blurring the
lines between blockchains and database systems: The case of Hyperledger
Fabric,’’ in Proc. Int. Conf. Manag. Data, 2019, pp. 105–122, doi:
10.1145/3299869.3319883.

[11] M. Kim, S. Lee, C. Park, and J. Lee, ‘‘Age of information analysis in
Hyperledger Fabric blockchain-enabled monitoring networks,’’ in Proc.
IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9500864

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[13] R. Hanmer, Patterns for Fault Tolerant Software. Hoboken, NJ, USA:
Wiley, 2013.

[14] P. Nasirifard, R. Mayer, and H.-A. Jacobsen, ‘‘OrderlessChain: Do
permissioned blockchains need total global order of transactions?’’ 2023,
arXiv:2210.01477.

[15] A. Alzubaidi, K. Mitra, and E. Solaiman, ‘‘Smart contract design
considerations for SLA compliance assessment in the context of
IoT,’’ in Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT),
Aug. 2021, pp. 74–81. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9556177

[16] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, ‘‘FastFabric: Scaling
Hyperledger Fabric to 20 000 transactions per second,’’ Int. J. Netw.
Manag., vol. 30, no. 5, p. e2099, Sep. 2020, doi: 10.1002/nem.2099.

[17] Z. István, A. Sorniotti, and M. Vukolic, ‘‘StreamChain: Do blockchains
need blocks?’’ in Proc. 2nd Workshop Scalable Resilient Infrastructures
for Distrib. Ledgers, Dec. 2018, pp. 1–6 doi: 10.1145/3284764.3284765.

[18] P. Nasirifard, R. Mayer, and H.-A. Jacobsen, ‘‘FabricCRDT: A conflict-
free replicated datatypes approach to permissioned blockchains,’’ in
Proc. 20th Int. Middleware Conf., Dec. 2019, pp. 110–122 doi:
10.1145/3361525.3361540.

[19] L. Xu, W. Chen, Z. Li, J. Xu, A. Liu, and L. Zhao, ‘‘Solutions for
concurrency conflict problem on Hyperledger Fabric,’’ World Wide Web,
vol. 24, no. 1, pp. 463–482, Jan. 2021, doi: 10.1007/s11280-020-00851-6.

[20] S. Zhang, E. Zhou, B. Pi, J. Sun, K. Yamashita, and Y. Nomura,
‘‘A solution for the risk of non-deterministic transactions in Hyper-
ledger Fabric,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency,
May 2019, pp. 253–261. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/8751453

[21] Q. Sun, Y. Yuan, T. Guo, and L. Chen, ‘‘A trusted solution to Hyperledger
Fabric reordering problem,’’ in Proc. 8th Int. Conf. Dependable Syst.
Their Appl. (DSA), Aug. 2021, pp. 202–207. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9622776

[22] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi,
‘‘A transactional perspective on execute-order-validate blockchains,’’ in
Proc. ACM SIGMOD Int. Conf. Manag. Data, Jun. 2020, pp. 543–557 doi:
10.1145/3318464.3389693.

[23] H. Wu, H. Liu, and J. Li, ‘‘FabricETP: A high-throughput blockchain
optimization solution for resolving concurrent conflicting transactions,’’
Peer-Peer Netw. Appl., vol. 16, no. 2, pp. 858–875, Mar. 2023, doi:
10.1007/s12083-022-01401-9.

[24] X. Xu, X. Wang, Z. Li, H. Yu, G. Sun, S. Maharjan, and Y. Zhang,
‘‘Mitigating conflicting transactions in Hyperledger Fabric-permissioned
blockchain for delay-sensitive IoT applications,’’ IEEE Internet Things
J., vol. 8, no. 13, pp. 10596–10607, Jul. 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9317791

[25] C. Gorenflo, L. Golab, and S. Keshav, ‘‘XOX Fabric: A hybrid
approach to blockchain transaction execution,’’ in Proc. IEEE Int. Conf.
Blockchain Cryptocurrency, May 2020, pp. 1–9. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9169478

[26] H. Trabelsi and K. Zhang, ‘‘Early detection for multiversion concurrency
control conflicts in Hyperledger Fabric,’’ 2023, arXiv:2301.06181.

[27] C. Wu, B. Mehta, M. J. Amiri, R. Marcus, and B. T. Loo, ‘‘AdaChain:
A learned adaptive blockchain,’’ Proc. VLDB Endowment, vol. 16, no. 8,
pp. 2033–2046, Apr. 2023, doi: 10.14778/3594512.3594531.

[28] M. Li, Y. Wang, S. Ma, C. Liu, D. Huo, Y. Wang, and Z. Xu, ‘‘Auto-
tuning with reinforcement learning for permissioned blockchain systems,’’
Proc. VLDB Endowment, vol. 16, no. 5, pp. 1000–1012, Jan. 2023, doi:
10.14778/3579075.3579076.

[29] Y. Lu, C. Liu, M. Zhao, X. Duo, P. Xu, Z. Zhou, and X. Feng,
‘‘FSC: A fast smart contract transaction execution approach via
read-write static analysis,’’ Tech. Rep., 2023. [Online]. Available:
https://www.authorea.com/doi/full/10.22541/au.167285898.83759504

[30] L. Hang, B. Kim, andD.Kim, ‘‘A transaction traffic control approach based
on fuzzy logic to improve Hyperledger Fabric performance,’’ Wireless
Commun. Mobile Comput., vol. 2022, pp. 1–19, Mar. 2022. [Online].
Available: https://www.hindawi.com/journals/wcmc/2022/2032165/

[31] F. Jamil, S. Ahmad, T. K. Whangbo, A. Muthanna, and D.-H. Kim,
‘‘Improving blockchain performance in clinical trials using
intelligent optimal transaction traffic control mechanism in smart
healthcare applications,’’ Comput. Ind. Eng., vol. 170, Aug. 2022,
Art. no. 108327. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360835222003801

VOLUME 12, 2024 19007

http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1145/319996.319998
http://dx.doi.org/10.1145/3448016.3452823
http://dx.doi.org/10.1145/3477314.3507006
http://dx.doi.org/10.1145/3588704
http://dx.doi.org/10.1145/3299869.3319883
http://dx.doi.org/10.1002/nem.2099
http://dx.doi.org/10.1145/3284764.3284765
http://dx.doi.org/10.1145/3361525.3361540
http://dx.doi.org/10.1007/s11280-020-00851-6
http://dx.doi.org/10.1145/3318464.3389693
http://dx.doi.org/10.1007/s12083-022-01401-9
http://dx.doi.org/10.14778/3594512.3594531
http://dx.doi.org/10.14778/3579075.3579076

M. Debreczeni et al.: Transaction Conflict Control in HLF: A Taxonomy, Gaps, and Design

[32] P. Zheng, Z. Jiang, J. Wu, and Z. Zheng, ‘‘Blockchain-based decentralized
application: A survey,’’ IEEE Open J. Comput. Soc., vol. 4, pp. 121–133,
2023. [Online]. Available: https://ieeexplore.ieee.org/document/10068327

[33] Object Management Group. Overview and Guide to OMG’s Architecture.
Accessed: Nov. 28, 2023. [Online]. Available: https://www.omg.org/cgi-
bin/doc.cgi?omg/03-06-01

[34] A. Rodrigues da Silva, ‘‘Model-driven engineering: A survey
supported by the unified conceptual model,’’ Comput. Lang.,
Syst. Struct., vol. 43, pp. 139–155, Oct. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1477842415000408

[35] S. Curty, F. Härer, and H.-G. Fill, ‘‘Design of blockchain-based appli-
cations using model-driven engineering and low-code/no-code platforms:
A structured literature review,’’ Softw. Syst. Model., vol. 22, no. 6,
pp. 1857–1895, Dec. 2023, doi: 10.1007/s10270-023-01109-1.

[36] M. Hamdaqa, L. A. P. Met, and I. Qasse, ‘‘IContractML 2.0: A domain-
specific language for modeling and deploying smart contracts onto
multiple blockchain platforms,’’ Inf. Softw. Technol., vol. 144, Apr.
2022, Art. no. 106762. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0950584921002081

[37] M. Hamdaqa, L. A. P. Metz, and I. Qasse, ‘‘IContractML: A domain-
specific language for modeling and deploying smart contracts onto
multiple blockchain platforms,’’ in Proc. 12th Syst. Anal. Model. Conf.,
Oct. 2020, pp. 34–43 doi: 10.1145/3419804.3421454.

[38] P. Fraternali, S. L. H. Gonzalez, M. Frigerio, and M. Righetti, ‘‘Model-
driven development of distributed ledger applications,’’ in Database
Systems for Advanced Applications. DASFAA 2022 International Work-
shops (Lecture Notes in Computer Science), U. K. Rage, V. Goyal, and
P. K. Reddy, Eds. Cham, Switzerland: Springer, 2022, pp. 104–119.

[39] D. Aveiro, L. Abreu, D. Pinto, and V. Freitas, ‘‘DEMOmodels based auto-
matic smart contract generation: A case in logistics using Hyperledger,’’ in
Information Systems Development, Organizational Aspects and Societal
Trends. Lisbon, Portugal: Instituto Superior Técnico, 2023. [Online].
Available: https://aisel.aisnet.org/isd2014/proceedings2023/modelling/3

[40] M. Jurgelaitis, L. Ceponiene, K. Butkus, R. Butkiene, and V. Drungilas,
‘‘MDA-based approach for blockchain smart contract development,’’
Appl. Sci., vol. 13, no. 1, p. 487, Dec. 2022. [Online]. Available:
https://www.mdpi.com/2076-3417/13/1/487

[41] M. Jurgelaitis, V. Drungilas, L. Eponien, E. Vaiiukynas, R. Butkien, and
J. Ceponis, ‘‘Smart contract code generation from platform specific model
for Hyperledger go,’’ in Trends and Applications in Information Systems
and Technologies (Advances in Intelligent Systems and Computing),
A. Rocha, H. Adeli, G. Dzemyda, F. Moreira, and A. M. R. Correia, Eds.
Cham, Switzerland: Springer, 2021, pp. 63–73.

[42] V. A. de Sousa and C. Burnay, ‘‘MDE4BBIS: A framework to
incorporate model-driven engineering in the development of blockchain-
based information systems,’’ in Proc. 3rd Int. Conf. Blockchain
Comput. Appl. (BCCA), Nov. 2021, pp. 195–200. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9657015

[43] E. Babkin and N. Komleva, ‘‘Model-driven liaison of organization mod-
eling approaches and blockchain platforms,’’ in Advances in Enterprise
Engineering XIII (Lecture Notes in Business Information Processing),
D. Aveiro, G. Guizzardi, and J. Borbinha, Eds. Cham, Switzerland:
Springer, 2020, pp. 167–186.

[44] J. Ladleif, C. Friedow, and M. Weske, ‘‘An architecture for multi-
chain business process choreographies,’’ in Business Information Systems
(Lecture Notes in Business Information Processing), W. Abramowicz and
G. Klein, Eds. Cham, Switzerland: Springer, 2020, pp. 184–196.

[45] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re,
E. Scala, and F. Tiezzi, ‘‘Model-driven engineering for multi-party
business processes on multiple blockchains,’’ Blockchain, Res.
Appl., vol. 2, no. 3, Sep. 2021, Art. no. 100018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2096720921000130

[46] P. Bodorik, C. G. Liu, and D. Jutla, ‘‘TABS: Transforming automatically
BPMN models into blockchain smart contracts,’’ Blockchain: Res.
Appl., vol. 4, no. 1, Mar. 2023, Art. no. 100115. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2096720922000562

[47] H. Nakamura, K. Miyamoto, and M. Kudo, ‘‘Inter-organizational busi-
ness processes managed by blockchain,’’ in Web Information Systems
Engineering—WISE (Lecture Notes in Computer Science), H. Hacid,
W. Cellary, H. Wang, H.-Y. Paik, and R. Zhou, Eds. Cham, Switzerland:
Springer, 2018, pp. 3–17.

[48] T. Astigarraga, X. Chen, Y. Chen, J. Gu, R. Hull, L. Jiao, Y. Li, and
P. Novotny, ‘‘Empowering business-level blockchain users with a rules
framework for smart contracts,’’ in Service-Oriented Computing (Lecture
Notes in Computer Science), C. Pahl, M. Vukovic, J. Yin, and Q. Yu, Eds.
Cham, Switzerland: Springer, 2018, pp. 111–128.

[49] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das, ‘‘Auto-
generation of smart contracts from domain-specific ontologies and
semantic rules,’’ in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE
Green Comput. Commun. (GreenCom), IEEE Cyber, Phys. Social Comput.
(CPSCom), IEEE Smart Data (SmartData), Jul. 2018, pp. 963–970.

[50] A. Rasti, D. Amyot, A. Parvizimosaed, M. Roveri, L. Logrippo,
A. A. Anda, and J. Mylopoulos, ‘‘Symboleo2SC: From legal contract
specifications to smart contracts,’’ in Proc. 25th Int. Conf. Model Driven
Eng. Lang. Syst., 2022, pp. 300–310, doi: 10.1145/3550355.3552407.

[51] N. Sato, T. Tateishi, and S. Amano, ‘‘Formal requirement enforcement
on smart contracts based on linear dynamic logic,’’ in Proc. IEEE
Int. Conf. Internet Things (iThings), IEEE Green Comput. Commun.
(GreenCom), IEEE Cyber, Phys. Social Comput. (CPSCom), IEEE
Smart Data (SmartData), Jul. 2018, pp. 945–954. [Online]. Available:
https://ieeexplore.ieee.org/document/8726750

[52] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, ‘‘Vertical partitioning
algorithms for database design,’’ ACM Trans. Database Syst., vol. 9, no. 4,
pp. 680–710, Dec. 1984, doi: 10.1145/1994.2209.

[53] W. T. McCormick, P. J. Schweitzer, and T. W. White, ‘‘Problem
decomposition and data reorganization by a clustering technique,’’ Oper.
Res., vol. 20, no. 5, pp. 993–1009, Oct. 1972, doi: 10.1287/opre.20.5.993.

MÁTÉ DEBRECZENI received the B.Sc. degree
in computer engineering from the Budapest Uni-
versity of Technology and Economics (BME),
in 2022, where he is currently pursuing the
M.Sc. degree in computer engineering, with a
focus on cybersecurity specialization. He is also a
Junior Analyst with the Central Bank of Hungary
(MNB). His main professional research interests
include the design and optimization of data-
intensive applications, including the empirical

analysis of distributed ledger deployments.

ATTILA KLENIK received the M.Sc. degree
in computer engineering and the Ph.D. degree
from the Budapest University of Technology and
Economics (BME), in 2022. He is currently
a Senior Researcher with the Critical Systems
Research Group, Department of Measurement and
Information Systems, and the Core Developer of
the hyperledger caliper blockchain benchmarking
tool. His area of expertise is the distributed tracing
and measurement-based performance evaluation

of distributed systems, with a special focus on consortial blockchain
technologies, such as Hyperledger Fabric.

IMRE KOCSIS received the M.Sc. degree in
computer engineering and the Ph.D. degree from
the Budapest University of Technology and Eco-
nomics (BME), in 2019. Currently, he is a Senior
Lecturer and a Leading Blockchain Researcher
with the Critical Systems Research Group, Depart-
ment of Measurement and Information Systems,
BME. He leads the activities of the group in
conjunction with the Hyperledger Foundation and
the university’s participation in the European

Blockchain Services Infrastructure (EBSI) networks. His professional
research interests include the requirement-based design and dependability
assurance of cross-organizational blockchains, industrial use cases, inter-
blockchain integration, and the blockchain support of Central Bank Digital
Currencies.

19008 VOLUME 12, 2024

http://dx.doi.org/10.1007/s10270-023-01109-1
http://dx.doi.org/10.1145/3419804.3421454
http://dx.doi.org/10.1145/3550355.3552407
http://dx.doi.org/10.1145/1994.2209
http://dx.doi.org/10.1287/opre.20.5.993

