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ABSTRACT In the context of biomedical data, an anomaly could refer to a rare or new type of disease,
an aberration from normal behavior, or an unexpected observation requiring immediate attention. The
detection of anomalies in biomedical data has a direct impact on the health and safety of individuals.
However, anomalous events are rare, diverse, and infrequent. Often, the collection of anomalous data may
involve significant loss of human life and healthcare costs. Therefore, traditional supervised machine and
deep learning algorithms may not be directly applicable to such problems. Biomedical data are often collected
in the form of images, electronic health records, and time series. Typically, an autoencoder (AE) or its
corresponding variant is trained on normal data, and an anomaly is identified as a significant deviation from
these data based on reconstruction error or other metrics. An Ensemble of AEs (EoAEs) can serve as a robust
approach for anomaly detection in biomedical data by combining diverse and accurate views of normal data.
An EoAE can provide superior detection to a single encoder; however, its performance can depend on various
factors, including the diversity of the created data, the accuracy of the individual AEs, and the combination
of their outcomes. Herein, we perform a comprehensive narrative literature review on the use of EOAEs
when using different types of biomedical data. Such an ensemble provides a promising approach for anomaly
detection in biomedical data, offering the potential for performance improvement by leveraging the strengths
of diverse AEs. However, several challenges remain, such as the need for data specification and determination
of the optimal number of AEs in the ensemble. By addressing these challenges, researchers can enhance the
effectiveness of EOAEs for anomaly detection in various types of biomedical data. Furthermore, through this
review, we highlight the significance of evaluating and comparing the performance of an EoAE with that of
single AEs by establishing agreed-upon evaluation metrics and investigating normalization techniques for
anomaly scores. We conclude the review by presenting challenges and open questions in the field with for
future research.

INDEX TERMS Artificial intelligence, autoencoders, ensemble learning, anomaly detection, healthcare.

I. INTRODUCTION

Anomaly detection is the process of identifying unusual or
unexpected observations that vary significantly from normal
observations [1]. In the medical field, anomaly detection is
important because it can help identify rare diseases, potential
aberrations, or unexpected behaviors that can directly affect
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an individual’s health and safety. Detecting anomalies in
a timely manner (in medical applications) is of paramount
importance as it can save human lives and the enormous
cost on the healthcare system [2]. Besides, anomaly detection
could also highlight potential measurement errors or noisy
information in collecting biomedical data, equipment failure,
or other situations that could lead to false or missed
diagnoses. Deploying proper anomaly detection systems in
regular medical care can help identify deviant patterns and
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alert healthcare professionals for further investigation [3].
Normal data for healthy individuals is abundantly available
and can be collected easily, whereas this is not the case
with collecting anomalous data. Firstly, the scope and
definition of ‘anomaly’ can vary across different medical
conditions, and some of those observations may not have
been observed yet. A major challenge to model anomalies
is that they are rare, diverse, and infrequent [4]. Collecting
insufficient data to train machine/deep learning models
for anomalous class could lead to loss of human lives
and cost in dollars [5]. Therefore, supervised classification
approaches are ill-posed for these situations as they assume an
almost equal distribution of data from each class. Supervised
classifiers can only model samples from seen classes and
cannot model unseen anomalies. Autoencoders are a type of
artificial neural network trained in an unsupervised manner
on raw or processed data and can learn complex relationships
between the features in the data. The general principle of
any autoencoder or its variant is that it can learn latent
representation through an encoder and decoder architecture
by reconstructing the input. During testing, any significant
deviation in the reconstruction error can be construed as
an anomalous behavior or event [6]. Autoencoders have the
advantage of being able to handle various types of data [7],
including numerical [8], text [9], image [10], videos [11],
timeseries [12], besides the tabular data. Biomedical data
comprises multiple modalities, such as imaging (e.g., X-Ray,
CT) and time series (e.g., EEG, ECG), and text data [13].

A standard approach to detect anomalies in these types
of problems is to train an autoencoder (AE) or its variants
(including convolution, sequential and spatiotemporal) on
abundantly available normal data and identify significant
deviations as anomalies based on reconstruction error or
other metrics. Some examples of anomaly detection using
AE are abnormal blood test results [14], unusual heart rate
patterns [15], or suspicious activity in medical records [16].
However, a single AE could be sensitive to the quality and
preprocessing of the data and may not generalize well with
noisy inputs.

Ensemble of AEs (EoAE) aims to combine various
autoencoders to arrive at a final decision. The general
principle of EoAE to detect anomalies is similar to a single
AE; however, multiple models can be trained (separately or
jointly), and their outcomes combined to arrive at a final
decision. The multiple models could represent the multi-
modality (e.g., speech and MRI) or multiple views of the
same data (raw video and optical flow [17]) to train multiple
autoencoders. However, the key challenges in obtaining
better EOAE are the creation of diverse datasets presented
to various AEs and the combination of the outcomes of
individual AEs. EoAE often results in robust and accurate
detection of anomalies in comparison to single AE [18].
It has been shown that EoAE can perform better than
a single AE in various applications, including network
security [19], fall detection [20], fault detection [21], and
industrial inspection [22]. There is sparse literature on the
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use and benefits of EoAE for various biomedical data. To fill
this gap, we perform a comprehensive narrative literature to
study the various EOAE approach applied to different types of
biomedical data. This review provides valuable insights into
the current state of EOAE for anomaly detection in biomedical
data and offers guidance for future research directions to
advance the field.

MOTIVATION
The increasing availability and diversity of biomedical data
have paved the way for innovative approaches to detect
anomalies within biomedical data. The early detection of
these anomalies could be crucial for identifying rare diseases,
potential health risks, or even system inefficiencies. However,
the limited availability of anomalous data coupled with
its variable definition and scope presents a challenge in
modeling and detecting these anomalies. Autoencoders are
artificial neural networks, that offer a promising solution
to this problem by allowing unsupervised learning of
the data and thereby detecting deviations or anomalies
based on reconstruction error. Despite the advantages of
single Autoencoders, they are sensitive to the quality and
preprocessing of the data and may not generalize well with
noisy inputs. With the potential to mitigate this issue, EOAE
seeks to combine the outcomes of multiple autoencoders to
produce a more accurate and robust result. However, the
use and benefits of EoAE in the realm of biomedical data
have been underexplored in the current literature. This review
paper aims to fill this gap by conducting a comprehensive
narrative literature review on the application of EoAE for
various types of biomedical data.

The main contributions of the research are highlighted

below;
o The review paper provides a detailed narrative review

of the application of EoAE in detecting anomalies
in biomedical data. The sparse literature in this area
makes this paper a critical reference for scholars and
practitioners in the field.

« We highlight the strengths and weaknesses of various
EoAE approaches applied to different types of biomedi-
cal data. This assessment provides a deep understanding
of the field’s current state and informs the choice of the
EoAE for a given application.

« Weidentify and discuss the key challenges in employing
EoAE in detecting anomalies in biomedical data. This
discussion will guide future research in addressing these
challenges and improving the effectiveness of anomaly
detection in medical applications.

o The paper ends with open questions in the field
and provides pointers for future research directions,
contributing to the advancement of the field of anomaly
detection in biomedical data using EoAE. This will
inspire new lines of inquiry and drive innovation in the
field.

The rest of the paper is organized as follows as high-
lighted in FIGURE 1: Section II provides a background of

VOLUME 12, 2024



A. Nawaz et al.: EOAEs for Anomaly Detection in Biomedical Data: A Narrative Review

IEEE Access

Background

Ensemble

BASICS OF ANOMALY DETECTION
BASICS OF AUTOENCODER
MOTIVATION

CONTRIBUTION

BIOMEDICAL DATA
AUTOENCODERS

ENSEMBLE LEARNING TECHNIQUES
ENSEMBLE OF AUTOENCODERS (EOAE) FOR

Learning

ANOMALY DETECTION

RESEARCH QUESTION

REVIEW
METHODOLOGY

Narrative

KEYWORD IDENTIFICATION
ACADEMAIC DATASETS

DETAILED REVIEW OF

Review SELECTED RESEARCH PAPERS

Review Results RESULTS

REPORTING OF REVIEW

CURRENT CHALLENGES AND
RECOMMEND RESEARCH DIRECTION

FIGURE 1. Organization of the paper.

biomedical data and autoencoders. The details of EoAE are
presented in Section III. Section IV highlights the review
methodology and compares this review with other reviews.
The narrative review of relevant literature is presented in
Section V. Section VI discusses the challenges in employing
EoAE in detecting anomalies in biomedical data with open
questions in the field and pointers to future direction. Finally,
Section VII concludes the research paper.

Il. BACKGROUND: BIOMEDICAL DATA AND
AUTOENCODERS

This section briefly introduces different biomedical data
types and autoencoders and their variants.

A. BIOMEDICAL DATA

biomedical data can be stored within patients’ electronic
health records or other locations. It can contain physiolog-
ical data (e.g., blood pressure, electrocardiogram), clinical
assessments (e.g., Mini-Mental State Score), clinicians’ notes
(in unstructured form), imaging data (e.g., X-ray), and
others [23]. We briefly mention some of these common
biomedical data modalities:

1) TABULAR DATA

Tabular data is organized in a table with rows and columns.
The rows represent individual records, while the columns
represent the attributes or features associated with each
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record [24]. Tabular data can come from various sources,
including databases, spreadsheets, and text files. Tabular data
can be used to analyze and visualize biomedical data and
build machine-learning models.

2) X-RAY

X-rays are a type of radiation that is used to produce images
of the inside of the body [25]. X-ray medical images can be
used to diagnose and treat various medical conditions [26],
such as broken bones, pneumonia, cancer, and heart disease.
In addition, advances in x-ray imaging technology have made
it possible to create high-resolution x-ray medical images,
which can be used to detect and diagnose even the small
variations in abnormalities [27].

3) MAGNETIC RESONANCE IMAGING (MRI)

MRI is a medical imaging technique that uses a large magnet
and radio waves to produce detailed images of the inside of
the body [28]. MRI scans produce high-resolution images of
the body’s internal structures and can be used to diagnose
various medical conditions [29], such as broken bones,
cancer, heart disease, and more. MRI can also be used to
monitor the progress of a treatment or surgery.

4) COMPUTED TOMOGRAPHY (CT)
CT is a medical imaging technique that uses special X-rays
to produce detailed images of the inside of the body [30].
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It is often used to diagnose diseases or injuries and to guide
medical procedures. CT scans are used to diagnose and
monitor a wide range of medical conditions [31], from broken
bones to cancer. They can also be used to detect and diagnose
minute abnormalities in the body, such as the detection of
acute intracranial hemorrhage [32].

5) TIME SERIES
Time series medical data refers to data that is collected over
time from patients or medical devices. This data type includes
vital signs, lab results, and sensor data from wearable
devices [20]. The data is used to track the progression of
a patient’s condition, monitor treatment efficacy, or identify
potential health issues. A common example of time series
data is Electrocardiogram (ECG) and Electroencephalogram
(EEG). An ECG shows the electrical activity of the heart [33].
It is often used to diagnose heart problems or monitor the
heart’s health. An EEG is often used to diagnose problems
with the brain (e.g. epileptic seizures [34]) or to monitor brain
activity [35]. Another type of time series biomedical data
is Functional magnetic resonance imaging (fMRI) [36] is a
medical imaging technique that uses a magnetic resonance
imaging (MRI) machine to measure changes in blood flow to
different parts of the brain [37]. It is often used to study brain
function and to diagnose brain disorders [38].

Different biomedical data modalities may lead to the
discovery of the following (non-exhaustive) list of anomalies,
including [39];

« Structural anomalies refer to physical abnormalities or
deviations from the body’s normal structure, such as
birth defects, abnormal growths, or deformities.

o Functional anomalies refer to abnormal functioning of
the body’s systems, such as abnormal heart rhythms,
abnormal blood pressure, or abnormal hormone levels.

« Pathological anomalies are the presence of abnormal
cells or tissue in the body, such as cancer or infections.

« Diagnostic anomalies are the discrepancies or inconsis-
tencies in diagnostic testing or imaging, such as false
positive or false negative results.

o Behavioral anomalies are the anomalies related to
abnormal behavior or changes in behavior, such as
changes in appetite, sleep patterns, or mood.

o Cognitive anomalies refer to abnormal cognitive func-
tioning, such as memory loss or impaired decision-
making.

« Contextual anomaly is the type of anomaly where the
data points are distinguished from whole datasets in
terms of some pre-defined context [40]

B. AUTOENCODER

An AE is a neural network that takes an input, goes through
bottleneck layers (encoder) represented by Z in FIGURE 2.
and repeats the same layers in reverse order (decoder) to
reconstruct the input. In the vanilla form, AE optimizes a
mean squared error; however, other types of variants are also

17276

Bottleneck

INPUT
RECONSTRUCTED
INPUT

ENCODER DECODER
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possible [41]. If the autoencoder can reconstruct the input
with low reconstruction error, it shows that AE has general-
ized well on the seen data. If an unseen sample gives a high
reconstruction error, it could be assumed to vary significantly
from the seen samples and be considered anomalous. The
ability of AEs to identify such out-of-the-distribution samples
is the basis to use for anomaly detection. In these problems,
especially in medical data, abundant samples from the normal
class (e.g., healthy adults) are easily available, whereas the
anomalies are either unknown or very few samples are
available for them. If an AE generalizes well on the samples
from the normal class, it can be used to identify anomalies [7].
The architecture of an autoencoder is shown in Figure 1.
Depending upon the type of training, inputs, and methods,
the following are common variants of AE.

1) SPARSE AUTOENCODER

Sparse autoencoder introduces information bottleneck with-
out reducing the number of nodes/neurons. This is usually
achieved by introducing a sparsity constraint on the activity
of the hidden layer so that a few neurons would fire at a
given time [42]. As compared to other neural networks where
weights are regularized, in sparse autoencoders, activation
layers are not regularized. This allows the network to
activate individual hidden layer nodes to specific input data
attributes [43]. Whereas a simple autoencoder would use the
entire network for every observation, a small autoencoder
would be compelled to selectively activate areas of the
network based on the input data. Consequently, The net-
work’s ability to memorize input data can be limited, which
helps to preserve its ability to extract relevant information
from the data. The network’s regularization and latent state
representation can be evaluated and adjusted independently,
providing the flexibility to select the optimal combination for
a given task. There are different ways to introduce sparsity in
the network: L-1 regularization and KL-Divergence [107].

2) DENOISING AUTOENCODER
Denoising autoencoder is the type of autoencoder in which
random noise is added to the input of the encoder part
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and makes it recover from noise-free data in the decoding
part [44]. By doing so, the autoencoder not only maps the
input to the output but also removes the random noise, which
results in better learning of underlying features.

3) CONVOLUTIONAL AUTOENCODER (CAE)

The AE comprises feed-forward layers only. If the image
is flattened, then it can lose its spatial information. CAE
can take input as an image, combining convolutional layers
and pooling to reduce the dimension (encoder) [45]. Then
de-convolution and unspooling layers to increase the image
size (decoder) to reconstruct the original input.

4) VARIATIONAL AUTOENCODER

A variational autoencoder learns the probability distribution
of parameters instead of learning any deterministic mapping
from the input data to the encoded representation [46]. This
type of autoencoder tries to generate new data samples from
the sample of distribution, which is why it is considered as
a generative model. As compared to simple autoencoders
where output is mapped to input through bottleneck/latent
space, in this case, the actual bottleneck is replaced by the
mean and standard deviation of encoder representation and
takes sample latent space as a bottleneck.

5) RECURRENT AUTOENCODER

A simple AE, CAE, or VAE cannot be trained on sequential
or time-series data, as it can only model tabular or spatial
data. To model sequential data, recurrent layers are needed
in the encoder and decoder. LSTM is one of the common
types of recurrent neural networks that can be used as an
AE [47], [48]. Recurrent or LSTM layers allow the model
to process sequential data by maintaining a hidden state
that is updated at each time step. This allows the model
to capture temporal dependencies and patterns in the input
data. Recurrent Autoencoders (RAEs) can be trained using a
sequence-to-sequence approach. The encoder maps the input
sequence to a fixed-length representation, and the decoder
generates the output sequence from this representation. RAEs
can also be trained using a sequence-to-latent approach.
The encoder maps the input sequence to a variable-length
representation, and the decoder generates the output sequence
from this representation. This variable-length representation
can be used for clustering and dimensionality reduction tasks.
Additionally, the internal state of the RAE can be used to
represent the context in a given input, which can be used to
improve the performance of other models.

Ill. ENSEMBLE LEARNING

Ensemble learning is an approach in machine learning
that aims to enhance decision-making results by combining
multiple models, often referred to as base models, to create a
superior predictive model [49]. As depicted in FIGURE 3.
A panel of five neurologists (N1, N2, N3, N4, and N5) is
formed to diagnose a critical brain tumor. N1, N3, and N5
classify the patient’s MRI as suggestive of a tumor after
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evaluating it, while N2, N4, and N5 classify it as non-
tumorous. Based on the principle of majority voting, the
MRI would be considered non-tumorous in this scenario.
Similarly, ensemble learning uses multiple models, each
of which makes a prediction. Usually, majority voting or
some other method of consolidation is used to reach a final
decision.

A. ENSEMBLE LEARNING TECHNIQUES

Ensemble learning techniques on the basis of model can be
classified into to broad categories i.e., sequential ensemble
learning techniques and parallel ensemble learning tech-
niques [50]. Sequential ensemble technique is a technique in
which base models are trained in sequence and are dependent
on each other. Conversely, Parallel ensemble learning is a
technique where base model is trained parallel, and all base
models are independent of each other. On the other hand,
data-based ensemble approaches include late fusion, early
fusion, and joint learning.

1) BAGGING

Bagging or Bootstrap aggregation is a technique in which
several week base models are combined to form one strong
predictive model [51]. Bagging technique is classified into
two subtypes, Bootstrapping and Aggregation. In bootstrap-
ping technique as shown in FIGURE 4, samples are extracted
from whole datasets using the with replacement procedure
which allow the random selection of samples and then
several base models are trained on each sample. On the
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other, accurate decision is made in aggregation by taking
the average or majority of the task depending on the task.
In regression, an average is taken of all the outputs predicted
by the individual classifiers; this is known as soft voting.
While in hard voting or majority voting [52], the class with
the highest majority of votes is accepted for classification
problems.

2) BOOSTING

Boosting is an ensemble learning technique that makes
the better prediction in a future by learning from previous
predictor mistakes [53]. As compared to bagging, which is
parallel ensemble technique, this technique is a sequential
ensemble technique where several week base models are
arranged in a sequence that learns from next base model in
a sequence to create optimal predictive model. The general
overview of boosting technique is presented in FIGURE 5.

3) STACKING

Stacking is a less commonly used type of parallel ensemble
technique and known as a stacked generalization as shown
in FIGURE 6. Unlike bagging and boosting, stacking can
be used to combine multiple models of different types.
In stacking, outputs of sub-models are taken as input and
attempts to learn how to best combine the input predictions to
make a better output prediction [54]. Stacking is an extended
form of the Model Averaging Ensemble technique in which
all sub-models equally contribute as per their performance
weights and build a new model with better predictions.

4) EARLY FUSION

In early fusion, the input data is combined or preprocessed
before being fed into the autoencoders [55]. This can involve
feature concatenation or transformation, for example. The
primary advantage of early fusion is that it enables the model
to learn shared representations and cross-modal features,
which can improve performance in tasks involving multiple
data modalities or features [56]. However, early fusion may
require careful preprocessing and feature engineering, and it
may not always be the most effective approach when dealing
with complex data structures.
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5) LATE FUSION

In this technique, autoencoders are trained independently
on different parts or representations of the input data [57].
Their output is combined later, typically during the decision-
making process. The primary advantage of late fusion is
that it allows each autoencoder to learn specialized features
from its respective input data [58]. It can be more flexible
when dealing with heterogeneous data. However, late fusion
may require more computational resources, as multiple
autoencoders need to be trained and combined. Additionally,
finding the optimal way to combine the outputs of multiple
autoencoders can be challenging.

6) JOINT LEARNING

Autoencoders are trained together with shared or connected
layers, allowing them to learn features jointly from the
input data [59]. This approach can lead to more efficient
representation learning, as the models can share knowl-
edge and learn from each other. However, joint learning
can be more complex and require more computational
resources [60]. Additionally, it may be more sensitive to
model hyperparameters, making it harder to find the optimal
configuration.

B. ENSEMBLE OF AUTOENCODERS (EOAE) FOR ANOMALY
DETECTION

EoAE is a technique that combines multiple autoencoder
models to improve the overall performance of anomaly
detection tasks [61].
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Specifically, biomedical data is complex, with details
ranging from patient information to images modalities like
X-rays and involves human life. AE can simplify this
complex data, making it easier to understand and analyze.
When we use EoAEs, it is like having multiple detectives
working on a case - they can spot things that one might miss.
This is especially important in healthcare, where missing
even a tiny detail can have big consequences. So, using a
EoAEs helps to make sure nothing is overlooked. However,
the ensemble approach works best for complex medical data
and might not be as effective for simpler data.

The use of EoAEs for anomaly detection in biomedical
data is extremely significant, specifically as it involves
important decision-making processes that have a direct effect
on human life [48]. Data in the field of biomedical can
be complex, exhibiting minute patterns that could point to
underlying diseases or newly discovered medical conditions
and anomaly may be subjective [40]. EoAE can greatly
improve anomaly detection’s accuracy and robustness, which
lowers the possibility of false positives and false negatives.
Different models are able to capture different representations
of the data, providing a more comprehensive and all-
encompassing understanding. Leveraging ensemble tech-
niques with autoencoders not only increases the reliability
of diagnostic processes but also substantiates the trust that
patients and healthcare professionals place in cutting-edge
technological solutions in the delicate field of healthcare [62],
where a mistake or misdiagnosis can have detrimental or even
fatal outcomes.

IV. REVIEW METHODOLOGY
This section presents our review methodology for using
EoAEs to detect anomalies in biomedical data as shown
in FIGURE 7. The research question we address in this
paper is “‘How effective are EOAE for detecting anomalies in
biomedical datasets compared to single AE?””. We identified
relevant keywords to address this research question and ran
the criteria on popular academic databases, such as IEEE,
Springer, ScienceDirect, and Google Scholar. The search was
conducted in February 2023. We took care to search and
select most of the relevant papers; however, we did not per-
form the systematic or scoping review search methodology.
Thus, the comprehensibility and reproducibility of the search
results cannot be ascertained. Our search keywords contain
the terms ‘“‘ensemble autoencoder” (and its palindrome)
and ‘“anomaly detection” in combination with data types,
i.e., “medical data,” “medical image,” “MRI,>”> ‘“X-Ray,”
“CT scan,” “‘medical record,” ‘“‘electronic health record”,
“patient data”, ‘“medical dataset”, ‘“medical imaging”,
“healthcare data”, and “time series medical data”. These
search keywords yielded 16 peer-reviewed papers from
different data repositories.

There have been numerous review papers published on the
topic of anomaly detection with deep learning approaches.

Pang et al. [4] reviewed the use of deep learning techniques
for detecting anomalies in various data types. The review

VOLUME 12, 2024

Keywords Identification

‘ IEEE ‘ Springer ‘ ScienceDirect ‘ Google Scholar

FIGURE 7. Review methodology.

defined anomalies and explained their importance in various
applications, such as fraud detection and cybersecurity.
It then reviewed different deep learning approaches that have
been developed for anomaly detection, including supervised,
unsupervised, and semi-supervised. Fernando et al. [63]
specifically highlighted the use of deep learning techniques
for detecting anomalies in biomedical data. The paper
reviewed various approaches, including supervised, unsu-
pervised, and semi-supervised, and provides examples of
their successful application in different medical applications.
While Fernandes et al. [64] discussed general anomaly
detection in biomedical data using various data labeling
settings, we are specifically investigating the application of
EoAE for detecting anomalies in biomedical data.

V. NARRATIVE REVIEW
In this section, we present different types of EoAE
approaches categorized by data type as follows:

A. TABULAR DATA

Anomaly detection in medical tabular data involves identi-
fying datapoints significantly different from most other data
points in the electronic health records dataset.

Chaurasia et al. [65] proposed an ensemble autoencoder
model for detecting anomalies in electronic health records.
Specifically, the proposed ensemble model was composed of
customized autoencoders. To create diversity in the ensemble
autoencoder, the authors used different initialization values
and architectures for each autoencoder in the ensemble.
The models were combined by taking the median of their
normalized anomaly scores. The two medical datasets used
in the experimentation are the Cardio and Ecoli datasets. The
evaluation metric used in the experiment was accuracy. The
accuracy of the proposed ensemble method was 90.7% and
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87.4% on the Cardio and Ecoli datasets [66], respectively.
Liu et al. [67] presented an ensemble autoencoder technique
for anomaly detection in clinical data. They trained the
same autoencoder on a different subset of the data and
combined outlier scores by employing the mean function
to decide whether a sample was normal or anomalous.
Their methods were evaluated on different publicly available
datasets, i.e., Cardio, arrhythmia, breast, mammography,
thyroid, and antithyroid dataset. Their method achieved an
AUC-ROC of 0.9, 0.8, 0.97, 0.84, 0.96, and 0.68 on Cardio,
arrhythmia, breast, mammography, thyroid, and antithyroid,
respectively.

B. X-RAY

Anomaly detection in X-ray images refers to the process of
identifying unusual or abnormal features in the images that
may indicate the presence of a disease such as pneumonia,
tuberculosis, and cancer.

Paul et al. [68] proposed an ensemble of autoencoders
to recognize various abnormalities in chest X-ray images,
such as pneumonia, tuberculosis, and lung nodules. The
models are trained on a small number of examples for
each abnormality. Then the ensemble is trained to combine
the outputs of the individual models to make a final
prediction. The discriminative ensemble learning approach
uses a distance metric to measure the similarity between the
input image and the training examples for each abnormality.
The proposed method was evaluated on publicly available
chest X-ray datasets [69]. The evaluation metric used in the
experimentation was F1-score which achieved 19 improved
results than previous methods.

Paul et al. [70] proposed an ensemble of autoencoders
to identify different diseases from chest X-rays. Using an
autoencoder ensemble, the proposed architecture presented
a transfer learning approach for disease identification from
chest X-ray images. Diversity in the ensemble was created
by training autoencoder models on different parts of the
training data. The models were then combined to improve
disease identification performance. The model outcomes
were combined using a weighted voting scheme based on the
performance of each individual model. The authors used two
publicly available chest X-ray datasets for their experiments:
the Montgomery and Shenzhen datasets [71]. Their method
generated a recall, precision, and F1-score of 0.51, 0.43, and,
0.48, respectively. Similarly, for Montgomery, they achieved
a recall, precision, and Fl-score of 0.48, 0.39, and 0.42,
respectively. While recall, precision, and F1-score of 0.48,
0.44, and 0.45 were achieved on Shenzhen datasets.

Addo et al. [72] performed an extensive experiment to
diagnose Covid-19 from X-ray datasets using EoAE. The
method performed the diagnosis in two steps by proposing
three different variational autoencoder models. In the first
step, various representations of variational autoencoders were
applied to extract the chest X-ray’s general characteristics.
In the second step, model results were combined for the
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final diagnosis. The ensemble of models was combined by
assigning weights/votes to the output of each autoencoder.
Their method was evaluated on the Chest X-ray datasets [69],
which are publicly available on Kaggle datasets. The eval-
uation metrics used in the experimentations were accuracy,
precision, recall, and F1-score.

C. MRI
Anomaly detection in MRI can be useful for identifying a
wide range of medical conditions, including brain tumors and
strokes.

Chen et al. [73] proposed an EoAE approach for anomaly
detection and localization of MRI. They trained various
autoencoder models on the MRI dataset, each with different
architecture, weight initialization, and training methods.
The outputs of the individual models are combined to
obtain a final detection. Different architectures for the
autoencoder models, including feedforward neural networks
with different numbers of hidden layers and nodes, were
used to create diversity in the ensemble. The MRI data
contained 253 images in total, 155 of which are of a normal
brain and 98 of brain images with tumors. These regions of
hemorrhage and tumors were considered anomalies that must
be detected. The evaluation metrics used are the AUC-ROC.
The results showed that the autoencoder ensemble approach
outperformed the single autoencoder approach and achieved
an AUC-ROC of 0.9581.

An EoAEs was employed by Zhang et al. [74] to extract
the anomalous region in MRI and address the limitations
of single autoencoder models. The diversity of the models
in the ensemble is created by randomly initializing the
weights and biases of each model. The autoencoder models
were trained on a large dataset of normal brain MRI
images and were then used to detect anomalies in new
MRI images. The outputs of the individual models are
combined by calculating the average reconstruction error of
each image. If the reconstruction error of an image is higher
than a pre-determined threshold, the image is considered
to be anomalous. The proposed method is evaluated on an
ADNI publicly available dataset of brain MRI images [75].
The results show their method’s effectiveness in detecting
anomalies in brain MRI images. The proposed autoencoder
ensembles achieved an AUC-ROC of 0.96 and an accuracy
of 0.93 on ADNI datasets.

D. CT SCAN

Anomaly detection in CT refers to identifying unusual
or abnormal features in the images that may indicate
the presence of medical conditions, such as lung cancer,
pneumonia, and emphysema [76].

A dual-layer architecture to protect medical devices from
anomalous instructions, focusing specifically on insulin
pumps as a case study. The main goal of the architecture is
to detect anomalous medical device instructions that could
potentially harm patients Mahler et al. [77]. An ensemble of
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recurrent autoencoders in the anomaly detection layer detects
anomalies in the device’s CT scan data. The authors trained
multiple recurrent autoencoders on different subsets of the
data, each with different initializations. Then the second layer
utilizes a rule-based system to analyze the detected anomalies
and filter out false alarms. The evaluation was performed on
computed tomography (CT) using 8,277 CT instructions that
they recorded privately. The maximum F1-score achieved on
the proposed was 98.8%.

Almulhim et al. [78] presented a two-stage approach to
identify anomalies in CT scans. At a pre-training stage,
a convolutional neural network (CNN) was trained to learn
a representation of the CT scan. Then, an ensemble of
autoencoders is trained to identify anomalies in the latent
representation. Finally, the ensemble is combined to form a
final anomaly score, which can be used to classify a scan
as normal or anomalous. They trained multiple autoencoder
models with different architectures, the number of hidden
layers, and different learning rates. Then, the outputs from
these autoencoder models were combined to produce a
final decision. The combination of the model outcomes
was done using a majority voting approach, where the
final decision was based on most of the outputs from
the individual autoencoder models. The proposed approach
is evaluated on two publicly available datasets, i.e., the
non-small-cell lung cancer (NSCLC) data [79] and the
Prostate Cancer Research International Active Surveillance
(PRIAS) datasets [80]. The experimental results showed that
the proposed method outperforms existing anomaly detection
methods and achieved accuracy, precision, recall, an F1 score,
and Matthews Correlation Coefficient (MCC) of 99.71%,
99.72%, 99.61%, 99.67%, 99.59% respectively.

E. ECG

Anomaly detection in ECGs refers to the process of identify-
ing deviations from normal heart function, such as irregular
heartbeat, a heart attack, or coronary artery disease [81].

An EoAE technique was presented by Campos et al. [82]
for anomaly detection in different time series datasets.
Diversity among the models in the ensemble was created by
using different architectures and training methods for each
model. The models in the ensemble were convolutional neural
networks, which are trained on the same time series data but
with different random initializations and hyperparameters.
The outputs of the individual models in the ensemble were
combined by taking a median of outlier scores. The datasets
used in the experimentation were ECG readings for seven
patients, represented as a 2-dimensional time series with
3,700 to 5,400 observations each. The evaluation metrics used
in the experiments were precision, recall, f1-score, PR, and
AUC-ROC and achieved values of 0.2522, 0.4924, 0.2521,
0.1887, and 0.5715, respectively.

Kieu et al. [83] proposed a deep learning-based anomaly
detection system for ECG time series data using an ensemble
of sparse autoencoders. The encoder part of the model
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is a recurrent neural network. In particular, two ensemble
frameworks, the independent (IF) and the shared (SF),
utilize multiple sparsely connected RNN autoencoders.
The IF trained each autoencoder separately, while the SF,
drawing on the concepts of multi-task learning, trained all
autoencoders together by sharing a common feature space.
The diversity in the ensemble was created by training multiple
autoencoders with different architectures and hyperparam-
eters. The autoencoder models were combined by taking
the median function after arranging the outlier score in
ascending order. The proposed approach was evaluated on
two real-world time series repositories, the univariate time
series repository Numenta Anomaly Benchmark (NAB) [84]
and the multivariate time series repository ECG [85], and
achieved an average AUC-ROC and AUC-PR of 0.97 and
0.777 respectively.

Kieu et al. [86] presented an EoAE approach to detect
anomalies in ECG signals. They employ multiple variants of
CAE for feature extraction and anomaly detection. Diversity
was created by training multiple CAE models with different
hyperparameters on ECG datasets containing 2-dimensional
electrocardiogram time series collected from seven patients,
each with 3,700 to 5,400 observations. The autoencoder
models were combined by taking the median of the
reconstruction errors for models. Experimental results on the
ECG datasets demonstrate that the ensemble autoencoders
approach outperforms the other approaches. The ensemble
autoencoders achieved AUC-PR and AUC-ROC of 0.15 and
0.58, respectively.

F. EEG

Anomaly detection in EEG refers to identifying deviations
from normal brain function in an EEG [87], such as epilepsy,
a sleep disorder, or a brain tumor [88].

Ferariu and Mihalachi [89] presented an EoAE to detect
seizures in EEG datasets. Diversity was created in the
ensemble by training stacked autoencoder models on dif-
ferent subsets of the dataset. The authors then combine the
outputs from each autoencoder model to produce a final
anomaly score for each EEG signal. The datasets used in
the experimentation include The Unit of Neurology and
Neurophysiology at the University of Siena collected EEG
recordings from 14 patients, totaling 30 GB of data [90].
This included recordings from 8 male patients with ages
ranging from 25 to 71 and 6 female patients with ages ranging
from 20 to 58. The maximum accuracy of the proposed
method was 0.95.

Zheng et al. [91] proposed an EOAE approach for workload
detection in EEG data. In their method, diversity was
created in the ensemble by applying stacked denoising
autoencoders on the EEG data of the different patients.
The model outcomes were combined by taking average
Q-statistics. The performance of their method was evaluated
on private datasets collected in the laboratory of two cases.
The evaluation metrics used in the experimentation were
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Diversity Creation
Parameter tuning and random subsampling

Bootstrap

Hyperparameter tuning Random sub-sampling

FIGURE 8. Percentage of methods used to create diversity in the reviewed
EOAEs.

accuracy. The highest accuracy of the CEM-AE obtained
by 170 EEG features are 0.6353 and 0.6747 on case 1 and
case? respectively

G. FMRI

Anomaly detection in fMRI [92] refers to the process of
identifying deviations from normal brain function in an fMRI
scan that may indicate a brain disorder, such as epilepsy,
a brain tumor, or a stroke [93].

Guanget al. [94] presented an EoAE framework for
schizophrenia detection using resting state FMRI datasets.
A total of five deep autoencoders were combined to form
the ensemble. Specifically, different hyperparameters and
random initializations in each autoencoder were employed to
create diversity in the ensemble. The outcomes of the final
anomaly score were calculated as the average of the scores
of all the autoencoders. The proposed method was evaluated
on two publicly available fMRI datasets: the OpenNeuro
dataset [95] and the ABIDE dataset [96]. The evaluation
metrics used in experimentation were the ROC-AUC, the
accuracy, and the specificity. The authors performed a 10-
fold cross-validation experiment to evaluate the performance
of their proposed model. They reported a ROC-AUC
score of 0.979, an accuracy of 0.967, and a specificity
of 0.971.

Zafar Igbal et al. [97] proposed an EoAE approach for
anomaly detection in resting-state fMRI data. Diversity
among the models was created by training each deep
autoencoder on a different randomly selected subset of
the training data. The autoencoder models were combined
by taking the mean of the reconstruction error for each
sample generated by each individual autoencoder. They
compared their approach to existing anomaly detection
methods for resting-state fMRI data. The dataset used
for this research was the Human Connectome Project
(HCP) dataset [98] consisting of resting-state fMRI scans
from healthy adults. The evaluation metrics were root
mean square error (RMSE), reconstruction loss, and mean
absolute error (MAE). The autoencoder achieved an RMSE
of 0.03, a reconstruction loss of 0.04, and an MAE
of 0.009.
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FIGURE 9. Percentage of combination methods used in the reviewed
EOAEs.

V1. REVIEW RESULTS

As shown in FIGURE 8 The largest sector of the chart,
accounting for 62.5% of the total, corresponds to Hyperpa-
rameter tuning. This indicates that most of the techniques
employed in the biomedical dataset focus on optimizing
model parameters to improve performance. The second-
largest sector, comprising 18.75% of the total, is dedicated
to the Bootstrap technique. Random sub-sampling constitutes
12.5% of the pie chart, representing the third most common
technique. Finally, the smallest sector, at 1/16 or 6.25% of the
total, represents Parameter tuning and random subsampling.

The pie chart in FIGURE 9 displays the distribution
of six different methods for combining anomaly scores
in a biomedical dataset. The largest sector of the chart,
representing 37.5% of the total, is dedicated to the Mean
method. This suggests that, in most cases, the average of
the anomaly scores is used to determine the final score
and identify potential anomalies in the biomedical data.
The second-largest sector, accounting for 25% of the total,
is the Voting method. This approach involves combining
the decisions of multiple algorithms or models to reach a
final consensus, which can improve the overall performance
and robustness of the anomaly detection system. At 18.75%,
the Median method constitutes the third most common
technique. The Max, Threshold-based, and Reconstruction
error mapping methods each make up 6.25% of the pie chart,
indicating that they are less frequently used for combining
anomaly scores.

The bar chart in FIGURE 10 represents the usage
frequency of six different types of autoencoders in EOAE.
The most frequently used autoencoder is the Deep AE,
with a count of seven. This indicates that Deep AE, which
consists of multiple layers to learn complex representations,
is the preferred method for solving EOAE-related tasks in
different biomedical data. The second most common type
is the Convolutional AE, with a count of 3. Convolutional
AE leverages convolutional layers, which are particularly
effective in handling image and grid-like data, to learn
hierarchical features. Vanilla AE and Stacked AE both have
a count of 2, making them moderately popular choices in the
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Types of Autoencoders

FIGURE 10. Number of AEs used in reviewed EOAE by AE type.

biomedical dataset. Variational AE and Sparse AE each have
a count of 1, indicating that they are the least frequently used
autoencoders in the biomedical dataset.

Vil. CHALLENGES AND FUTURE DIRECTIONS
This section challenges, future direction, and recommenda-
tions based on the review.

A. DIVERSITY CREATION

Diversity creation in an autoencoder ensemble refers to the
process of training multiple autoencoder models on different
subsets of the data to create a diverse set of models that
can make more accurate predictions [82]. Creating diversity
in an autoencoder ensemble can improve the ensemble’s
performance by reducing the risk of overfitting, which occurs
when a model is too closely fitted to the training data and
performs poorly on new data [99], [100].

By training multiple autoencoder models on different
subsets of the data, the ensemble can learn a more diverse set
of features and be better able to generalize to new data. There
are several approaches to creating diversity in an autoencoder
ensemble [101]. One approach is to use different types of
autoencoders with different architectures and better suited to
different types of data. Another approach is to use different
subsets of the data to train each autoencoder, such as random
subsets or stratified subsets. Out of sixteen research papers,
ten research papers create diversity in EOAE by performing
hyperparameter tuning.

However, diversity can also be created by proposing differ-
ent structures of autoencoders [102]. Different architectures,
numbers of layers, activation functions, and regularization
techniques can all contribute to the diversity of the ensemble.
They can be used to automatically discover the optimal
structure of autoencoders for a given dataset.

While creating diversity in an ensemble for anomaly
detection, the practitioners’ major problem is computational
expensiveness, especially if the individual models in the
ensemble are complex and require a lot of computational
resources to train [103], such as autoencoder. This is
because each autoencoder in the ensemble must be trained
separately, which can be time-consuming and require a large
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amount of data and computational resources. Numerous
strategies can be used to reduce the computational expense
of ensemble learning. One strategy is to use simpler models
in the ensemble, which may be easier to train and require
fewer resources. However, it could lead to underfitting.
Another approach is to use parallelization techniques, such
as distributing the training process across multiple GPUs
or CPUs [104], to speed up the training process. It is also
possible to use ensemble learning techniques that are more
computationally efficient, such as bagging or boosting, which
involve training multiple models on different subsets of the
data or at different stages in the learning process.

Although ensemble methods may improve anomaly detec-
tion, [40] shows that they are not always able to capture all
relevant anomalies. The study emphasizes the critical role
that context and data representation play in active ensemble
learning under minimal supervision. The integration of
ensemble techniques and supervised context may redefine the
standards for anomaly detection accuracy as future directions
develop.

B. BETTER EXPERIMENTAL PRACTICES

It is observed that most of the cited research papers performed
an EoAE without comparing it with simple autoencoders.
Without a comparison, it is hard to determine whether
the ensemble truly provides improved performance or adds
complexity without any real benefit. Another issue is that it
can be hard to justify the added computational cost of using
an ensemble over a single autoencoder if the performance
benefits are not clearly demonstrated. Additionally, not
comparing the ensemble with a single autoencoder can make
it hard to identify the specific factors that contribute to the
improved performance of the ensemble, making it difficult to
optimize the ensemble for specific data or problems.

Additionally, the reason behind an optimal number of
autoencoders to use in EoAE is not well-defined in most of
the research and can vary depending on several factors [105].
These factors include the size and complexity of the dataset,
the level of outliers present in the data, and the availability
of computational resources. While using more autoencoders
in an ensemble can potentially improve anomaly detection
accuracy, it also comes with a higher computational cost and
longer training time [82]. Hence, finding the right balance
between accuracy and efficiency is crucial when deciding on
the number of autoencoders to use in an ensemble.

It is also observed that most of the trained EoAE models for
anomaly detection are not publicly available or open source.
It would be beneficial if more pre-trained EoOAE models for
anomaly detection were publicly available. This would enable
researchers and developers to use these models as a starting
point for their own work, which could save time and resources
as well.

C. DATA SCALABILITY
As the biomedical datasets grow in size and complexity, the
ability to scale becomes paramount for any machine learning
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system [106]. Scalability does not merely involve handling
more data but doing so efficiently without compromising
on performance. In the context of EOAE, dividing the data
among multiple autoencoders seems like a practical solution
to handle vast datasets [107]. This division allows different
autoencoders to specialize and learn fine features from
various subsets of the data.

However, this approach has its challenges. For one,
splitting data means that each autoencoder might work with a
fraction of the information, potentially missing out on broader
patterns. More critically, as data multiplies, the storage
and computational demands surge [108]. Efficient storage
solutions are essential, not just to house the data but also
to ensure quick retrieval and processing. Training multiple
autoencoders on vast datasets demands advanced compu-
tational infrastructure, often involving parallel processing,
specialized hardware like GPUs, and distributed computing
environments.

Furthermore, while the initial idea behind ensembles is
to improve accuracy by leveraging multiple models, there
is a risk of increased redundancy as data grows, leading
to inefficiencies. Optimization techniques [109], both at the
model and infrastructure level, are needed to ensure that as
EoAE scales, it optimizes resources efficiently.

D. EXPLAINABILITY/INTERPRETATION

In the intricate world of medical diagnostics and treatment,
the stakes for making accurate and timely decisions are
exceptionally high. As machine learning models, specifically
EoAE, find their place in aiding such decisions, the black-box
nature of these models becomes a pressing concern [110].
Interpretability is not just about a model making a prediction.
It is also about understanding the ‘why’ behind that
prediction. For medical professionals, this ‘why’ is critical.
A doctor is not just looking for a diagnosis; they need the
reasoning behind it to make informed treatment choices and
to communicate effectively with patients.

The EoAE complicates this further. While prediction of a
singular model might be challenging to interpret, an ensem-
ble, that combines the outputs of multiple autoencoders,
introduces several layers of complexity. Each autoencoder in
the ensemble might base its predictions on different facets of
the data, making the collective decision-making process even
more opaque [111].

However, the very strength of EoAE can also be leveraged
for better interpretability. Techniques that highlight the
contribution of each autoencoder, or even subsets of neurons
within them, can shed light on which features or patterns
were deemed most critical for a given prediction. Therefore,
utilizing model agnostic tools like LIME or SHAP [112].
Integrate attention mechanisms within autoencoders to visu-
ally highlight significant features influencing predictions.

E. DATA PRIVACY AND SECURITY
The promise of EoAE to enhance diagnostic and predictive
capabilities is appealing [113]. However, this progress comes
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with the weighty responsibility of securing sensitive patient
data. Medical records are more than just numbers and data
points. They are a collection of intimate details about an
individual’s health history, making them a valuable resource
that, if mishandled, could lead to serious privacy violations.

The challenge of using biomedical data for better predic-
tions while protecting individual privacy is a complex one.
Traditional anonymization techniques may not be enough
to protect privacy in the era of deep learning [114], where
models can learn and reveal personal details even from
anonymized data. This is where approaches like differential
privacy [115] come into the limelight. By introducing a
degree of randomness during model training, differential
privacy ensures that the model’s output cannot be traced back
to any single data entry, effectively providing a protective
cloak around individual data points. This method holds great
potential for EOAE models, ensuring that while the ensemble
learns from the collective wisdom of the data, the identity and
specifics of individual patients remain shielded.

F. DOMAIN ADOPTATION

In biomedical data analysis, EOAE is a promising new tech-
nique that can improve anomaly detection by combining the
strengths of multiple models. However, a critical challenge
lies in the domain specificity of the data [116]. Just as a
physician trained in one country may at first struggle with
the details of healthcare procedures in another, EOAE models
trained on data from a specific hospital or region may not
perform as well when exposed to data from a different source.

The root of this challenge is the inherent variability in
biomedical data. Differences can arise from numerous factors
such as the demographics of the patient population, variations
in equipment and techniques, or even divergent diagnostic
conventions and practices [117]. These differences mean
that a model optimized for one dataset may misinterpret or
overlook variation in another, potentially compromising its
diagnostic accuracy [118].

This underlines the vital importance of domain adaptation
in the deployment of EoAE models. To ensure widespread
applicability and maintain the trust of medical professionals,
models must be designed to quickly adapt to new datasets
without requiring exhaustive retraining [119]. Techniques
like transfer learning, where models leverage knowledge
from one domain to aid performance in another [120],
or domain-adversarial training [121], where models are
trained to be agnostic to domain-specific features, can be
pivotal in this endeavor.

G. LIMITATION OF PRACTICAL APPLICATION

The computational intensity of EoAE models is one of
the primary concerns. The requirement to train multiple
autoencoders at the same time necessitates significant
computational resources and processing time, which can be
a limiting factor, particularly in time-critical medical situa-
tions. Furthermore, the efficacy of EOAE is heavily dependent
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TABLE 1. EOAE algorithm for anomaly detection in different datasets.

Data Ref Anomaly AE Type Datasets Diversity cre- | Combination | Normalization Strength Evaluation | Number
Types No. Type ation of  Outlier | function Metrics of Autoen-
score coders
[65] Behavioral | Vanilla Au- | Cardio and | Hyperparameter Median Not allows for | Accuracy | 25
anomaly toencoders | Ecoli [66] tuning function mentioned the detection
of anomalies
- with high
= accuracy
e [67] Behavioral | Vanilla Au- | Cardio, Parameter Mean func- | Not Real-time AUC- 2
< . . . . .
E anomaly toencoders | arrhythmia, | tuning  and | tion mentioned detection of | ROC
5] breast, random anomalies
mammog- subsampling in  addition
raphy, to subtle
thyroid, and anomalies
antithyroid detection
[66]
[70] Pathological | Deep Au- | Chest X-ray | Bootstrap Voting Not Efficiently F1-score 20
anomaly toencoder [69] mentioned creating
diversity  in
the model by
self-organize
E‘ the detection
83 of anomalies
[68] Pathological | Deep Au- | Montgomery| Bootstrap Voting Not Fast method | Recall, 20
anomaly toencoders and mentioned by training | precision,
Shenzhen only the | Fl-score
datasets classifier on
[71] novel classes
(anomaly
classes)
[72] Pathological | Variational | Chest X-ray | Hyperparameter Max Softmax Flexibility accuracy, 2
anomaly Autoen- datasets tuning function function for diagnosis | precision,
coders publicly more diseases | recall and
available on Fl-score
kaggle [69]
[73] Pathological | Deep Au- | Private Hyperparameter Mean func- | Not In  addition | Fl-score 3
anomaly toencoder MRI tuning tion mentioned to detection
datasets the proposed
localize  the
anomaly
= precisely
= [74] Pathological | Deep Au- | ADNI[75] | Hyperparameter Threshold Not Efficiently AUC- 3
anomaly toencoders tuning based mentioned Reduce latent | ROC
space loss
which is
common in
AE
[77] Pathological | Deep Au- | Private CT | Hyperparamete; Reconstruction Not Easy to train | Fl-score 5
anomaly toencoder scan tuning error mentioned and has faster
mapping convergence
and  higher
= accuracy
:ng [78] Pathological | Convolutiona] INCLCC, Hyperparameter Voting Not Handle Accuracy, | Not
~ anomaly autoen- PRIAS [79] | tuning mentioned overfitting precision, | Mentioned
© coders issue recall and
efficiently F1-score
[82] Functional Convolutiona] Private Hyperparameter Median Not Unsupervised | Precision, | 20
anomaly Autoen- ECG tuning mentioned algorithm Recall,
coder datasets for efficient | Fl-score,
anomaly AUC-PR
detection in | and AUC-
8 ECG ROC
m [83] Pathological | Sparse au- | NAB, and | Hyperparametef Voting Not Complete AUC- 10, 20, 30
anomaly toencoders | private tuning mentioned framework ROC and | and 40 for
multivaratie for  end-to- | AUC-PR different
ECG end anomaly experimen-
datasets detection in tation
[84] ECG
[86] Pathological | Convolutional Private Hyperparameter Median L2 norm Efficient AUC- 2
anomaly autoen- ECG tuning Function feature ROC and
coders datasets extraction AUC-PR
for anomaly
detection  in
ECG datasets
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TABLE 1. (Continued.) EOAE algorithm for anomaly detection in different datasets.

[89] Functional Stacked Private Random sub- | Mean Not Clearly Accuracy | 29
anomaly Autoen- datasets sampling mentioned addresses an
coder imbalanced
issue
[91] Cognitive Stacked Private Random sub- | Mean func- | Not Improve Accuracy | 14
8 anomaly Autoen- datasets sampling tion mentioned model
m coder robustness
when there is
an imbalance
between
normal  and
abnormal data
[94] Cognitive Deep Au- | OpenNeuro | Hyperparametef Mean Not accurately AUC- 8
anomaly toencoder dataset [95] | tuning mentioned identify ROC
and the subjects with
ABIDE and  without
dataset [96] schizophrenia
[~ [97] Functional Deep au- | Open- Bootstrap Mean func- | Not superior RMSE 10
E anomaly toencoder source HCP tion mentioned performance
datasets as compared
[98] to existing
methods

on the quality and quantity of available data. When medical
data is scarce or unbalanced, the performance of these models
can suffer significantly. Another challenge is integrating
EoAE systems into existing medical data infrastructure,
which necessitates alignment of these advanced models with
the current technological ecosystem in healthcare settings.
This integration necessitates not only technical compatibility
but also adherence to medical data privacy and security
regulations.

H. REVIEW METHODOLOGY AND ITS LIMITATION

The methodology chosen for the review is effective but it
also has limitations. Our narrative review approach differs
from systematic or scoping review methodologies in terms
of both the scope of literature covered and the analytical
depth we were able to achieve. The narrative style enabled
a thorough investigation of ensemble of autoencoders in
biomedical anomaly detection, delving into both theoretical
concepts and practical applications. However, there are some
disadvantages of the method. The narrative review approach
have an impact on the reproducible of our findings and
introduces the possibility of subjectivity in the selection and
interpretation of literature. Therefore we propose that future
studies incorporate systematic review methodologies. This
would not only supplement the findings of our narrative
review, but would also ensure a more methodologically
diverse and balanced examination of the subject.

VIIl. CONCLUSION

To conclude, this review highlights the effectiveness of
using an EoAE for anomaly detection in biomedical data.
In today’s medical diagnostics and treatment, integrating
technology with clinical procedures has shifted from being
a trivial enhancement to an essential requirement. This paper
delves into the profound capabilities and inherent challenges
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posed by EoAE in the analysis of biomedical data. Ranging
from the challenges of scalability to the crucial demand for
interpretability, and from navigating data privacy concerns to
ensuring domain relevance, the integration journey of EoAE
in healthcare is detailed yet holds immense promise. The
patient is the central focus of this discussion. They are the
ones who provide the data for these models, and they are
the ones who will benefit the most from their predictions.
As we push the boundaries with advanced EoAE models,
we must ensure that patient well-being, confidentiality, and
trustworthiness are always prioritized. Our anticipated future
endeavors, characterized by interdisciplinary partnerships
and a focus on clarity and adaptability, chart a path to unlock
the responsible potential of EoAE.
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