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ABSTRACT Human activity recognition (HAR) plays a crucial role in human-computer interaction,
smart home, health monitoring and elderly care. However, existing methods typically utilize camera, radio
frequency (RF) signals or wearable devices for activity recognition. Each single-sensor modality has its
inherent limitations, like camera-based methods having blind spots, Wi-Fi-based methods depending on the
environment and the inconvenience of wearing Inertial Measurement Unit (IMU) devices. In this paper,
we propose a HAR system that leverages three types of sensor combinations: Wi-Fi, IMU and a hybrid of
Wi-Fi+IMU. We utilize the Channel State Information (CSI) provided by Wi-Fi and the accelerometer and
gyroscope data from IMU devices to capture activity characteristics. Then, we employ six machine learning
algorithms to recognize eight types of daily activities. These algorithms include Support Vector Machine
(SVM), Multi-layer Perceptron (MLP), Decision Tree, Random Forest, Logistic Regression and k-Nearest
Neighbors (kNN). Additionally, we investigate the accuracy of hand gesture recognition using different
sensor combinations and analyze the calculation speed of each combination. We conduct a survey to collect
user feedback on the performance of various sensor combinations in our HAR system. The results show
that the combination of CSI+IMU yields the best HAR recognition accuracy, with a accuracy of 89.38%.
The SVM algorithm consistently performs well across all systems, especially excelling in the CSI+IMU
system supported by energy and average Fast Fourier Transform (FFT) features. However, we also find that
the success of sensor fusion depends on specific algorithms and features. Fusion of CSI and IMU does not
universally enhance recognition accuracy for all features and algorithms and can, in some cases, actually
reduce accuracy.

INDEX TERMS Human activity recognition, channel state information, inertial measurement unit, sensor
fusion, feature fusion, Wi-Fi sensing, wearable sensing, machine learning.

I. INTRODUCTION
In recent years, HAR has played an increasingly important
role in human-computer interaction, health monitoring and
elderly care. It employs cameras [1], [2], [3], wearable
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sensors [4], [5], [6], [7] and RF signals [8], [9], [10] to
recognize people’s daily activities, body movements and vital
signs. HAR systems can be categorized into three types based
on the mode of sensor carriage: device-based, device-free and
multi-sensor fusion.

Device-based HAR systems require users to carry sensors
on specific parts of their body, allowing the sensors to gather
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human activity information. Foerster et al. [11] validate the
use of accelerometers for detecting posture and motion.
They demonstrate their effectiveness in both laboratory and
real-life settings by comparing themwith observed behaviors.
Pancholi et al. [12] develop a cost-effective Electromyo-
graphy (EMG) system with eight channels for accurate
arm movement recognition, utilizing machine learning for
enhanced performance. To minimize the discomfort and
inconvenience experienced by users due to the deployment
of sensors, Alevizaki et al. [13] introduce a hierarchical
framework using smartwatch IMU data to learn daily
living activities at varying granularity levels, employing
CNN-LSTMclassifiers for improved accuracy and efficiency.
Jing et al. [14] design a compact wireless ring, named Magic
Ring, equipped with a tri-axial accelerometer, to be worn on
the finger for interaction with surrounding electronic devices,
further simplifying HARwearable devices. Wearable devices
can directly acquire users’ motion information for accurate
activity recognition. However, in elderly care and monitoring
for abnormal behaviors, requiring users to wear complex
devices is impractical.

In device-free activity recognition, the camera can provide
image information intuitively. Researchers use cameras to
identify people’s behavior and walking trajectories, lock
suspicious targets, predict possible abnormal behaviors in
advance, and protect assets that are vulnerable to attacks
[15]. Furthermore, researchers utilize RGB-D cameras for
the identification of dangerous activities, such as falls, within
the daily lives of elderly individuals, thereby facilitating their
independence and mitigating associated risks [16]. However,
the camera-based method invades user privacy, suffers from
limited recognition accuracy due to ambient light, and has
issues with visual blind spots [17]. To tackle these issues,
studies introduce HAR systems based on acoustic sig-
nals [18], Millimeter Wave (mmWave) [19], Ultra-Wideband
(UWB) [20] and Wi-Fi devices [21]. Sound and mmWave
are suitable for scenes with a smaller monitoring range,
and mmWave is suitable for accurate recognition of tiny
movements and the cost is higher. UWB has a wide sensing
range, but the cost is also high. In order to reduce costs
and expand sensing range, Wi-Fi devices widely deployed
indoors have become the focus of studies. WiSee [22]
and Wi-Vi [23] utilize Universal Software Radio Peripheral
(USRP) devices to acquire Orthogonal Frequency-Division
Multiplexing (OFDM) signals, enabling the estimation of
a target’s location and gesture actions, thereby establishing
a groundwork for Wi-Fi-based HAR. E-eyes [24] utilizes
commercial Wi-Fi devices operating under the 802.11n
protocol to acquire CSI, and leverages the amplitude of
CSI to identify in-place and walking activities. CARM [21]
proposes two models, the CSI-Speed Model and the CSI-
Activity Model: the first links changes in CSI with human
movement speeds, while the second associates the movement
speeds of various body parts with specific activities, enabling
activity recognition by matching with CSI profiles. Despite

the widespread availability of Wi-Fi devices, a change in
environment or targets requires recollecting data and retrain-
ing models to ensure the effectiveness of HAR systems.
To address this issue, Widar3.0 [25] proposes a zero-effort,
cross-domain gesture recognition system, modeling the
relationship between complex gestures and CSI dynamics,
extracting domain-independent gesture velocity profiles, and
employing a deep learning model to recognize gestures based
on their spatial-temporal characteristics. However, it employs
one transmitter and six receivers, which is impractical in real-
life scenarios. WiGesture [26] achieves location-independent
gesture recognition using one transmitter and two receivers,
but the devices require specific placement. Conversely, Wi-
Monitor [27] employs a pair of Wi-Fi devices, which do not
require special placement, to recognize continuous human
activities in daily life. Yet, even though Wi-Fi offers a wide
sensing range and precise recognition, the CSI varies with
changes in the surroundings, and the system cannot detect if
the target exits the area.

To address the limitations of unimodal HAR systems,
multimodal systems have garnered attention. In multimodal
systems [28], activity data is collected simultaneously using
two or more types of sensors. For instance, data from IMUs
and pressure insoles are fused to detect falls, while IMUs and
cameras are combined to address occlusion issues in visual
systems. In this study, we particularly focus on the integration
of IMUs with Wi-Fi devices, as they offer complementary
benefits. In [29], signals from Wi-Fi and inertial sensors
are fused and a Hidden Markov Model (HMM) is utilized
to identify high-speed actions in tennis. Reference [30]
focuses on combining Wi-Fi with data from floor-mounted
accelerometers to detect falls. Similarly, WiWeHAR [31]
fuses features from Wi-Fi and IMU to recognize four
actions (walking, falling, sitting, and picking up an object),
innovatively extracting the mean Doppler shift from CSI
as a feature, thereby enhancing recognition accuracy to
99.6%-100%. Despite WiWeHAR achieving a recognition
rate of over 99%, its system focuses only on four full-
body movements, which are insufficient to comprehensively
describe daily activities. To more clearly illustrate the
differences between unimodal andmultimodal HAR systems,
as well as to distinguish our research from variousmultimodal
systems, we conduct a comparative analysis in Table1.
From this table, it is evident that Wi-Fi-based systems are
unable to provide continuous monitoring. In contrast, the
multimodal systems that do offer continuous monitoring
are limited in recognizing specific tennis movements and
can only identify a few simple whole-body activities.
These systems fall short of comprehensively describing
activities in daily life. To better depict everyday actions,
this paper compares the performance and computational
speed of various machine learning algorithms using data
collected from different sensor combinations under distinct
features. In this paper, we propose a HAR system that
utilizes three types of sensor combinations: Wi-Fi, IMU,
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and a hybrid of Wi-Fi+IMU. The system captures activity
characteristics using CSI and accelerometer and gyroscope
data from IMU devices. Six machine learning algorithms
– SVM, MLP, Decision Tree, Random Forest, Logistic
Regression, and kNN – are employed to recognize eight
types of daily activities. Additionally, the accuracy of hand
gesture recognition using different sensor combinations is
investigated, along with the analysis of the calculation speed
of each combination. Our main contributions are as follows:

1) We propose a HAR system that recognizes eight
activities using three sensor combinations: Wi-Fi, IMU,
and Wi-Fi+IMU, and compare their results.

2) Six machine learning algorithms are used for activity
recognition, with a comparative analysis of recognition
accuracy across different sensor combinations.

3) We invited five participants for testing, with the
Wi-Fi+IMU combination achieving the best recognition
accuracy of 89.38%.

The remainder of the paper is organized as follows:
Section II introduces related works. In Section III, we provide
an overview of the HAR system. Section IV outlines the
methodology, including details on data collection, prepro-
cessing, and feature definition. The design and implementa-
tion of experiments are presented in Section V. Section VI
is the evaluation, where the HAR system is validated and
results are comparatively analyzed. Finally, we summarize
the conclusions.

II. RELATED WORKS
This section provides a comprehensive overview of the
current state-of-the-art in HAR systems. We review various
approaches, including camera-based, CSI-based, IMU-based,
and the fusion of CSI and IMU techniques. Each of these
methods has its unique strengths and limitations in the context
of HAR. By examining these diverse methodologies, we aim
to identify gaps in current research and explore how our
proposed HAR system, which integrates CSI, IMU, and
CSI+IMU, addresses these challenges.

A. CAMERA-BASED
Starner et al. [32] proposed two systems that interpret
American Sign Language (ASL) and track unadorned hands
in real-time with one color camera, using HMM. The kinds
of ASL in this experiment are six pronouns, nine verbs,
twenty nouns, and five adjectives. They tested two camera
location, an observer of the signer and the point of view of the
signer himself. The first person system adopted hat-mounted
camera. The second person system adopted desk-based
tracking camera. In the desk-based recognizer experiment,
478 sentences were obtained. 384 sentences were used for
training, 94 sentences were used for testing. In the wearable-
based recognizer experiment, 500 sentences were collected
and 400 sentences were used for training, 100 sentences were
used for testing.

Recognition using a camera can only recognize events in
the field of view of the camera. Therefore, the camera base is
vulnerable to blind spots.

B. CSI-BASED
Taylor et al. [33] proposed HAR system using CSI obtained
from UWRP. They used two USRPs (X310/x300 models)
devices. They tested two activities, sitting down on a chair
and standing from a chair. In the experiment, each sample
received by the USRP contains 64 subcarriers. For each type
of activities, 30 samples were selected, forming a dataset
of size 3840. They tested five algorithms, Random Forest,
kNN, SVM, Neural network model, and Ensemble Classifier.
The accuracy (cross validation, train test split) of Random
Forest (92.47%, 96.70%), kNN (88.17%, 90.71%), SVM
(84.68%, 81.77%), Neural networkmodel (90.05%, 93.40%),
Ensemble Classifier (92.18%, 93.83%). They created a
real-time recognition web system using Random Forest
which is the best accuracy result. The other dataset was
tested in this experiment using smart-phones equipped with
accelerometers. They claim that, this experiment demon-
strates USRP accuracy is similar to wearable sensors or
higher than wearable sensors in recognition of body move-
ments. The benchmark dataset accuracy (cross validation,
train test split) of Random Forest (91.20%, 96.49%), kNN
(77.06%, 92.48%), SVM (85.90%, 86.21%), Neural network
model (89.21%, 96.11%), Ensemble Classifier (92.40%,
97.74%).

Shi et al. [34] propose a CSI cleaning and enhancement
method (CSI-CE). The method has two stages, activity-
related information extraction (ARIE) and correlation fea-
ture extraction based on principal component analysis
(CFE-PCA). They use Intel 5300 network interface card
(NIC)with CSI tools [35] to obtain CSI data. They recognized
six activities, empty, standup, laying, walk, standing, fall with
HAR-MN-EF(MN:Matching Network [36], EF:Enhanced
Features), EI [37], RNN, TNNAR [38]. HAR-MN-EF is the
highest accuracy. In case of HAR-MN-EF with CSI-CE,
the accuracy is 75.1%, the training time is 34.5 minutes.
On the other hand, HAR-MN-EF without CSI-CE, the
accuracy is 58.2%, the training time is 89.7 minutes.

Li et al. [39] tested indoor localization. In corridor,
7×7 finger print, it is 4.2m× 4.2m with 49 sampling points.
In conference room, there are 29 sampling points. They use
TP-Link wireless router with 2.4GHz. The sampling rate is
200Hz and selected three optimal subcarriers. They changed
the height of antenna, 0.2, 0.4, 0.6, 0.8, 1.0m. Under the
accuracy of 0.6m, 93.9% in conference room and 96% in
corridor.

In location detection with finger-print method, it is envi-
ronment dependent because CSI’s amplitude and phase are
changed by reflection from objects, people, etc. In addtion,
it changes with the size of experiment room. In HAR, only a
very limited kinds of actions can be recognized because the
signal of Wi-Fi change small if the action is small. The more
actions we recognize, the lower the recognition rate.
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TABLE 1. Comparative analysis of our system with existing studies.

C. IMU-BASED
Ravi et al. [40] proposed activity recognition using x, y,
z axis of a wearable sensor, CDXL04M3. They collected
eight activities, standing, walking, running, climbing up
stairs, climbing down stairs, sit-ups, vacuuming and brushing
teeth. The window size is 256 and overlapping is 128
(50% overlap). The sampling rate is 50 per second. They
extracted four features from the x, y, z axis, Mean, Standard
Deviation, Energy and Correlation. They selected Decision
Tables, Decision Trees, kNN, SVM and Naive Bayes. There
are four experiment settings and the result of the experiment
is Plurality Voting which is the best in setting 1, 2, 3, over
90% accuracy. Boosted SVM is the best in setting 4.

Jing and Cheng create recognition system of 10 daily
activities and 1 accident action [41]. They use compact
motion capture sensor node named WS-WiFi. It can obtain
three dimension acceleration and angular velocity. The
sampling rate of the sensors is 20Hz.Window size is 64which
is 3,2 seconds and overlap is the half of window size.
They calculate mean, standard deviation, and energy of
acceleration data. kNN is adopted and k means method to
select training samples. Attach sensors on right wrist, left
ankle and right side ofwaist of testers. The overall recognition
rate is 94.3%.

Jiménez et al. [42] compared Pedestrian Dead Reckoning
(PDR) algorithms using low-cost Micro Electro Mechanical
Syatems (MEMS) IMU which is MTi Xsens IMU. They
mounted the IMU on the instep of a right shoe. The sampling
rate is 100Hz. The paper describes the result of most relevant
algorithms for step detection, stride length, heading and
position estimation, indoor and outdoor. They described that
avoiding excessive error accumulation is the challenge in
PDR algorithms in this paper.

The error accumulate in PDR with consumer level IMU.
Therefore, it is difficult to tracking location with consumer
level IMU.

D. CSI AND IMU FUSION
Muaaz et al. [31] combined CSI and wearable sensor data
for HAR using SVM. They recognized walking, sitting,
falling and picking up an object from the floor in the
experiment. The IMU sensor obtains tri-axis accelerometer,
tri-axis gyroscope and tri-axis magnetometer. The Wi-Fi
receiver equipped Intel Wi-Fi Link 5300, which is Network
Interface Card (NIC), the configuration is 5GHz band
they used. Two laptops which were installed CSI-tool
[35] and equipped the NICs. The testers were attached
an IMU to their lower back. The sampling rate of the
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IMU is 400Hz. They use time-variant Mean Doppler
Shift (MDS) for recognition. Before calculate the MDS,
preprocess the data. They eliminate the CSI phase distortions
and execute phase calibration. They reduced dimensions
by Principal Component Analysis (PCA) and filtered by
low-pass filter. Finally, they calculate MDS from filtered
principal component. In case of preprocessing of IMU,
they compute magnitude of each sensor type, accelerom-
eter, gyroscope and magnetometer. In their experiment,
4 unimodal classifier and 11 multimodal classifier which
are bimodal, trimodal, quadmodal were tested. Multimodal
approach accuracy is 99.6% to 100%. But unimodal is 91.5%
to 98.1%.

E. SHORTCOMING OF THE CURRENT TECHNOLOGIES
In current technologies, camera devices have the shortcoming
of a dead corner. Dead corner cannot be recognized with the
camera alone. Wi-Fi devices depend on experimental envi-
ronment. Therefore, it is unlikely that it can be reproduced
in other environments. The consumer-level inertial sensor
shortcoming is accumulation of error. Errors accumulate
when operating for a long time.

Compared to other sensor fusion efforts, studies focusing
on the integration of CSI with IMU for HAR are relatively
scarce. Significantly, this research conducts a multifaceted
evaluation of HAR by integrating three sensor combinations
within a single system framework. Our study has developed
a robust HAR system, undertaking extensive synthetic
experimental research, thereby providing a foundational
guide for various HAR applications.

III. SYSTEM OVERVIEW
In this section, we present an overview of our proposed HAR
system. We present the application model and the detailed
structure of the system, outlining the key components and the
workflow. The system is designed to capture a comprehensive
dataset from both IMU devices and Wi-Fi transceivers,
ensuring precise activity recognition. We explain how these
components interact within the system to process and analyze
the data, utilizing machine learning algorithms for activity
recognition.

A. APPLICATION MODEL
Figure 1 illustrates the application model of our HAR system.
We design eight types of daily activities, such as walking,
sitting, squatting, and typing on a keyboard. Testers wear
IMU devices on their right wrist, right side of the waist,
and left ankle, collecting data from accelerometers and
gyroscopes. Simultaneously, Wi-Fi transceivers located at
both ends of the room transmit signals, which are reflected
by various human actions and received by Rx. The collected
IMU and CSI data are then synchronized and denoised.
Features are extracted from the denoised IMU and CSI
data, and six machine learning algorithms are used to
recognize activities in three HAR systems: CSI, IMU, and
CSI+IMU.

B. SYSTEM STRUCTURE
The system architecture is shown in Figure 2. We collect
IMU data using the Wonder Sense-WiFi (WS-WiFi) [41]
developed in our laboratory and use two computers equipped
with Intel 5300 network cards to transmit and receive Wi-
Fi signals. The processing flow in this system follows these
steps:
Step 1: Wi-Fi signals are transmitted from the CSI transmit-

ter to the CSI receiver. The transmitter is equipped
with 1 antenna, while the receiver has 3 antennas.
The sampling rate for CSI is set at 200Hz.

Step 2: IMU data are transmitted fromWonder Sense to the
IMU Hub. Three IMU sensors transmit acceleration
and gyroscope data along the x, y, and z axes. The
sampling rate for these sensors is set at 200Hz.

Step 3: IMU and CSI data are synchronized according to
Japan Standard Time (JST).

Step 4: Utilize moving average filtering for denoising
before processing the raw data.

Step 5: Calculate features.
Step 6: Test with 6 machine learning algorithms: SVM,

Multi-layer Perceptron, Decision Tree, Random
Forest, Logistic Regression, kNN.

Step 7: Save the model.
Step 8: Calculate the validation score.
Step 9: Test using the saved model.

IV. METHOD
We collect accelerometer and gyroscope data using three
WS-WiFi devices, while simultaneously gathering CSI data
with a pair of Wi-Fi devices. However, this data cannot be
used directly, we need to time synchronize and denoise it
first. Then, we extract features from the denoised data. Our
system includes three sensor combinations: CSI, IMU, and
CSI+IMU. Based on these features, we use six different
machine learning algorithms to classify eight types of
everyday activities for each sensor combination.

A. DATA COLLECTION
1) CSI DATA
In a narrow-band flat fading channel, the Wi-Fi OFDM
system viewed in the frequency domain can be defined as
[43]:

Y⃗ = HX⃗ + N⃗ (1)

where Y⃗ and X⃗ represent the received and transmitted signal
vectors, respectively. H denotes the Channel Frequency
Response (CFR) and N⃗ is the AdditiveWhite Gaussian Noise
(AWGN). The CFR in time and frequency as amplitude and
phase in the format of CSI, is a superposition of signals from
multipath propagation. Hence, the CSI can be represented as
[43]:

H (fs, t) =
L∑
k=1

As,ke−j2π fnτk (t) (2)
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FIGURE 1. Application Model. We design eight types of daily activities, such as walking, sitting,
squatting, and typing on a keyboard. Testers wear IMU devices on their right wrist, right side of the
waist, and left ankle, collecting data from accelerometers and gyroscopes. Simultaneously, Wi-Fi
transceivers located at both ends of the room transmit signals, which are reflected by various
human actions and received by Rx. The collected IMU and CSI data are then synchronized and
denoised. Features are extracted from the denoised IMU and CSI data, and six machine learning
algorithms are used to recognize activities in three HAR systems: CSI, IMU, and CSI+IMU.

FIGURE 2. System Architecture.

where fs is the carrier frequency of the sth subcarrier, s is the
index of the OFDM subcarrier, s ∈ [1, 30]. L is the number
of paths, As,k denotes the amplitude and τk (t) represents the
propagation time of the k th path. Moreover, the phase of CSI
at carrier frequency fs propagating along the k th path can be
written as ϕs,k = 2π fsτk (t), the τk (t) represents the signal
propagation delay [43].
The amplitude and phase have 30 subcarriers each receiver

antenna. It means one antenna receive 60 dimensions

information. Therefore, in three antennas, there are
180 dimensions in CSI. The changes in amplitude and phase
of CSI on three antennas during walking are shown in the
Figure 3. In the figure, the X-axis represents the number of
CSI packets, the Y-axis represents the subcarrier index, and
the Z-axis represents the amplitude and phase values. It can
be observed that the amplitude and phase of CSI change with
the movement of a person walking.

2) IMU DATA
We utilize three WS-WiFi devices to obtain IMU data.
Acceleration values in the x, y, and z directions are acquired
from the triaxial accelerometer, while angular velocity values
in the x, y, and z directions are obtained from the triaxial
gyroscope. Therefore, we have 18 dimensions of IMU data.
The data from six sensors when a person is waving is shown
in the Figure 4. The figure shows data collected by six
sensors placed on different parts of the body. As the person
continues to wave, the accelerometers on the left ankle and
waist show minimal changes, while the accelerometer on the
right wrist exhibits significant variations. The data from all
three gyroscopes also show notable changes.

B. DATA PRE-PROCESSING
1) DATA SYNCHRONIZATION
Since the data is obtained from two types of sensors,WiFi and
WS-WiFi, it is necessary to synchronize the data. Figure 5
shows the time synchronization process between each sensor
data.
Step 1: Synchronize two PC time, IMU Hub and CSI

receiver with JST.
Step 2: Save the starting time of CSI data acquisition time.
Step 3: Save the starting time of IMU data acquisition time.
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FIGURE 3. Amplitude and Phase Data of Walking.

FIGURE 4. Accelerometers and Gyroscopes Data of Waving. The figures
depict variations in accelerometer and gyroscope readings at three body
locations during the waving action. The sensors have a sampling rate of
200Hz, with the x-axis representing packet numbers and the y-axis
showing sensor values.

Step 4: Save the starting time of Camera shooting time.
Step 5: Synchronize each data by aligning each time using

the three sensor time.

2) MOVING AVERAGE FILTERING
Moving average filtering filtering is one of the method of
noise reduction. The noise of training data may affect to
recognition rate. Machine learning models learn features
related to the training data from noise reduced data. The MA
formula is following,

yi =
1
N

i∑
j=i−(N−1)

xj, i ≥ N (3)

where N and i are the number of tap and the start of the data.

C. FEATURE DEFINITION
The range of each sensor data is different. For example,
if the data range of CSI is 15 to 25, IMU acceleration range
is -1.0 to 1.0, gyroscope range is -100 to 100, the difference
in the range of data is too large. To fix the problem, this
experiment standardizes sensors data. The standardization
equation is

x(i)std =
x(i) − µ

σ
(4)

where µ and σ are mean and standard deviation. The feature
values are calculated by dividing the time-series data into
the window size by the sliding window method. Let n, xi
be the window size, the time-series data in the i-th sampling
point, respectively. In this paper, the feature values in the time
domain are defined by the following formulas.

1) STANDARD DEVIATION (σ )

σ =

√√√√1
n

∑
xi∈window

(xi − x̄)2 (5)

2) MEAN (X )

x̄ =
1
n

∑
xi∈window

xi (6)

3) VARIANCE (σ2)

σ 2
=

1
n

∑
xi∈window

(xi − x̄)2 (7)

Then, we define the feature values in the frequency
domain. The time-series data in the window is transformed by
the Discrete Fourier Transform (DFT). The DFT is defined as

DFT [k] =
∑

xi∈window

e−2π j
ki
n xi (8)

The amplitudes of DFT [k] are normalized by the following
formula.

|DFT [k]| ←
1
⌊
n
2⌋
|DFT [k]| (9)
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FIGURE 5. Time Synchronization Process.

The formula (9) means that 1
⌊
n
2 ⌋
|DFT [k]| is substituted

into |DFT [k]|. ⌊·⌋ denotes the floor function. The feature
values in the frequency domain are defined by the following
formulas.

4) ENERGY (E)

E =
1
⌊
n
2⌋

⌊n/2⌋−1∑
k=0

|DFT [k]|2 (10)

5) ENTROPY (H)

P̂(ωi) =
1
⌊
n
2⌋
|DFT [i]|2 (11)

pi =
P̂(ωi)∑
P̂(ωi)

(12)

H = −
⌊n/2⌋−1∑
i=0

piln(pi) (13)

6) THE MEAN OF THE FREQUENCY-DOMAIN (|DFT |)

|DFT | =
1
⌊
n
2⌋

⌊n/2⌋−1∑
k=0

|DFT [k]| (14)

7) THE VARIANCE OF THE FREQUENCY-DOMAIN ((σF )2)

(σf )2 =
1
⌊
n
2⌋

⌊n/2⌋−1∑
k=0

(|DFT [k]| − |DFT |)2 (15)

8) THE MAXIMUM VALUES OF THE FREQUENCY-DOMAIN
(MF )

mf = max |DFT (k)| (16)

D. DATA SPLITTING OF TRAINING, VALIDATION AND TEST
From the data collected through CSI and IMU, we use 80%
as training data and 20% as test data. The machine learning
models are trained using 5-fold cross-validation.

V. EXPERIMENTAL
A. EXPERIMENTAL PURPOSE
In existing works, the fusion of CSI and IMU data for
HAR has been relatively limited. Previous studies have either
focused on recognizing specific movements in sports like
tennis or identified a few isolated full-body activities. Con-
sequently, our research sets out to conduct an experimental
comparison of HAR using three distinct sensor combinations:
CSI, IMU, and CSI+IMU. We aim to evaluate the accuracy
of each sensor combination by recognizing eight daily
activities. Moreover, we utilize six different machine learning
algorithms with various features and feature combinations to
implement HAR. This involves testing the performance of
different sensor combinations, machine learning algorithms,
and feature sets. This comprehensive experimental effort is
designed to enhance the understanding and application of
HAR in various contexts, serving as a foundational guide for
diverse HAR applications.

B. EXPERIMENTAL DESIGN
Figure 6 is the system structure in this experiment. The
explanation of steps of Figure 6 are following:
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FIGURE 6. Experimental System Structure.

1) Synchronize IMU Hub and CSI receiver
• Get JST from ntp.nict.jp by using NTP.
• Synchronize IMU Hub clock and CSI receiver clock
with JST.

2) Send CSI and save data acquisition start time
• Send CSI packets and save the data acquisition start
time for synchronization. CSI receiver receives CSI
packets.

3) Send IMU data and save data acquisition start time
• Send IMU data and save the data acquisition start
time for synchronization. IMU Hub receives IMU
data.

4) Shoot a video and save shooting start time
• Shoot a video and save shooting start time for
synchronization.

5) Send IMU data from IMU Hub to CSI receiver
• Send IMU data from IMU Hub to CSI receiver

6) Synchronize camera and data
• Synchronize CSI, IMU and Camera for processing.

7) Labelling with video data
• Teacher data labelling with video data.

C. IMPLEMENTATION
The experimental scenarios are illustrated in Figure 7 and
Figure 8. Figure 7 shows a real photograph of the indoor
environment, while Figure 8 presents our grid division of the
experimental area. In our experimental setup, each tile in the
laboratory is assigned a number, with each tile measuring
50cm × 50cm. There are two red tiles, number 17 and 26,
in the figure which show chair on the tiles. A whiteboard on
green tile number 37 to 40. There is a vacuum cleaner on
orange tile number 0.

We utilize two computers equipped with Intel 5300 net-
work cards as the transmitting and receiving devices for
Wi-Fi. The transmitter is equipped with one antenna, while
the receiver has three antennas forming an antenna array. Our

FIGURE 7. Photo of The Experiment Environment.

FIGURE 8. Grid Division of The Experiment Area.

computers operate on the Ubuntu 18.04 system, using the CSI
Tool [35] to parse the signals and obtain CSI. The sampling
rate of CSI is 200Hz.

We employ the WS-WiFi wearable motion capture sensor
node described in [41]. This system comprises IMU sensors
that relay acceleration and gyroscope data along the x, y, and
z axes to an IMU Hub, a MacBook Pro (Retina, 15-inch, Mid
2015). For the experiment, three IMU sensors are attached to
the right waist, right wrist, and the tip of the left foot, each
with a sampling rate of 200Hz.

D. DATASET
We design eight activities to comprehensively describe daily
life activities, as shown in Table 2. The activities are divided
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TABLE 2. Human daily activities.

into two categories: whole body activities and upper body
activities. The former includes squatting, walking, moving
heavy objects, cleaning with a vacuum cleaner, and sitting
down. The latter encompasses writing on a whiteboard,
typing on a keyboard, and hand-shaking.

We invite five participants to perform each of the eight
activities listed in Table 2 within a 3m× 3m rectangular area,
with vertices marked as 0, 5, 30, 35, as shown in Figure 8.
Each activity is performed for a duration of five minutes.
When collecting each set of data, we first start the CSI
receiving program, followed by the IMU receiving program.
At this stage, CSI and IMU are out of sync. However, during
data preprocessing, we synchronize the CSI and IMU data in
terms of JST.

Specifically, when collecting data for the sitting-down
activity, we use a camera to record the movement, as sitting
down is not a continuous action. Unlike other activities,
sitting-down cannot be repeatedly performed in a sequence,
as it inherently involves alternating between standing up
and sitting down. The sequence involves standing up first,
sitting down second, and then standing up again, with
the sitting-down data captured between the first and third
standing-up actions. Therefore, we only film this activity
during data collection. For activities other than sitting down,
we remove the first 10 seconds of the collected 5-minute data.
From the remaining 4 minutes and 50 seconds, we extract the
last 4 minutes as training data and the first 1 minute as test
data.

The specific implementation of each activity is as follows:
1) Squat: squat on a tile which tile number is 14. The points

are described in Figure 8.
2) Walking: walk a rectangle route which is a line

connecting vertices 4, 1, 31, 34.
3) Move heavy object: repeat the sequence, move a chair

from 17 to 12, and move from 12 to 17.
4) Clean with vacuum: clean the rectangle area with point

12, 16, 22, 18 as vertices.
5) Sitting-down: repeat sit down and stand up on 27 with a

chair on point 26.
6) Writing on a whiteboard: write on a whiteboard while

standing on 33.
7) Typing on a keyboard: sit down on 17 and type on a

keyboard.
8) Hand shaking: standing on 14 and hand shake.

VI. EVALUATION
We utilize the collected data to validate the recognition
accuracy of the HAR system. Initially, we verify the accuracy

of recognizing eight types of activities by the CSI, IMU,
and CSI+IMU HAR systems. Seven data features are pro-
cessed through six machine learning algorithms to evaluate
the performance of CSI, IMU, and CSI+IMU integrated
systems. Concurrently, the performance enhancement from
the fusion of CSI and IMU sensors is analyzed. The
combined use of Energy and Mean FFT features quantifies
each system’s performance, aiding in comparative analysis
of individual variability and the capacity to detect tiny
activities. Additionally, computational time of each system
is examined. Finally, we conduct a survey among the
participants to gather their feedback on the use of different
systems.

A. RECOGNITION RATE OF HAR WITH CSI, IMU AND
CSI+IMU
We utilize six machine learning algorithms and seven features
to identify eight types of activities under three systems: CSI,
IMU, and CSI+IMU. The recognition results are shown
in Table 3, Table 4 and Table 5, respectively. To display
the results more intuitively, we use Figure 9 to compare
the recognition results of different features, algorithms, and
sensor combinations.

From Table 3, it is observed that the SVM and random
forest algorithms exhibit relatively high performance in CSI
HAR system, achieving average recognition accuracies of
59.58% and 51.86% respectively. The Energy and Variance
FFT features notably enhance the recognition rate, particu-
larly in the SVM and random forest algorithms, where they
contribute to recognition accuracies of 81.72% and 77.19%
in SVM, respectively.

Table 4 reveals that the SVM and kNN algorithms demon-
strate more effective performance in IMU HAR system,
with average recognition accuracies of 56.83% and 56.96%,
respectively. The Energy feature significantly influences the
recognition rate, particularly in SVM and kNN, where it
contributes to recognition accuracies of 70.31% and 67.19%,
respectively.

Table 5 clearly illustrates that the CSI+IMU HAR system
exhibits enhanced performance in the SVM and random
forest algorithms, with average recognition accuracies of
62.03% and 57.19%, respectively. Notably, the Mean FFT
and Energy features significantly enhance the system’s
effectiveness, especially in the SVM algorithm, where they
lead to recognition accuracies of 87.66% and 81.25%,
respectively.

Comparing the three systems, it is observed that the
CSI+IMU system generally surpasses the individual CSI and
IMU systems in performance, underscoring the effectiveness
of sensor fusion in HAR. The SVM algorithm consistently
shows superior performance across all three systems, indi-
cating its suitability for HAR tasks involving these sensors.
In terms of features, Energy and Mean FFT play a pivotal
role in all systems, particularly in enhancing the recognition
rates in the CSI+IMU system.
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FIGURE 9. Recognition Rates of the Three Sensor Combinations.

TABLE 3. Results of CSI-based HAR across various features and methods using single tester data.

TABLE 4. Results of IMU-Based HAR across various features and methods using single tester data.

TABLE 5. Results of CSI+IMU-based HAR across various features and methods using single tester data.

TABLE 6. CSI and CSI+IMU system recognition accuracy improvement comparison.

The comparison between CSI and CSI+IMU systems,
as depicted in Table 6, indicates that sensor fusion
generally enhances recognition accuracy, especially in
SVM and Random Forest algorithms, where the average
improvement is 5.84% and 10.49%, respectively. The
Mean FFT and Energy features significantly contribute
to this increase, particularly in SVM, with accuracy

improvements of 10.88% and 36.86%. Fusion seems
most beneficial when complex movements are involved
or when maintaining high recognition rates under varied
environmental conditions.

Contrastingly, Table 7’s comparison between IMU and
CSI+IMU systems shows mixed results. While there is a
notable performance improvement in SVM and Multi-layer
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TABLE 7. IMU and CSI+IMU system recognition accuracy improvement comparison.

TABLE 8. Comparison of CSI, IMU, and CSI+IMU based HAR with one
tester using energy and mean FFT features.

Perceptron algorithms (10.35% and 74.90% respectively),
a decrease in performance is observed in kNN by 4.21%. This
suggests that sensor fusion might not always yield expected
improvements, particularly with certain algorithms like
kNN.

In conclusion, while sensor fusion in HAR systems
can lead to significant performance enhancements, its
effectiveness is highly dependent on the chosen algorithms
and features. It is crucial to consider these factors when
deciding on a fusion strategy, as it may not always result in
performance gains, particularly in algorithms like kNNwhere
individual sensor systems might suffice.

B. RECOGNITION RATE COMPARISON OF THREE TYPES
OF SENSORS UNDER ENERGY + MEAN FFT FEATURE
FUSION
The experimental results show that the Energy andMean FFT
features consistently provide superior performance in activity
recognition tasks. Therefore, we fuse these two features to
enable a comparative analysis of recognition accuracy among
various algorithms and sensors. The experimental results are
shown in Table 8.

The table shows that the SVM and multi-layer perceptron
algorithms are highly effective in all systems, particularly in
the CSI+IMU system where they reach the highest accu-
racies of 87.50% and 89.38% respectively. The CSI+IMU
system stands out with an average accuracy of 80.03%,
demonstrating that combining different sensors can greatly
improve results. Merging the energy and mean FFT features
also significantly boosts accuracy. These results underline the
major benefits of using both feature and sensor fusion in HAR
systems. Algorithms like SVMandmulti-layer perceptron are
really good at making sense of complex data from combined
sensors.

TABLE 9. Comparison of CSI, IMU, and CSI+IMU based HAR with five
testers using energy and mean FFT Features.

C. COMPARISON OF RECOGNITION RATES ACROSS
THREE TYPES OF SENSORS FOR ONE TESTER AND FIVE
TESTERS
In order to test the impact of individual variability on the
recognition accuracy of CSI, IMU and CSI+IMU HAR
system, we fed the data of 5 people together to the machine
learning algorithms, and the results are shown in Table 9.
In order to compare the recognition accuracy of one tester and
five tester more intuitively, we use histograms to compare the
results as shown in Figure 10.
In the one tester scenario, where each person’s data is

individually fed into the machine learning algorithms, the
systems generally exhibit higher recognition accuracies. This
is evident from the average accuracies of 74.35%, 67.40%,
and 80.03% for the CSI, IMU, and CSI+IMU systems,
respectively. However, in the five testers scenario, where
data from all five individuals are combined and fed into the
algorithms, a noticeable drop in accuracy is observed across
all systems. This drop, from 74.35% to 62.58% for CSI, from
67.40% to 48.56% for IMU, and from 80.03% to 64.32%
for CSI+IMU, underscores the challenge posed by individual
differences. Despite this, the CSI+IMU system demonstrates
a comparatively lesser decline in performance, suggesting its
better handling of individual variability. This result shows
that considering individual variability is important when
designing HAR systems. It also shows that sensor fusion can
help lessen the impact of such variability.

D. RECOGNITION RATE OF TINY ACTIVITIES WITH CSI,
IMU AND CSI+IMU
In the context of this experiment, ‘tiny activities’ are defined
as activities involving only hand movements, such as hand-
shaking, typing on a keyboard, and writing on a whiteboard.
In this experiment, we simultaneously feed the data collected

18832 VOLUME 12, 2024



W. Guo et al.: HAR via Wi-Fi and Inertial Sensors With Machine Learning

FIGURE 10. Impact of Individual Variability on The Recognition Accuracy of CSI, IMU and CSI+IMU HAR System.

TABLE 10. Performance metrics of CSI-based HAR system for each class.

TABLE 11. Performance metrics of IMU-based HAR system for each class.

TABLE 12. Performance metrics of CSI+IMU-based HAR system for each
class.

from five individuals into the system, employing a fusion of
two key features: energy andmean FFT. The confusionmatrix
of the recognition results are shown in Figure 11. At the same
time, we calculated the accuracy, precision, recall and F1
score of each system.

In Table 10, the ‘Hand-shaking’, ‘Typing-on-a-keyboard’,
and ‘Writing-on-whiteboard’ activities in the CSI system
demonstrate accuracies of 75.75%, 74.75%, and 76.75%
respectively. These activities, particularly ‘Typing-on-a-
keyboard’, showcase a moderate level of performance,
suggesting reasonable effectiveness of the CSI system in
detecting these subtle activities.

In the IMU system, the same activities exhibit accuracies of
64.25%, 38.50%, and 40.75%, as shown in Table 11. Notably,
the performance for ‘Typing-on-a-keyboard’ and ‘Writing-
on-whiteboard’ drops significantly, indicating challenges

faced by the IMU system in accurately recognizing these finer
activities.

In Table 12, the CSI+IMU system shows enhanced accura-
cies for these activities: 67.00% for ‘Hand-shaking’, 78.00%
for ‘Typing-on-a-keyboard’, and 81.00% for ‘Writing-on-
whiteboard’. This improvement, especially in ‘Typing-on-
a-keyboard’ and ‘Writing-on-whiteboard’, highlights the
superior capability of the CSI+IMU system in detecting tiny
activities.

Comparing the three systems, it is clear that the CSI+IMU
system outperforms the CSI and IMU systems alone in
identifying tiny activities. The integration of CSI and IMU
sensors significantly enhances the ability to accurately
detect subtle movements and actions, as shown by the
improved accuracy of ‘Typing-on-a-keyboard’ and ‘Writing-
on-whiteboard’ IMU systems, while effective for more
obvious activity, show limitations in detecting finer move-
ments, which are better captured by a combined CSI+IMU
system. However, in terms of overall accuracy, there is room
for enhancement in recognizing small movements across
all three systems. This improvement could be achieved by
increasing the number of IMUs, expanding the number of
Wi-Fi device links, employing deep learning algorithms, and
augmenting the sample size.

E. CALCULATION SPEED OF CSI, IMU AND CSI+IMU
For comparison of calculation speed of each sensor, this
experiment measured time cost of training of machine
learning models. There are 180 dimensions including 90-
dimensional amplitude + 90-dimensional phase in CSI.
In this measurement, use Energy and Mean FFT. Therefore,
Energy:180 dimensions + Mean FFT:180 dimensions =
360 dimensions. IMU also use Energy and Mean FFT.
Therefore, 18 dimensions+ 18 dimensions= 36 dimensions.
CSI+IMU dimensions is 360 + 36 = 396 dimensions.
Table 13 shows the time cost of each sensor. There is not

much difference between CSI and CSI+IMU. Only IMU
is much faster than the other two sensors. In multi-layer
perceptron and kNN, amount of data increases, the amount
of calculation becomes enormous.

F. A QUESTIONNAIRE ABOUT TROUBLESOME OF IMU
Figure 12 presents the layout of the questionnaire.
It includes sections assessing physical effort, frustration
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FIGURE 11. Confusion Matrices of SVM Classifier Using Data from Five Testers.

TABLE 13. The comparison of calculation speed of each sensor.

FIGURE 12. The questionnaire form.

TABLE 14. The questionnaire about this experiment.

levels associated with Wi-Fi and IMU usage, ease of use for
both Wi-Fi and IMU, along with three fields for additional

descriptions. Table 14 shows the result of questionnaire of
this experiment. About physical effort and frustration level,
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lower is better. About Wi-Fi and IMU ease of use, higher is
better. The lowest is zero and the highest is ten. Therefore,
the evaluation of usability is 11-grade evaluation.

Notably, the data indicates that the physical effort required
during the data collection step was relatively high, as evi-
denced by an average score of 6.75. This suggests that
participants experienced a notable level of exertion while
engaging in the experimental tasks. In contrast, the frustration
levels for Wi-Fi were remarkably low, averaging at 1,
indicating a smooth and user-friendly experience. However,
the frustration level for the IMU was higher, averaging at
3.75, which could imply some usability challenges with this
device.

Regarding the ease of use, Wi-Fi was rated highly, with
an average score of 9.75, reflecting its user-friendly interface
and functionality in the context of this experiment. The IMU’s
ease of use, with an average score of 6.25, suggests that there
are opportunities for improvement to enhance its intuitiveness
and user experience.

Overall, these results point towards a favorable experience
with Wi-Fi in terms of usability and a moderate level of
physical effort required in interacting with the IMU. The
findings underscore the need for further enhancements in
IMU’s usability to reduce physical effort and improve the
overall user experience.

VII. CONCLUSION
In this paper, we propose a HAR system that uses CSI,
IMU, and CSI+IMU to identify eight daily activities. Our
experimental results demonstrate that the CSI+IMU system
outperforms the independent CSI and IMU systems, showing
the effectiveness of sensor fusion in improving recognition
accuracy. The SVM algorithm consistently performs well
across all systems, especially excelling in the CSI+IMU
system supported by energy and average FFT features.
However, it is important to note that the success of sensor
fusion depends on specific algorithms and features. Fusion
of CSI and IMU does not universally enhance recognition
accuracy for all features and algorithms and can, in some
cases, actually reduce accuracy. In experiments considering
individual differences, the CSI+IMU system exhibits better
performance.

Although the overall performance of the CSI+IMU is
superior to that of the standalone CSI and IMUHAR systems,
the CSI+IMU system still reveals room for improvement in
identifying small activities. Enhancements can be achieved
by increasing the number of IMUs, expanding Wi-Fi
connectivity, employing advanced algorithms, and enlarging
the sample size.

Regarding calculation speed, there is no significant
difference between CSI and CSI+IMU. Only the IMU
system is much faster than the others. If real-time processing
is required, it is appropriate to reduce dimensions using
methods like PCA or to solely use IMU sensors. Future work
will focus on computational speed, feature selection, and
dimensionality reduction applied to sensor data.

Additionally, our user experience analysis indicates that
the availability of Wi-Fi and manageable physical interaction
with the IMU is well received. These findings highlight the
need for further enhancements in the usability of IMUs to
improve the overall user experience in HAR applications.
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