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ABSTRACT Vision Transformers, known for their innovative architectural design andmodeling capabilities,
have gained significant attention in computer vision. This paper presents a dual-path approach that
leverages the strengths of the Multi-Axis Vision Transformer (MaxViT) and the Improved Multiscale Vision
Transformer (MViTv2). It starts by encoding speech signals into Constant-Q Transform (CQT) spectrograms
and Mel Spectrograms with Short-Time Fourier Transform (Mel-STFT). The CQT spectrogram is then
fed into the MaxViT model, while the Mel-STFT is input to the MViTv2 model to extract informative
features from the spectrograms. These features are integrated and passed into a Multilayer Perceptron
(MLP) model for final classification. This hybrid model is named the ‘‘MaxViT and MViTv2 Fusion
Network with Multilayer Perceptron (MaxMViT-MLP).’’ The MaxMViT-MLP model achieves remarkable
results with an accuracy of 95.28% on the Emo-DB, 89.12% on the RAVDESS dataset, and 68.39% on the
IEMOCAP dataset, substantiating the advantages of integrating multiple audio feature representations and
Vision Transformers in speech emotion recognition.

INDEX TERMS Speech emotion recognition, ensemble learning, spectrogram, vision transformer, Emo-DB,
RAVDESS, IEMOCAP.

I. INTRODUCTION
Speech emotion recognition stands at the confluence of signal
processing and machine learning, addressing the automatic
identification and classification of emotional expressions
within spoken language. Signal processing forms the bedrock
of speech emotion recognition, involving the extraction
of significant information from speech signals, including
spectral features, prosodic cues, and acoustic characteristics.
Machine learning techniques play a pivotal role, enabling the
development of models that recognize emotions by learning
patterns and features associated with different emotional

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

states. With applications spanning human-computer inter-
action, sentiment analysis, mental health assessment, and
customer service enhancement, speech emotion recognition
has captured the attention of researchers and practitioners
alike.

In light of this, our paper introduces a dual-path approach
referred to as the ‘‘MaxViT and MViTv2 Fusion Network
with Multilayer Perceptron (MaxMViT-MLP)’’. The method
encodes the speech signals into two representations: the
Constant-Q Transform (CQT) spectrogram and the Mel
Spectrogram via Short-Time Fourier Transform (Mel-STFT).
This dual spectrogram strategy leverages the complementary
attributes of CQT and Mel-STFT, providing a holistic and
informative portrayal of the input data. The CQT spectrogram
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is routed to the MaxViT model, while the Mel-STFT is
channeled to the MViTv2 model. These Vision Transformers
excel in extracting meaningful features from their respective
spectrogram inputs. The resulting features are integrated,
culminating in a comprehensive representation of the input
data, which is then directed into a Multilayer Perceptron
(MLP) for the final classification. The main contributions of
this work can be summarized as follows:

• Introduces a dual-path architecture for speech emotion
recognition, denoted as the ‘‘MaxViT and MViTv2
FusionNetworkwithMultilayer Perceptron (MaxMViT-
MLP)’’. This approach involves encoding speech signals
into two distinct representations. Subsequently, each
representation is channeled into its respective Vision
Transformer model. The features from the Vision Trans-
former models are amalgamated and subjected to aMLP
for further representation learning and classification.

• Represents speech signals in dual spectrograms: CQT
and Mel-STFT. CQT uses logarithmic frequency bin-
ning, and one of its key strengths is its constant-Q
resolution, meaning it offers a higher resolution at
lower frequencies and a coarser resolution at higher
frequencies. This makes it particularly effective at
capturing fine details in the low-frequency range,
which is well-suited for harmonic analysis. Mel-
STFT uses a non-linear frequency scale to capture
broader spectral characteristics and is more intuitive
for human interpretation of sound. Mel-STFT provides
a detailed time-frequency representation of the audio
signal, making it suitable for tasks that involve transient
events. This dual spectrogram strategy capitalizes on
the complementary characteristics of CQT and Mel-
STFT, resulting in a comprehensive representation of the
speech signals.

• Incorporates MaxViT and MViTv2 for representation
learning on the CQT and Mel-STFT spectrograms,
respectively. The hierarchical architecture of MaxViT
allows it to capture multiscale information effectively.
The block attention module partitions the input feature
map into distinct windows and applies self-attention
mechanisms to foster contextual understanding, allow-
ing MaxViT to recognize intricate patterns and rela-
tionships within audio data. The grid attention module
attends globally to pixels through a sparse grid, which is
beneficial for capturing global contextual information.
On the other hand, MViTv2 facilitates the capture
of multiscale features with different channel-resolution
scales. The utilization of relative positional embeddings
in MViTv2 injects shift-invariance properties, enhanc-
ing its ability to understand spatial relationships within
the spectrograms.

II. RELATED WORKS
Researchers have ventured into a multitude of learning
approaches for speech emotion recognition. Nevertheless, the
complexity of speech emotion recognition endures, primarily

stemming from the myriad variations in speaking styles,
gender, cultural influences, emotional expression, and other
factors. This section presents an overview of the existing
research in the field of speech emotion recognition.

Wen et al. [1] presented a fusion model that combined
the strengths of a capsule network and a Convolutional
Neural Network, denoted as CapCNN. Themethod involved a
two-step pre-processing procedure comprising voice activity
detection and a windowed framework. These steps speech
emotion recognitionved to locate the speech segments and
enhance the overall quality of the audio signals. The CapCNN
architecture was trained using a diverse set of input features,
encompassing MFCC, spectrogram, and spectral features.
The proposed CapCNN model, when applied to spectral
features, achieved remarkable performance on the Emo-DB
with an accuracy of 82.90%.

A two-dimensional Convolutional Neural Network
(2D-CNN) was proposed by Mujaddidurrahman et al. [2]
for speech emotion recognition. The method involved data
augmentation with noise injection and variations in loudness
to enhance the diversity of the training data. Following
augmentation, the speech signals were transformed into
log-mel spectrogram features, which were used as input
for the 2D-CNN model. The proposed model achieved an
accuracy of 88% on the Emo-DB.

He and Ren [3] utilized various techniques for speech
emotion recognition, including XGBoost, Convolutional
Neural Network (CNN), and Bi-directional Long Short-term
Memory (BiLSTM) with an attention model. The speech
signals first went through the framing with a 25ms frame
length. Subsequently, 34 low-level descriptors were extracted
from each frame. These descriptors were then passed into the
XGBoost classifier for feature selection. Subsequently, the
chosen features were fed into a hybrid architecture combining
both CNN and BiLSTM with attention model. The proposed
CNN and BiLSTM with attention model achieved 86.87%
accuracy on the Emo-DB.

In this study, Ancilin and Milton [4] employed
mel-frequency magnitude coefficient (MFMC) features
for speech emotion recognition. The MFMC features
encapsulated a logarithmic representation of the magnitude
spectrum aligned with the non-linear mel frequency scale.
The MFMC features were then classified using a Support
Vector Machine (SVM). The experimental results showed
that the MFMC-SVMmethod yielded an accuracy of 81.50%
on the Emo-DB and 64.31% on the RAVDESS dataset.

Pham et al. [5] explored various spectral features, namely
mel frequency cepstral coefficients (MFCCs), mel scaled
spectrogram, chromagram, spectral contrast feature, and
tonnetz representation for speech emotion recognition. The
method calculated the mean values of the features and
stacked them together to form spectral mean vector features.
Thereafter, CNN was engaged to learn and classify the
spectral mean vector features. The proposed method yielded
76.40% accuracy on the Emo-DB and 70.80% accuracy on
the RAVDESS dataset.
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Singh et al. [6] presented an approach for speech emotion
recognition using scattering transforms applied to speech
signals. The method incorporated diverse features, including
frequency-domain scattering representation (F-SCATNET),
time-domain scattering representation (SCATNET), and
MFCCs. The classifier utilized was a radial basis function
kernel-based SVM classifier. The F-SCATNET with SVM
achieved a recognition rate of 74.59% on the Emo-DB,
51.81% on the RAVDESS dataset, and 61.55% on the
IEMOCAP dataset.

Tuncer et al. [7] presented a novel approach for speech
emotion recognition. Themethod started with the transforma-
tion of speech signals through a Tunable Q wavelet transform
(TQWT) together with a twine shuffle pattern feature
generator (twine-shuf-pat) to extract pertinent features. Sub-
sequently, the features underwent a feature selection process
via iterative neighborhood component analysis (INCA),
concluding in a refined set of features. These final features
were then passed to an SVM classifier for model training. The
proposed model attained an impressive accuracy of 90.09%
on the Emo-DB and 87.42% on the RAVDESS dataset.

Thirumuru et al. [8] introduced a novel representation,
known as the single frequency filtered-nonlinear energy cep-
stral coefficients (SFF-NEC) for speech emotion recognition.
This representation is constructed by employing the nonlinear
energy operator in conjunction with single frequency filtering
on distinct frequency sub-bands. The SFF-NEC was then
transformed into an identity vector (i-vector), making it
a compact and low-dimensional representation. As for the
classification, three models were evaluated: the Gaussian
probabilistic linear discriminant analysis (G-PLDA), SVM,
and Random Forest. The i-vector integrated with the SVM
classifier achieved accuracies of 85.75% and 65.78% on the
Emo-DB and IEMOCAP dataset, respectively.

A hybrid Long Short-Term Memory (LSTM) combined
with a Transformer Encoder for speech emotion recognition
was proposed by Andayani et al. [9]. The proposed model
used the MFCCs extracted from speech signals as the
features. As for the enhanced LSTM, the researchers replaced
the single attention layer within the LSTM architecture
with the multi-head attention mechanism inherent to the
Transformer encoder. This adaptation improved the capa-
bility of the model to learn intricate patterns and features
from the input data. The method achieved an accuracy of
85.55% on the Emo-DB and 75.62% on the RAVDESS
dataset.

In another work, Hason Rudd et al. [10] first converted the
speech signals into themel spectrogram representation. Then,
they applied a VGG16 model to extract feature maps with
various dimensions and signal sampling ratios. The feature
maps were subsequently fed into a multi-layer perceptron
(MLP) architecture for classification. The proposed method
achieved an accuracy of 92.79% with a bandwidth of 128 Hz,
a frame rate of 128 fps, and a sampling rate of 88200 KHz on
the Emo-DB.

Kakuba and Han [11] presented a multi-head attention
machine with residual Bi-LSTM called (ResBLSTMA). The
work leveraged spectral and voice representations. Spectral
representations encompassed crucial features like MFCCs
and chromagrams, while voice representations involved mel
spectrograms. These features were then passed as feature
vectors into the ResBLSTMA model, which effectively
leveraged its multi-head attention mechanism and residual
bidirectional long short-termmemory for classification tasks.
The proposed ResBLSTMA method achieved an accuracy
of 90.57% on the Emo-DB and 84.50% on the RAVDESS
dataset.

In the study by Singh et al. [12], the researchers inves-
tigated time-frequency-based features for speech emotion
recognition. Three specific features were explored: mel-
frequency spectral coefficients (MFSC), constant-Q trans-
form (CQT), and continuous wavelet transform (CWT).
Classification was performed by a 2D-CNN with LSTM
architecture, referred to as Conv2D-LSTM. The proposed
Conv2D-LSTM with CQT features demonstrated accuracies
of 65.69%, 46.49%, and 54.83% on the Emo-DB, RAVDESS,
and IEMOCAP datasets, respectively.

Vu et al. [13] applied principal component analysis (PCA)
to pitch-related features for speech emotion recognition.
PCA was used to reduce the dimensionality of feature
vectors, mitigating the learning complexity of the model.
The CQT spectrogram served as the input in this work. For
classification, an MLP with two dense neural network layers
activated by the ReLU function, followed by softmax layers,
was employed. The proposed MLP with CQT, excluding
PCA, achieved the highest accuracy of 66.67% on the
RAVDESS dataset and 57.09% on IEMOCAP.

Sekkate et al. [14] introduced a statistical-based technique
for speech emotion recognition. The researchers first con-
verted the speech signals into MFCC where the mean values
of MFCC were calculated as features. Subsequently, the
MFCC features were subjected to a statistical distribution
process to select pertinent features. The selected features
were then employed as input for a combination of three CNNs
for model training. Each CNN contains three 1D-CNN layers,
followed by the max pooling and batch normalization layers.
The decision scores from each classifier will be merged to
determine the final class label. The method was evaluated on
the RAVDESS dataset and achieved an accuracy of 87.08%.

Mishra et al. [15] performed a comparative analysis
of different features and classifiers in speech emotion
recognition. Their study extracted two features: MFCC and
MFMC. These features were then employed for training
and testing of deep neural networks (DNN) and CNN
classifiers. The experimental results demonstrated that the
MFMC features with DNN obtained the highest accuracy
of 84.72% on the Emo-DB and 76.72% on the RAVDESS
dataset.

Rehman et al. [16] employed the syllable-level feature
extraction for speech emotion recognition. The speech signals
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were first transformed into mel-spectrograms, followed
by segmentation into distinct syllable-level components.
The syllable-level components were then encoded as the
statistical features. A SVMwas utilized in classification. The
proposed method yielded promising performance achieving
an accuracy of 62.90% when evaluated on the IEMOCAP
dataset.

Tu et al. [17] performed speech emotion recognition
using feature fusion and data augmentation techniques.
Initially, the speech signals were augmented by randomly
combining segments from various speech signals. The
resulting augmented speech signals were then transformed
into log-mel spectrograms and high-level statistical features.
Subsequently, a LightGBM classifier was employed for
global feature selection of the statistical features. A deep
learning model incorporating the multi-head attention mech-
anism into the CNN and LSTM, named MHA-CRNN, was
proposed. This MHA-CRNN was used to perform feature
fusion and classification of the log-mel spectrogram features
and the selected statistical features. The proposed method
achieved an accuracy of 66.44% on the IEMOCAP dataset.

Feature fusion was also employed in Liu et al. [18],
integrating acoustic and pre-trained features. The speech
signals were segmented and encoded as acoustis features
using the OpenSmile [19] library. The study also incorporated
various pre-trained features, such as self-supervised learning
of Transformer encoder representation (Tera) [20], A Lite
BERT for self-supervised learning of audio representation
(Audio ALBERT) [21], non-autoregressive predictive coding
for learning speech representations (NPC) [22], unsuper-
vised pre-training representations (Wav2Vec) [23], and
self-supervised learning of discrete speech representations
(Vq-wav2vec) [24]. The authors proposed a Transformer-
inspired model with attention mechanism, along with two
1D convolutional layers, two Transformer modules, and
two BiLSTM modules, forming the innovative Dual-TBNet
architecture. The Dual-TBNet achieved accuracies of 84.10%
on the Emo-DB and 64.80% on the IEMOCAP dataset.

Ong et al. [25] engaged a lightweight gradient boosting
machine (LightGBM) approach for speech emotion recogni-
tion, called Emo-LGBM. The researchers first applied pitch
shifting and time stretching data augmentation techniques to
the input speech signals. Subsequently, both time and fre-
quency domain features were extracted from the augmented
signals as the input to the LightGBM. The proposed Emo-
LGBM approach achieved an accuracy of 84.91% on the
Emo-DB, 67.72% on the RAVDESS dataset, and 62.94% on
the IEMOCAP dataset.

Singh et al. [26] introduced constant-Q based modulation
spectral features (CQT-MSF) by combining CQT with
modulation spectral features (MSF). The author utilized
CNN to extract feature embeddings from CQT-MSF and
employed SVM to classify the embeddings into emotions.
The results highlight that the proposedDNN-SVMwith CQT-
MSF outperforms a single mel-scale-based spectrogram,

achieving 79.86% accuracy on the Emo-DB and 52.24% on
the RAVDESS dataset. Table 1 presents the summary of
related works.

III. SPEECH EMOTION RECOGNITION WITH MULTIAXIS
AND MULTISCALE VISION TRANSFORMERS
FUSION NETWORK
This paper presents a novel dual-path architecture for speech
emotion recognition. In the first path, speech signals are
transformed into CQT spectrograms, which are subsequently
processed by the MaxViT model for feature extraction and
representation learning. Simultaneously, the second path
encodes speech signals into Mel-STFT spectrograms, which
are then subjected to feature extraction using the MViTv2
model. The feature maps generated by MaxViT and MViTv2
are concatenated to create a comprehensive representation
of the input data. This combined feature representation is
then subjected to classification using the MLP algorithm.
The dual-path architecture, which incorporates both CQT and
Mel-STFT spectrograms, leverages the strengths ofMultiaxis
and Multiscale Vision Transformers, resulting in improved
performance for speech emotion recognition.Figure 1 illus-
trates the framework of the proposed MaxMViT-MLP.

A. CONSTANT-Q TRANSFORM SPECTROGRAM (CQT)
The CQT spectrogram is a time-frequency representation
used in audio signal processing. It is designed to closely
mimic the frequency resolution of the human auditory
system. This makes CQT particularly well-suited for speech
emotion recognition, as it aligns with how the ears perceive
different frequencies. The process of creating a CQT
spectrogram involves convolving the audio signal with a set
of complex exponential functions. These functions are evenly
distributed in logarithmic frequency steps while maintaining
a consistent Q-factor (center frequency to bandwidth ratio)
across all bins. This results in a time-frequency representation
where each frequency bin corresponds to a specific Q value
and center frequency. The CQT spectrogram captures the
variations in the frequency content of the audio signal over
time, providing valuable insights into its tonal and harmonic
components.

Mathematically, the CQT at a specific frequency, f and
time, t can be expressed as:

CQT (f , t) =

N−1∑
n=0

x(n) · w∗(
n− t
s

)e2π ifn (1)

where x(n) is the input signal, w represents the wavelet,
s represents the scale factor that controls the width of
the wavelet, and i is the imaginary unit. By varying the
frequency, f , and time, t , the CQT generates a time-
frequency representation, where each entry corresponds to
the energy of the signal at a particular frequency and
time. This representation encapsulates both fine and broad
frequency details, making it highly suitable for speech
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TABLE 1. Summary of related works.

FIGURE 1. System flow of the proposed MaxMViT-MLP model.

emotion recognition. An example of the CQT spectrogram
is depicted in Figure 2.

B. MULTI-AXIS VISION TRANSFORMER (MAXVIT)
TheCQT spectrograms serve as the input data for theMaxViT
model [27] for further representation learning. The MaxViT
model is designed in a hierarchical architecture, as depicted
in Figure 3. The CQT spectrograms are downsampled in the
stem stage (S0), which is composed of two convolutional
layers with a 3 × 3 kernel size (Conv3 × 3). The body of

MaxViT comprises four stages (S1-S4), wherein each stage
comprises a MaxViT block. EachMaxViT block consists of a
Mobile Inverted Residual Bottleneck Convolution (MBConv)
module, a block attention module, and a grid attention
module.

The MBConv module begins with a 1 × 1 convolution.
This initial layer is responsible for dimensionality expansion.
It takes the input feature maps and projects them into a
higher-dimensional space, typically with an expansion factor
of 4. Following the expansion, the module applies Depthwise

VOLUME 12, 2024 18241



K. L. Ong et al.: MaxMViT-MLP: Multiaxis and MViT Fusion Network for Speech Emotion Recognition

FIGURE 2. CQT spectrogram for the utterance ‘Kids are talking by the
door’ from the RAVDESS dataset.

Convolution with a 3 × 3 kernel. Depthwise convolution
operates on each input channel separately and captures
spatial features across the input. Next, the module includes a
Squeeze and Excitation (SE) mechanism. The SEmechanism
is designed to adaptively recalibrate the importance of each
channel in the feature maps. It consists of two steps: a global
average pooling operation, which computes channel-wise
statistics to capture the most informative features, and a
set of fully connected layers. These fully connected layers
learn channel-wise scaling factors, allowing the network to
emphasize essential features while suppressing less relevant
ones. Finally, the module concludes with another 1 ×

1 convolution. This layer reduces the dimensionality back
to the original channel dimension, achieving a shrink factor
of 0.25. This reduction helps in managing computational
complexity and memory usage while preserving the essential
features learned throughout the module’s operations.

The block attention module operates by first partitioning
the input feature map into distinct windows. Specifically,
given an input feature map X with dimensions H × W × C ,
where H represents height, W represents width, and C rep-
resents the number of channels, the block attention reshapes
this input into a tensor with dimensions of (HP ×

W
P ,P×P,C),

where P × P denotes the dimension of each block. This
transformation results in the creation of non-overlapping
windows within the feature map, each of which is char-
acterized by dimensions of P × P. Within each of these
windows, self-attention mechanisms are applied to capture
interactions among the elements, fostering contextual under-
standing. Subsequently, a feedforward network (FFN) is
employed to further process the information obtained from
the block-based self-attention step. This FFN introduces
non-linear transformations to the representations within each
window, enabling the model to capture intricate patterns and
relationships.

On the other hand, the grid attention module attends
globally to pixels through a sparse, evenly distributed grid
spanning the entire 2D space. The grid attention mechanism
is applied by reshaping the tensor into dimensions of

(G × G, HG ×
W
G ,C), effectively gridding the feature maps

into G × G partitions. In this work, fixed window and grid
sizes (P = G = 7) are utilized. The output of the grid-
based self-attention step is also passed into an FFN for further
representation learning.

It is worth noting that the pre-normalized relative self-
attention mechanism [28] is applied in the block attention
and grid attention modules. The pre-normalized relative
self-attention is a variant of self-attention that combines
absolute positional encodings (standard positional encodings
used in the Transformer) and learned relative positional biases
before softmax normalization. The learned biases allow the
model to attend differently to tokens that are at different
relative distances from each other within the sequence. The
pre-normalized relative self-attention is defined as:

yprei =

∑
j∈G

exp
(
x⊤
i xj + wi−j

)∑
k∈G exp

(
x⊤
i xk + wi−k

)xj (2)

where for each token at position i, it computes a weighted
sum of the embeddings of all other tokens in the global
spatial space G based on their pairwise relationships and
learned positional biases wi−j. This mechanism captures how
different tokens interact and contribute to the representation
of the token at position i in the context of the entire sequence.
Residual connections are also integrated into the MaxViT

blocks. These residual connections allow the module to learn
residual representations, which are essentially the differences
between the original input and the output of the self-attention
and feedforward operations. By adding these residuals back
to the output, the model can effectively fine-tune the learned
representations and mitigate the challenges associated with
vanishing gradients during training.

C. MEL SPECTROGRAM USING SHORT TIME FOURIER
TRANSFORM (MEL-STFT)
The Mel-STFT is another technique used in audio signal
processing. It provides a visual representation of how the
frequency content of a signal changes over time, enabling
the analysis of the spectral characteristics of an audio signal.
To generate a Mel-STFT, a sequence of steps is undertaken.
Firstly, the audio signal is divided into overlapping frames of
fixed duration. For each frame, the Fast Fourier Transform
(FFT) is applied, which transforms the signal from the time
domain to the frequency domain, providing a snapshot of
its spectral components at that moment. The magnitude of
the FFT output represents the energy present in different
frequency bands.

To align the frequency representation, the linear frequency
values obtained from the FFT are converted into theMel scale
using the formula:

M (f ) = 2595 × log10(1 +
f

700
) (3)

where M (f ) is the frequency in Mel, and f is the linear
frequency in Hertz. This transformation accounts for the
nonlinear way in perceiving frequencies. Following the Mel
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FIGURE 3. Model architecture of MaxViT.

scale conversion, a set of Mel filterbanks is applied to the
transformed frequency values. Each filterbank is shaped as
a triangle on the Mel scale and is used to capture the
energy in a specific frequency range. The filterbank outputs
are computed by multiplying the Mel spectrum with each
triangular filterbank function. The logarithm of the energy
values from the filterbanks is then calculated to approximate
the logarithmic perception of loudness. This yields the
Mel Spectrogram, a time-frequency representation where
each pixel corresponds to the energy content of a specific
frequency band within a given time frame. A frame length
of 4096 samples and a hop size of 256 samples are applied
in this work. An example of the Mel-STFT spectrogram is
illustrated in Figure 4.

FIGURE 4. Mel-STFT spectrogram for the utterance ‘Kids are talking by
the door’ from the RAVDESS dataset.

D. IMPROVED MULTISCALE VISION TRANSFORMERS
(MVITV2)
The Mel-STFT spectrograms are channeled into the
MViTv2 for representation learning. In contrast to Vision

Transformers [29] characterized by a fixed channel capacity
and spatial resolution across the network, Multiscale Vision
Transformers (MViT) [30] introduce multiple stages with
different channel-resolution scales. During the transition
from input to output stages, MViT gradually expands the
channel width while reducing resolution. Consequently, this
construct forms a multiscale pyramid of feature maps within
the transformer network. The initial layers can operate at high
spatial resolution, modeling low-level visual information due
to the lighter channel capacity. Conversely, deeper layers can
focus on spatially coarse yet complex high-level features,
effectively modeling visual semantics. Figure 5 depicts the
architecture of MViTv2.

FIGURE 5. Model architecture of MViTv2.

To facilitate downsampling within a transformer block,
MViT introduces Pooling Attention, a mechanism incorpo-
rating linear projections and pooling operators for query (Q),
key (K ), and value (V ) tensors. The operations is defined as:

Q = PQ(XWQ)

K = PK (XWK )

V = PV (XWV )

where X ∈ RL×D represents the input sequence with a
sequence length of L and channel width of D, and WQ,
WK , and WV are the linear projections for Q, K , and V
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tensors, respectively. Additionally, PQ, PK , and PV denote
the pooling operators for Q, K , and V tensors. The attention
in MViT is computed by:

Z1 := Attn1(Q,K ,V ) = Softmax
(
QK⊤/

√
D

)
V (4)

The Improved Multiscale Vision Transformers (MViTv2)
[31] proposes some enhancements over MViT. Firstly,
MViT relies solely on ‘‘absolute’’ positional embeddings
to convey location information, which is less robust to
shift-invariance. To rectify this, MViTv2 introduces relative
positional embeddings that capture the relative location
between input tokens. The computation of relative positional
embeddings Rp(i),p(j) ∈ Rd of element i and j is decomposed
as follows:

Rp(i),p(j) = Rhh(i),h(j) + Rww(i),w(j) (5)

where p(i) and p(j) are the spatial position of element i and j,
Rh and Rw are the positional embeddings along the height and
width axes, and h(i), h(j), w(i), and w(j) denote the vertical
and horizontal positions of tokens i and j, respectively.
These positional embeddings are then integrated into the
self-attention module as follows:

Attn2(Q,K ,V ) = Softmax
(
QK⊤

+ E (rel)
√
d

)
V

where E (rel)
ij = Qi · Rp(i),p(j)

Secondly, MViTv2 employs a residual pooling connection
with the pooled Q tensor, enhancing information flow and
reducing potential information loss during pooling attention.
This technique maintains low-complexity attention compu-
tation with large strides in key (K ) and value (V ) pooling,
thus improving overall model efficiency. The residual pooling
connection can be formulated as:

Z2 := Attn2(Q,K ,V ) + Q (6)

The improved pooling attention is illustrated in Figure 6.
The MViTv2 model integrates features from multiple scales,
enabling the model to capture information at varying granu-
larity levels. Additionally, MViTv2 utilizes the decomposed
relative position embedding and residual pooling connection
to preserve essential information at a lower computational
cost.

In addition, the channel dimension expansion, previously
located within the last MLP block ofMViT’s preceding stage,
has been replaced with the attention computation embedded
in the initial transformer block of each stage. This adjustment
maintains a comparable level of accuracy while significantly
reducing the model’s parameter count and its floating point
operations per second (FLOPs). Subsequently, the output
tokens from the last transformer block are averaged, and the
final classification head is employed, replacing the default
class token in MViT. These modifications have led to a
shortened training time and a reduction in computational
resource demands.

1) MULTILAYER PERCEPTRON (MLP)
The feature maps of MaxViT and MViTv2 are concatenated
and directed into the MLP for representation learning
and classification. The MLP comprises a series of key
components, including a dense layer, a batch normalization
layer, a dropout layer, and a classification layer.

The dense layer plays a central role by applying a linear
transformation to the concatenated feature maps, enabling the
capture of intricate patterns within the data. Simultaneously,
the batch normalization layer normalizes the activations
within mini-batches, enhancing training stability, expediting
convergence, and mitigating overfitting. To prevent overfit-
ting and encourage robust feature learning, the dropout layer
selectively deactivates a fraction of neurons during training.

In the final stage, the classification layer computes
the probabilities associated with speech emotion classes
through the softmax function. This transformation converts
raw scores into a probability distribution, resulting in the
ultimate prediction. The dense layer in this study comprises
512 hidden units, and a dropout rate of 0.2 is employed to
achieve the desired balance between feature learning and
regularization.

E. DATASETS
The proposed MaxMViT-MLP was evaluated on three pub-
licly available speech emotion datasets: the Berlin Database
of Emotional Speech (Emo-DB), the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS),
and the Interactive Emotional Dyadic Motion Capture
(IEMOCAP).

The Emo-DB [27] comprises 535 audio samples collected
from ten proficient German speakers, including five male
and five female actors. These recordings encompass seven
distinct emotions: anger, boredom, neutrality, happiness,
anxiety, sadness, and disgust.

The RAVDESS [32] dataset consists of a diverse collection
of 1440 audio samples recorded in English. The dataset
showcases the performances of 24 professional actors,
with 12 male and 12 female speakers. The samples in
the RAVDESS dataset are categorized into eight classes:
neutrality, calmness, happiness, sadness, anger, fear, disgust,
and surprise.

The IEMOCAP [33] comprises 5507 English-language
audio samples recorded by ten professional actors, with
five male and five female speakers. There are four emotion
classes commonly used by existing works, namely neutrality,
happiness, anger, and sadness.

IV. EXPERIMENTS AND ANALYSIS
In the experiments, the datasets were divided into an 80%
training set and a 20% testing set to facilitate a systematic
comparison with existing works. To ensure uniformity, the
data samples were resampled to a frequency of 44.1kHz.
Subsequently, the samples underwent transformation into
both CQT and Mel-STFT spectrograms, which were then
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FIGURE 6. Pooling attention of MViT (left) and residual pooling attention of MViTv2 (right).

resized to 244 × 244 pixels in compliance with the input size
requirements of MaxViT and MViTv2.

A. HYPERPARAMETER TUNING
Hyperparameter tuning was conducted to determine the
optimal settings for the proposed MaxMViT-MLP. The
process involved tuning five hyperparameters: the optimizer
(O1) and learning rate (R1) for MaxViT, the optimizer (O2)
and learning rate (R2) for MViTv2, and the number of hidden
nodes in the MLP (N ). The grid search mechanism was
employed, where the experiments encompassed a range of
values for each hyperparameter, allowing for a comprehen-
sive examination of the settings. Table 2 provides a summary
of the hyperparameter settings for MaxMViT-MLP.

TABLE 2. Summary of hyperparameter settings for MaxMViT-MLP.

The results in Table 3 showcase the performance of
different optimizers on MaxViT, O1. Three optimizers,
namely Adam, Rectified Adam optimizer (RAdam), and
Quasi-Hyperbolic Adam (QHAdam), were evaluated on the
datasets. The Adam optimizer demonstrated superior perfor-
mance with accuracy rates of 95.28%, 89.12%, and 68.39%
for Emo-DB, RAVDESS, and IEMOCAP, respectively. Adam
is known for its adaptive learning rate mechanism, combining

the benefits of both momentum and root mean square
propagation. This adaptability allows Adam to efficiently
navigate complex optimization landscapes, contributing to
its success in enhancing the MaxViT model’s accuracy.
RAdam incorporates a rectified term in its adaptive learning
rate, enhancing robustness during training. Although slightly
outperformed by Adam, RAdam’s results underscore its
effectiveness in optimizing MaxViT. QHAdam introduces
quasi-hyperbolic terms to Adam’s optimization strategy,
striking a balance between stability and adaptability. Despite
a lower accuracy than Adam, QHAdam’s performance
highlights its relevance as a competitive optimizer for the
MaxViT model.

TABLE 3. Experimental results of different optimizers of MaxViT, O1 [R1 =
0.02, O2 = RAdam, R2 = 0.02, N = 512].

The results displayed in Table 4 provide insights into the
impact of different learning rates on the performance of
MaxViT. A learning rate of 0.02 emerges as the optimal
choice, yielding the highest accuracy rates for the datasets.
This finding suggests that the selected learning rate strikes
a balance between the model’s convergence speed and
stability during training. A learning rate that is too low may
hinder convergence, while one that is too high can lead to
overshooting and instability. The superior performance at
the 0.02 learning rate indicates its effectiveness in guiding
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the optimization process for MaxViT under the specified
hyperparameter configuration. Comparatively, a learning
rate of 0.01 produces slightly lower accuracy across the
three datasets, emphasizing the sensitivity of the model to
variations in the learning rate. Meanwhile, a learning rate of
0.03 exhibits a similar trend, suggesting that higher learning
rates may lead to suboptimal convergence.

TABLE 4. Experimental results of different learning rates of MaxViT, R1
[O1 = Adam, O2 = RAdam, R2 = 0.02, N = 512].

Table 5 presents experimental results showcasing the
impact of different optimizers on the performance of
MaxMViT-MLP. The incorporation of RAdam in MViTv2
achieves the highest accuracy rates on the datasets, demon-
strating superior performance compared to both Adam and
QHAdam. RAdam enhances the standard Adam optimizer by
introducing a rectification term in its adaptive learning rate
mechanism. This modification contributes to the optimizer’s
stability during training, preventing potential convergence
issues and improving overall optimization efficiency.

TABLE 5. Experimental results of different optimizers of MViTv2, O2
[O1 = Adam, R1 = 0.02, R2 = 0.02, N = 512].

Table 6 displays experimental results elucidating the
influence of different learning rates on the performance of
MViTv2. A learning rate of 0.02 emerges as themost effective
choice, yielding the highest accuracy rates across the datasets.
This finding suggests that the specified learning rate strikes
a delicate balance, allowing for a harmonious convergence of
the optimization process.

TABLE 6. Experimental results of different learning rates of MViTv2, R2
[O1 = Adam, R1 = 0.02, O2 = RAdam, N = 512].

The experimental findings in Table 7 highlight the critical
role of selecting an optimal number of hidden nodes of

MLP. Among the tested configurations, the number of
hidden nodes set at 512 emerges as the optimal choice.
This finding underscores the impact of the hidden layer’s
capacity on the model’s ability to capture complex patterns
within the data. A hidden layer with 512 nodes strikes
an effective balance, providing sufficient representational
capacity without introducing excessive complexity that might
lead to overfitting.

TABLE 7. Experimental results of different hidden nodes of MLP, N
[O1 = Adam, R1 = 0.02, O2 = RAdam, R2 = 0.02].

B. ABLATION STUDY
The ablation study presented in Table 8 systematically
explores the impact of different configurations on the per-
formance of the proposed MaxMViT-MLP model across the
Emo-DB, RAVDESS, and IEMOCAP datasets. Two spectro-
gram representations, CQT and Mel-STFT, are individually
combined with two transformer architectures, MaxViT and
MViTv2, to assess their standalone effectiveness.

Firstly, employing CQT with MaxViT yields an accu-
racy of 85.85% on Emo-DB, 77.54% on RAVDESS, and
62.49% on IEMOCAP. Similarly, Mel-STFT with MViTv2
produces competitive results with accuracy rates of 88.68%,
77.89%, and 62.85% across the three datasets. These specific
combinations are chosen based on their initial promise and
individual strengths.

Furthermore, combining both CQT + MaxViT and Mel-
STFT + MViTv2 leads to a notable improvement, achieving
accuracy rates of 91.51%, 84.91%, and 67.85%. This
amalgamation leverages the complementary features of CQT
and Mel-STFT, enhancing the model’s ability to capture
diverse spectral characteristics present in speech signals.

Finally, the addition of the MLP layer to the amalgamated
configuration (CQT + MaxViT + Mel-STFT + MViTv2 +

MLP) results in the best performance, reaching accuracy rates
of 95.28%, 89.12%, and 68.39% across the three datasets.
The MLP introduces non-linearity and further refines the
model’s representation capabilities, demonstrating its crucial
role in achieving optimal performance in the context of
speech emotion recognition. The stepwise progression in
accuracy highlights the cumulative improvement obtained
by incorporating diverse components, underscoring the
effectiveness of the proposed MaxMViT-MLP model.

C. COMPARISON RESULTS WITH EXISTING METHODS
Table 9 presents the performance of various methods for
speech emotion recognition on the Emo-DB. Traditional
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TABLE 8. Ablation study across the Emo-DB, RAVDESS, and IEMOCAP
datasets.

methods often rely on handcrafted feature extraction and
machine learning models. For instance, MFCC with SVM
attains a modest accuracy of 58.39%, indicating the lim-
itations of traditional feature-based methods in this task.
i-vector techniques, such as i-vector with SVM (85.75%)
and i-vector with PLDA (82.84%), display more competitive
results, highlighting the importance of feature engineering
in achieving accurate emotion recognition. However, these
traditional methods are outperformed by the deep learning
models in this evaluation.

Deep learning methods, including models like CNN-
VGG16 and Hybrid LSTM, demonstrate their effectiveness
in capturing emotional cues from audio data. CNN-VGG16
achieves an impressive accuracy of 92.79%, emphasizing
the power of deep neural networks in extracting relevant
emotional features. Moreover, the proposed MaxMViT-MLP
model emerges as the top performer, setting a new benchmark
with an accuracy of 95.28%.

Moving to the RAVDESS dataset, a comparison of results
with existing methods is presented in Table 10. Traditional
methods, as evidenced by the results, yield a mixed bag
of outcomes. MFCC with SVM delivers an accuracy of
36.74%, underscoring the complexities encountered when
applying traditional feature-based approaches to this dataset.
Similarly, F-ScatNet with SVM (51.81%) and ScatNet with
SVM (50.00%) produce suboptimal results, underscoring the
limitations of classical signal processing techniques when
dealing with RAVDESS data.

In contrast, deep learning models exhibit a more robust
performance in addressing the intricacies of the RAVDESS
dataset. Models like ResBLSTMA (84.50%) and ResBLSTM
(85.41%) showcase strong performance, highlighting the
effectiveness of recurrent neural networks in this specific
context. Furthermore, the CNN model (87.08%) and MFMC
with DNN (76.72%) yield competitive results, emphasizing
the adaptability of deep learning architectures in the domain
of emotion recognition when dealing with the RAVDESS
dataset.

The proposed MaxMViT-MLP method maintains its
exceptional performance, achieving an accuracy of 89.12%
on the RAVDESS dataset. This reinforces the model’s

TABLE 9. Comparison results on the Emo-DB.

capacity to generalize effectively across different datasets and
underscores its efficacy as a versatile solution for emotion
recognition, regardless of the distinctive characteristics of the
dataset at hand.

The performance of various emotion recognition methods
on the IEMOCAP dataset is presented in Table 11. In the
context of the IEMOCAP dataset, traditional approaches,
such as MFCC with SVM (55.54%), ScatNet with SVM
(60.41%), F-ScatNet with SVM (61.55%), Emo-LGBM
(62.94%), i-vector with RF (63.57%), i-vector with PLDA
(64.52%), and i-vector with SVM (65.78%), exhibit moderate
accuracy. These results highlight the challenges of utilizing
traditional feature-based approaches for emotion recognition
on the IEMOCAP dataset, which contains complex and
dynamic emotional expressions. Likewise, the deep learning
models, such as Fusion features with MHA-CRNN (66.44%)
and Dual-TBNet (64.80%), demonstrate moderate accuracy.
Fusion features with MHA-CRNN method achieves the
highest accuracy among the existing methods, emphasizing
the strength of combining multiple modalities and context-
awaremodeling. The proposedMaxMViT-MLPmodel stands
out as the top-performing method, setting a new benchmark
with an accuracy of 68.39%.
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TABLE 10. Comparison results on the RAVDESS dataset.

TABLE 11. Comparison results on the IEMOCAP dataset.

The proposed MaxMViT-MLP model harnesses the
strengths of two audio feature representation techniques:
CQT and Mel-STFT. CQT excels in capturing tonal charac-
teristics through its logarithmic frequency binning, closely
mimicking human perception of pitch and timbre. The
constant-Q resolution of CQT provides detailed information
in the low-frequency range, making it well-suited for tasks
that demand harmonic analysis. In contrast, Mel-STFT
employs a linear frequency scale, enabling the capture of
broader spectral features that align with human auditory
interpretation. This approach yields rich time-frequency rep-
resentations, particularly valuable in tasks involving transient

events, such as speech recognition and environmental sound
classification. By combining CQT and Mel-STFT, the
proposed model assembles a comprehensive set of features
for audio analysis, capitalizing on their complementary
abilities to capture diverse aspects of audio signals.

As for the feature extraction, the MaxMViT-MLP model
employs two Vision Transformers: MaxViT and MViTv2.
The hierarchical architecture of MaxViT effectively captures
multiscale information, utilizing advanced features like the
block attention module to foster contextual understand-
ing, making it proficient in recognizing intricate audio
patterns and relationships within CQT spectrograms. In
contrast, MViTv2 provides a range of multiscale features
with different channel-resolution scales. Its incorporation of
relative positional embeddings enhances its understanding
of spatial relationships, rendering it a suitable choice for
the analysis of Mel-STFT spectrograms. The subsequent
Multilayer Perceptron (MLP) further enhances the model’s
representation learning capabilities.

Figure 7 presents the confusion matrix for the MaxMViT-
MLP method applied to the Emo-DB dataset. Notably,
the anger, disgust, and neutral classes achieve impeccable
classification accuracy, while occasional misclassifications
occur between the boredom and happiness classes. Figure 8
displays the confusionmatrix for theMaxMViT-MLPmethod
on the RAVDESS dataset. In RAVDESS, high misclassi-
fication rates are evident in the disgust, sadness, and fear
classes. These challenges arise from the intra-class acoustic
similarities and variability in speech emotion expressions
among different speakers.

FIGURE 7. Confusion matrix of the Emo-DB.

For the IEMOCAP dataset, the confusion matrix in
Figure 9 introduces additional complexities due to the
presence of dual speakers in conversations. The analysis of
the confusion matrix reveals that the happiness and sadness
classes exhibit the highest misclassification rates. This may
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FIGURE 8. Confusion matrix of the RAVDESS dataset.

be attributed to instances where individuals express multiple
emotions simultaneously or swiftly transition between emo-
tions, making it challenging for the model to assign a single,
accurate label.

FIGURE 9. Confusion matrix of the IEMOCAP dataset.

V. CONCLUSION
This paper introduces a dual-path speech emotion recognition
model, referred to as the ‘‘MaxMViT-MLP’’, capitalizing
on two potent audio feature representations, CQT and Mel-
STFT. CQT’s proficiency in capturing tonal characteristics
and its suitability for harmonic analysis complements Mel-
STFT’s ability to record broader spectral features, ideal for
transient event analysis. The fusion of these representations
results in a versatile feature set, contributing significantly to
the model’s performance.

The adoption of MaxViT and MViTv2, further enhances
the model’s capacity to process CQT and Mel-STFT spectro-
grams. MaxViT effectively captures multiscale information
and intricate patterns within audio data, while MViTv2
excels in handling multiscale features with different channel-
resolution scales. This collaborative approach between the
models plays a pivotal role in the model’s robustness
and adaptability. The experimental results across three
datasets: Emo-DB, RAVDESS, and IEMOCAP, affirm the
outstanding performance of the MaxMViT-MLP model,
achieving accuracy rates of 95.28% on Emo-DB, 89.12%
on RAVDESS, and 68.39% on IEMOCAP. The harmonious
blend of CQT and Mel-STFT, coupled with the strengths
of MaxViT and MViTv2, underpins the model’s remarkable
results.

Looking ahead, future work could explore alternative
transformer-based models that might offer valuable insights
to enhance performance in speech emotion recognition.
Continuous efforts in refining and extending the proposed
MaxMViT-MLP model will contribute to advancing the field
of speech emotion recognition and its broader applications.
Additionally, investigating the effectiveness of the proposed
model in real-world scenarios and diverse cultural contexts
would contribute to its practical applicability.

REFERENCES
[1] X.-C. Wen, K.-H. Liu, W.-M. Zhang, and K. Jiang, ‘‘The application of

capsule neural network based CNN for speech emotion recognition,’’ in
Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 9356–9362.

[2] A. Mujaddidurrahman, F. Ernawan, A. Wibowo, E. A. Sarwoko,
A. Sugiharto, and M. D. R. Wahyudi, ‘‘Speech emotion recognition using
2D-CNNwith data augmentation,’’ in Proc. Int. Conf. Softw. Eng. Comput.
Syst. 4th Int. Conf. Comput. Sci. Inf. Manage. (ICSECS-ICOCSIM),
Aug. 2021, pp. 685–689.

[3] J. He and L. Ren, ‘‘Speech emotion recognition using XGBoost and CNN
BLSTM with attention,’’ in Proc. IEEE SmartWorld, Ubiquitous Intell.
Comput., Adv. Trusted Comput., Scalable Comput. Commun., Internet
People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI),
Oct. 2021, pp. 154–159.

[4] J. Ancilin and A. Milton, ‘‘Improved speech emotion recognition with
mel frequency magnitude coefficient,’’ Appl. Acoust., vol. 179, Aug. 2021,
Art. no. 108046.

[5] M. H. Pham, F. M. Noori, and J. Torresen, ‘‘Emotion recognition using
speech data with convolutional neural network,’’ in Proc. IEEE 2nd Int.
Conf. Signal, Control Commun. (SCC), Dec. 2021, pp. 182–187.

[6] P. Singh, G. Saha, andM. Sahidullah, ‘‘Deep scattering network for speech
emotion recognition,’’ 2021, arXiv:2105.04806.

[7] T. Tuncer, S. Dogan, and U. R. Acharya, ‘‘Automated accurate speech
emotion recognition system using twine shuffle pattern and iterative
neighborhood component analysis techniques,’’ Knowl.-Based Syst.,
vol. 211, Jan. 2021, Art. no. 106547.

[8] R. Thirumuru, K. Gurugubelli, and A. K. Vuppala, ‘‘Novel feature
representation using single frequency filtering and nonlinear energy
operator for speech emotion recognition,’’Digit. Signal Process., vol. 120,
Jan. 2022, Art. no. 103293.

[9] F. Andayani, L. B. Theng, M. T. Tsun, and C. Chua, ‘‘Hybrid LSTM-
transformer model for emotion recognition from speech audio files,’’ IEEE
Access, vol. 10, pp. 36018–36027, 2022.

[10] D. H. Rudd, H. Huo, and G. Xu, ‘‘Leveraged mel spectrograms using
harmonic and percussive components in speech emotion recognition,’’
in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining. Cham,
Switzerland: Springer, 2022, pp. 392–404.

[11] S. Kakuba and D. S. Han, ‘‘Residual bidirectional LSTM with multi-head
attention for speech emotion recognition,’’ in Proc. Korea Commun. Assoc.
Summer Gen. Acad. Conf., 2022, pp. 1419–1421.

VOLUME 12, 2024 18249



K. L. Ong et al.: MaxMViT-MLP: Multiaxis and MViT Fusion Network for Speech Emotion Recognition

[12] P. Singh, S. Waldekar, M. Sahidullah, and G. Saha, ‘‘Analysis of constant-
Q filterbank based representations for speech emotion recognition,’’ Digit.
Signal Process., vol. 130, Oct. 2022, Art. no. 103712.

[13] L. Vu, R. C.-W. Phan, L. W. Han, and D. Phung, ‘‘Improved
speech emotion recognition based on music-related audio features,’’
in Proc. 30th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2022,
pp. 120–124.

[14] S. Sekkate, M. Khalil, and A. Adib, ‘‘A statistical feature extraction for
deep speech emotion recognition in a bilingual scenario,’’ Multimedia
Tools Appl., vol. 82, no. 8, pp. 11443–11460, Mar. 2023.

[15] S. P. Mishra, P. Warule, and S. Deb, ‘‘Deep learning based emotion
classification using mel frequency magnitude coefficient,’’ in Proc. 1st Int.
Conf. Innov. High Speed Commun. Signal Process. (IHCSP), Mar. 2023,
pp. 93–98.

[16] A. Rehman, Z.-T. Liu, M. Wu, W.-H. Cao, and C.-S. Jiang, ‘‘Speech
emotion recognition based on syllable-level feature extraction,’’ Appl.
Acoust., vol. 211, Aug. 2023, Art. no. 109444.

[17] Z. Tu, B. Liu, W. Zhao, R. Yan, and Y. Zou, ‘‘A feature fusion model with
data augmentation for speech emotion recognition,’’ Appl. Sci., vol. 13,
no. 7, p. 4124, Mar. 2023.

[18] Z. Liu, X. Kang, and F. Ren, ‘‘Dual-TBNet: Improving the robustness
of speech features via dual-transformer-BiLSTM for speech emotion
recognition,’’ IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 31, pp. 2193–2203, 2023.

[19] F. Eyben, M.Wöllmer, and B. Schuller, ‘‘Opensmile: TheMunich versatile
and fast open-source audio feature extractor,’’ in Proc. 18th ACM Int. Conf.
Multimedia, Oct. 2010, pp. 1459–1462.

[20] A. T. Liu, S.-W. Li, and H.-Y. Lee, ‘‘TERA: Self-supervised learning of
transformer encoder representation for speech,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 29, pp. 2351–2366, 2021.

[21] P. Chi, P. Chung, T. Wu, C. Hsieh, Y. Chen, S. Li, and H. Lee, ‘‘Audio
Albert: A lite BERT for self-supervised learning of audio representation,’’
in Proc. IEEE Spoken Lang. Technol. Workshop (SLT), Jan. 2021,
pp. 344–350.

[22] A. H. Liu, Y.-A. Chung, and J. Glass, ‘‘Non-autoregressive predictive
coding for learning speech representations from local dependencies,’’
2020, arXiv:2011.00406.

[23] S. Schneider, A. Baevski, R. Collobert, and M. Auli, ‘‘Wav2vec: Unsuper-
vised pre-training for speech recognition,’’ 2019, arXiv:1904.05862.

[24] A. Baevski, S. Schneider, and M. Auli, ‘‘Vq-wav2vec: Self-supervised
learning of discrete speech representations,’’ 2019, arXiv:1910.
05453.

[25] K. L. Ong, C. P. Lee, H. S. Lim, and K. M. Lim, ‘‘Speech emotion
recognition with light gradient boosting decision trees machine,’’
Int. J. Electr. Comput. Eng. (IJECE), vol. 13, no. 4, p. 4020,
Aug. 2023.

[26] P. Singh, M. Sahidullah, and G. Saha, ‘‘Modulation spectral features
for speech emotion recognition using deep neural networks,’’ Speech
Commun., vol. 146, pp. 53–69, Jan. 2023.

[27] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y.
Li, ‘‘MaxViT: Multi-axis vision transformer,’’ in Proc. 17th Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2022, pp. 459–479.

[28] Z. Dai, H. Liu, Q. V. Le, and M. Tan, ‘‘CoAtNet: Marrying convolution
and attention for all data sizes,’’ in Proc. Conf. Neural Inf. Process. Syst.
(NIPS), 2021, pp. 3965–3977.

[29] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[30] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C.
Feichtenhofer, ‘‘Multiscale vision transformers,’’ in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 6824–6835.

[31] Y. Li, C. Y. Wu, H. Fan, K. Mangalam, B. Xiong, J. Malik, and
C. Feichtenhofer, ‘‘MViTv2: Improved multiscale vision transformers for
classification and detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 4804–4814.

[32] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss,
‘‘A database of German emotional speech,’’ in Proc. Interspeech,
Sep. 2005, pp. 1517–1520.

[33] S. R. Livingstone and F. A. Russo, ‘‘The ryerson audio-visual database
of emotional speech and song (RAVDESS): A dynamic, multimodal set
of facial and vocal expressions in North American English,’’ PLoS ONE,
vol. 13, no. 5, May 2018, Art. no. e0196391.

KAH LIANG ONG received the bachelor’s
degree (Hons.) in information technology (arti-
ficial intelligence) from Multimedia University,
Malaysia, in 2021. He is currently pursuing the
master’s degree. His current research interests
include speech emotion recognition, which mainly
involves audio pre-processing, feature extraction,
and emotion classification.

CHIN POO LEE (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in information
technology (abnormal behavior detection and
gait recognition). She is currently an Associate
Professor with the Faculty of Information Science
and Technology,MultimediaUniversity,Malaysia.
Her research interests include action recognition,
computer vision, gait recognition, natural lan-
guage processing, and deep learning. She holds the
status of a Certified Professional Technologist. She

has been a member of the International Association of Engineers and serves
as an Outcome-Based Education Consultant and Trainer.

HENG SIONG LIM (Senior Member, IEEE)
received the B.Eng. degree (Hons.) in electrical
engineering from Universiti Teknologi Malaysia,
in 1999, and the M.Eng.Sc. and Ph.D. degrees
in engineering, focusing on signal processing
for wireless communications from Multimedia
University, in 2002 and 2008, respectively. He is
currently a Professor with the Faculty of Engineer-
ing and Technology, Multimedia University. His
current research interests include signal processing

for advanced communication systems, with an emphasis on detection and
estimation theory and their applications.

KIAN MING LIM (Senior Member, IEEE)
received the B.I.T. degree (Hons.) in information
systems engineering and the Master of Engi-
neering Science (M.Eng.Sc.) and Ph.D. (I.T.)
degrees from Multimedia University. He is cur-
rently an Associate Professor with the Faculty of
Information Science and Technology, Multimedia
University. His research interests include machine
learning, deep learning, computer vision, and
pattern recognition.

ALI ALQAHTANI received the Ph.D. degree
in computer science from Swansea University,
Swansea, U.K., in 2021. He is currently an
Assistant Professor with the Department of Com-
puter Science, King Khalid University, Abha,
Saudi Arabia. He has published several refereed
conferences and journal publications. His research
interests include aspects of pattern recognition,
deep learning, and machine intelligence and their
applications to real-world problems.

18250 VOLUME 12, 2024


