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ABSTRACT Following the recent progress in the development of Terahertz (THz) generation and detection,
THz technology is being widely used to characterize test sample properties in various applications including
nondestructive testing, security inspection and medical applications. In this paper, we have presented a broad
review of the recent usage of artificial intelligence (Al) particularly, deep learning techniques in various
THz sensing, imaging, and spectroscopic applications with emphasis on their implementation for medical
imaging of cancerous cells. Initially, the fundamentals principles and techniques for THz generation and
detection, imaging and spectroscopy are introduced. Subsequently, a brief overview of Al —machine learning
and deep learning techniques is summarized, and their performance is compared. Further, the usage of
deep learning algorithms in various THz applications is reported, with focus on metamaterials design and
classification, detection, reconstruction, segmentation, parameter extraction and denoising tasks. Moreover,
we also report the metrics used to evaluate the performance of deep learning models and finally, the existing
research challenges in the application of deep learning in THz cancer imaging applications are identified and
possible solutions are suggested through emerging trends. With the continuous increase of acquired THz data
— sensing, spectral and imaging, artificial intelligence has emerged as a dominant paradigm for embedded
data extraction, understanding, perception, decision making and analysis. Towards this end, the integration
of state-of-the-art machine learning techniques such as deep learning with THz applications enable detailed
computational and theoretical analysis for better validation and verification than modelling techniques
that precede the era of machine learning. The study will facilitate the large-scale clinical applications of
deep learning enabled THz imaging systems for the development of smart and connected next generation
healthcare systems as well as provide a roadmap for future research direction.

INDEX TERMS Artificial intelligence, deep learning, terahertz technology.

I. INTRODUCTION
The Global Terahertz (THz) technology research and markets

including healthcare. To complement these resurgent trends,
it is imperative to continually develop state-of-the-art THz

forecast report of 2022 projected the market rise sharply
from USD 420 million in 2021 and reach USD 2,879 mil-
lion by 2030 with compound annual growth rate (CAGR) of
23.8% from 2022 to 2030 [1]. The increasing investments
are anticipated to steadily grow THz technology market in
developing regions and countries due to the rising sectors
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sensing, imaging and spectroscopy systems by integrating
them with advanced techniques such as deep learning. This
is crucial in overcoming bottlenecks in practical applications
thus, meeting the market demands and ensuring their efficient
and wide-scale utilization in various real-time operational
environments.

Being located within the 100GHz to 10THz frequency
range, the THz wave-based technology has boosted rapid
development and research on its exploration in diverse fields
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including quality and security inspection, astronomy, non-
destructive testing (NDT), biomedical characterization and
material estimation. The THz band is sandwiched between
the microwave and infrared (IR) bands of the electromagnetic
spectrum. Therefore, it is regarded as a transitional region in
which optics meets electronics. The THz radiation is treated
as a light beam in the optical domain whose light intensity can
be measured and can be manipulated by lenses and mirrors.
However, in the electronics domain, the THz radiation is
considered an electrical wave with a measurable phase of the
electrical field. Owing to its low photon energy of 4MeV at
1Hz, the THz radiation is nonionizing and can be used for
noninvasive observations of biological tissues without posing
significant harm. Also, many chemical and biological materi-
als exhibit unique spectral fingerprinting in the THz spectrum
for example, the vibrational modes of THz allow molec-
ular structure and vibrational dynamics studies that arise
from intermolecular and intramolecular interactions. Further,
the THz radiation is strongly absorbed by water molecules
which enable water dynamics observations and inspection of
metallic components enabled through the capability of THz
radiation to be reflected by metals and penetrate dielectric,
amorphous and non-conducting materials [2].

The ongoing development of strong field, high energy
THz generation and detection devices has led to the explo-
ration of THz technology in various sensing, imaging, and
spectroscopy applications through an anticipated integration
with other technologies like robotics, artificial intelligence
(AI) and internet-of-things (IoT) etc. As a result of the rapid
THz technology evolution and their near future increased
availability, the application of THz technology is expected to
expand. The acquired THz data include 1-dimensional (1D)
signal, 2-dimensional (2D) spatial domain images and tempo-
ral data. Therefore, it is required to appropriately analyze the
acquired signal for embedded information extraction, which
regardless of the objective becomes a potential Al appli-
cation. Conventional Al techniques use a knowledge-based
approach which is an analytical approach that uses mathe-
matical representation of a problem and search for a possible
solution under certain constraints. However, for most tasks,
the problem is not clearly described by mathematical rules
because the main tasks are not suited to specific step-by-step
processes and often abstract. An advanced machine learning
i.e., the deep learning techniques are able to automatically
learn from training data, reason and adapt without being
programmed explicitly, thus it is widely used in THz based
tasks [3].

The deep learning techniques have in recent years been
widely used to enhance the performance of THz technol-
ogy through providing support for data processing, reducing
the number of variables and higher prediction accuracy and
efficiency with reduced human intervention. The application
of machine learning in THz technology has been com-
monly realized in the following tasks. The reconstruction and
denoising tasks which are intended for image and spectrum
preprocessing to remove unwanted or irrelevant information
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and reduce number of variables from spectral and image
parameters thus increasing the data analysis efficiency [4].
The machine learning methods are also used for multivariate
quantitative and qualitative analysis of data for highly precise
classification and recognition of samples [2].

However, due to the unavailability of sufficient training
datasets, the deep learning technique has been scarcely inves-
tigated in THz cancer imaging datasets. Instead, a couple
of studies have explored the application of deep learning
approach for THz datasets in NDT, security inspection, THz
metamaterial design, agriculture and biological tissue assess-
ment applications etc. as shall be reported in this work.
The exploration of deep learning approach in such THz
applications and the identification of existing challenges
will contribute to the ongoing research and facilitate the
large-scale medical applications of deep learning enabled
THz systems.

A. RELATED WORK

An in-depth review of machine learning and deep learning
techniques for signal processing and classification for effi-
cient THz communication and sensing was presented in [2].
The article promoted the significance of THz frequency
domain spectroscopy (FDS) and THz time domain spec-
troscopy (THz TDS) in future reconfigurable. THz systems.
The THz channels effects on sensing performance have been
numerically validated using simulations based on realistic
data to pave the way for future research scope. An overview of
the signal processing like Savitzky Golay filtering, standard
normal variate and min-max normalization as well as tech-
niques for feature extraction for instance Principal component
analysis (PCA) etc. was presented. Further, the classification
techniques based on ML like support vector machine (SVM),
k-nearest neighbors (kNN), the Naive Bayes and discriminant
analysis are presented for qualitative and quantitative analysis
in joint THz communication and sensing. The approaches for
alleviating existing challenges towards the next generation,
robust, adaptive, and fast THz communication and sensing
platforms have also been provided. The sensing capabili-
ties of deep learning techniques in the THz band was also
explored, with the complexity and performance trade-offs
of the techniques in sensing and joint communications stud-
ied [2].

The challenges associated with machine learning methods
combined with THz systems such as low accuracy, high
water absorption, high cost and low spatial resolution have
also been addressed for improved robustness and generality
of models for THz data analysis. The application of ML
techniques to analyze acquired THz signals so as to extract
embedded information was reviewed by Park and Son [3].
The basic machine learning techniques and statistical per-
formance evaluation methods were described, they examined
THz imaging and spectroscopy applications based on ML
techniques for various tasks like disease diagnosis, estima-
tion of disease level, materials identification, and component
analysis.
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A comprehensive analysis of biomedical image and the
classification of images based on dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) and its comple-
mentary, the THz pulse imaging (TPI) was reported by
Yin et al. [5] with the aim to develop a unified multi-channel
framework that would explore synergies between the two
modalities for disease proliferation inference. They high-
lighted the commonalities in the data structures of both
imaging modalities so as to enable development of a data
fusion multi-channel framework for enabling software stan-
dardization. They discussed preprocessing and statistical
signal processing algorithms for both modalities using PCA
and the independent component analysis (ICA). They pre-
sented feature extraction and classification methods based on
SVM, the extreme learning machine (ELM) and using deep
learning methodologies that are applicable to both modalities.
The potential contribution as a review in terms of interdis-
ciplinary research, existing methodologies in the fields of
biomedical engineering, nano-engineering and ML has been
provided by Boulogeorgos et al. [6]. They presented the main
challenges that can be solved by the use of ML techniques,
for example in biomedical applications for development of
therapies and detection of disease. The ML methodologies,
their principles, building blocks and architectures were also
reported. The advantages and disadvantages of each ML
based technique were also highlighted.

The application of machine learning techniques such as
SVM, kNN, Random forest and Naive Bayes have been
reported for THz TDS imaging analysis in the NDT, security
and painting applications [7]. The review of artificial intel-
ligence enabled THz wireless technologies to meet demands
for next generation networks of high rate services have also
been reported in [8], [9], and [10]. Additional review papers
on Terahertz sensing have been reported in [11], [12], [13],
and [14]. The application of conventional machine learning
has been investigated in THz technology for example Sup-
port vector machine (SVM) [15], [16] k-nearest neighbors
(KNN) [15], [17], the Random forest (RF) algorithm [15] and
artificial neural networks (ANN) [17]. The use of deep learn-
ing and various ML algorithms have been widely explored
in other well established biomedical imaging modalities
and applications and some of them include. The identi-
fication of endometriosis presence from MRI images as
well as the severity determination was surveyed by [18]
which would create personalized treatment opportunities.
The application of the ML and deep learning techniques for
example SVM and use of the convolutional neural networks
algorithm (CNN) in the field of biomedical imaging using
various modalities for classification have been reported to
have achieved great results [19], [20], [21], [22], [23], [24].
Tchapga et al. [25], reported the application of classification
algorithms for biomedical imaging analysis. The catego-
rization of medical image datasets using ML classification
algorithms before diagnosis was also reported in [26], [27],
[28], [29], [30], [31], and [32] and various efforts to improve
biomedical image classifications investigated in [33], [34],
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[351, [36], [37], [38], [39], and [40]. A survey of disease diag-
nosis using ML classification techniques on medical images
from various modalities where SVM and ANN was found to
give the highest accuracy, sensitivity and specificity in [35]
and in [36] SVM and ANN were reported to contribute up to
42% and 31% respectively of the most used algorithms. The
application of ML based algorithms for detection of various
cancer and classification of images acquired using vari-
ous imaging modalities (mostly the conventional modalities)
were reported in several other studies like [25], [34], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [571, [58], [59], [60], [61], and [62].

B. MOTIVATION

With the continuous increase (in terms of volumes, vari-
ety and velocity) of imaging data that comes along with
the advancements in the imaging technology leading to the
emergence of new imaging modalities like THz imaging
etc., the use of deep learning and big data technologies is
a necessity. Training intelligent models are required to aid
the detection, classification, prediction, and localization of
various targets. The commonly used machine learning based
modeling tools use shallow structures. This poses challenges
in gathering in-depth feature information from THz spectral
and image data, hence limiting the prediction robustness to a
task specific application with limited accuracy. It is therefore
recommendable that deep learning methods are applied in
THz technology for improved robustness and accuracy of
prediction models.

C. CONTRIBUTION

The application of deep learning in THz imaging applications
has not yet been fully explored. The existing review papers
mostly focused on ML in the THz imaging and sensing
applications. Other related reviews focused on reporting the
progress of task specific ML techniques applications in THz
and the THz developmental progress in THz studies. In this
paper, we give a broad review of the recent applications of
artificial intelligence, particularly deep learning techniques in
THz sensing, imaging and spectroscopy applications towards
their implementation in medical imaging for cancer. More
specifically.

e The fundamentals, principles and techniques for THz
generation and detection, imaging and spectroscopy are
introduced.

e A brief overview of Al — machine learning and deep
learning techniques is summarized, and their perfor-
mance compared.

e The application of deep learning algorithms in var-
ious THz applications is reported, with more focus
on metamaterials design and classification, detection,
reconstruction, segmentation, parameter extraction and
denoising tasks.

e We report the metrics used to evaluate the performance
of deep learning models.
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e The existing research challenges are identified, and
possible solutions suggested. This will facilitate the
large-scale clinical applications of deep learning
enabled THz imaging systems for smart and connected
next generation healthcare and provide a roadmap for
future research.

D. ORGANIZATION

This review paper is made up of seven sections. The remain-
der of the work is organized in the following sections as
follows. The second section gave an overview of THz tech-
nology and in the third section we report an overview of
Al, summarizing the ML and deep learning techniques. The
fourth section presented the application of deep learning
techniques for various tasks such as classification, detec-
tion, identification etc. in the various THz sensing, imaging,
and spectroscopy applications. The metrics for evaluation of
deep learning model performance are reported in the fifth
section. In the sixth section we discuss the existing challenges
inhibiting the application of deep learning in THz biomedi-
cal applications, particularly cancer imaging. The suggested
solutions are envisaged to pave the way and provide scope
for future research. The summary of the paper is given in the
seventh section.

Il. OVERVIEW OF THz TECHNOLOGY

Based on the THz radiation generated, the two broad
categories of THz radiation generation schemes are the con-
tinuous wave (CW) THz and the pulsed wave THz. The
most commonly used THz system for biological samples
is the THz time-domain spectroscopy (THz-TDS) system
also called THz pulsed spectroscopy (TPS) that is based
on femtosecond lasers and enables direct measurement of
absorption coefficient and refractive index and hence the
sample’s complex permittivity in a single scan and broad
frequency range [190], [205], [206].

The THz pulsed imaging (TPI) system shown in Fig. 1 is
an extension of the THz TDS and they can be interchanged
by switching the scanning mechanism. This can be achieved
through movement (lateral translation) of the sample with the
illumination beam stationery so as to perform point to point
collection (raster scanning) of 2-dimensional information.
A typical THz system is made up of a source, detector and
optical components such as mirrors, lenses, polarizers and
waveguides. In spectroscopy, the beam is moved using stages
or piezoelectric rotators and/or galvo mirrors. For imaging,
the THz beam illuminates the surface of the object, sampled
by discrete grid and continuously scanned or pixel by pixel
scanned in raster mode. The acquired information is obtained
from the data acquisition card (DAQ), quantized to bits for
further image processing [63].

The TPI uses a coherent detection method in which the
THz signal’s amplitude and phase values are measured,
enabling refractive index, absorption coefficient parameters
to be obtained. In TPI systems there are several techniques
used for the detection and generation of THz radiation char-
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FIGURE 1. THz pulsed spectroscopy system.

acterized by output of broadband frequencies (ranging tens -
hundreds GHz to several THz). The mostly used sources
for generation of pulsed THz radiation are based on optical
rectification (OR) using nonlinear optical crystals (NLO),
biased photoconductive antennas (PCAs), carrier tunneling
and plasma in air. Most of the commonly used approaches
are based on PCA and OR where infrared (IR) femtosecond
lasers which emit in near infrared (NIR) are used. In PCA,
the principle of operation is such that a beam of pulsed laser
illuminates a PCA gap composed of thin semiconductor film
of high resistance with two contact pads of electrical property.
When the bias voltage and laser beam are applied, there is in
turn generation of a photocurrent and free carriers are accel-
erated by the static bias field thereby producing broadband
THz frequency to the free space [79], [93]. In OR, NLO
centrosymmetric crystals are used to generate THz broadband
from 0.1THz to more than 40THz. The NLO based crystals
include organic NLO, 4-N, N-dimethylamino-4’-N’-methyl-
stilbazolium tosylate (DAST) and 4-N, N-dimethylamino
-4’-N’-methyl-stilbazolium 2.4,6-trimethylbenzenesulfonate
(DSTMS). The principle of OR based sources is that intense
beams of NIR laser are propagated through crystals, non-
linear effects of second order occur thereby low frequency of
DC polarization is developed leading to an electromagnetic
single cycle pulse radiation with broad frequency spectrum
(from OHz to a particular maximum value). Alternatively,
charges acceleration can lead to radiation of electromagnetic
waves, and when certain conditions are reached, the produced
electromagnetic waves lie in THz range. Acceleration of
electrons can be achieved in vacuum, air or semiconductors
by using application of bias voltage over the gap, or by
laser beam’s second harmonic and fundamental frequencies
nonlinear four wave mixing in various gases or in air or
using an intense pulse of laser. Another technique for THz
pulsed radiation generation is surge whereby when bias volt-
age is applied on the semiconductor quantum wells (QWs),
THz radiation is produced through mechanism of polarized
electron hole pairs production [63]. THz TDS and THz CW
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techniques have been used for cancer and healthy tissues and
can be implemented in reflection, transmission and attenuated
total reflection configurations. Other THz techniques includ-
ing THz computed tomography and multi-pixel camera-based
imaging etc. have also been researched [64].

The THz sensing, imaging and spectroscopy has been
widely explored in various applications such as NDT, security
inspection, material characterization and wireless communi-
cation networks [65]. More recently, the application of THz
technology in biomedical applications is gaining momentum.

In Table 1, some studies where THz technology for imag-
ing and spectroscopy have been investigated for biomedical
and cancer applications are presented.

Ill. ARTIFICIAL INTELLIGENCE OVERVIEW

ML is a subset of Al whose algorithms’ performance improve
over time as they are exposed to more data. In this section,
the fundamentals of Al algorithms in THz technology appli-
cations are presented.

As shown in Fig. 2, the transfer learning (TL) and deep
learning (DL) are a subclass of ML, and they are made up
of neural networks with multiple layers. The ML approaches
mimic the neural system of human, and the ML methodolo-
gies are categorized as: supervised learning and unsupervised
learning, whereas Al uses knowledge-based approach. The
most common methodology is supervised learning and in
these techniques, a particular amount of labelled data is
required for training [3], [76]. A function is created which
maps input data onto output labels which rely on initial
training in other words, a mapping function g(x) is returned
which maximizes g(x,, y,) a scoring function for each n €
[1, N] where x, is the input’s nth sample, y, a label of x,
and N the training set size. The main tasks involved in the
supervised learning applied for THz imaging are classifica-
tion & regression, over fitting & generalization and feature
extraction & reduction [3]. In an unsupervised learning, the
hidden structure or features of data are explored without
training. In more detail, unsupervised learning is also known
as knowledge discovery, which is capable of determining
hidden patterns using unlabeled data and without prediction
datasets by clustering. Unsupervised learning is useful in
applications where labeling is not relevant or is an expensive
and its importance is being more realized in deep learning
where there is need for big datasets, but it is difficult to
get large and labelled datasets as well as in exploratory data
analysis phase to discover latent patterns or to group data.

The AI particularly, machine learning and deep learn-
ing has been proving to significantly improve performance
in processing medical images, with great potential to pro-
vide clinical decision support through the development of
computer aided diagnostic (CAD) systems and for ther-
apy development. Similarly, in the THz imaging domain,
the application of ML techniques has been realized for
localization of tumor from images through classification,
detection and segmentation tasks etc. Prior research has
mostly leveraged machine learning models that rely on statis-
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FIGURE 2. Subsets of Atrtificial intelligence for biomedical imaging.

tical inference to classify THz image tissue regions and image
segmentation with detection and recognition tasks as shown
in Table 2.

As shown in Table 2, machine learning has been employed
in various THz technology applications including cancer
applications for signal preprocessing, feature extraction, seg-
mentation, and classification tasks etc. Some of the machine
learning techniques that have been employed in different
THz imaging tasks include Support vector machines (SVM),
Principal component analysis (PCA), k-means clustering,
k nearest neighbors (kNN), Bayesian learning, Random For-
est, Decision trees, Ensemble learning and Adaptive boosting
etc. [3] [84]. However, these conventional machine learn-
ing models rely on statistical inference and the quality of
classification in such techniques depend on the effectiveness
of the preprocessing, feature extraction and segmentation
operations for dimensionality reduction.

As a result of rapid developments in algorithmic improve-
ments, increased quality datasets and computational power,
deep learning neural networks have recently made significant
advancements in the field of medical imaging with elimi-
nation of the need to manually extract features [85]. The
CNN have recently shown to receive more attention in various
image classification, denoising, identification tasks, as well
as promising to provide an improved approach for THz image
qualities since rapid THz imaging techniques usually suffer
poor image reconstruction quality [86].

A. FUNDAMENTALS OF DEEP LEARNING

Recently, deep learning based on neural networks has shown
to provide improved performance compared to the conven-
tional machine learning models through automatic feature
learning and back propagation in image segmentation, recog-
nition and detection tasks [84]. Deep learning architectures
are broadly categorized as supervised, unsupervised and rein-
forcement learning techniques. Some of the common deep
learning techniques include the convolutional neural network
(CNN), Recursive neural network (RvNN) and Recurrent
neural networks (RNN).
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TABLE 1. Biomedical applications of THz technology.

Ref. Technique Approach Results Limitations

[66] Terahertz o The progress of THz cancer imaging for epithelial e The potential of THz e Very high initial cost of THz
imaging cancers like colon cancer and skin cancer was reported.  imaging  technology to equipment.

e They proposed the possibility of integrating THz perform real time imaging
imaging systems with robotics (Terabotics) for real was reported.
time THz cancer imaging.

e Development of fast, compact probes.

[67] THz e Reviewed biomedical applications of THz waves, e THz significant contribution e Lack of standardized models for
technology summarizing their merits and demerits. to accurate, early and rapid accurate diagnosis

e A model for biomarker determination, removal of disease detection.
interference and removal of individual differences.

[68] THz imaging e Application of THz imaging and spectroscopy for e The potential of THz THz is yet to be developed to a
and analysis and characterization of cancer and DNA. imaging and spectroscopy medical tool capable of tissue
spectroscopy e Quantification through chemo metrics based on coupled with chemo information extraction.

machine learning algorithms like SVM, PCA were metrics:
reported. e to improve diagnosis
accuracy,
e Bio molecular  spectral
identification in mixture
systems.

[69] THz e Skin cancer detection and modulation/treatment was e High potential of THz e Small penetration depth of THz,
technology reported. imaging and spectroscopy e Spatial resolution measured by

e Recent THz achievements in skin diagnosis for skin melanoma and non- diffraction limit prevents single
applications. melanoma diagnosis cell detection.

e The improvement methods of THz imaging through ¢ Expensive THz equipment
contrast enhancement techniques were mentioned.

[70] THz  pulse e The detection of skin, colon and breast cancer was e Ability of THz pulse o The specificity and sensitivity of
detection numerically analyzed. detection to differentiate the used technique is to be further
system e Used semiconductor meta-material as a biosensor. between  cancerous and determined.

normal tissue.
[71] THz e The potential of THz spectroscopy in molecular e Great potential of THz e Challenges related to development
spectroscopy detection, environmental monitoring, and food technology  for  future and  establishment of THz
industry. innovation, technology hinder the progress of
e THz significance in public health and disease control e Viability for development of technology development.
was described. emergency solutions for
example in pandemics.

[72] THz e THz spectroscopy for cancer cell characterization, e THz technology is step by e Low detection sensitivity and
spectroscopy blood cell detection, tissue discrimination and step being developed to specificity of the technology,
technology bacterial identification. become a clinical tool. o High THz absorption of water.

o Effects of THz radiation on biological tissue

[73] Spectral e The Physics, implementation issues and image e They discussed the e Spectral noise, limited
imaging analysis techniques required in THz. suitability of THz spectral customizability and portability,
technique in imaging  technique in long image acquisition times.

THz range different applications

[74] THz imaging e Biological tissue dielectric properties, e Potential use of e THz limitation to deliver THz
and e THz dielectric permittivity model of water which hyperosmotic agents that are waves to internal and hard to
spectroscopy yields modes for damped resonant molecules and capable of cancer detection. access organs, limited

relaxation analysis. penetrability.
e Review of THz technology and its application in
malignancies detection
[75] THz imaging e THz technology diagnostic applications e The limitations of THz e Limited by low resolution and

and
spectroscopy

Resolution enhancement and automated diagnosis
techniques including through machine learning.

application in biophotonics
were identified and the
solutions proposed.

beam penetration depth due to high
THz absorption of water.

The most commonly employed and famous deep learn-
ing network is the CNN which have been extensively used
in various range of field applications [87], [88], [89]. The
main salient property of CNN is its ability to automatically
learn relevant image features without human supervision. The
architecture of CNNs is shown in Fig. 3 and it mimics the
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activity of human and animal neurons. The CNN layers can be
summarized as input layer, convolution layer, pooling layer,
fully connected (fc) layer and output layer. A 3-D convolution
of say 3 x 3 x 3 is applied to an input image so as to compute
the output image with characteristic representations of the
input image. When different convolution filters are applied,
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TABLE 2. Applications of ML in THz cancer imaging.

Refe  Algorithm Applicati  Results
renc on
es
[77] e Multinomial e Breast ® Model outperformed
Bayesian cancer the models 1D MCMC,
learning 2D EM
algorithm
[78] e PCA and ML e Breast e Precision, sensitivity
classifier cancer and specificity of
92.85%, 89.66% and
96.67% respectively.
[17] e KNN and e Breast e Accuracy of 98.2% and
ANN cancer 96.4% for ANN and
algorithms KNN respectively.
[79] e Markov o Breast e Model outperformed
random fields cancer existing models
and Gaussian
mixture model
[80] e SVM and e Breast e Accuracy 97.3%
Bayesian cancer
neural
network.
[81] e PCA and least o Prostate e Accuracy 92.22%
squares SVM cancer
(LS-SVM)
[82] ¢ SVM e Cervica e Sensitivity and
1 specificity of 88.6%
carcino and 96.7% respectively
ma
[83] e Gabor filter e Skin e Accuracy of 94.117%
and ANN cancer for ANN

Fully connected

Convolution Pooling

Input

Feature extraction Classification

FIGURE 3. The architecture of CNN.

many output images are obtained termed feature maps or
channels where each feature map represents its input mod-
eling result. Pooling is then applied to compute the average
or the maximum of pixel values thereby reducing dimen-
sion and increasing the modeling invariance by small signal
change [2]. At the end of the CNN network, the fc layers are
connected to determine the final output. Back propagation is
used to determine the parameters such as filter coefficients.
In more detail, the CNN architecture is made up of the layers:

o Input layer: input image to the CNN network is usually
of 3 channels; red, green and blue (RGB)
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o Convolution layer: in the convolution layer, weights are
contained which extract image distinguished features,
evaluating the local neurons output.

e ReLU: Rectified Linear Unit function is a commonly
used activation function for introducing non-linearity by
thresholding at zero.

e Pooling: allows down sampling of spatial dimensions.
The pooling types include max, mean and stochastic
pooling which helps to reduce the feature maps dimen-
sions while getting robustness.

o Flattening: the 3D matrix is reorganized to vector.

o Hidden layers: layers cascade between input and output
layer make up the hidden layers.

o Fully connected layer: determines the output.

The most common networks based on CNN include AlexNet,
GoogleNet, VGG, Inception-ResNet-v2 and ResNet have
been investigated for various medical imaging tasks. The
extensive review of all deep learning techniques and their
architectures has been reported by [87].

IV. DEEP LEARNING IN THZ SPECTROSCOPY, IMAGING
AND SENSING APPLICATIONS
THz spatiotemporal and spectral datasets can be complex
and extensive, thus deep neural networks can be employed
as they are more robust than task specific. They provide
improved learning efficiency and speed relative to conven-
tional machine learning models. Moreover, they are capable
of automatically learning and creating new features by
themselves and deep learning outperforms machine learning
algorithms in terms of training and testing accuracy.

Although deep learning models provide excellent effi-
ciency and accuracy, they require large sets of labelled
training data. This is especially valuable in THz based
applications of deep learning as the THz datasets are still
limited. Advances in deep learning have however introduced
novel learning models such as transfer learning that pro-
vide even more training speed and enhanced performance
with limited datasets [2], [90]. The application of various
deep learning architectures has been explored in various THz
imaging-based tasks as shall be discussed in this section.
These applications have been classified into the following
tasks: (1) design of metamaterials, (2) classification, detec-
tion and recognition where sets of data are categorized into
different classes and localization or identification whereby
the objects of interest are located, (3) high resolution image
reconstruction, (4) parameter extraction, (5) denoising and
(6) segmentation for extracting the region of interest. These
tasks are explored in THz imaging, spectroscopy and sensing
applications including non-destructive testing (NDT), secu-
rity inspection, material and substance identification as well
as biology & medicine applications.

Additional tasks that have been previously explored using
deep learning include optimization of wireless communica-
tion systems.
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FIGURE 4. The pipeline of deep learning tasks.

The classification, detection, recognition, and prediction
etc. tasks based on deep learning have different targets, but
they follow an overlapping implementation pipeline as shown
in Fig. 4. The preprocessing step is the initial and crucial
step of developing deep learning models which is employed
to improve the image quality, remove unwanted noise and
irrelevant background parts from the images as well as for
dimensionality reduction. The preprocessing computational
operations include resizing the image, colour scale conver-
sion, image contrast enhancement, filtering for noise removal,
image restoration, morphological operations etc. After pre-
processing, the data is partitioned into training, testing and
validation sets which will be used as data input/output (I/O)
and gets sampled. To increase the dataset size for increased
model complexity, data augmentation is applied through var-
ious computational operations including rotation, scaling,
shearing, translations, and geometrical transformations etc.
to obtain training and validation patches. The parameters of
the deep learning model get selected and specified then the
data training is initialized, after which the model evaluation
is performed using the validation dataset and results obtained.

A. DEEP LEARNING IN THz METAMATERIALS
APPLICATIONS

Metamaterials (MM) are artificial electromagnetic materials
that have special physical properties such as negative per-
meability, super absorption, optical magnetism, anomalous
reflection and negative refractive index. The development of
MM has recently become a research hotspot in THz technol-
ogy for development of THz devices for example label free,
highly sensitive biosensors based on split resonant rings for
applications like cancer cell detection, lipids identification,
virus detection and quantification of aflatoxin [91]. MM have

VOLUME 12, 2024

also been explored using optical waveguides, optical buffers,
slow light devices, optical sensors and detection, switching,
opto-chemical sensors, thermo-optical modulators and cloak-
ing devices etc. [92], [93], [94], [95].

The application of deep neural networks for optimizing the
design of metamaterial structures has been recently inves-
tigated in a couple of studies for example the design of
THz metamaterial absorbers have been reported in [96]. The
design of chiral metamaterial induced asymmetrical trans-
mission (AT) based on a deep learning approach has been
investigated to accelerate chiral metamaterials design [97].
The proposed deep learning framework included bidirec-
tional networks i.e. spectra network (SN) and an extended
network (EN) with the capability to decipher the non-intuitive
relationship between chiral metamaterials and their associ-
ated electromagnetic responses autonomously. Their model
showed the ability to accurately predict metamaterial THz
responses and inversely retrieve structure parameters with
more efficiency than conventional metamaterial design
approaches based on physical designs.

Figure 5 shows the framework of the deep learning model
that can be used to automatically design chiral THz meta-
materials developed by [97]. The network weights or data
are represented by the blocks and the network neurons repre-
sented by the circles. The model is made up of bidirectional
networks SN and EN as shown. In (a), the SN data flow
follows a forward path that contains tensor down sampling
(TDS) and a tconv up sampling (TUS) modules for converting
structural parameters to response spectra. The inverse path
with the aid of a well-trained forward path of the SN can
effectively solve many to one problem in MM design (b)
shows the EN structure where the forward path can accu-
rately predict THz MM’s asymmetric transmission spectrum
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FIGURE 5. Deep learning based framework for chiral THz metamaterial design [97].

and the structural parameters from the desired AT directly
retrieved by the inverse path. (c) shows the combiner that
can combine the weighted sum of the SN and EN retrieval
parameters. In (d), the neural tensor layer details in the SN
TDS module is shown, with fcg 1-4, bl, usul-4, fcn, fcb,
tconv, conv and itp being the fully connected layer groups,
bottleneck layer, up sampling units, fully connected layer,
fully connected layer followed by batch normalization layer,
transposed convolutional layer, convolutional layer and inter-
polation respectively [97]. In related works, the application
of deep learning techniques was explored for metamaterials
and metasurfaces structures and designs. In [98] and [99],
a neural network was applied to predict absorption of a
metasurface based on THz Graphene and showed capability
for performing inverse design of the structure based on the
absorption spectrum of interest. Deep learning was explored
to optimize the design process of metasurfaces [100] and
an Al based paradigm for THz smart sensing was designed
using a crypto-oriented CNN for securely and accurately
identify metamaterial in mixtures [101]. An inverse design
of metasurface and neural network based design parameters
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for future multifunctional THz devices are also investigated
by [102].

The target driven conditional generative network (TCGN)
was used for reverse design of a chiral metasurface struc-
ture [103]. As shown in Fig. 6, each network is made up
of input, output and hidden layers. The Generator’s hid-
den layer consists of five fc layers and an embedded layer.
Similarly, the hidden layer of the discriminator is made
up of five fc layers and only one fc layer in the Tar-
get Extractor. The method was shown to enable efficient
design of chiral metasurface structures on demand with
good scalability and reverse design realization based on the
TCGN deep learning [103]. A THz hologram reconfigurable
imaging has been proposed in another study using discrete
dielectric lens antenna design with deep learning (diffrac-
tive deep neural network) [104]. The application of deep
learning for the optimization of metasurface and surface
structure and design process has been explored by [105],
proving the capability of neural networks to accelerate the
design process and optimize the structure of metasurface
structures.
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B. CLASSIFICATION, DETECTION AND IDENTIFICATION
Deep neural networks have been applied for classification,
detection, recognition, identification and related tasks like
characterization, prediction, and analysis in the THz spec-
trum. A neural network classification algorithm was used as
a diagnostic tool to accurately differentiate between levels of
thermal injury and simplify the diagnosis process based on a
THz portable handheld spectral reflection scanner [106].

Figure 7 shows the flowchart of the neural network-based
classification of burn injuries. The images were acquired
using THz TDS which were denoised and band-pass fil-
tered. Fourier transform was applied on the THz time
domain signals and de-convolved using the Wiener algorithm.
From each burn, up to 8 regions of interest were randomly
selected and their mean preprocessed spectra used as input
to the neural network with burn depth as the ground truth
for classification. The model showed robustness with area
under the curve (AUC) and receiver operation characteris-
tic curve (ROC) (AUC-ROC) of 91%, 88% and 86% for
partial, deep partial and full thickness burn classifications
respectively [106].

In [107], the detection of the internal defects in a glass fiber
reinforced polymer using THz time domain signals has been
explored. The performance of three neural network models
have been compared and the 1D CNN outperformed LSTM
RNN and bidirectional LSTM RNN models based on recall
and F1 score (harmonic mean of precision and recall scores
ie,Fl = 2(leij)) metrics. The YOLO-MSA net-
work has been investigated for detection of minor defects with
high accuracy at real time speed for industrial online detection
systems [108] and the YOLO V4 used for printed circuit
board (PCB) defects detection in THz nondestructive testing
application [109]. The recognition of tissue burns has been
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investigated using CNN which proved to be more robust than
existing algorithms in [110]. Recognition of indoor objects
has been addressed using THz based synthetic aperture radar
and machine learning algorithm for localization and detec-
tion of the target object [111]. Deep neural network models
have also been explored for automated classification of glu-
cose [112] and materials based on THz TDS [113]. CNN has
been used for drug detection such as anti-tuberculosis fixed
dose combinatorial formulation based on THz TDS [114],
detection of a foodborne pathogenic bacteria [115]. Deep
earning models have also demonstrated precise and efficient
predictions of resonant mode characteristics i.e. loss, fre-
quency and electrical distributions for THz QCL lasers with
distributed feedback [116]. The characterization of kernel
size of the convolutional layers for THz deep learning models
for high precision THz tomography was presented by Hung
and Yang [117] and Transfer learning was demonstrated for
automatic recognition of defects hidden in fiber reinforced
polymer based THz nondestructive technology [118]. The
security inspection based on deep learning and THz imaging
technology is another application that has been leveraged to
detect dangerous goods and hidden dangerous objects with
accuracy and speed that meets the optimum security check
requirements [119], [120], [121], [122], [123] as well as
in industrial inspection THz applications for recognition of
defects in integrated circuits (IC) [124], plastics and ceramics
in real-time manufacturing process [125], [126] and nonde-
structive testing of impurities in wheat grains [127].

Deep learning techniques have been applied in the THz
spectrum for identification and localization of different mate-
rials and substances. In [128], the attention bidirectional long
short term memory (BiLSTM) and a CNN based model
were used for identification of antibiotics in the THz spec-
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FIGURE 7. The signal processing pipeline for classification of burns [106].

trum. The model confirmed better interpretability and strong
recognition with an F1 score of 0.98. Figure 8 shows the
architecture of the CNN-BiLSTM-Attention model which
is made up of three main layers. The first layer is a CNN
based feature dimension reduction layer that performs model
computational complexity reduction. The feature extraction
layer uses the BiLSTM to extract features and the attention
mechanism (AM) and BiLSTM to obtain the data sequences
of the antibiotic [128]. Localization of biosensors in the
human blood stream for anomalies detection in the body has
been introduced which exploits inertial positioning and sub
THz backscattering [129].

Another study proposed the deep learning method called
Structured Intra-Attention Bidirectional Recurrent (STABR)
for three dimensional (3D) THz indoor localization applica-
tion [130]. The 3D localization demonstrated accuracy and
network model showed robustness and fast convergence. The
application of machine learning techniques has also demon-
strated high performance when investigated for agricultural
application for precise identification of plant species at cel-
lular level in the THz frequency range 0.75-1.1THz [131].
Identification of crude oil spills using THz and deep learning
were explored to identify the pollution location for increased
environmental protection and monitoring [132] and the iden-
tification of THz tags was investigated by [133] and radio
frequency identification (RFID) tags [134] as well as mate-
rials identification [135].

C. HIGH AND SUPER RESOLUTION THz IMAGE
RECONSTRUCTION

Deep learning tools can potentially be used to alleviate the
limitation of low spatial resolution that plagues THz imaging
applications towards high and super resolution THz image
reconstruction. In [136], the super resolution of THz images
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was demonstrated based on CNN through adjusting the inter-
polation parameter of the network.

Figure 9 shows the framework of the adjustable or accom-
modative deep residual CNN network for real aperture THz
super resolution imaging. The architecture of the basic net-
work (Nb) is on the left side of the figure. When the pixel
shuffle layer of the network is slightly adjusted, the down
sampling interval (Ds) are applied and optimization of all
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the network parameters is achieved. This is achieved through
the training process where the loss function of reconstructed
images and high-resolution images are minimized itera-
tively. The right-hand side of the architecture is the layout
of the adaptive network (Na). The simulation and tested
data acquired using a frequency modulated continuous wave
(FMCW) real aperture scanner demonstrated effectiveness
and superiority of their method quantitatively and qualita-
tively [136].

The reconstruction of THz images based on deep learning
for superior image quality through high and super resolution
image reconstruction was also explored for; 3D THz image
reconstruction [137], THz CT 3D image reconstruction [138],
[139], [140] and 3D THz aperture radar imaging [141], [142].
THz coded aperture radar imaging. Deep learning techniques
have been applied in; residual learning based THz spectral
image reconstruction [143], improving the resolution for
defect detection [144], [145], in THz nondestructive testing
applications [146], [147], in industrial applications for exam-
ple IC manufacturing [124], [148], [149], [150], in security
inspection applications [151] and various THz imaging appli-
cations [152], [153]

D. PARAMETER ESTIMATION OR EXTRACTION

The estimation and extraction THz related parameters has
also been explored [154] including the model parameters
associated with materials from FMCW THz data was pro-
posed that uses deep optimization based on a neural net-
work [155]. In [156] estimation of the number of layers in
THz TDS layer thickness measurements were determined
using a feed forward neural network and the approximations
for material parameter extraction were performed artificial
neural networks [157]. Mikerov et al. proposed neural net-
work based fast, post measurement technique for removing
effects of water vapor on THz TDS to enable dry atmosphere
measurements [158].

E. DENOISING

The THz images can be recorded through strongly scattering
medium and the THz measurements can be noisy with low
signal to noise ratio (SNR) and can be performed imper-
fectly under real operational conditions [65]. These and other
factors are sources of noise and can cause low transparency
causing distorted measurements and making discrimination
of objects and regions complicated. Deep learning can be
attractive to enable low noise measurements and resolve
objects. In [159],a neural network known as WaveNet and
the CNN were used to enhance a noise degraded THz signal
through deep learning for the acquisition of high SNR THz
signals without having to increase the measurement time.
A CNN was proposed for reducing artifacts and noise in THz
TDS and THz imaging applications showed the effectiveness
of the method for improving the under-sampling THz image
quality and allowed high acquisition rates [86]. In another
study [160], a multistage network called DInet was used THz
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image restoration of degraded THz images from blurring
effects like noise, diffraction phenomena and intrinsic long
wavelength. The point spread function of THz imaging was
first reconstructed and DINet designed for image restoration
on THz datasets.

F. DIMENSIONALITY REDUCTION/SEGMENTATION
Medical images play a significant role in medical diagnosis;
however, their acquisition is often affected by imaging equip-
ment and local volume effects etc. which causes problems like
edge blurring to be inevitable. The segmentation is crucial
for extracting valuable regions of images or image objects
through partitioning, giving the object details like location
and boundaries. This facilitates analysis, identification tasks
and also useful in obtaining size of the region of interest
for example size, volume which are helpful for diagnosis
and treatment [161]. The segmentation can be as simple
as cropping out the region of interest and as complex as
the application of algorithms. The algorithms traditionally
used for segmentation include Region based (region growth
and threshold segmentation), morphological approach, edge
detection and segmentation based on clustering. Clustering
based segmentation techniques include Fuzzy C-means clus-
tering and nuclear method Fuzzy C-means clustering.

The blurred margins often compromise the segmentation
of the region of interest particularly when traditional seg-
mentation techniques based on statistical inference are used.
Moreover, it is a challenging task to perform segmentation
on tumors that have invaded the muscular tissue. The deep
learning techniques prove to provide improved performance
in these challenging tasks. The automated segmentation of
THz images have been recently explored for example using
deep learning for automatic segmentation of THz glioma
images [64]. In [84], the breast cancer tissue segmentation
and classification was investigated using a deep CNN models
to perform pixel wise classification of THz spectrograms
obtained through image preprocessing based on the wavelet
synchronous squeezed transformation (WSST).

The preprocessing approach converts THz time sequential
data of each THz pixel to a spectrogram, the spectrograms
were then used as the input tensors to the network models
to perform pixel wise classification to achieve a cancer tissue
segmentation map. The Inception-ResNet-v2, ResNet-50 and
GoogleNet pretrained CNN based network architectures were
modified for training through replacing the last fc layer that
connects directly to the classification results. By doing so,
the learnable parameters from fc layer can adjust themselves
two times quicker than those in the convolution layer during
back propagation training. The performance of the investi-
gated CNN models was evaluated using the leave one sample
out cross validation and other evaluation metrics including
precision, accuracy, size and intersection which demonstrated
improved performance relative to the conventional statistical
methods. The results showed improved segmentation of can-
cerous tissue regions and muscle in xenograft tumors [84].
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FIGURE 9. Architecture of the CNN network for THz super resolution imaging [136].

G. OTHER DEEP LEARNING APPLICATIONS IN THZ
The application of Deep learning in the THz spectrum have

TABLE 3. Confusion matrix examples for multiple classes.

also been explored for wireless communication and next Estimated c c c
generation network applications for example a deep learning True ! : !
based autoencoder for fiber —-THz integrated 6G radio access
network at 220GHz [162] CNN based THz channel estima- G ‘1 ‘12 Gy
tion and optimization [163], [164], [165], deep learning based & Ca1 ‘22 1
design of THz based 6G wireless communication [10], [166],

G n 2 cy

[167], [168], [169], [170].

V. METRICS FOR PERFORMANCE EVALUATION IN DEEP
LEARNING
The evaluation metrics measure the performance in terms of

Estimated
accuracy, sensitivity, specificity etc. of the developed deep Positive Negative
learning or machine learning model. True
Positive a b
A. CONFUSION MATRIX Negative c d

The confusion matrix consists of ground truth class in the
rows of the matrix and estimated class in the column.

In Table 3, suppose a classification with J classes would
imply C; inputs in testing dataset out of Z!=1 cjj trials, c;j
would be classified as C;. The rate of correct classifica-
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TABLE 4. Confusion matrix examples for binary classes.

tion for each class C; known as a recall is expressed as;
cii/ Zle cij. The average recall for all classes known as
mean accuracy denotes the overall performance for classi-
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FIGURE 10. ROC examples from different PDFs. a) with small overlap
between the PDFs and b) much overlap [3].

fication with multiple classes. For the binary classification
(Table 4), the metrics used for evaluation are true positive
rate (TPR), the false positive rate (FPR), the respective true
and negative rate (TNR and FNR) which are as expressed
follows [3]:

TPR = a/(a + D) i.e., sensitivity

TNR = d/(c + d) implying specificity
FPR = c/(c+d) i.e., 1 — specificity
FNR = b/(a + b) i.e., 1 — sensitivity

B. ROC AND AUC

For binary classification, determination of the threshold A4,
on which classification decision is based i.e., whether positive
or negative affects the classifier performance.

Considering y arandom variable of y, with two conditional
probability density functions (PDF) denoted as f,, (y|pos) and
fy (vIneg) for y given positive and negative true class of input.
TPR the area of f, (y|pos) for y > A and FPR f, (y|neg) for
y < A. The curve is plotted for TPR against FPR for A values
known as the receiver operating characteristic curve (ROC)
as illustrated in Fig. 10.

C. COEFFICIENT OF DETERMINATION

Usually denoted by R2, the coefficient of determination is
a metric for performance evaluation that uses regression in
which the average deviation is measured between target and
estimated values. Suppose for nth dataset instant, the target
and estimated values are y, and y/, respectively, the estimation
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error e, = y,—y, and R? as given in equation below for all the
testing dataset instances. R> gives the effectiveness measure
of the estimated value in comparison to a baseline estimator
through which y, is predicted as y for all the values of n.
R? = 1.0 implies a perfect estimator, R> = 0.0 for baseline
estimator and negative value for R? worse estimator.

2
R2—1 n €n

=1- m y = average (yn) (D

D. K-FOLD AND LEAVE-ONE-OUT CROSS-VALIDATION
Considering small occurrences in a given task, the training
and testing data will be insufficient to reliably evaluate the
performance of an ML model, in this case, a k fold cross
validation whereby many training and testing trials can be
done using different datasets is used [171]. k equal sub-
sets of the dataset are divided, and one subset is assigned
to testing set, the remaining k — 1 for training and then
train the model as usual. The process is then repeated k
times using each k testing set to obtain £ models and
their performance then get the average of the performances
as the final performance. When the dataset is too small,
the leave-one-out cross validation (LOOCYV) is utilized for
evaluation [171].

VI. OPEN RESEARCH CHALLENGES AND OPPORTUNITIES
The THz imaging shows great biomedical research potential
as well as clinical potential through its unique spectral fea-
tures for example non-ionizing, non-invasiveness and label
free medical imaging and cell detection [210]. The ability
of a medical imaging tool to detect cancer accurately and
rapidly is critical for early diagnosis, early care and monitor-
ing progress of treatment. The existing technologies mostly
depend on ionizing radiation and biological or chemical
labelling like use of nuclides which can adversely affect
biological tissue and cell functions and activities thus limiting
them to molecular resolution. To elaborate further, a compar-
ison of the advantages and limitations of THz radiation-based
imaging compared to existing technologies that are based on
ionizing radiation such as X-Ray and Computed Tomography
(CT) in the context of biological imaging can be summarized
as follows:
Advantages

« Non-ionizing and non-invasiveness due to low photon
energy

« Sensitivity to bipolar molecules like water enabling high
contrast between diseased and normal tissue.

o Spectral parameter precision, for example measure-
ments of amplitude and phase can be simultaneously
obtained.

o Spectral fingerprinting whereby the spectra of different
cells are unique.

« Can be easily interfaced with analytic systems.

o Has early molecular detection capability.
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o Outstanding ability for surface imaging
« Label free detection.
o Less scattering loss.

Disadvantages

« Relatively insufficient penetration depth (macro level),
low spatial resolution, poor SNR.

« Long image acquisition times.

« High equipment costs.

o Immature technology, lack of standardization of mea-
surements, measurement protocols, processes or models
for comparability, reproducibility, and possibly clinical
adoption.

« Strong absorption of THz waves by water

« Lack of established databases or repositories to facilitate
data driven academic research.

Previously reported studies have illustrated the feasibility
of THz based technology for cancer detection including
skin cancer, breast cancer, glioma, gastric, digestive, cervical
cancer etc. with ability to clearly delineate the cancer mar-
gins [172].

The application of conventional machine learning algo-
rithms that are based on statistical inference has been
leveraged in THz imaging, spectroscopy and sensing appli-
cations as previously presented. The performance of such
techniques however relies on the accuracy of dataset pre-
processing, feature extraction and segmentation prior to
subjection to the classification model. The recent explo-
ration of deep learning-based models has shown to out-
perform traditional machine learning techniques are out-
performed based on various performance evaluation met-
rics like accuracy. Moreover, deep learning models are
more robust than task specific and they are capable
of automatic feature learning and extraction, therefore
they can be used for heterogeneous and multimodal data
applications.

Being a class of interpolation algorithms, the deep learn-
ing can be found an attractive tool in the THz technology
for various applications in complex tasks like classifica-
tion, detection, noise removal and high-resolution image
reconstruction etc. as reported in this work. The use of
deep learning techniques in THz technology applications
can help alleviate the problems associated with THz tech-
nology such as low, diffraction limited spatial resolution,
slow acquisition speed etc. and can be useful for design-
ing compact diffractive elements, efficient THz emitters and
detectors, improve quality of recorded data and reach super
resolution. In the THz technology fraternity, deep learning
algorithms have been explored in non-destructive testing,
security inspection, material/substance identification, meta-
material design and wireless communication applications.
Its application in biomedical applications, particularly THz
cancer imaging related tasks like cancer classification, char-
acterization, detection, prediction etc. are still scarce. Here
we discuss some of the challenges limiting the exploration
of deep learning techniques in THz imaging for cancer,
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the alleviation of which will pave way to future research
scope.

A. UNAVAILABILITY OF SUFFICIENT TRAINING DATASETS
The deep learning networks are extremely data hungry and
involve representation learning thus require extensively large
training datasets for achieving well behaved performance of
the models [87]. The unavailability of sufficiently labelled
THz cancer image datasets is one of the major challenges
inhibiting the exploration of deep learning for THz cancer
image applications in academic research. Efficient creation
of THz cancer image database is expensive and involves
complex processes.

Due to this limitation most previously published works
have focused on shallow machine learning and statistical
based techniques to perform classification, segmentation and
detection tasks in THz imaging studies which do not require
huge datasets [3]. Figure 11 shows the relation of model
performance to the amount of data for deep learning and
conventional machine learning algorithms like SVM, k means
and kNN etc. As can be seen from the figure, for deep learning
algorithms as the data increases a well behave performance
model can be achieved. In THz cancer imaging studies, the
unavailability of sufficient datasets limits the exploration of
these models for academic research. At the time of writing
this paper to the authors’ knowledge, there are no shared
labelled THz cancer image datasets unlike in other modalities
like MRI, CT and X-Ray which have well established, pub-
licly shared datasets that support data driven research. The
unavailability of sufficient THz image datasets is mostly due
to the fact that the technique is not yet fully established, more
factors contributing to the unavailability of sufficient training
THz datasets include:

« High cost of commercially available THz equipment i.e.,
from $100000 to $600000.

o The current sources of samples include human tumors
from freshly excised tissues obtained from hospitals
and Biobanks, animal models based on xenograft and
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transgenic and from phantom models made from mate-
rial that mimic fresh tissue. The processes involved in
obtaining the sample are still complex and difficult due
to hospital regulations, restrictions and high tissue costs
from Biobanks.

o The use of freshly excised tissue samples is associated
with long processes, for example firstly going through
histopathology process and sample preparation process
like staining and embedding which require special envi-
ronmental conditions.

o The data acquisition methods and procedures in THz
imaging are not yet standardized and are still complex.

To address the data unavailability limitations in THz cancer
imaging, we suggest four approaches that could facilitate aca-
demic research. First, the employment of Transfer learning
based on deep learning whereby one pretrained deep learning
network model is used as a starting point for developing a
training model. This can be achieved by fine-tuning a pre-
trained model such as AlexNet, GoogleNet and ResNet to
learn a new task such that the acquired knowledge from one
domain (source) gets transferred to the target domain even
when there is a disjoint feature space and data distribution
of source and target. The network retraining using transfer
learning is easier and faster than developing and training the
model from scratch. Moreover, it enables less and imbal-
anced training data usage and reduces computing resources
and training time [90]. Secondly, data augmentation tasks
can be performed to increase training dataset size through
image rotation, scaling, translation, and mirroring etc. This
improves the model performance and accuracy while the
image original label is not changed. Thirdly, generation of
synthetic datasets through simulations can increase training
dataset volumes required for deep learning-based simulation.
Lastly, the implementation of multimodal data fusion can
also be considered to alleviate the data shortage challenges in
data driven THz cancer imaging studies by taking advantage
of the automatic feature learning capability of deep learning
models. This does not only address the THz dataset shortages
but also enhances model complexity and makes the deep
learning model robust than task specific.

B. IMBALANCED DATA

Another challenge in applying deep learning models in THz
imaging for cancer studies is imbalanced data. Biological data
tend to be commonly imbalanced as generally there are more
numerous negative samples than positive ones [173]. When
a deep learning model is trained over imbalanced datasets,
undesirable results may be obtained. To solve the imbalanced
dataset limitation in THz cancer imaging applications, the
following techniques can be used for example employing
the correct criteria for result prediction and evaluating the
loss such as the area under curve (AUC) as the criteria and
resultant loss. Weighted cross entropy loss should also be
employed which ensures good performance of the model with
small classes. Large classes can be down-sampled and small
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classes up-sampled. To make the model handle imbalanced
datasets, some methods such as constructing models for every
hierarchical level since biological systems have hierarchical
label space [87], [174].

The issue of imbalanced training datasets in deep learning
based THz image applications for breast cancer study has
been encountered by Liu et al. [84], which was solved through
adopting the weighted cross-entropy loss function for training
the classifiers. An equal weight of each sample was implicitly
assigned when the leave one sample out cross validation
was performed. The deep learning-based segmentation was
evaluated in two-class and three class categories due to their
highly imbalanced amount of THz scan signals in the muscle
class.

C. OVERFITTING

Due to a vast number of correlated and complex parameters as
well as lack of training data, deep learning models often have
high chances of resulting in overfitting of data during training
stage which reduces the performance of model on testing
data [175]. Over fitting of training data prevents the classifier
to be generalized to new samples. High complexity and flex-
ibility of a deep learning model was also considered to bring
high risks of overfitting [174]. When proposing deep learning
for THz cancer imaging applications, this problem should be
accurately handled and considered by developing techniques
that handle the problem. Deep learning models can overcome
overfitting through implied bias of the training process [175],
[176] Some techniques have been reported to ease overfit-
ting including based on model parameters and architectures
such as batch normalization, weight decay and dropout [87].
Model input based techniques such as data augmentation and
corruption and model output based techniques that regularize
the model though penalizing the over confident outputs [177].
To avoid overfitting by increasing the amount of training data
through augmentation, data augmentation techniques which
are data-space solutions incorporates a couple of methods for
improving size and attributes of training datasets. The data
augmentation techniques include but are not limited to flip-
ping, rotation, color space augmentation, translation, noise
injection and cropping. When such techniques are used, deep
learning networks can perform better. The Siamese network
was used expand the training dataset and prevent overfitting
without using traditional data augmentation techniques in a
deep learning based THz cancer imaging study [84], [174].

D. INTERPRETABILITY OF DATA

The deep learning techniques are in fact interpretable though
occasionally analyzed as a black box. A method is how-
ever required to interpret deep learning to obtain valuable
patterns and motifs that are recognizable to the network.
In disease prediction or diagnosis tasks, this will be helpful to
enhance accuracy of prediction outcomes which are the basis
of the model decision. Scores of importance for each portion
of a particular example can be given for example through
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perturbation or back propagation based techniques to achieve
the outcomes with enhanced accuracy [178].

E. UNCERTAINTY SCALING

When employing deep learning techniques, the final predic-
tion label is required together with the label of the score
of confidence for each inquiry from the model to achieve
prediction. The measure of how the model is confident in
its prediction is the so called score of confidence and it’s a
significant attribute in preventing belief of misleading and
unreliable predictions which reduces resources and time con-
sumed in proving misleading prediction outcomes in various
application scenarios [179], [180]. In THz cancer imag-
ing and related applications, uncertainty scaling is crucial
for evaluating automated clinical decisions and improving
reliability of deep learning-based disease diagnosis. Due to
overconfident prediction output of different deep learning
models, the score of probability e.g., from the softmax output
of a deep learning network is more often incorrectly scaled
and thus requires post scaling for a reliable probability score.
Several techniques can be used to output correct probability
scores such as histogram binning, Bayesian Binning into
Quantiles, legendary Platt scaling and isotonic regression,
temperature scaling reported achieved superior performance
for deep learning techniques [87].

F. MODEL COMPRESSION

Deep learning models require intensive computational and
memory requirements for obtaining well trained models,
this is because of the large number of parameters and huge
complexity of the models. The healthcare application is one
of the most data intensive fields which reduces the imple-
mentation of deep learning in limited computational power
machines. Additional computation power is required to com-
ply with vast sizes of heterogeneous data in healthcare.
Modern hardware based parallel processing technologies
have been proposed such as Field programmable gate arrays
(FPGA) and Graphics processing units (GPUs) to alleviate
the computational limitations associated with deep learn-
ing [181], [182]. Techniques for compressing deep learning
models to reduce the model computational issues have also
been designed such as parameter pruning, knowledge dis-
tillation, use of compact convolution filters and estimation
of information parameters for preservation using low rank
factorization [87].

G. OTHER CHALLENGES

Additional issues requiring proper attention that are associ-
ated with implementation of deep learning algorithms and
applicable to THz medical imaging include catastrophic
forgetting, vanishing gradient problem, exploding gradient
problem and under-specification [87]. The deep learning
methods enable visualization of results in a manner that can
be conveyed to medical practitioners. Some challenges have
been identified that affect accuracy based performance of
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these data driven techniques from THz imaging of breast
tumors in [84]. These challenges have shown to cause “erro-
neous” classifications which are scattering near edges, tissue
changes between THz imaging and histopathology, multiple
tissues in THz pixel region, overlapping electrical property in
fat and muscle tissues and classification of non-tissue related
artefacts.

The machine learning and deep learning models in the
imaging application domain are also vulnerable to attacks
that can lead to either slight result discrepancies or the conse-
quences can be lethal in applications where safety is critical.
Such attacks can be subjected to the deep learning models at
the edge, fog or cloud layers of the system and they include
adversarial attacks, neural level Trojans, hardware attacks
and intellectual property (IP) stealing [209]. The adversar-
ial attacks are crafted adversarial machine learning attacks
that compromise the model performances [207] in various
machine learning applications, and the THz imaging appli-
cation is no exception. The approaches to develop machine
learning models that are adversarial robust have been reported
that can restrain adversarial examples and perturbations to
ensure model security and integrity [207]. Such adversarial
robust approaches include modifying the training and testing
data, modifying the features/parameters learned by the train-
ing model and use of additional auxiliary models to enhance
the main model’s robustness.

For the effective modeling of medical tasks, the challenges
associated with processing heterogeneous observational data
from real world clinical databases must be considered. These
potential challenges include non-standardized data structures,
small and incomplete datasets, preserving patient data pri-
vacy, cost effective annotation process, multimodal data and
irregular health trajectories [183]. Despite the THz based
imaging’s massive clinical potential, the technology devel-
opment is still at an early stage and still associated with a
lot of limitations. The alleviation of current limitations can
pave the way to future research. For spectral fingerprinting
of cells, a spectral finger print database [72] is needed as a
prerequisite for identification, however there are no standard-
ized techniques for detection yet, thus the establishment of a
standardized detection system would be essential. For spec-
tral studies, the researchers still face challenges of extracting
target spectral fingerprints out of interfering signals and com-
plex backgrounds through Fourier transforms, which may
be realized by future development of high sensitivity and
specificity sensors like meta-materials and plasmonic anten-
nas [72].

Due to the THz ability to resonate with water and
biomolecule vibrational motion on picosecond and sub-
picosecond, the THz imaging is able to contrast between
pathological, healthy, burned and dehydrated tissues and able
to measure the refractive index and absorption coefficient
resulting in phase and amplitude information measurements.
However, the water absorbs THz wave i.e., absorption of
300cm™! at frequency 1.5 THz. The tissue preparation meth-
ods such as frozen, paraffin embedding and formalin fixing
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have been developed and contrast between tissues is on the
basis of increased refractive index and absorption coefficient,
likewise the strong THz absorption capability of water causes
THz to only be able to penetrate a few millimeters of tissue
and thus, in vivo measurements using THz are still more
friendly for surface tissues.

The THz systems are attractive emerging modalities, how-
ever their application in medical imaging is still characterized
by intrinsic limitations including bulky THz systems, poor
source performance, low contrast mechanism, low detection
sensitivity, poor signal-to-noise ratio and slow processing
etc. Moreover, most experimental studies for THz cancer
imaging have been performed ex vivo and in vitro, with the
exception of epidermal observations that can be done in vivo.
These limitations have been suggested to be overcome
through nanotechnology supported THz modalities [211]. For
example, the development and use of nanoparticle-based con-
trast agents such as gold nano-rods and super-paramagnetic
iron oxide nanoparticles (SPIOs) have been explored for
improving THz imaging contrast in vivo [172]. The use of
nanotechnology in THz technology can also improve sources
and detectors development including the development of
nanoparticle probes.

H. FUTURE PROSPECTS

The developments in THz technology have made signifi-
cant progress in various applications and trigger a plethora
of promising research directions, particularly in the deep
learning enabled THz cancer imaging. Advances in THz
technology play a significant role in medical imaging for
cancer diagnosis, treatment and follow ups to verify the suc-
cess of a treatment. Additionally, medical images are now
a key component to the invasive procedures in cancer for
surgical and therapy planning, and image guided surgeries
where the real time imaging is performed during the proce-
dure. Conventionally, the diagnosis procedure is based on the
review of the acquired images by a radiologist who performs
interpretation, writes a report of their findings, then based
on that, the physician defines the plan for diagnosis and
treatment. However, with ever increasing and advancements
of medical imaging techniques, it also implies more vol-
umes and variations of image data for interpretation resulting
in limitations associated with time for review, variations in
interpretation, human subjectivity and fatigue. This leads to
compromised findings, insufficiency of quantification and
long result turnaround time which limits personalized health-
care that is evidence based. The application of Al tools,
however, can automate image analysis thus providing support
to the physicians. Moreover, the diagnosis systems where the
physician coupled with an aiding system have been reported
to provide more accuracy [88]. Some of the systems that can
be developed to automate the analysis include, systems for
quantification of the cancer extent, detection of the cancer
pathology, pathology characterization for example, malig-
nant & benign and decision support tools which enable 3D

VOLUME 12, 2024

and time varying data to be characterized and quantified.
The major limitation with developing these Al tools in THz
imaging is lack of sufficient data, what we would refer to
as the data challenge. However, some previously developed
techniques could be enablers of deep learning and ML tech-
nology in the THz imaging space. Such enablers include the
Transfer learning (TL) whereby pretrained network models
are used to apply previously acquired knowledge to another
problem that is reported in [184], [185], and [186]. The tech-
niques based on TL include: ImageNet [184], [185], [186],
[187] AlexNet [187], VGGNet [188], ResNet [189], Incep-
tionNet [208], U-Net [191] and DenseNet [192]. A second
solution is the emergence of synthetic data augmentation
whereby schemes based on generative modelling for instance,
the generative adversarial network (GAN) and use of varia-
tional encoders are used to synthesize data to increase training
dataset [ 193], and thus improve the performance of the model.
The development of integrated learning for domain adapta-
tion models capable of discriminating heterogeneous feature
spaces of different and multiple domains for cross modality
cancer image analysis can also be applied as reported in [194]
and [195]. Another solution would be the adoption of the
novel federated learning in THz cancer imaging to combat
limitations associated with data privacy, data access rights,
data sharing and data security so as to facilitate academic
research. The federated learning uses distributed computing
and strategies of data aggregation so that a robust and com-
mon algorithmic model can be enabled without transfer of the
datai.e., the algorithm is trained across decentralized devices
etc. without exchanging data, which is contrast to uploading
datasets to a centralized server [21], [88], [196], [197], [198],
[199], [200], [201], [202].

The general need for automated detection and classifica-
tion models, empowered by machine learning developments
is an increasing trend in the biomedical imaging field.
As reported in this work, since the THz imaging technology
is novel, most of the similar studies have been explored over
image datasets from conventional imaging modalities like
MRI, X-Ray, Computer tomography (CT) and ultrasound
etc. and in these applications, the algorithms that have been
reported to be the mostly / commonly used and been reported
to have given consistent, highest accuracy, specificity and
sensitivity when applied to images from various modalities
are the SVM and ANN algorithms [37], [38] followed by
CNN recently. With the existing studies of ML based detec-
tion and classification in the THz imaging and spectroscopy
application, most of the studies have been reported in non-
destructive testing, security, material/ substance and object
detection as well as in the biological studies where again
SVM and ANN have been observed to be the mostly used.
However, due to the few studies available in deep learn-
ing application for cancer detection and classification using
THz imaging, the available data is not sufficient to conclude
the model’s performance evaluation and the commonly used
algorithms considering the relatively small training datasets
resulting in limited model complexity. Rather the developed
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models would be task specific than robust due to the limited
sources of THz cancer imaging datasets caused by the high
cost and maintenance of tissues as well as purchasing of the
commercially available THz imaging equipment. We there-
fore recommend the fusion of common medical imaging
modalities that are complementary with THz imaging so as
to increase the training dataset sizes so that integrated deep
learning frameworks can be developed, performance eval-
uation standardized and enable more automated diagnosis
systems through the application of deep learning algorithms
(which require huge training dataset sizes). Moreover, more
work can be done in application of deep learning techniques
to THz imaging for image, reconstruction, enhancement,
registration, segmentation, recognition, automatic report gen-
eration and disease prediction.

The cutting edge quantum inspired deep learning
approaches promises to resolve the limitations of deep learn-
ing based on parallel computer and GPU hard drive expense
in future, where classical data is transformed to quantum
state by the quantum routine, and after the quantum opera-
tions, the classical data is retrieved [161]. The deep learning
models address the limitation of scalability in conventional
ML which are task specific or scenario dependent, enabling
adaptation to continuous updates in THz data. The long
training times that are obstructing current deep learning
systems from effectively operating in real time may be
solved by developing real time deep learning techniques with
shorter training time and improving the training process.
The successful operation and deployment of next genera-
tion THz systems for cancer applications calls for better
localization and sensing performance. Future research for
the development of THz imaging, spectroscopy and sensing
should expect migration towards advanced machine learning
such as deep learning for automating analytical modeling
and various solutions to current limitations. In this case
of medical imaging where distributed yet preserving data
privacy is of utmost importance, federated learning-based
techniques can be adopted to facilitate research and model
standardization. Further, the multitask and multimodal learn-
ing capable systems should also be leveraged for scalable
models. The reinforcement learning based techniques will
be useful in interactive learning frameworks for example,
in indoor patient monitoring situations and THz multipurpose
platforms.

The novel neural network structures such as the broad
learning system (BLS) that consist of enhancement nodes
and feature nodes and are based on pseudo-inverse theory
and compressed sensing could also offer new opportunities
in future THz cancer analysis. Compared to the popular
deep neural networks, BLS networks are capable of incre-
mental learning and has the ability to remodel the system
without tedious process of retraining. Thus faster modelling
speed, higher regression accuracy and better generalization
for solving various tasks [203], [204]. Unified THz systems
that can support various applications from in-home health,
virtual reality services to residential security etc. with high
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reliability, high data rates and low latencies are expected to
pave way for next generation research frontiers [2].

VII. CONCLUSION

In this article, we present a broad review of the recent
applications of artificial intelligence particularly, the deep
learning techniques in various targets of THz sensing, imag-
ing, and spectroscopy applications. We note that the main
focus of most reported studies is on the potential applica-
tion of conventional machine learning techniques that are
based on shallow network structures and are task specific.
More recently, deep learning technique has been realized in
the THz applications including metamaterial design, NDT,
security inspection, material characterization and wireless
communication systems. The THz applications deal with high
dimension spatio-temporal data, as such deep learning meth-
ods have shown to outperform the simpler ML techniques
in classification detection and related tasks. The deep learn-
ing approach provide increased system model performance,
robustness and automatic, in-depth feature extraction rela-
tive to the conventional machine learning techniques and are
thus significant for the optimization of THz system design
and embedded data extraction and analysis. Accordingly,
novel learning models have been introduced such as trans-
fer learning, deep reinforcement learning, federated learning
and broad learning systems. Frontiers in THz technology is
advancing towards the biomedical application of THz tech-
nology as a potential emerging modality particularly, for
the cancer cells imaging. The development of deep learn-
ing enabled THz cancer cells imaging systems will enable
the development of computer aided detection and diagnosis
systems for clinical decision support. Thus, we identify an
existing limitation inhibiting the wide scale application of
deep learning in the THz cancer applications. The suggested
solutions will provide the roadmap for future research.
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